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We give a short argument why the tensor product semi-norm on K ⊗ k L is multiplicative when k is an algebraically closed valued field and K and L are valued extensions (valued in R). When the valuation on k is non trivial we use the fact that ACV F , the theory of algebraically closed (non trivially) valued fields, has quantifier elimination.

It is a classical fact (e.g., Zariski and Samuel [ZS58, Chapter IV, Theorem 40, Corollary 1]) that any two extensions K and L of an algebraically closed field k the ring K ⊗ k L is an integral domain (and this characterises algebraically closed fields). When K and L (and therefore k) are valued in (R ≥0 , •), the tensor product carries a natural semi-norm; by analogy with the non valued case, if k is also algebraically closed, we would expect this norm to be "prime", i.e., multiplicative, extending to a valuation of the fraction field. This is indeed proved by Jérôme Poineau [Poi13, Corollaire 3.14], with both the result and the proof stated in the language of Berkovich spaces, making them fairly obscure to those not familiar with this formalism (such as the author, who is indebted to Amaury Thuillier for having pointed to and explained Poineau's result). Here we propose a more direct proof, using quantifier elimination for the theory of algebraically closed valued fields.

Definition 1. A valued field is a pair k = (k, O k ) = (k, O)
where k is a field and the valuation ring

O ⊆ k is a sub-ring such that k = O ∪ O {0}
-1 . We let O × denote the group of units of O, and call

(Γ k , •) = (Γ, •) = k × /O × the value group. We let |•| : k × → Γ denote
the quotient map, and add a formal symbol 0 = |0|. We order Γ ∪ {0} by |a| ≤ |b| ⇐⇒ a ∈ bO. By a standard valued field we mean a valued field together with an embedding (Γ,

•, <) → (R >0 , •, <).
An embedding of valued fields must respect the valuation ring (in both directions), and therefore induces an embedding of the value groups. An embedding of standard valued fields is also required to respect the embeddings of the value groups in the reals.

A semi-normed k-vector space (or k-module) is a k-vector space U together with a semi-norm • : U → Γ U ∪ {0}, where Γ U is an ordered multiplicative group extending Γ k , satisfying x + y ≤ max x , y and ax ≤ |a| x (whence ax = |a| x ) for x, y ∈ U , a ∈ k. It is standard if k is standard and U is equipped with an embedding Γ U → (R + , •, <) extending that of Γ k . In particular, a (standard) valued field extending k is a (standard) normed k-vector space.

We refer the reader to any standard textbook on model theory, e.g., Poizat [Poi85] for a general discussion of structures, quantifier elimination, elementary extensions and ultra-powers.

Fact 2 ([HHM06, Theorem 2.1.1(i)]). Consider a valued field as a logical structure in the language of fields (i.e., of rings), together with a predicate symbol for the binary relation |x| ≤ |y|. Then the theory of algebraically closed non trivially valued fields (commonly denoted ACV F ) in this language has quantifier elimination. In particular, if K/k is an extension of such fields then K k is an elementary extension. Fact 3. If M is any structure, in the sense of first order logic (e.g., a valued field, or a pair of a valued field and a sub-field) and U is an ultra-filter then the ultra-power M U is an elementary extension of M. Conversely, every elementary extension N M embeds over M in some ultra-power of M.

When K/k is a field extension, let . . . k denote the span in K viewed as a k-vector space. Lemma 4. Let K/k be an extension of valued fields.

(i) For any ultra-filter U, the embeddings

k ⊆ k U ⊆ K U and k ⊆ K ⊆ K U yield a commutative diagram. Given X ⊆ K, y ∈ K, and γ ∈ Γ K such that |y| ≤ γ|y ′ | for all y ′ ∈ y + X k , we also have |y| ≤ γ|y ′ | for all y ′ ∈ y + X k U . (ii) If k is
algebraically closed and non trivially valued, then there exists an ultra-filter U and an embedding ι : K → k U which is the identity on k.

(iii) If K/k in the previous item is moreover an extension of standard valued fields then the embedding

Γ k ⊆ R >0 induces Γ (k U ) = (Γ k ) U ⊆ (R U ) >0
, and |a| = st |ιa| for all a ∈ K × , where st denotes the standard part map (so in particular, |ιa| ∈ R U lies in the convex hull of R + ).

Proof. For the first assertion, we use the fact that the pair (K, k) U = (K U , k U ) is an elementary extension of (K, k). For the second assertion, we may assume that K is algebraically closed. By Fact 2 we have K k, and we may conclude using Fact 3. For the last assertion, for a ∈ k × we have

st |ιa| = |ιa| = |a|. Choose a ∈ k × such that in addition |a| > 1, and let b ∈ K × . Let m, n be integers such that m n ≤ log |a| |b| ≤ m+1 n and n > 0. Then |a m | ≤ |b n | ≤ |a m+1 |, so |a| m/n ≤ |ιb| ≤ |a| (m+1)/n
and therefore |a| m/n ≤ st |ιb| ≤ |a| (m+1)/n as well. Our assertion follows.

Notation 5. Tuples, e.g., ā = (a 0 , . . . , a m-1 ), are always indexed starting at zero. We shall consider tuples as column vectors, so āt • b = i a i b i , and by analogy, xt ⊗ ȳ = x i ⊗ y i for tensors.

Definition 6 ([BGR84, 2.1.7]). Let k be a standard valued field, U and V two standard semi-normed vector spaces over k.

For z ∈ U ⊗ k V we define z = inf z=x t ⊗ȳ max i x i y i . (1)
There is a canonical embedding U ⊗ k V ⊆ Hom k (U * , V ), and let rk z denote the (finite) rank of z as a morphism U * → V . A presentation z = xt ⊗ ȳ has length rk z if and only if it has minimal length if and only if each of the tuples x and ȳ is linearly independent over k. Proof. The first item is immediate (see [BGR84]). For the second, consider a presentation z = xt ⊗ ȳ of length m+1, with x linearly dependent over k. Up to a permutation we may assume that x m = i<m a i x i where a i ∈ k and x m = max i<m a i x i . Then z = i<m x i ⊗ y ′ i , where y ′ i = y i + a i y m , and max

i≤m x i y i = max i<m max x i y i , a i x i y m ≥ max i<m x i y ′ i .
The second item follows. The third item follows from the second.

(If U and V are standard normed and k complete then U ⊗ k V is normed, but for our purposes this is beside the point.) Lemma 8. Let k be a valued field, U a semi-normed k-vector space, Γ = Γ U , and let x ∈ U m and γ ∈ Γ m be such that:

x i ≤ γ i x for all i < m and x ∈ x i + x <i k . ( * γ,k ) (i) For every ā ∈ k m : āt • x γ i ≥ max i |a i | x i .
(ii) Assume in addition that k is standard and U and V are standard semi-normed k-vector spaces.

Then for every ȳ ∈ V m :

xt ⊗ ȳ γ i ≥ max i x i y i .
Proof. Dropping those x i such that x i = 0 and the corresponding a i or y i will not change either the hypotheses or the conclusions. We may therefore assume that x i > 0 for all i, in which case the hypothesis ( * γ,k ) implies that x is linearly independent over k and γ i ≥ 1 for all i. For 0 ≤ j ≤ m let β j = i<j γ i . For the first assertion, let α = max i |a i | x i . Then α = a i x i ≤ β i a i x i for some i, and we may choose ℓ < m maximal such that α ≤ β ℓ a ℓ x ℓ . By ( * γ,k ) we have β ℓ+1 i≤ℓ a i x i ≥ β ℓ a ℓ x ℓ ≥ α. By choice of ℓ we have

β ℓ+1 a i x i ≤ β i a i x i < α for i > ℓ, so β m āt • x ≥ β ℓ+1 āt • x ≥ α.
For the second assertion we need to show that if xt ⊗ ȳ = z = x′t ⊗ ȳ′ then β m max x ′ i y ′ i ≥ max i x i y i . By Lemma 7 we may assume that ȳ′ is linearly independent over k. Then x′ ⊆ x k (otherwise there is a linear functional λ ∈ U * which vanishes on x but not on x′ , and λ • z ∈ V is both zero and non zero), so let us write x ′ i = j<m a ij x j . By linear independence of x, a tensor calculation yields, y j = i<n a ij y ′ i . Thus by (i)

β m max i x ′ i y ′ i ≥ max i,j |a ij | x j y ′ i ≥ max j x j y j ,
as desired.

We can now prove our main result. The argument goes roughly as follows. We consider an extension of algebraically closed standard valued fields K/k. As we saw earlier, an ultra-power K U contains two extensions of k, namely K and k U , and by Lemma 8 the vector space they generate in K U is canonically isometric to K ⊗ k k U . In particular, since we may also embed L/k in k U /k (this is where quantifier elimination is used) we obtain an isometric embedding of the algebra K ⊗ k L in K U , and we know that the latter carries a multiplicative valuation. When k carries a trivial valuation but neither K nor L do, the last step fails, and a completely different argument is required. While the latter case is uninteresting to us, it is included for the sake of completeness.

Theorem 9. Let k be a standard algebraically closed valued field, let K, L ⊇ k be standard valued field extensions, and let A = K ⊗ k L. Then the tensor semi-norm • on A is multiplicative, extending to a standard valuation on F = Frac(A/ ker • ). This renders F an extension of both K and L.

Proof. Assume first that the valuation on k is not trivial, and let ι : L ֒→ k U be an embedding as per Lemma 4(ii). Since K is a sub-field of K U , the universal property of tensor products gives rise to a natural map ι : A → K U such that z ≥ st |ιz| for all z ∈ A. For the converse inequality, let 1 < γ ∈ Γ k be rational. We may always express z as xt ⊗ ȳ, say of length m, where x satisfies ( * (γ,γ,...),k ), and by Lemma 4(i), also ( * (γ,γ,...),k U ). Thus, by Lemma 8(i) applied to K U as a normed k U -vector space,

γ m st |ιz| ≥ st max i |x i ιy i | = max i |x i ||y i | ≥ z . (2) 
Since k is algebraically closed, we can choose 1 < γ ∈ Γ k ⊆ R arbitrarily close to one. Then (2) gives st |ιz| ≥ z and therefore st |ιz| = z . Thus, for every z, z ′ ∈ A we have

zz ′ = st |ι(zz ′ )| = st |ιz| st |ιz ′ | = z z ′ , as desired.
When k is trivially valued we need a different argument. Call z ∈ A (α, β)-pure if it can be written as xt ⊗ ȳ with |x i | = α and |y i | = β = z /α for all i. When z, z ′ ∈ A are pure, we can multiply them by elements of K and L to reduce to the case where both are (1, 1)-pure, in which case zz ′ = z z ′ holds since the tensor product of the residue fields is an integral domain.

Say that a presentation z = xt ⊗ ȳ is normalised if x i has least value in x i + x <i for each i: by Lemma 8(ii) we then have xt ⊗ ȳ • 1 ≥ max i |x i ||y i |, i.e., z = max i |x i ||y i |. Since the valuation on k is trivial, if V ⊂ K is a finite-dimensional k-vector space, the valuation takes at most dim V + 1 possible values on V . It follows that for any presentation z = xt ⊗ ȳ there exists a normalised presentation z = ūt ⊗ v where u i ∈ x i + x <i . In other words, ū = C t x where C is unipotent upper triangular and v = C -1 ȳ. Say then that C normalises z = xt ⊗ ȳ.

Normalising and reordering, any z ∈ A can be split as z 0 + z 1 where z 0 is (α, β)-pure for some α, β, and z 1 ∈ A α,β = x ⊗ y : |x||y|, |y| < (αβ, β) in lexicographic order . Conversely, we claim that if 

z = z 0 + z 1 where z 0 is (α, β)-pure and z 1 ∈ A α,
= C t x, v = C -1 ȳ and ū ū′ = C t 0 E t D t x x′ , w v′ = C -1 F 0 D -1 ȳ ȳ′ = C E 0 D -1 ȳ ȳ′ , with F = -C -1 ED -1 .
′ = z ′ 0 + z ′ 0 , where z 0 is (α, β)-pure, z ′ 0 is (γ, δ)-pure and z 1 ∈ A α,β , z ′ 1 ∈ A γ,δ
. By the case of product of two pure elements, z 0 z ′ 0 is (αγ, βδ)-pure, and clearly

z 1 z ′ 0 + z 0 z ′ 1 + z 1 z ′ 1 ∈ A αγ,βδ , so zz ′ = αβγδ = z z ′ , as desired.
When k is trivially valued and so is one of K or L, then a variant of the first argument does go though. Indeed, if L is trivially valued then an embedding ι : L → k U (of pure fields, or of trivially valued fields) exists by quantifier elimination for ACF (the theory of algebraically closed fields), and the rest of the argument remains the same. It is a standard fact (e.g., Artin [START_REF] Artin | Algebraic numbers and algebraic functions[END_REF]) that an absolute value is either Archimedean, i.e., |a| = |ι k a| α , where α = log 2 |2| ∈ (0, 1] and ι k : k → C is uniquely determined up to complex conjugation, or is a standard valuation as defined here. In particular, if K/k is an extension of valued fields in this sense, then one is Archimedean if and only if the other is, in which case we may choose ι K so that ι k ⊆ ι K , and if k is algebraically closed (or merely such that the image of ι k is not contained in R), this determines ι K . When K and L are two extensions of an algebraically closed Archimedean valued field k, we can define on A = K ⊗ k L:

xt ⊗ ȳ = |ι K xt • ι L ȳ|.
This is clearly multiplicative, inducing an Archimedean absolute value on Frac(A/ ker • ).

Lemma 7 .

 7 With the hypotheses of Definition 6:(i) The function z → z defined in (1) is a semi-norm on U ⊗ k V . If U and V are k-algebras(commutative, or at least such that k is central) with sub-multiplicative semi-norms (namely, xy ≤ x y ) then the tensor product semi-norm is sub-multiplicative as well. (ii) We may restrict (1) to presentations of z of length rk z without changing the result. (iii) We have x ⊗ y = x y .

  β , as witnessed by z 0 = xt ⊗ ȳ and z 1 = x′t ⊗ ȳ′ , then z = αβ. We may assume that |x ′ j ||y ′ j | = αβ, and therefore |y ′ j | < β, for all j. Let C E 0 D normalise z = z 0 + z 1 = xt ⊗ ȳ + x′t ⊗ ȳ′ , where the blocks correspond to the two parts, so C normalises z 0 = xt ⊗ ȳ. Thus z 0 = ūt ⊗ v and z = ūt ⊗ w + ū′t ⊗ v′ , where ū

  In particular, w = v + F ȳ′ . Since z 0 = αβ there is at least one i such that |u i | = α and |v i | = β. Since |w iv i | < β by our assumption that |y ′ j | < β for all j, we obtain |w i | = β as well and so z = αβ. Now consider z, z ′ ∈ A, and decompose them z = z 0 + z 1 and z

Remark 10 .

 10 Our definitions only allow for non Archimedean valued fields. More generally, an absolute value on a field k is a map |•| : k → R ≥0 , satisfying |ab| = |a||b|, |a + b| ≤ |a| + |b|, |0| = 0 and |1| = 1.
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