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Compositional analysis of modular Petri nets using hierarchical state space abstraction

We propose an approach to perform efficient model-checking of µ-calculus formulae on modular Petri nets. Given a formula ϕ,e a c h module can be analysed separately, possibly yielding a conclusion about the truth value of ϕ on the global system. When no conclusion can be drawn locally, a minimal state space preserving ϕ is computed for the module and can be incrementally composed with others, thus enabling for hierarchical analysis of a modular Petri net in a bottom-up fashion.

1I n t r o d u c t i o n

State space explosion is a well known problem when dealing with model-checking of large systems. One way to address this problem in the context of Petri nets is modularity: a large Petri net is decomposed into subsystems which are then synchronised on shared places or transitions [START_REF] Christensen | Modular analysis of Petri nets[END_REF]. When only transitions are shared across sub-systems, like in [START_REF] Lakos | Modular analysis of systems composed of semiautonomous subsystems[END_REF], one way to alleviate state space explosion is to build a modular state space that consists of the state space of its subsystems (i.e., its modules) and a synchronisation graph of them. This is usually a much smaller object than the state space of the full Petri net (i.e., with all modules combined).

In this paper, we propose another way to analyse modular Petri nets when the goal is to model-check properties expressed as modal µ-calculus formulae, i.e., to verify whether the state space of a modular Petri net is a model for ag i v e nf o r m u l aϕ. Our approach allows to analyse modules independently of each other. When the formula depends only on one module, only this particular module needs to be analysed. When the formula depends on several modules, each can be processed separately and its state space minimised before being combined with the others, i.e.,w ec o m p u t eas m a l l e rt r a n s i t i o ns y s t e mt h a ti s equivalent to the initial one with respect to the formula ϕ. This minimisation is an extension to the modal µ-calculus of the approach defined in [START_REF] Aziz | Formuladependent equivalence for compositional ctl model checking[END_REF] for CTL. Furthermore, our approach is fully comp ositional: on the one hand, the semantics of any composition of modules is equivalent to the synchronised product of the individual semantics of each module; on the other hand, minimisation of the semantics preserves the truth value of ϕ.S o ,as y s t e mc o m p o s e do fs e v e r a l modules can be decomposed into an arbitrary hierarchy forming a tree in which each leaf is a module and each internal node corresponds to the composition of the modules below it. Analysis can be performed by traversing this tree bottomup in such a way that, at each node, we consider a particular subsystem whose semantics can be computed and analysed so that, either we can raise some global conclusion about the truth of ϕ, or we can minimise the semantics (which will be reused at the upper level) while preserving the truth of ϕ. This approach leaves a lot of room to define strategies to choose an optimal order of analysis of modules in order to minimise the amount of work necessary to bring the conclusion. The current paper concentrates on defining the analysis method, this kind of optimisations being left to future work.

The rest of the paper is organised as follows. In the next section, we recall main definitions about modular Petri nets and define the semantics in terms of labelled transition systems. Next, we define the modal µ-calculus logic and its semantics. Section 4 forms the core of our contribution, defining the formuladependent abstraction and giving the main results that enable hierarchical analysis and abstraction. For readability, proofs are moved in the appendix, after a conclusion section with perspectives.

2M o d u l a r P e t r i n e t s

In the following, we consider place/transitions nets for simplicity, but a generalisation to high-level Petri nets (in particular to coloured Petri nets) is straightforward because our work is based on the labelled transitions systems used for the Petri nets semantics. To start with, let us recall the definition of Petri nets to fix the notations. Definition 1. A Petri net N df =(P, T, W ) is a tuple such that:

-P is the finite set of places; -T is the finite set of transitions, such that P ∩ T = ∅; -W is a multiset over (P × T ) ∪ (T × P ) defining the arcs weights;

For t ∈ T , we denote by • t (resp., t • ) the multiset over P such that for all

s ∈ P , • t(s) df = W (s, t) (resp., t • (s) df = W (t, s)).
A marking M of N is a multiset over P indicating how many tokens each place holds. A transition t is enabled at marking M iff • t ≤ M , in which case the firing of t yields a new marking

M df = M -• t + t • . This is denoted by M [t M , moreover, we denote by [M the smallest set containing M such that if M ∈ [M and M [t M then M ∈ [M . We assume that [M is finite.
Our definition of modular Petri nets is adapted from [START_REF] Lakos | Modular analysis of systems composed of semiautonomous subsystems[END_REF]. We use here nondisjoint sets of transitions instead of explicit transitions fusion sets to define the transitions shared across modules. This especially means that we would have to make copies of a transition in order to model a choice between different synchronizations. Definition 2. A modular Petri net is a collection of modules (N 1 ,...N n ) where each N i is a Petri net (P i ,T i ,W i ), and such that the P i 's are pairwise disjoint. Transitions that belong to only one T i are called local while those shared among at least two T i 's are called fused. Such a modular net is equivalent to a flat Petri net obtained as the component-wise union of its modules. Because this union is commutative and associative, we shall use a binary notation for it:

N 1 ⊕•••⊕N n .
Example 1. Figure 1 shows two modules which are part of a modular Petri net. Transition f 3 is assumed to be fused with another module not shown here. The semantics of Petri nets and modular Petri nets can be defined in terms of labelled transitions systems (LTS ).

LTS semantics of Petri nets and modular Petri nets

A LTS is a tuple S df =( Q, q 0 , A, R, L) where Q is a set of states, q 0 ∈ Q is the initial state, A is the set of actions used as transition labels, R ⊆ Q × A × Q
is the set of transitions and L is a labelling of states with Boolean formulae on propositional variables from a set V.Atransition(q, a, q ) ∈ R is usually denoted by q a --------→ q . Definition 3. The LTS semantics of a Petri net N df =(P, T, W ) initially marked by M 0 is the LTS N df =(Q, q 0 , A, R, L) such that:

Q df =[M 0 ; q 0 df = M 0 ; A df = T ; R df = {M t --------→ M | M [t M }; and L(M ) df = M (p)>0 p=M(p) with V df = {p=k|p ∈ P, k ∈ N + }.
In this definition, states are labelled by a conjunction of propositional variables of the form s=k denoting the number of tokens in each non void place. This choice is arbitrary and can be changed in many ways, this will not affect the current work as long as we are able to evaluate atomic formulae. In order to bring modularity at the semantics level, we shall partition A as A loc A fus corresponding respectively to the local and fused transitions of a modular Petri net.

Example 2. Figure 2 shows the LTS semantics of the modules from example 1. Definition 4. The modular LTS semantics of a modular Petri net (N i ) 1≤i≤n , where

N i df =(P i ,T i ,W i ) for all i, is a collection of LTS (Q i ,q 0i ,A i ,R i ,L i ) 1≤i≤n
where each A i is partitioned as The collection of LTS obtained from a modular Petri net can be transformed into a single LTS by taking the synchronised product of its components, where synchronisation takes place on the fused transitions, which is the usual definition of a n-ary synchronised product. We denote by x[i] the i-th component of a tuple x and by x[i ← y i ] the tuple x in which the i-th component has been replaced by y i ,t h i sl a t t e rn o t a t i o ni sn a t u r a l l ye x t e n d e dt ot h er e p l a c e m e n to fs e v e r a l components. Definition 5. Let (S i ) 1≤i≤n be the LTS semantics of a modular Petri net with

A loc i A fus i such that, for 1 ≤ i ≤ n: -(Q i ,q 0i ,A i ,R i ,L i )=N i is the LTS semantics of N i considered alone; -A loc i df = R i \ j =i R j and A fus i df = A i \ A loc i . a 1 b 2 b ∧ c 3 c ∧ d ∧ e 7 c ∧ d ∧ f 8 c ∧ d ∧ g 9 d ∧ e 4 d ∧ f 5 d ∧ g 6
S i df =( Q i ,q 0i ,A i ,R i ,L i ) and A i df = A loc i A fus i
, the synchronised product of the S i 's, is the LTS (Q, q 0 , A, R, L) defined by:

-Q df = 1≤i≤n Q i ; -q 0 df =(q 01 ,...,q 0n ); -A df = 1≤i≤n A i ; -R is the smallest subset of Q × A × Q such that x a --------→ y ∈ R iff either • it exists i such that a ∈ A loc i , x[i] a --------→ y i ∈ R i and y = x[i ← y i ], • or, for all i such that a ∈ A fus i , we have x[i] a --------→ y i ∈ R i and y = x[i ← y i ]. -for all x ∈ Q, L(x) df = 1≤i≤n L i (x[i]).
Because this product is associative and commutative, we shall also use a binary notation for it:

S 1 ⊗•••⊗S n .
In the definition of R above, the first point corresponds to the cases where a module evolves on a local transition. So only one component of the compound state evolves. The second point corresponds to the firing of a fused transition, in which case all the modules sharing this transition must simultaneously fire and the corresponding components of the compound state will simultaneously evolve. Notice that, by definition of a fused transition, if a ∈ A fus i for some i, then there exists at least one j = i such that a ∈ A fus j also (otherwise, we would have a ∈ A loc i ). From the definitions above, it immediately follows that the synchronised product of the LTS semantics of a modular Petri net is equivalent to the LTS semantics of the flat Petri net.

Theorem 1. Let (N i ) 1≤i≤n be a modular Petri net. We have

N 1 ⊕•••⊕N n ∼ N 1 ⊗•••⊗N n
where ∼ denotes the isomorphism of LTS.

Because of this, we can define the notation N 1 ,...,N

n df = N 1 ⊗•••⊗N n .
These notations are intended to put into light a first level of compositionality. For example, consider a mo dular Petri net (N 1 ,...,N 5 ). It is possible to see it as, e.g.,threesubsystems(N 1 ,N 2 ), (N 3 ,N 4 ) and N 5 and to compute

N 1 ,N 2 ⊗ N 3 ,N 4 ⊗ N 5 ,justlik eifw ew ouldha v econsidered(N 1 ⊕ N 2 ,N 3 ⊕ N 4 ,N 5
) as the initial system, which is also equivalent to (N 1 ⊕N 2 )⊕(N 3 ⊕N 4 )⊕(N 5 ).Sowe can decompose a modular Petri net into a hierarchy and compute the semantics at any level of this hierarchy. This is the first step towards full compositionality; the next step will be to introduce LTS minimisation with respect to a µ-calculus formula in order to be able to apply minimisation hierarchically.

3T h e m o d a l µ-calculus

The modal µ-calculus (or simply µ-calculus) is a temporal logic that encompasses widely used logics such as, in particular, CTL* (and thus also LTL and CTL) [START_REF] Kozen | Results on the propositional µ-calculus[END_REF]. A µ-formula is derived from the following grammar, where B is a Boolean formula, X is a propositional variable and α is a set of actions:

ϕ ::= B |¬ϕ | ϕ ∨ ϕ |αϕ | µX.ϕ | X
Moreover, in a formula µX.ϕ, ϕ must be positive in the variable X, i.e.,e v e r y free occurrence of X must be in the scope of an even number of negations ¬.

Af o r m u l aϕ is evaluated over a LTS S df =( Q, A, R, L) and can be seen as a function of its free variables to 2 Q . In particular, if ϕ is a closed formula then it is a function with no arguments that returns the subset of Q where ϕ holds. In formula µX.aX ∨ B,t h es u b -f o r m u l aaX ∨ B defines a function that, given X ⊆ Q,r e t u r n st h es t a t e sy such that either y a --------→ x for some x ∈ X,o rB holds on y. From this point of view, µX.ϕ is the least fixed point of function ϕ. More generally, the semantics ϕ N of ϕ over S is defined as follows:

-B holds in every state whose label implies B:

B S df = {x ∈ Q | L(x) ⇒ B}; -ϕ 1 ∨ ϕ 2 holds in every state where ϕ 1 or ϕ 2 holds: (ϕ 1 ∨ ϕ 2 ) S df = ϕ S 1 ∪ ϕ S 2 ;
-¬ϕ holds in every state where ϕ does not: (¬ϕ) S df = Q \ ϕ S ; -αϕ holds in every state where a transition labelled by a ∈ α leads to a state where ϕ holds:

(αϕ) S df = {x ∈ Q |∃y ∈ ϕ S , ∃a ∈ α, x a --------→ y ∈ R}; -µX.ϕ is the least fixed point of function ϕ: (µX.ϕ) S df = ρ∈2 Q ∧ϕ(ρ)⊆ρ ρ; -X S df
= X,c a nb es e e na st h ei d e n t i t yf u n c t i o n .

For closed formulae, ϕ S is a subset of Q, which can be equivalently seen as the image of a function with no arguments. But for formulae with free variables, ϕ S is afunctionexactlylikeϕ is and the above definition can be read as transformation of functions. For instance, for a ϕ with a single free variable X,t h ed e fi n i t i o no f (¬ϕ) S can be reformulated as (¬ϕ) S (X)

df = Q \ ϕ S (X)
.Notethat,tosimplifythe definitions in the sequel, we have considered α as a set of actions in α instead of as a single action as more usual. Moreover, because the semantics of a formula is a set of states, we may use one or the other form interchangeably.

The effective construction of µX.ϕ is made inductively by defining 0X.ϕ df = ∅, and nX.ϕ

df = ϕ[X ← (n -1)X.ϕ] where ϕ[X ← Y ] denotes ϕ in which variable
X is substituted by Y everywhere. Knaster-Tarski's theorem ensures that there exists k ∈ N such that kX.ϕ = µX.ϕ.Indeed,ϕ is a monotonous function over a complete lattice, and thus the set of its fixed-points is also a complete lattice [START_REF] Tarski | A lattice-theoretical fixpoint theorem and its applications[END_REF]. To write formulae more comfortably, we can use the following operators:

-0X.ϕ df = ∅ -1X.ϕ df = ϕ(0X.ϕ)=(AX)(∅) ∪ d() = ∅∪{4, 5, 6, 7, 8, 9} -2X.ϕ df =(AX)(1X.ϕ) ∪{4,
-ϕ 1 ∧ ϕ 2 df = ¬(¬ϕ 1 ∨¬ϕ 2 ); -[α]ϕ df = ¬α¬ϕ, which yields ([α]ϕ) S df = {x ∈ Q |∀y ∈ ϕ S ,x a --------→ y ∈ T }; -νX.ϕ df = ¬µX.¬ϕ[X ←¬X] is the greatest fixed-point of ϕ.
Finally, for q ∈ Q, we write S, q |= ϕ iff q ∈ ϕ S ,a n dS |= ϕ iff S, q 0 |= ϕ.

4F o r m u l a -d e p e n d e n t a b s t r a c t i o n

In this section, we introduce an operation S ϕ that, given the LTS S of a module and a formula ϕ, returns a LTS, (usually) smaller that S without changing the truth of ϕ,n e i t h e ro v e rS,n o ro v e rt h eg l o b a ls y s t e m( i.e., S synchronised with the LTS of the other modules). To do so, we define an equivalence relation (initially between states of a same LTS, then extended to LTS), denoted by ∼ ϕ , that preserves the truth value of ϕ on the global system and is a congruence with respect to synchronised product ⊗.

Let S =(q 0 , Q, A, R, L) with A df = A loc A fus be the LTS of a module, q ∈ Q as t a t e ,a n dϕ af o r m u l a .L e ta l s oEx be the actions appearing in ϕ but not in A, which corresponds to the context of S, i.e., the other modules. To start with, we define the set Pass ϕ such that if q ∈ Pass ϕ then ϕ is necessarily true on any bigger system in which S is a module in state q.S i m i l a r l y ,w ed e fi n eFail ϕ such that if q ∈ Fail ϕ then ϕ is necessarily false on any bigger system encompassing S in state q. We shall write Pass ϕ (S) or Fail ϕ (S) when the LTS of interest needs to be precised. We say that formula ϕ can be evaluated on a state q belonging to S if q ∈ Pass ϕ ∪ Fail ϕ , which is denoted by ϕ ? | = S, q. This means that we can conclude about the truth of ϕ in state q independently of the context in which S may be embedded as a module. Similarly, ϕ can be evaluated on S if it can be evaluated it on its initial state, which is denoted by ϕ ? | = S. The definition below is made with respect to a context Σ that is a map from the free variables of a formula to sets of states (when needed, Σ may be seen as a set of pairs). For a formula ϕ that contains free variables X 1 ,...,X n that do not appear in the environment Σ, Pass Σ,ϕ is the function (x 1 ,...,x n ) → Pass Σ∪{(Xi,xi)|1≤i≤n},ϕ . Definition 6. Let ϕ be a formula and S df =(q 0 , Q, A, R, L) with A df = A loc A fus be a LTS. We set Pass ϕ df = Pass ∅,ϕ and Fail ϕ df = Fail ∅,ϕ , where Pass ∅,ϕ and Fail ∅,ϕ are functions defined inductively on the syntax of ϕ:

-Pass Σ,X df = Σ(X); -Pass Σ,B df = {x ∈ Q | L(x) ⇒ B}; -Pass Σ,¬ϕ df = Fail Σ,ϕ ; -Pass Σ,ϕ1∨ϕ2 df = Pass Σ,ϕ1 ∪ Pass Σ,ϕ2 ; -Pass Σ,αϕ df =(α ∩ A loc X)(Pass Σ,ϕ ); -Pass Σ,µX.ϕ df = µX.Pass ϕ . -Fail Σ,X df = Σ(X); -Fail Σ,B df = Pass Σ,¬B ; -Fail Σ,¬ϕ df = Pass Σ,ϕ ; -Fail Σ,ϕ1∨ϕ2 df = Fail Σ,ϕ1 ∩ Fail Σ,ϕ2 ; -Fail Σ,αϕ df =( [ α \ Ex]X)(Fail Σ,ϕ ) ∩ F , where F df = Q if A ∩ Ex = ∅ and F df = Fail Σ,ϕ otherwise; -Fail Σ,µX.ϕ df = νX.Fail Σ,ϕ .
Together with Pass ϕ and Fail ϕ ,w ea i mt od e fi n e∼ ϕ as a relation between the states such that if x ∼ ϕ y,t h e n ,i nal a r g e rs y s t e me m b e d d i n gS,f o r m u l a ϕ does not allow to distinguish the states embedding x or y. (Thus it will be possible to reduce S by merging these two states.) In order to compute relation ∼ ϕ we define F Σ,ϕ and build F ϕ df = F ∅,ϕ . The computation of F ∅,ϕ described in definition 7, yields a triple (p, f, r) such that at the end of computation, p = Pass ϕ ,f = Fail ϕ and r df =∼ ϕ (this is not necessarily the case at every step). The rules used to build F ∅,ϕ , as shown in exemple 4, operate on elements from Q × Q × Q 2 .A si nt h ed e fi n i t i o n so f Pass and Fail,ifϕ contains free variables X 1 ,...,X n which do not appear in the environment Σ,t h e nF Σ,ϕ is the function (x 1 ,...,x n ) → F Σ∪{(Xi,xi)|1≤i≤n},ϕ . However unlike in the previous definition, environment Σ now takes values from Q × Q × Q 2 .W ea l s od e fi n eΣ p and Σ f as the projections of Σ on its first and second components, i.e.,thesmallestenvironmentssuchthatif(X, (p, f, r)) ∈ Σ, then (X, p) ∈ Σ p and (X, f) ∈ Σ f . Definition 7. Let ϕ be a formula and S df =(Q, A, R, L) with A df = A loc A fus be aL T S .F Σ,ϕ is defined recursively on the syntax of ϕ as follows:

1. F Σ,B df =(Pass Σ,B , Fail Σ,B , {(x, y) | (L(x) ⇒ B) ⇔ (L(y) ⇒ B)}). 2. F Σ,¬ϕ1 df = F Σ,¬ (F Σ,ϕ1 ) with F Σ,¬ (p, f, r) df =(f, p, r). 3. F Σ,ϕ1∨ϕ2 df = F Σ,∨ (F Σ,ϕ1 , F Σ,ϕ2 ) with F Σ,∨ ((p 1 ,f 1 ,r 1 ), (f 2 ,p 2 ,r 2 )) df =(p 1 ∪ p 2 ,f 1 ∩ f 2 ,r 1 ∩ r 2 ). 4. F Σ,αϕ1 df = F Σ,α (F Σ,ϕ1 ) with F Σ,α (p, f, r) df =(Pass Σ p ,αX (p), Fail Σ f ,αX (f ),r ) where (x, y) ∈ r iff (x, y) ∈ r and either (a) x ∈ Pass Σ p ,αX (p) and y ∈ Pass Σ p ,αX (p), (b) or, x ∈ Fail Σ f ,αX (f ) and y ∈ Fail Σ f ,αX (f ), (c) or, we have i. for every a ∈ α ∩ A fus ,i fx a --------→ x ∈ R and x / ∈ f then it exists y a --------→ y ∈ R such that (x ,y ) ∈ r, ii. and, for every a ∈ α ∩ A fus ,i fy a --------→ y ∈ R and y / ∈ f then it exists x a --------→ x ∈ R such that (x ,y ) ∈ r, iii. and, for every a ∈ α ∩ A loc ,i fx a --------→ x ∈ R and x / ∈ f then it exists y a --------→ y ∈ R such that a ∈ α ∩ A loc and (x ,y ) ∈ r, iv. and, for every a ∈ α ∩ A loc ,i fy a --------→ y ∈ R and x / ∈ f then it exists x a --------→ x ∈ R such that a ∈ α ∩ A loc and (x ,y ) ∈ r. 5. F Σ,X df
= Σ(X). 6. F Σ,µX.ϕ1 is the fixed-point reached by iterating function F Σ,ϕ1 starting from (Pass Σ p ,µX.ϕ1 ,F ail Σ f ,µX.ϕ1 ,r 0 ) with (x, y) ∈ r 0 iff either (a) x ∈ Pass Σ p ,µX.ϕ1 and y ∈ Pass Σ p ,µX.ϕ1 , (b) or x ∈ Fail Σ f ,µX.ϕ1 and y ∈ Fail Σ f ,µX.ϕ1 , (c) or x, y ∈ Q \ (Fail Σ f ,µX.ϕ1 ∪ Pass Σ p ,µX.ϕ1 ).

With regard to ∼ ϕ ,t h i sd e fi n i t i o nc a nb ei n t u i t i v e l yu n d e r s t o o da sf o l l o w s :

1. The labels of two equivalent states must be identical with respect to the atomic formulae which appear in B. 2. The relations corresponding to a formula and to its negation are the same. 3. Two equivalent states must b e equivalent on b oth sub-formulae. 4. When ϕ involves the next states through α,t w oe q u i v a l e n ts t a t e sx and y must be equivalent w.r.t. the sub-formula and either (a) both x and y ensure that ϕ globally holds, (b) or, both x and y ensure that ϕ does not hold globally, (c) or, i. if from x we can reach x through a fused transition, then this must be possible from y through the same action, reaching a state y equivalent to x .Note that we only have to consider the x which are not in the Fail set of the sub-formula, ii. and the same thing symmetrically for y.

iii. moreover, if from x we can reach x (which does not belong to the Fail set of the sub-formula) through a local action, then this must be possible from y through the same or another local action from the set α,r e a c h i n gas t a t ey equivalent to x , iv. and the same thing symmetrically for y. 5. The value of X is fetched from the environment (by construction, we are always have every free variable in the environment). 6. Function F Σ,ϕ1 is repeatedly applied starting from the greatest relation for which Pass Σ,µX.ϕ1 and Fail Σ,µX.ϕ1 are equivalence classes. Each iteration (which is a composition of the previous rules) will then differentiate some states until we reach a fixed-point. This necessarily occurs because, for any relation r,w eh a v eF Σ,ϕ1 (Pass Σ p ,µX.ϕ1 , Fail Σ p ,µX.ϕ1 ,r)= (Pass Σ p ,µX.ϕ1 , Fail Σ p ,µX.ϕ1 ,r ) with r ⊆ r.S ow ea l w a y se v e n t u a l l yr e a c h afi x e d -p o i n tw h e na p p l y i n gF 

F B1∨αB2 = F ∅,∨ (F ∅,B1 , F ∅,α (F ∅,B2 )) = (Pass ϕ , Fail ϕ , ∼ ϕ )
The next lemma states that we have indeed defined an equivalence relation. This equivalence is defined within the context of a single LTS, this can be generalised to compare two LTS. Lemma 1. Relation ∼ ϕ as defined above is indeed an equivalence relation. Definition 9. Let ϕ be a formula, and S 1 and S 2 be two LTS whose initial states are q 0,1 and q 0,2 respectively. S 1 is equivalent to S 2 w.r.t. ϕ, which is denoted by S 1 ∼ ϕ S 2 ,i ffq 0,1 ∼ ϕ q 0,2 in S defined as the component-wise disjoint union of S 1 and S 2 .

Using relation ∼ ϕ we define the reduction of a LTS by merging its equivalent states, which is done by considering the quotient set of Q by ∼ ϕ . Definition 10. Let S df =( Q, q 0 , A, R, L) be a LTS with A df = A loc A fus , and ϕ be a formula. The reduction of S w.r.t. ϕ, denoted by S ϕ , is the LTS (Q ,q 0 ,A ,R ,L ) such that:

-Q df = Q/∼ ϕ is the quotient set of Q by ∼ ϕ ; -q 0 df =[q 0 ]
ϕ is the equivalence class containing q 0 ; -A is exactly A and is partitioned the same way;

-R df = {(c 1 ,a,c 2 ) ∈ Q × A × Q |∃q 1 ∈ c 1 , ∃q 2 ∈ c 2 , (q 1 ,a,q 2 ) ∈ R}; -L (c) df = q∈[c]ϕ L(q)
. We now intro duce several prop erties of the definitions ab ove, progressively leading to our main compositionality result. First, we state that Pass and Fail effectively allow to locally conclude about the global truth value of a formula.

Lemma 2. Let S df = S 1 ⊗•••⊗S n be a product LTS and x df =( x 1 ,...,x n ) one of its states. 1. If x i ∈ Pass ϕ (S i ) for some 1 ≤ i ≤ n, then x ∈ Pass ϕ (S). 2. If x i ∈ Fail ϕ (S i ) for some 1 ≤ i ≤ n, then x ∈ Fail ϕ (S).
Then, we state that ∼ ϕ correctly captures the states that are equivalent w.r. Corollary 1. Let ϕ be a formula, and S 1 and S 2 two LTS such that

S 1 ∼ ϕ S 2 . If ϕ ? | = S 1 then ϕ ? | = S 2 and S 1 |= ϕ ⇔ S 2 |= ϕ.
Moreover, the reduction w.r.t ϕ yields a LTS that is equivalent to the original one. Then, we state the consistency of reduction S ϕ w.r.t. the synchronised product, which allows to extend the previous lemma to compound LTS. Finally, this reduction is a congruence for the product of LTS, which means that we can replace any LTS of a product by the corresponding reduced LTS while preserving the equivalence relation. Lemma 3. Let S be a LTS and ϕ a formula, we have:

S ∼ ϕ S ϕ . Theorem 3. Let S df = S 1 ⊗•••⊗S n be a product LTS, x df =( x 1 ,...,x n )
and y df =(y 1 ,...,y n ) two of its states, and ϕ a formula. If x i ∼ ϕ y i for all 1 ≤ i ≤ n then x ∼ ϕ y.

Corollary 2. S 1 ⊗•••⊗S n ∼ ϕ S 1 ϕ ⊗•••⊗S n ϕ
Combining these results with theorem 1, we can perform modular analysis with hierarchical reductions. Indeed, given a formula ϕ and a modular Petri net (N 1 ,...,N n ),l e tu sd e fi n eN i ϕ df = N i ϕ ,w eh a v e :

N 1 ⊕•••⊕N n ∼ N 1 ⊗•••⊗N n ∼ ϕ N 1 ϕ ⊗•••⊗N n ϕ
Furthermore, lemma 2 tells us that we can stop building the system as so on as we find a sub-system on which the formula can be evaluated, i.e.,a ss o o na s ϕ ? | = N i ϕ for some i,b e c a u s et h et r u t hv a l u eo ft h a tf o r m u l ao v e rt h eg l o b a l system will be the same as over this sub-system. Finally, because modules can be freely associated and commuted, we can conduct the analysis hierarchically, reducing at each level and possibly stopping before the whole system semantics is constructed.

Example 5. Let us consider again the example 2 (and figure 2) and check that we can reach a state where the property h ∧ d is true, that is expressed in µcalculus as µX.(AX ∨ (h ∧ d)).Remem berthatw eassumedthereexistsathird module synchronised over f 3 . We will see that in this case, analysing the first two modules is sufficient to prove the property. We begin by reducing the first LTS w.r.t. the formula. We are in case 6 of definition 7, Pass µX.(AX∨(h∧d)) = ∅ (we can never conclude without knowing the value of h which is and external variable) and Fail µX.(AX∨(h∧d)) = {10, 11, 12} (we know that from these states we can only access states where d is false). We now apply function F AX∨(h∧d) repeatedly starting from:

-(p 0 ,f 0 ,r 0 ) df =( ∅, {10, 11, 12}, {{10, 11, 12}, {1, 2, 3, 4, 5, 6, 7, 8, 
9}}) where r 0 is given as the set of its equivalence classes instead of as a set of pairs, which is more compact; -F AX (p 0 ,f 0 ,r 0 )=( ∅, {10, 11, 12}, {{10, 11, 12}, {1}, {2, 3}, {4, 5, 6, 7, 8, 9}})

and F h∧d df =( ∅, {10, 11, 12}, {{10, 11, 12}, {1, 2, 3, 4, 5, 6, 7, 8, 9}}) so we have (p 1 ,f 1 ,r 1 ) df = F AX∨(h∧d) (p 0 ,f 0 ,r 0 )=( ∅, {10, 11, 12}, {{10, 11, 12}, {1}, {2, 3}, {4, 5, 6, 7, 8, 9}})

-(p 2 ,f 2 ,r 2 ) df = F AX∨(h∧d) (p 1 ,f 1 ,r 1 )=( p 1 ,f 1 ,
r 1 ) (We have reached the fixed-point so we can use r 1 to build the reduced LTS from figure 3) Doing the same with the second LTS, we get the reduced LTS depicted in figure 3. Their product is depicted on the right of the same figure. To compose this product with the rest of the system, we shall first try to minimise it. Doing so, we also compute Pass µX.AX∨(h∧d) ,o b t a i n i n gs e t{1, 2, 3} that contains the initial state of the graph. Therefore we know that the formula is true over the global system and we can stop the analysis.

5C o n c l u s i o n

We have shown that it is possible to define the semantics of a modular Petri net as a hierarchical composition of the semantics of its modules taken in any order. At each step, a subset of modules is considered, and its semantics can be computed and analysed with respect to a modal µ-calculus formula ϕ.P o s s i b l y , this allows to draw a conclusion about the truth value of ϕ on the whole system without the need to consider the rest of the system. If no conclusion can be drawn at this step, a minimised semantics can be computed for the subset of modules at hand, and reused for the sequel of the hierarchical analysis.

In [START_REF] Klai | An incremental and modular technique for checking ltl\ xp r o p e r t i e so fp e t r in e t s . Formal Techniques for Networked and Distributed Systems-FORTE[END_REF], the authors define the decomposition of a Petri net according to a formula and the verification of this formula in a compositional way. Moreover, [START_REF] Klai | Modular construction of the symbolic observation graph[END_REF] makes use of the modular description of a system to reduce it hierarchically. The main difference with our work is that they both consider abstractions that preserve every formula from LTL\X in which chosen actions appear. Our approach only preserves one formula from the µcalculus so, on the one hand, we can express more properties, and on the other hand, targeting a particular formula let us expects better reductions. But, as a consequence, we have to recompute the abstraction for each new formula. However more thoroughgoing comparisons remain to be done. In [START_REF] Lewis | Incremental specification and analysis in the context of coloured Petri nets[END_REF], the author considers the incremental construction of Petri nets through refinements (of transitions, places and place types), also allowing for incremental state space construction. Properties may be verified at an intermediary step avoiding to construct the fully refined state space. However, these properties are not expressed as logic formulae but are classical Petri net properties (deadlock, home state, etc.).

Future work will address the question of finding a good order for conducting such a hierarchical analysis, in order to minimise the computational effort needed to obtain a result. In particular, it is not clear if we should start by combining strongly connected modules with the aim of obtaining good reductions at the beginning, or if we should instead prefer the modules the most involved in the formula of interest. Another prospect is to find the best form for the formula we want to verify, in order too increase the efficiency of the reduction. Since we require equivalent states to be equivalent on every sub-formula, if we can minimize the number of sub-formulae then we are likely to compute a better reduction. For instance formula atrue ∨btrue is equivalent to a, btrue.H o w e v e ri fo n e state only has one outgoing transition labelled by a,a n da n o t h e rs t a t eo n l yh a s one outgoing transition labelled by b, they will be equivalent w.r.t. the second formula but not w.r.t. the first one.

So we believe that the current paper defines a framework that is suitable to perform hierarchical analysis, but also that it is the starting point of a lot more work to find suitable strategies for efficient analysis.

AP r o o f o f t h e o r e m 2

Theorem 2 can be rewritten using the property P defined, for any

(p, f, r) ∈ 2 Q × 2 Q × 2 Q×Q ,b yP(p, f, r) holds iff (r \ (Q \ p) 2 ⊆ p 2 and r \ (Q \ f ) 2 ⊆ f 2 ).
We want to prove that for any formula ϕ,w eh a v eP(F ).L e tu ss h o wt h a t this property is true for every base case and that it is preserved by the rules used for building F ϕ .

Case F Σ,B . Take (x, y) in ∼ B .W eknowthatL(x) ⇒ B ⇔ L(y) ⇒ B.Then, -if x (wlog) belongs to Pass Σ p ,B then L(x) ⇒ B is true, and so is L(y) ⇒ B which means that y is in Pass Σ p ,B . -if x belongs to Fail Σ f ,B then L(x) ⇒ B is false, and so is L(y) ⇒ B which means that y is in Fail Σ f ,B .
Case F Σ,¬ . Take (p, f, r) such that P(f, p, r).W et h e nh a v eP(F Σ,¬ (p, f, r)) because F Σ,¬ (p, f, r)=(f, p, r).

Case F Σ,∨ . Take (p 1 ,f 1 ,r 1 ) and (p 2 ,f 2 ,r 2 ) such that P(p 1 ,f 1 ,r 1 ) and

P(p 2 , f 2 ,r 2 ).W eh a v eF Σ,∨ ((p 1 ,f 1 ,r 1 ), (p 2 ,f 2 ,r 2 )) = (p 1 ∪ p 2 ,f 1 ∩ f 2 ,r 1 ∩ r 2 ).
for the first case we have (r

1 ∩r 2 )\(Q\(p 1 ∪p 2 )) 2 =(r 1 ∩r 2 )\((Q\p 1 ) 2 ∩(Q\ p 2 ) 2 )=(r 1 ∩r 2 )\(Q\p 1 ) 2 ∪(r 1 ∩r 2 )\(Q\p 2 ) 2 ⊆ r 1 \(Q\(p 1 )) 2 ∪r 2 \(Q\(p 2 )) 2 ⊆ p 2 1 ∪ p 2 2 ⊆ (p 1 ∪ p 2 ) 2 -and for the second case (r 1 ∩r 2 )\(Q\(f 1 ∩f 2 )) 2 =(r 1 ∩r 2 )\(Q\f 1 ∪Q\f 2 ) 2 ⊆ (r 1 ∩ r 2 ) \ ((Q \ f 1 ) 2 ∪ (Q \ f 2 ) 2 ) ⊆ (r 1 ∩ r 2 ) \ (Q \ f 1 ) 2 ∩ (r 1 ∩ r 2 ) \ (Q \ f 2 ) 2 ⊆ r 1 \ (Q \ f 1 ) 2 ∩ r 2 \ (Q \ f 2 ) 2 ⊆ f 2 1 ∩ f 2 2 ⊆ (f 1 ∩ f 2 ) 2
Case F Σ,α . Take (p, f, r) verifying P and note (p ,f ,r

) df = F Σ,α (p, f, r). Then take (x, y) ∈ r . -If x ∈ Pass Σ p ,α (p). Exists x ∈ p and a ∈ α ∩ A loc such that x a --------→ x .
Because (x, y) belongs to r ,w eh a v ey a --------→ y and (x ,y ) ∈ r.S i n c ew e know that P(p, f, r), y belongs to p too and y to Pass Σ p ,A (p).

-If x ∈ Fail Σ f ,α (f ).

• If x is in f then so is y because P(p, f, r) and r ⊆ r. This is needed when α ∩ Ex = ∅.

• For all y a --------→ y with a in α we have x a --------→ x with a in α and (x ,y ) in r.B e c a u s ex ∈ Fail Σ f ,α (f ) this means that every x is in f . Then so is every y ,a n dfi n a l l yy ∈ Fail Σ f ,A (f ).

Case F Σ,X . We only put in the environment values verifying P (see next case).

Case F Σ,µX.ϕ1 .

-(Pass Σ,µX.ϕ1 , Fail Σ,µX.ϕ1 ,r 0 ) with (x, y) ∈ r 0 iff 1.

x ∈ Pass Σ p ,µX.ϕ1 and y ∈ Pass Σ p ,µX.ϕ1 or 2.

x ∈ Fail Σ f ,µX.ϕ1 and y ∈ Fail Σ f ,µX.ϕ1 or 3. both x and y belong to Q \ (Fail Σ f ,µX.ϕ1 ∪ Pass Σ p ,µX.ϕ1 ) verify P.

-F Σ,ϕ1 is a composition of the above functions, so it preserves proposition P.

BP r o o f o f t h e o r e m 3

Let S df = i∈I S i be a LTS , ϕ af o r m u l aa n dΣ i environments we denote by π ϕ the product relation of the ∼ Σi,ϕ Si , i.e., (x, y) is in π

ϕ iff (x i ,y i ) is in ∼ Σi,ϕ
Si for all i ∈ I. Let us define the property P π ((p, f, r),Σ,{Σ i |i ∈ I},ψ) which means: p = Pass Σ p ,ψ ,f = Fail Σ f ,ψ and π ψ ⊆ r.W es h o wt h a te v e r yb a s ec a s e verify this property and that the various rules preserve it. The part of the property about Pass and Fail can almost be obtained by construction so we do not explicitly mention it in this proof.

Case F Σ,B . Take (x, y) in π P .F o ra l li in I we have the following property:

L i (x i ) ⇒ B ≡ L i (y i ) ⇒ B. Now, we know that I L i (x i ) ⇒ B ≡ I L i (y i ) ⇒ B and therefore (x, y) ∈∼ Σ,B .S ow eh a v eP π (F Σ,B ,Σ,{Σ i |i ∈ I},B).
Case F Σ,¬ . Take (p, f, r) such that P π ((p, f, r),Σ,{Σ i |i ∈ I},ϕ 1 ).W eh a v e P π (F ¬ (p, f, r),Σ,{Σ i |i ∈ I}, ¬ϕ 1 ) because F ¬ (p, f, r)=( f, p, r) and (Pass ¬Ψ , Fail ¬Ψ ,π ¬Ψ )=(Fail Ψ , Pass Ψ ,π Ψ ) Case F Σ,∨ . For any formulae ϕ 1 and ϕ 2 ,f o ra n y(p 1 ,f 1 ,r 1 ) and (p 2 ,f 2 ,r 2 ) such that P π ((p 1 ,f 1 ,r 1 ),Σ,{Σ i |i ∈ I},ϕ 1 ) and P

π ((p 2 ,f 2 ,r 2 ),Σ,{Σ i |i ∈ I}, ϕ 2 ),w eh a v eP π (F Σ,∨ ((p 1 ,f 1 ,r 1 ), (p 2 ,f 2 ,r 2 )),Σ,{Σ i |i ∈ I},ϕ 1 ∨ ϕ 2 ) because F Σ,∨ ((p 1 ,f 1 ,r 1 ), (p 2 ,f 2 ,r 2 )) = (p 1 ∪p 2 ,f 1 ∩f 2 ,r 1 ∩r 2 ) and (Pass ϕ1∨ϕ2 , Fail ϕ1∨ϕ2 , π ϕ1∨ϕ2 )=(Pass ϕ1 ∪ Pass ϕ2 , Fail ϕ1 ∩ Fail ϕ2 ,π ϕ1 ∩ π ϕ2 )
Case F Σ,α . Take (p, f, r) such that P π ((p, f, r),Σ,{Σ i |i ∈ I},ϕ 1 ).

Let us consider (x, y) in π Aϕ1 ,i ti si n d e e dt r u et h a t(x, y) ∈ π ϕ1 .W en o w have take into account three different possibilities.

-If exists i such that x i and y i are in Pass For any of these cases, (x, y) belongs to the third component of F Σ,α (p, f, r) so we have P π (F Σ,α (p, f, r),Σ,{Σ i |i ∈ I}, αϕ 1 ) Case F Σ,X . We only put in the environment values which verify P π (Σ, {Σ i |i ∈ I},X).

Case F Σ,µX.ϕ1 .

-Let us show that if (x, y) is in π µX.ϕ1 and one of them is in Pass Σ p ,µX.ϕ1

(resp Fail Σ f ,µX.ϕ1 ) then so is the other. This means that we have the property P π ((p 0 ,f 0 ,r 0 ),Σ,{Σ i |i ∈ I},µX.ϕ 1 ), where (p 0 ,f 0 ,r 0 ) is the the starting point of the iteration. In order to do this we build the tuple (p, f, r) by iterating F Σ,ϕ1 starting from (∅,Q,Q 2 ).W et h e nh a v ep = Pass Σ p ,µX.ϕ1 , f = Fail Σ f ,µX.ϕ1 and r ⊇ π µX.ϕ1 (This is the same proof we are currently doing, but with an easier base case). We can reuse the proof of theorem 2 (similarly, only the base case is different) to show that if (x, y) ∈ r and one of them is in Pass Σ p ,µX.ϕ1 (resp Fail Σ f ,µX.ϕ1 )t h e ns oi st h eo t h e r .S ot h e property P π (Σ 0 (X),Σ 0 , {Σ 0 i |i ∈ I},X) is true with: Σi,µX.ϕ1 , Fail Σi,µX.ϕ1 , ∼ Σi,µX.ϕ1 i )] for all i.

• Σ 0 df = Σ[X ← (p 0 ,f 0 ,r 0 )] and • Σ 0 i df = Σ i [X ← (Pass
-F ϕ1 is a composition of the previous functions. Therefore if the property P π (Σ n (X),Σ n , {Σ i |i ∈ I},X) is true, then we have P π (F Σ n ,ϕ1 ,Σ n , {Σ i |i ∈ I},ϕ 1 ) , which can be rewritten as P π (Σ n+1 (X),Σ n+1 , {Σ i |i ∈ I},X) where

Σ n+1 = Σ n [X ← F Σ n ,ϕ1
].B yr e c u r r e n c e ,t h ep r o p e r t yi st r u ef o ra n yn.

Fig. 1 .

 1 Fig. 1. Two mo dules part of a mo dular Petri net.

Fig. 2 .

 2 Fig. 2. LTS semantics of the modules from figure 1. For the left LTS, we have A loc df = {l1,l2,l3,l4} and A fus df = {f1,f2}; for the right LTS we have A loc df = ∅ and A fus df = {f1,f2,f3}.A st h e r ei sa tm o s to n et o k e np e rp l a c e ,w ew r i t ea instead of a =1.

Example 3 .

 3 Let us consider the LTS from the left of figure 2 and the formula µX.(AX ∨ d) (which means that the module can reach a state where place d is marked). We can compute the least fixed-point of ϕ df = AX ∨ d as follows:

  5, 6, 7, 8, 9} = {2, 3, 4, 5, 6, 7, 8, 9} -3X.ϕ df =(AX)(2X.ϕ) ∪{4, 5, 6, 7, 8, 9} = {1, 2, 3, 4, 5, 6, 7, 8, 9} -4X.ϕ df =(AX)(3X.ϕ) ∪{4, 5, 6, 7, 8, 9} =3X.ϕ

  t. the capability to evaluate locally the global truth of ϕ.M o r e o v e r ,i ta l s o preserves the truth value of ϕ. Theorem 2. Let S be a LTS, ϕ a formula, and x and y two states of S such that x ∼ ϕ y.I fϕ ? | = S, x, then ϕ ? | = S, y and S, x |= ϕ ⇔ S, y |= ϕ.

Fig. 3 .

 3 Fig. 3. Left and middle: the semantics of modules from Example 1 reduced w.r.t. µX.(AX ∨ (h ∧ d)).F o rc l a r i t y ,o n l yl a b e l si n v o l v i n gd and h have been displayed, al a b e ls u c ha s¬x denotes a real label where x is not involved and thus implies ¬x. Right: the synchronised product of the two LTS on the left.

  x and y are in Pass Σ p ,Aϕ1 .-The same goes for Fail. -In the third case:• Let us consider any x a --------→ x such that x ∈ Fail Σ f ,ϕ1 and exists i ∈ I such that a ∈ α ∩ A fus i ,a n dl e t ' ss h o wt h a te x i s t sy such that y a --------→ y and (x ,y ) ∈ π ϕ1 . For every i in I:* If a is in A fus i :W eh a v ex[i] a --------→ x [i].B e c a u s e(x[i],y[i]) is in ∼ Σ,Aϕ1 i and x [i] ∈ Fail Σ f i ,ϕ1 i ,t h e r ee x i s t sy i such that y[i] a --------→ y i and (x [i],y i ) ∈∼ Σi,ϕ1 i * If a is not in A fus i :W eh a v ex [i]=x[i].L e t ' sd e fi n eyi df = y[i];w e then have (x [i],y i ) ∈∼ Σi,ϕ1 i because (x [i],y i ) ∈∼ Σi,Aϕ1 i Now if y [i]df = y i for all i,t h e ny a --------→ y and (x ,y ) ∈ π ϕ1 . • Let us consider any x a --------→x such that x ∈ Fail Σ f ,ϕ1 and exists i ∈ I such that a ∈ α ∩ A loc i .L e t ' ss h o wt h a te x i s t sa ∈ α ∩ A in and y such that y a --------→ y and (x ,y ) ∈ π ϕ1 . * We know that we havex[i] a --------→ x [i],a n da ∈ (A loc i ∩ α) such that y[i] a --------→ y i and (x [i],y i ) ∈∼ Σ,ϕ1i * For j = i,w ed e fi n eyj df = y[j]Now if y [i] df = y i for all i,w eh a v ey a --------→ y with a ∈ (A loc ∩ α) and (x ,y ) ∈ π ϕ1 .