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ABSTRACT

Motivation: Logical (Boolean or multi-valued) modelling is widely used

to study regulatory or signalling networks. Even though these discrete

models constitute a coarse, yet useful, abstraction of reality, the ana-

lysis of large networks faces a classical combinatorial problem. Here,

we propose to take advantage of the intrinsic modularity of

inter-cellular networks to set up a compositional procedure that en-

ables a significant reduction of the dynamics, yet preserving the reach-

ability of stable states. To that end, we rely on process algebras, a

well-established computational technique for the specification and

verification of interacting systems.

Results: We develop a novel compositional approach to support the

logical modelling of interconnected cellular networks. First, we forma-

lize the concept of logical regulatory modules and their composition.

Then, we make this framework operational by transposing the com-

position of logical modules into a process algebra framework.

Importantly, the combination of incremental composition, abstraction

and minimization using an appropriate equivalence relation (here the

safety equivalence) yields huge reductions of the dynamics. We illus-

trate the potential of this approach with two case-studies: the

Segment-Polarity and the Delta-Notch modules.

Availability and implementation: GINsim (http://ginsim.org) and

CADP (http://cadp.inria.fr) are freely available for academic users.

Files needed to reproduce our results are provided at http://comp

bio.igc.gulbenkian.pt/nmd/node/45.

Contact: chaouiya@igc.gulbenkian.pt

Supplementary information: Supplementary data are available at

Bioinformatics online

1 INTRODUCTION

The growing number of published models shows the suitability

of qualitative logical modelling to study regulatory and signalling

networks (e.g. Calzone et al., 2010; Fauré et al., 2009; Naldi

et al., 2010; Saez-Rodriguez et al., 2009). However, when dealing

with large networks, a classical combinatorial explosion arises,

hampering efficient analyses of the dynamical properties of these

systems, in particular, reachability properties. Although efficient

algorithms have been proposed to identify all stable states via

static analysis (e.g. de Jong and Page, 2008; Dubrova and

Teslenko, 2011; Naldi et al., 2007), reachability analysis is hard

to perform because it requires exploring the dynamics. To ad-

dress this issue, we propose to rely on the concepts of modularity

and compositionality, focusing on the multi-valued logical for-

malism, initially defined by Thomas and co-workers (Thomas,

1991).

Modularity has emerged as a key feature of molecular net-

works (e.g. Wagner et al., 2007), but a precise definition of func-

tional regulatory modules is still lacking, let alone a method to

decompose large intricate networks into such functional mod-

ules. Nevertheless, when cellular patterns are governed by both

inter-cellular signals and intra-cellular regulatory networks, it is

natural to consider each cellular network as a module. Moreover,

based on previous knowledge, sub-networks are often attributed

specific functions within complex cellular processes. This is the

case of the cell cycle control for which specific modules are asso-

ciated to check-points, entry or exit control of specific phases,

etc. In Fauré et al. (2009), a logical model was defined by com-

bining three modules involved in the control of the budding yeast

cell cycle. Logical modelling was also applied to multi-cellular

networks controlling early embryonic developmental processes in

Drosophila (Chaves et al., 2005; González et al., 2008; Sánchez

et al., 2008).

The composed models cited above were manually defined

from smaller modules. Indeed, little work on model compos-

ition has been carried out, although it has been identified as a

major goal in systems biology (Stelling et al., 2011). Generally,

existing composition procedures are not automatic and aim

at properly defining a composed model, while little attention is

paid to the analysis of the (potentially very large) associated

dynamics (Randhawa et al., 2010; Schulz et al., 2006; Snoep

et al., 2006). In any case, these studies mainly focus on bio-

chemical reaction networks. Concerning the composition of

logical regulatory modules (LRMs), a framework based on

high-level Petri nets has been developed, providing a formal

and systematic procedure (Chaouiya et al., 2011). However, it

does not solve the scalability issue of the analysis since the re-

sulting composed models have still to be analysed in a monolithic

manner.*To whom correspondence should be addressed.
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Randhawa et al. (2010) consider models in the form of sets of

non-linear differential equations and propose three different

ways of combining sub-models: composition, fusion and aggre-

gation. Model composition and fusion, respectively, keep or

eliminate references to the original sub-models, while model ag-

gregation requires that individual sub-models come with their

input and output ports (similar to our definition of LRMs).

These notions are important to distinguish different types of

model combination, but, again, they do not address the issue

of analysing the resulting models. In this article, we simply

refer to the combination of models as model composition.

Process algebras aim at representing and analysing complex

interacting (discrete) systems. This framework has led to the de-

velopment of compositional approaches that mitigate the com-

binatorial explosion problem through the minimization of the

individual dynamics while preserving properties of interest, and

then by incrementally composing and minimizing intermediate

dynamics, until a description of the global behaviour is obtained.

Process algebras have already been considered for biological

processes (see, e.g. Ciocchetta and Hillston, 2009 and references

therein), adopting different modelling approaches.

Recently, a compositional algorithm was proposed for gene

regulatory networks modelled as piecewise-linear ODE systems

to check the reachability of a specific steady state from an initial

condition (Gössler, 2011). In contrast, we determine all stable

states reachable from a given initial condition (see Section 4

for a comparison of the two approaches).

In this article, we propose a new computational approach to

cope with the combinatorial explosion that hampers proper ana-

lyses of models defined as compositions of LRMs. For simpli-

city, we restrict ourselves to the composition of identical

modules, which is often the case of multi-cellular systems. In

any case, this constitutes an important class of applications

that notably includes most of the patterning problems in devel-

opmental biology. Furthermore, we are concerned with the

reachability of stable states that is a property of real interest

for differentiation regulatory networks.

We thus define a framework to compose logical modules by

means of logical integration functions describing how modules

interact with their neighbours. We establish a constructive

method to determine the dynamics of the composition from

the dynamics of the individual modules and their interactions.

Then, we rely on process algebra techniques to generate, abstract

and minimize the behaviours of the modules, yet preserving

reachability properties. These dynamics are iteratively combined

and minimized, to obtain a final reduced description of the dy-

namics of the composed model. Minimization relies on an

equivalence relation, which is chosen depending on the property

to be preserved. Here, we rely on the safety equivalence that

preserves the reachability of the stable states, while ensuring sig-

nificant reductions of the dynamics.

For the implementation, we use the CADP toolbox

[Construction and Analysis of Distributed Processes (Garavel

et al., 2011)] to specify the dynamics of the logical modules

and to implement operations of abstraction, minimization and

incremental composition.

The article is organized as follows. First, in Section 2, we

introduce the modelling framework with formal definitions of

LRM, logical integration function, composition rules, as well

as the corresponding dynamics. Section 3 presents the principles

of abstraction and minimization, relying on classical process al-

gebra operations; other implementation aspects are also briefly

discussed. Section 4 includes the application of our procedure to

the Segment-Polarity and the Delta-Notch modules. These case

studies illustrate the potential of our approach to analyse crucial

properties of composed LRMs dynamics that are far too large to

be comprehensively tackled with currently available tools.

2 METHODS

This section introduces LRMs and their composition, which results in a

unique LRM. Furthermore, it presents the dynamics of LRMs repre-

sented as State Transition Graphs (STGs). Importantly, we prove that

composing the individual dynamics is equivalent to constructing the dy-

namics of the composed model (formal definitions and proof of the the-

orem are provided in the Supplementary Materials).

2.1 Logical regulatory modules and their dynamics

A schematic representation of a four-component LRM is displayed in

Figure 1A. In this view, an LRM is an open system with two kinds of

components. Proper components and their regulatory interactions define

the internal dynamics of the system, while input components represent

external stimuli. Proper components are subject to regulatory effects of

other components, whereas input components are unconstrained (their

values may be set by the environment or by other modules during the

composition).

DEFINITION 1. An LRM is defined by a triplet N ¼ ðG,U,KÞ,

where:

� G ¼ gi
� �

i2LG
is the indexed set of the proper components (LG is the

corresponding set of indices); U ¼ uif gi2LU
is the indexed set of the

input components (LU is the corresponding set of indices);

C ¼ G [U ¼ cif gi2LC
is the set of all the components.

� Each component ci 2 C is associated with a domain

Di ¼ 0, . . . ,Mif g N and the variable vi 2 Di denotes its level. The

state space S is given by
Q

i2LC
Di and v 2 S denotes a state.

� K ¼ ðKiÞi2LG
are the logical regulatory functions of the proper compo-

nents; 8gi 2 G, Ki : S ! Di, and KiðvÞ is the target value of gi in state

v, i.e. the value towards which it evolves.

Briefly, the variable associated to a component of an LRM (gene,

protein, etc.) represents its functional level (e.g. activity or concentration).

Generally, this variable is Boolean, but some situations require additional

values (see Thomas and D’Ari, 1990). The logical regulatory functions

define the evolution of the corresponding proper components depending

on the levels of their regulators. Hence, given a state (current levels of all

the components), some components may remain stable, while others may

be called to change their values, giving rise to state transitions.

The asynchronous dynamics of an LRM is represented by an STG (see

Definition S1 in the Supplementary Materials and Fig. 1B for an illus-

tration). The successors of a state v are defined by all transitions going

out of v: input transitions (towards states that differ from v only by the

value of an input component) and proper transitions over components

gi 2 G such that KiðvÞ � vi 6¼ 0 (i.e. called to update in state v). In this

discrete framework, stable states are those with no outgoing transitions.

Because input components freely vary, there are no such states for an

LRM with inputs: each state is connected to all states that differ only by

the value of an input variable. This leads to the definition of strong and

weak stable states with respect to the proper components (see Fig. 1B and
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Naldi et al., 2012): in strong stable states, proper components remain

stable whatever the variation of the inputs, while in weak stable states,

proper components are stable only for specific values of the inputs.

In practice, since we are interested in reachability properties from an

initial condition s0, instead of the full STG, we consider only the

sub-graph that is reachable from s0 (Definition S2 in the Supplementary

Materials).

2.2 Module composition

To compose LRMs, one needs to specify how they influence each other.

This is done by first specifying a neighbourhood relation for each input

component, which is then mapped to proper components of its neigh-

bouring modules. This mapping, along with the specification of a logical

integration function, determines how signals are combined. Thus, the

evolution of mapped inputs depends on the evolution of the arguments

of their integration function, whereas unmapped (free) inputs remain

unconstrained. Finally, regulatory effects of mapped inputs are replaced

by the (integrated) regulatory effects from the components they are

mapped to. This amounts to adequately redefining the logical functions

of proper components regulated by mapped inputs, which are removed

(reduced) following the reduction method introduced in Naldi et al.

(2011).

Definition 2 below formalizes the composition of r LRMs

NðkÞ
� �

k¼1, ..., r
. For simplicity, we assume that for all distinct k, k0 (in

f1, . . . , rg) LCðkÞ \ LCðk0 Þ ¼ ; (in other words, all indices are distinct). As

a consequence, indices uniquely correspond to components. Hence all

objects associated to a component gi will be indexed by i without any

confusion. We also introduce an additional notation: 8X C,SjX ¼
� Q

i2X

Di

and vjX is such that ðvjXÞi ¼
�
vi, 8i 2 X:

A B

C D E

F

Fig. 1. (A) A simple, toy LRM, where each proper component has one activator, g3 being further inhibited by the input component g0. (B) The

corresponding STG; each node is a state ðv0, v1, v2, v3Þ; dotted arrows depict input transitions over g0; plain arrows depict proper transitions; black nodes

denote states in which proper components are stable (the sole outgoing transition refers to the input). The pair of states defined by v1 ¼ v2 ¼ v3 ¼ 0

(respectively v1 ¼ v2 ¼ v3 ¼ 1) define a strong (respectively weak) stable state with respect to the proper components. (C–F) Composition of two

instances of this LRM. A relabelling of the components ensures their uniqueness: component gi of module Mj (j-th instance of the LRM) becomes

gij. In panel (C), the input g01 of M1 is mapped to the proper component g22 of module M2: Mðu01Þ ¼ ðZ01, h01Þ, with Z01 ¼ g22
� �

and h01 the identity.

For the sake of brevity, the dynamics are truncated at depth 2 from the initial states. Panel (D) (respectively E) displays the (truncated) STG of M1

(respectively M2) from the initial state v
ð1Þ
0 ¼ ð1, 1, 1, 0Þ [respectively v

ð2Þ
0 ¼ ð1, 0, 1, 0Þ]. These states are compatible: v01 ¼ v22 ¼ h01ðv22Þ ¼ 1. Panel (F)

displays the composed STG: transitions over g01 are lost (g01 is a mapped input), while transitions over g02 are preserved. The (double) transition that sets

g12 to 1 from the initial state v
ð2Þ
0 in panel (E) gives rise to two transitions in panel (F), the first leaving the initial state v0, the second leaving v3. Likewise,

the (double dashed) transition that sets g21 to 0 from the initial state v
ð1Þ
0 has four counterparts: transitions from v0, v1, v2 and v4
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DEFINITION 2. Consider r LRMs NðkÞ ¼ GðkÞ,UðkÞ,KðkÞ
� �

,

k ¼ 1, . . . , r and the composition rule M defined over the set of

all the input components such that, for any input gj 2 UðkÞ,

MðgjÞ ¼ Zj, hj
� �

with Zj �
S

k0 6¼k G
ðk0Þ, the set of proper compo-

nents mapped to gj; hj :
Q

gi2Zj
Di ! Dj, the logical integration

function defining the behaviour of gj (if Zj ¼ ;, gj remains free

and hj is the empty function).

Then the composition of the r LRMs, denoted
N

M NðkÞ
� �

k¼1, ..., r
, is an

LRM N ¼ ðG,U,KÞ with:

� G ¼
S

k¼1, ..., r G
ðkÞ, the set of proper components, and

U ¼
S

k¼1, ..., r ðUðkÞ n eUðkÞÞ, the set of input components (where
eUðkÞ ¼ fgj 2 UðkÞj Zj 6¼ ;g is the set of mapped input components),

C ¼ G [U and LC the corresponding set of indices;

� S ¼ �i2LC
Di the state space;

� The logical regulatory functions ðKiÞi2LG
are defined adequately for

any proper component gi 2 GðkÞ: 8v 2 S, KiðvÞ ¼ K
ðkÞ
i ðwÞ, w 2 SðkÞ,

s.t. 8gj 2 CðkÞ n eUðkÞ, wj ¼ vj and 8gj 2 ~UðkÞ,wj ¼ hj vjZj

� �
.

Note that nothing in our definition of LRM composition requires the

individual modules to be identical; they can be different LRMs provided

that they do not overlap (i.e. do not share identical proper components).

Therefore, even if our applications involve only identical networks, the

proposed framework is generic.

2.3 Dynamics of composed modules

We now proceed with the characterization of the dynamics of composed

models, as our aim is to check reachability properties over these

dynamics.

The composition of STGs can be formally defined and the dynamics of

the LRM, composed from r modules, equals the composition of the in-

dividual dynamics of the modules (see Theorem 1 below). In other words,

to study the dynamics of a composed model, we can either compose the

modules and then construct and analyse the (large) STG or analyse the

modules dynamics in a compositional manner. Definitions and proof of

the theorem are provided in the Supplementary Materials. Here, we give

an intuitive introduction to STG composition and include our main result

ensuring the compositionality of our approach.

Composing STGs leads to a new STG, where the states result from all

the combinations of compatible states of the original STGs. States are

said compatible if the values of the mapped inputs equal the results of

their integration functions, considering the values of the relevant proper

components (see formal Definition S3 in the Supplementary Materials).

Transitions going out of a composed state involve only proper compo-

nents and free inputs, if any free input remains after the composition.

Hence, considering a particular state s in the STG of one module, the

transitions leaving s have their counterparts in the composed dynamics in

all states resulting from the composition of s with compatible states of the

others STGs. Moreover, any transition going out of s that involves a

mapped input is accounted for by (or synchronized with) transitions

over proper components involved in the integration function of this

input. Panels D–F in Figure 1 illustrate the composition of two STGs

reachable from two compatible initial states.

The following theorem asserts that the dynamics of the composition of

LRMs matches the composition of their individual dynamics.

Importantly, this also applies to the composition of STGs reachable

from (compatible) initial conditions.

THEOREM 1. Consider N ¼
N

M NðkÞ
� �

k¼1, ...r
the LRM defined

as the composition of r LRMs. The STG EN of N is equal to the

composition of the r STGs: EN ¼
N

M EðkÞ
� �

k¼1, ..., r
:

So far, we have defined the framework for LRM composition and

shown that one can equivalently generate the dynamics of the composed

model or generate the individual dynamics and compose them in any

order. The next section is devoted to the implementation of this frame-

work. Because compositional analysis has been well studied in the frame-

work of process algebras, and efficient tools have been developed, we

recast our original problem in the realm of process algebras.

3 IMPLEMENTATION

To alleviate the combinatorial explosion of the dynamics asso-

ciated with LRMs, we rely on classical abstraction and minimiza-

tion techniques. Here, we describe the key features of the

implementation. More details can be found in the Supplementary

Materials.

3.1 LTS abstraction and minimization

Process algebra techniques apply to Labelled Transition Systems

(LTSs) representing the dynamics to be analysed. Basically, in

contrast to STGs where all the information is stored in the states,

in an LTS the information is put onto transition labels. These

refer to actions performed by the transitions (here, component

updates). Converting an STG into an LTS is thus quite direct.

The addition of a specific self-loop transition on (weak and

strong) stable states (in which proper components are stable) is a

technicality that will ensure the preservation of all paths leading

to these states. This transition translates into a specific action

denoted ? in the LTS representation. Recall that all stable states

can be efficiently identified using static analysis tools and that

our goal is to determine which of those stable states are reachable

from an initial condition.

Abstraction is obtained by defining a set of components as

non-visible: their evolution is not observable. All transitions

involving such components, termed non-visible transitions, can

simply be labelled by a special action denoted �. Then, minimiza-

tion consists in building a new LTS equivalent, in some sense, to

the original LTS. Equivalence is defined with respect to one of

the various equivalence relations described in the literature, each

of them preserving certain properties of the original LTS

(Bouajjani et al., 1991; Milner, 1989; van Glabbeek and Weij-

land, 1989). Some of these relations are implemented in publicly

available tools (in particular, CADP).

The choice of an equivalence relation depends on the property

to be checked. Here, we aim at identifying all the stable states

reachable from an initial condition. We thus opt for the safety

equivalence that elicits the elimination of all � transitions and

redundant paths, while preserving reachability properties.

We define key components as those allowing the distinction

between the potential stable states. They are defined as the visible

components for the abstraction operation (the remaining com-

ponents are thus non-visible). After the minimization step, the

states in the reduced LTS that correspond to stable states in the

original dynamics are recovered thanks to the ? action.

From the onset, the dynamics of each module can be ab-

stracted and minimized in terms of the key components before

the composition. Only visible components and components that

are involved in the composition need to be preserved. The main

advantage of this approach is that, by successively performing
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composition followed by abstraction and minimization, the full

dynamics of the composed model are never generated.

However, this incremental composition requires some adapta-

tion described in Section 3.2.

The aforementioned abstraction, minimization and compos-

ition operations are performed using the CADP toolbox (Gar-

avel et al., 2011), which provides several tools to produce,

transform and analyse LTSs from process specifications.

LRM behaviours are expressed using the LOTOS NT specifica-

tion language (Champelovier et al., 2011), in terms of a process

with as many associated gates as components (input and proper

components), and with state variables representing the values of

the components. Each gate can issue actions with labels denoting

updates of component values. The process evolution is driven by

the logical rules that elicit updates of the state variables. When

the conditions associated to a component update are met, an

action associated to the gate of the component is issued, the

corresponding state variable is updated accordingly and

the main process loops back. When, for the current values of

the state variables, the logical rules do not permit any further

evolution of the proper components, a ? action is issued.

Then, the reachability of each potential stable state is verified

on the minimized LTS, checking whether there is a path from the

initial state towards a ? action and leading to a final value of the

key components corresponding to that stable state. In our im-

plemented workflow, this reachability analysis is performed by

using the model checker of CADP.

3.2 Incremental composition of LTSs

In this section, we discuss the main implementation aspects of the

incremental composition of LTSs (see Supplementary Materials

and the code documentation for further details). The compos-

ition is specified by providing:

(i) The LRMs to be composed and a neighbourhood relation;

(ii) The integration functions of the mapped inputs;

(iii) The list of key components—having the potential stable

states of the composed model (obtained via static analysis),

we can specify the minimal set of components that should

remain visible;

(iv) The (global) initial state—which indicates the initial value

of the components in each individual LRM.

The integration of the regulatory signals originating from

neighbouring modules is specified by the integration function

associated with each mapped input. The values of these functions

are partially constrained in the course of an incremental compos-

ition, as the values of each argument become bound to an actual

proper component—the corresponding actions are to be syn-

chronized (i.e. an update of the function must correspond to

an update of one of its arguments). This is why we propose to

model integration functions as independent processes with their

own dynamics. More precisely, an LTS is generated for each

integration function hi (associated to an input component gi).

Actions in this LTS reflect the updates of both the function

arguments and the function value. The values of the function

arguments are allowed to vary freely. More precisely, from a

given state, if the update of a proper component gk influencing

the value of gi (i.e. gk 2 Zi) has no impact on the value of the

integration function hi, the LTS contains an action correspond-

ing solely to the update of gk. If, on the other hand, this update

does change the value of hi, the action refers to both gi and gk
updates. In subsequent composition operations, all these actions

must be synchronized with the appropriate actions in the LTSs

accounting for the evolution of the relevant components (the

arguments of hi), and with the actions over gi.

Most importantly, to ensure a correct composition, actions

over mapped input components and arguments of integration

functions must be kept visible during the incremental compos-

ition until they are no longer required.

Reduced LTSs of individual modules are incrementally com-

posed following the specified rules. At each step, components

that are no longer needed are made non-visible (new abstraction

step) and the LTS of the intermediate composition is minimized.

Upon the last composition step, a final abstraction and mini-

mization step is undertaken, where only key components are

kept visible thus obtaining a minimal description of the dynamics

of the whole composition.

Given the LOTOS NT specifications of the module and of the

integration functions, the synchronization (composition) of the

whole is specified by way of synchronization vectors (Lang,

2005). A high-level language provided by CADP called SVL

(Garavel and Lang, 2001) is used to specify the generation of

the LTSs for each individual LRM, their preliminary minimiza-

tion step, subsequent synchronization steps, as well as the final

abstraction and minimization operations. The intermediate com-

position steps are automatically produced by CADP. The SVL

script as well as the EXP (Lang, 2005) file, which specifies the

synchronization vectors, are automatically generated from a

symbolic representation of the LRM exported from GINsim

and processed using Perl scripts.

Note that, for simplicity, our current implementation performs

composition for multi-cellular systems such as the ones presented

in Section 4: modules are identical (r instances of a unique

LRM), the neighbourhood relation is defined as an r� r adja-

cency matrix and the (same) inputs in distinct modules are uni-

formly mapped to proper components from neighbouring

modules. Hence, it is enough to specify the integration functions

of the mapped inputs, with the proper components that are to be

taken as arguments.

3.3 Note on composition order

The order followed to compose the modules affects the perform-

ance of our method. Here, our implementation relies on the

smart reduction (Crouzen and Lang, 2011), which is an operator

of SVL that determines the order of the composition, including

the synchronization, abstraction and minimization operations.

The underlying heuristic aims at controlling the size of the inter-

mediate LTSs. However, it performs poorly in the case of LRM

composition, because it preferentially synchronizes all LTSs

related to the integration functions (which are usually smaller),

then composes the LTSs associated to the modules and finally

combines all these intermediate LTSs. As a consequence, all the

restrictions on the dynamics of a module (imposed by its neigh-

bours via the integration functions) are put in place later rather

than sooner, giving rise to large intermediate LTSs. We further
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discuss and illustrate this issue of the composition order in

Section 4.1.

4 APPLICATIONS

To evaluate our method, we consider the Segment-Polarity and

the Delta-Notch modules (various compositions of four in-

stances of the toy LRM introduced in Figure 1 are presented

in the Supplementary Materials).

4.1 The Segment-Polarity module

The Segment-Polarity (SP) module is involved in the fruit fly

embryo segmentation, which has been extensively studied by gen-

eticists as a model system for development. Early embryo orga-

nization into a series of segments along the antero-posterior axis

is initiated by maternal morphogens, which control a few dozens

of genes. These genes have been split into several classes. The

first classes, gap, pair-rule and segment-polarity modules, consti-

tute a temporal hierarchical genetic system. Segment-polarity

genes are under the control of the pair-rule genes. Their patterns

of expression define the anterior and posterior parts of the em-

bryonic segments, and they are responsible for the consolidation

of these borders (Sánchez et al., 2006). The SP module has been

modelled using continuous (Ingolia, 2004) and logical

approaches (Chaves et al., 2005; Sánchez et al., 2008). Here,

we rely on the model defined in Sánchez et al. (2008), with an

intracellular network of a dozen of components, submitted to

two external inputs [the Wingless (Wg) and Hedgehog (Hh)

signals].

We compose two modules, accounting for the cells flanking

the segmental border. Figure 2 illustrates this model and the

results contrasting the STG size with the minimized LTS size

for a full version of the model and a reduced one. The initial

condition accounts for the outcome of the activity of the

pair-rule system (Sánchez et al., 2006, 2008): significant amounts

of Wg and Slp in the anterior cell, a significant amount of En in

the posterior cell. The three stable states reachable from this

initial condition combine three cellular patterns: a Wg-expressing

state (denoted W), an En-expressing state (E) and a trivial state

(T) with neither Wg nor En. They correspond to the expected

wild-type pattern WE in addition to the TT and EW patterns

(Sánchez et al., 2008). We also consider a reduced (intra-cellular)

regulatory graph with 9 components and 31 regulatory inter-

actions. It has been obtained by applying the reduction

method available in GINsim and described in Naldi et al.

(2010). Note that with GINsim, it was impossible to construct

the STG for the full model, and for the reduced model, the re-

sulting LTS structure is much smaller and thus more amenable to

further analysis (see Fig. 2C and D). In Sánchez et al. (2008), the

construction of the STG was interrupted as soon as the WT and

TT stable states were reached.

To investigate the impact of the composition order, we now

consider six instances of a further reduced SP module (with three

proper components: Wg, En, Hh). These modules are organized

along a line, each having two neighbours, except for the two

extreme ones. For each instance i (i ¼ 1, . . . , 6), our method

generates three LTSs: (i) Mi, LTS of the i-th module; (ii)

HiðHhÞ, LTS of the integration function of the input Hh in the

i-th module; (iii) HiðWgÞ, LTS of the integration function of the

input Wg in the i-th module.

Table 1 illustrates the impact of the composition order. It first

includes the composition steps as performed by the smart reduc-

tion implemented in CADP. The intermediate LTSs grow very

fast. Indeed, we can observe that composition operations are

performed over LTSs that have no synchronization restrictions

[because they are not related, such as, e.g. H2(Wg) and H5(Wg)].

In this specific case, the smart reduction heuristic performs

poorly. Even the monolithic composition of all the LTSs (in a

single step) leads to a much better performance. A better com-

position order, drawn from the knowledge of how each LTS

restricts its neighbours, consists in first composing the LTSs of

each regulatory module with the LTSs of the integration func-

tions of their input components, and then to iteratively compose

these LTSs along the line of the six modules (see Table 1).

4.2 The Delta-Notch module

The Delta-Notch (DN) module is involved in cell differentiation

in crucial steps of embryonic development of several species

(Gössler, 2011; Marnellos et al., 2000). In each cell, when

active, the Notch protein inhibits the production of Delta. The

Fig. 2. (A) Composition of two instances of the Segment-Polarity module, accounting for the two cells flanking the segmental border. Each module

contains 12 components among which 7 are associated to Boolean variables (oval nodes) and 5 to ternary variables (rectangular nodes); suffix ‘a’

(respectively ‘p’) denotes components of the cell anterior (respectively posterior) to the border; regulatory interactions are denoted by arrows (activation)

or flat-end edges (repression); inter-cellular interactions are denoted by thick edges. Additionally, grey nodes are reduced to obtain the nine-component

version of the model. (B–C) Measures for the construction of the dynamics, in terms of size (number of states), time and memory use, for the full (panel

B) and reduced (panel C) models
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production of Notch is stimulated by the presence of Delta in

neighbouring cells. These regulatory interactions, for a single cell,

can be represented by the logical module shown in Figure 3,

where the Delta_ext component accounts for Delta in the adja-

cent cells. This simplified model is the Boolean counterpart of the

model used as a case study for the compositional verification

approach described in Gössler (2011). Similarly to Gössler

(2011), cells are hexagonal (i.e. they can have up to six neigh-

bours), and the integration function of the input component

Delta_ext is a logical OR between all the Delta components in

neighbouring modules. We illustrate our approach by consider-

ing three compositions: DN7, DN10 and DN12 depicted in

Figure 3.

In Gössler’s article, the reachability of a specific stable state

from an initial condition was checked in models encompassing

up to 343 modules. In contrast, we could only deal with models

encompassing up to a dozen of modules. However, we answer a

different problem, as our procedure accounts for all the trajec-

tories from a given initial condition to any reachable stable state,

which is certainly different from verifying the existence of one

trajectory leading to one specific stable state (note that the

number of stable states grows rapidly with the number of inter-

connected modules and depends on the neighbouring relations).

An isolated open module has two stable states: when

Delta_ext is active, Notch eventually becomes active and Delta

inactive, otherwise Notch remains inactive and Delta becomes

active. Either stable state can be univocally identified by the

value of e.g. Delta, hence there is a single key component in

each module.

In the case of DN7 as depicted in Figure 3, if all modules start

with both Delta and Notch inactive, then the six stable expres-

sion patterns are reachable. The pattern of Delta expression that

ultimately emerges depends on which cells express Delta sooner.

The STG generated with GINsim shows that from this initial

condition, almost the entire state space is explored (there are

16 024 reachable states for a total state space of size 16 384).

The minimized LTS (retaining only Delta as a visible compo-

nent) contains 2290 states, which is a significant reduction (it is

then possible to check on this reduced LTS that the six stable

expression patterns are reachable). The reduction is even more

significant in the case of DN10. For DN12, only the compos-

itional framework we propose here can solve the problem.

5 CONCLUSIONS

Pattern formation notably relies on inter-cellular communica-

tion, while involving intra-cellular regulatory processes. Several

logical models dealing with such developmental processes have

been published (Azpeitia et al., 2010; Chaves et al., 2005;

González et al., 2008; Sánchez et al., 2008). However, current

monolithic approaches are not appropriate to answer questions

that require searching the (generally huge) state space. In par-

ticular, the study of inter-cellular networks involved in differen-

tiation processes focuses on the reachability of stable expression

patterns from given initial conditions. Here, we have introduced

a framework to address the combinatorial explosion of logical

models that can be specified as module compositions. Our ap-

proach is made operational by recasting LRM composition in

terms of process algebra operations. We rely on GINsim for the

definition of the LRMs and on CADP for the composition, ab-

straction and minimization operations. The procedure has been

applied to the Segment-Polarity and the Delta-Notch modules,

showing that huge reductions can be obtained.

With the study of the SP module, we could discuss the prob-

lem of the composition order. At present, CADP provides the

smart reduction heuristic, which defines a built-in composition

order, and it also offers the proficient user the possibility of

manually defining a specific composition order. In general, it is

not trivial to determine the optimal composition order.

However, considering the application we are dealing with, we

propose an alternative heuristic that should lead to reasonable

performances. It consists in composing the LTSs of individual

LRMs with the integration functions of their inputs and progres-

sively proceeding according to the specified neighbourhood

relation.

Table 1. Impact of the composition order illustrated with six instances of

a reduced version of the SP module (three proper components), intercon-

nected along a line; the first and the sixth modules have one neighbour

(the second and the fifth), all other modules have two neighbours

Composition Resulting

LTS size

Minimized

LTS size

Incremental composition, smart reduction

L1 ¼ H3ðWgÞ �H5ðWgÞ 27 27

L2 ¼ H2ðWgÞ �H4ðWgÞ 27 27

L3 ¼ H3ðHhÞ �H5ðHhÞ 27 27

L4 ¼ H2ðHhÞ �H4ðHhÞ 27 27

L5 ¼ M1 �M2 729 729

L6 ¼ M5 �M6 747 747

L7 ¼ L2 �H6ðWgÞ 27 27

L8 ¼ L1 �H1ðWgÞ 27 27

L9 ¼ L4 �H6ðHhÞ 27 27

L10 ¼ L3 �H1ðHhÞ 27 27

L11 ¼ M3 �M4 8019 8019

L12 ¼ L11 �L9 �L5 1 764 450 1 130 157

L13 ¼ L12 �L10 �L6 25 999 469 Out of memory

Monolithic composition, in one step

�i¼1, ..., 6 Mi �HiðHhÞ �HiðWgÞð Þ 548 208 864

Incremental composition, specific order

C1 ¼ M1 �H1ðHhÞ �H1ðWgÞ 81 81

C2 ¼ M2 �H2ðHhÞ �H2ðWgÞ 729 729

C3 ¼ M3 �H3ðHhÞ �H3ðWgÞ 729 729

C4 ¼ M4 �H4ðHhÞ �H4ðWgÞ 891 891

C5 ¼ M5 �H5ðHhÞ �H5ðWgÞ 891 891

C6 ¼ M6 �H6ðHhÞ �H6ðWgÞ 81 81

L1 ¼ C1 � C2 729 585

L2 ¼ L1 � C3 5265 2691

L3 ¼ L2 � C4 27 027 7101

L4 ¼ L3 � C5 75 852 32 409

L5 ¼ L4 � C6 19 829 864

The left column indicates the LTSs that are synchronized, each step defining a new

LTS; the middle column contains the size of the resulting LTS, while the right

column gives the size of the minimized LTS. First, the results relate to the order

performed by the smart reduction available in CADP. Then, the composition is

performed in one step and, finally, incremental composition is performed following

an order based on the structure of the model (see text).
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Our results indicate that while our compositional framework

leads to a significant decrease of the size of the behaviour, there is

still room for improvement. In the case of the reduced SP model,

the number of states in the dynamics is reduced by two orders of

magnitude. Nevertheless, the asynchronous dynamics are often

huge, as they include all possible behaviours from a given initial

condition, resulting in dynamics that explore a large portion of

the state space. Most of the trajectories represented in these dy-

namics are generally not relevant from the biological point of

view. Several methods aim to avoid non-realistic trajectories in

asynchronous dynamics, among them the consideration of pri-

ority classes (Fauré et al., 2006). Importantly, such modifications

of update methods would invalidate the safety equivalence guar-

antee, thus requiring the definition of tailored minimization

approaches.

In this article, we have used minimization modulo safety

equivalence, which provides a good compromise between algo-

rithmic complexity and compression of the state space. Most

importantly, the safety equivalence preserves the reachability of

stable states, a crucial property when studying differentiation

processes. This property could be enriched to verify additional

features along the trajectories leading to the states of interest,

such as whether a given component is always required to change.

Other verification techniques could prove efficient in our context,

including the consideration of on-the-fly verification directed by

a property to be checked (Lang, 2005; Mateescu and Thivolle,

2008). Another possibility to exploit compositionality when

checking the potential reachability of a given stable state is to

use the partial model-checking approach (Lang and Mateescu,

2012). The compositional framework presented here constitutes a

novel and systematic method to compose LRMs and to effi-

ciently perform comprehensive analyses of their behaviours.

This will greatly facilitate the definition and analysis of network

models involved in various multicellular patterning systems.
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Fauré,A. et al. (2009) Modular logical modelling of the budding yeast cell cycle.

Mol. Biosyst., 5, 1787–1796.

Garavel,H. and Lang,F. (2001) SVL: a scripting language for compositional verifi-

cation. In: Proceedings of IFIP WG 6.1, FORTE’2001. Kluwer Academic

Publishers, pp. 377–92.

Garavel,H. et al. (2011) CADP 2010: A toolbox for the construction and analysis of

distributed processes. In: Proceedings of TACAS’2011. Vol. 6605 of LNCS,

Springer, Heidelberg, Germany, pp. 372–87.
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