Dr Joris Van Der Hoeven

Keywords:

Chapter 1

Getting started 1.1. Conventions for this manual Menu entries.

Throughout the T E X MACS manual, menu entries will be typeset using a sans serif font, like in Document, File→Load or Format→Font shape→Italic.

Keyboard modifiers.

T E X MACS makes use of the following keyboard modifiers:

. For shift key combinations.

. For control key combinations.

% . For alternate key combinations.

. For meta key combinations.

For instance, X stands for the action which consists of simultaneously pressing the three keys , and X .

Keyboard shortcuts.

More complex keyboard shortcuts are obtain by pressing several keys or "modified keys" in succession. For instance, the shortcut -> corresponds on first pressing thekey and then the key > . Inside mathematical formulas, this shortcut inserts the arrow →. Similarly, the shortcut X F consists of first pressing the keys and X together, and next pressing the keys and F again together. In the Emacs "look and feel", this shortcut enables you to open a new file. Some common keyboard prefixes are detailed in the section on general keyboard rules. In cases when T E X MACS keyboard shortcuts are superseded by shortcuts from the operating system, we notice that equivalents for the keyboard modifiers can be obtained using the key. For instance, is equivalent to and is equivalent to % .

Notice that the T E X MACS menus and keyboard behavior are contextual , i.e. they depend on the current mode (i.e. text mode or "math mode"), the current language and the position of the cursor inside your document. For instance, inside math mode, you have special keyboard shortcuts which are handy for typing mathematical formulas, but which are useless in text mode.

Special keys.

On some platforms, some special keys such as the Return key are depicted by short glyphs. Below follows the table with all such special keys and there meaning.

Configuring T E X MACS

When starting T E X MACS for the first time, the program automatically configures itself in a way which it thinks to be most suitable for you. For instance, T E X MACS will attempt to determine your systems settings for the language and the paper type of your printer. However, the automatic configuration may sometimes fail or you may want to use an alternative configuration. In that case, you should go to the Edit→Preferences menu and specify your preferences.

In particular, we recommend you to configure the desired "look and feel" of T E X MACS . By default, we use a native look and feel, which will ensure that keyboard shortcuts and menu layout are similar to other applications on your system. But we also provide an Emacs look and feel, which ensures a limited compatibility of the T E X MACS keyboard shortcuts with those of Emacs.

Creating, saving and loading documents

When launching T E X MACS without any command line options, the editor automatically creates a new document for you. You may also create a new document yourself using File→New. Newly created documents do not yet carry a name. In order to give them a name, you should click on File→Save as. We recommend you to give documents a name immediately after their creation; this will avoid you to loose documents.

It is also recommended to specify the global settings for your document when necessary. First of all, you may specify a document style like article, book or seminar using Docu-ment→Style. If you write documents in several languages, then you may want to specify the language of your document using Document→Language. Similarly, you may specify a paper type using Document→Page→Size.

For newly started documents, the style and page size can also be specified in the Focus menu or buttons on the focus toolbar . In general, the focus menu and toolbar are useful for editing structured documents, and their contents will be highly dependent on the current context.

After modifying your document, you may save it using File→Save. Old documents can be retrieved using File→Load. Notice that you can edit several documents in the same window using T E X MACS ; you can switch between different buffers using Go.

Printing documents

You can print the current file using File→Print→Print all. By default, T E X MACS assumes that you have a 600dpi printer for a4 paper. These default settings can be changed in Edit→Preferences→Printer. You can also print to a postscript file using File→Print→Print all to file (in which case the default printer settings are used for creating the output) or File→Export→Postscript (in which case the printer settings are ignored).

You may export to PDF using File→Export→Pdf. Notice that you should set Edit→Prefer-ences→Printer→Font type→Type 1 if you want the produced Postscript or PDF file to use Type 1 fonts. However, only the CM fonts admit Type 1 versions. These CM fonts are of a slightly inferior quality to the EC fonts, mainly for accented characters. Consequently, you might prefer to use the EC fonts as long as you do not need a PDF file which looks nice in Acrobat Reader.

When adequately configuring T E X MACS , the editor is guaranteed to be wysiwyg: the result after printing out is exactly what you see on your screen. In order to obtain full wysiwygness, you should in particular select Document→Page→Type→Paper and Document→ Page→Screen layout→Margins as on paper. You should also make sure that the characters on your screen use the same number of dots per inch as your printer. This rendering precision of the characters may be changed using Document→Font→Dpi. Currently, minor typesetting changes may occur when changing the dpi, which may globally affect the document through line and page breaking. In a future release this drawback should be removed.

Chapter 2

Writing simple documents

Generalities for typing text

The usual English characters and punctuation symbols can easily be obtained on most keyboards. Most modern system also implement standard shortcuts in order to obtain accented characters and other special symbols. If necessary, accented characters can also be obtained using the prefix. For instance, "é" is obtained by typing ' E . Similarly, we obtain "à" via `A and so on.

Long words at borders of successive lines are automatically hyphenated. In order to hyphenate foreign languages correctly, you should specify the language of the document in the menu Document→Language.

At the left hand side of the footer, you see the document style, the text properties at the current cursor position. Initially, it displays "generic text roman 10", which means that you type in text mode using a 10 point roman font and the generic document style. You can change the text properties (font, font size, color, language) in the Format menu. You can also change the text properties of the text you have already typed by selecting a region and then using the Format menu. Some text properties can also be changed for all the document with the Document menu.

At the right hand side of the footer, the character or object (like a change in the text properties) just before the cursor is displayed. We also display all environments which are active at the cursor position. This information should help you to orient yourself in the document.

Typing structured text

Usually, long documents have a structure: they are organized in chapters, sections and subsections, they contain different types of text, such as regular text, citations, footnotes, theorems, etc. After selecting a document style in Document→Style, T E X MACS takes care of specific layout issues, such as numbering of sections, pages, theorems, typesetting citations and footnotes in a nice way and so on.

Currently, several standard document styles have been implemented: generic, article, book, letter, exam, beamer, seminar, source. For instance, the article style can be used for writing articles. Besides, there are styles for common journals and special purposes, such as the T E X MACS documentation.

As soon as you have selected a document style, you can organize your text into sections (see Insert→Section) and use specific environments (also called tags). Examples of environments are theorem, proposition, remark and so on (see Insert→Enunciation). Other examples are lists of items (see Insert→Itemize) or numbered lists (see Insert→Enumerate). Further examples of frequently used tags are strong (for writing "important" text), name (for writing names of persons), etc.

When you get more acquainted with T E X MACS , it is possible to add your own new environments in your own style file. Assume for instance that you often make citations and that you want those to appear in italic, with left and right margins of 1cm. Instead of manually changing the text and paragraph properties each time you make a citation, it is better to create a citation environment. Not only it will be faster to create a new citation when doing so, but it is also possible to systematically change the layout of your citations throughout the document just by changing the definition of the citation environment. The latter situation occurs for instance if you discover a posteriori that you prefer the citations to appear in a smaller font.

There are a few general editing principles which make it easy to manipulate structured documents using T E X MACS . One major concept is the current focus , which is best illustrated on an example. Assume that we are in the process of entering a classical theorem:

The following theorem is due to Euler: Theorem 2.1. e pi = -1|.

At the position of the cursor, the grey and cyan boxes indicate the active tags: in this case, the cursor is both inside a theorem and a formula. The innermost active tag (the formula e pi = -1 in our example) is surrounded by a cyan box and called the current focus.

The contents of the Focus menu and focus toolbar (the lowest toolbar) are highly context dependent and determined as a function of the current focus. In our example, the focus toolbar contains a popup menu button Formula; when selecting Equation in this menu, the text will change into

The following theorem is due to Euler: Theorem 2.2. e pi = -1|.

Similarly, the arrow buttons on the left hand side of the focus toolbar allow you to jump to similar tags. In this case, they will allow you to quickly traverse all formulas and equations in your document. For more information on "structured editing operations" we refer to the chapter on editing tools.

A second important concept is the current editing mode. Currently, there are five major modes: text mode, mathematics mode, program mode, graphics mode and source mode. In principle, the current mode can be determined from the current focus, but the mode is likely to change less often than the focus. The mode dependent toolbar above the focus toolbar contains several buttons which are useful in the current mode. The contents of the Insert and Format menus are also mode dependent.

Content-based tags

The simplest examples of structure in a text are content-based tags. In Insert→content tags you see a list of them. Content based tags indicate that a given portion of text is of a particular kind or that it serves a specific purpose. For instance, important text should be marked using the strong tag. Its default rendering uses a bold type face, like in this strong text. However, strong text might be rendered in a different way according to the document style. For instance, strong text may be rendered in a different color on transparencies for presentations. Here follows a short list of the most common content-based tags and their purpose:

Lists

Using Insert→Itemize you may start an unnumbered list. You may either select a particular tag like • (bullets), -(dashes) or → (arrows) to indicate entries in the list or the default tag. Lists may be nested inside other tags, like in the following list:

• First item.

• Now comes the sublist:

• A subitem.

• Another one.

• A final item.

The default tag is rendered in a different way depending on the level of nesting. At the outermost level, we used the • tag, at the second level •, and so on. When you are inside a list, notice that pressing automatically starts a new item. If you need items which are several paragraphs long, then you may always use in order to start a new paragraph.

Enumerate environments, which are started using Insert→Enumerate, behave in a similar way as itemize, except that the items are numbered. Here follows an example of an enumeration which was started using Insert→Enumerate→Roman:

I. A first item.
II. A second one.

III. And a last one.

The last type of lists are descriptive lists. They are started using Insert→Description and allow you to describe a list of concepts:

Gnu. A hairy but gentle beast.

Lists

Gnat. Only lives in a zoo.

Environments

In a similar way as content-based tags, environments are used to mark portions of text with a special meaning. However, while content-based tags usually enclose small portions of text, environments often enclose portions that are several paragraphs long. Frequently used environments in mathematics are theorem and proof, like in the example below:

Theorem 2.3. There exist no positive integers a, b, c and n with n 3, such that a n + b n = c n .

Proof. I do not have room here to write the proof down.

You may enter environments using Insert→Environment. Other environments with a similar rendering as theorems are proposition, lemma, corollary, axiom, definition. You may use the dueto macro (entered using \ D U E T O) in order to specify the person(s) to which the theorem is due, like in Theorem 2.4. (Pythagoras) Under nice circumstances, we have a 2 + b 2 = c 2 .

Other frequently used environments with a similar rendering as theorems, but which do not emphasize the enclosed text, are remark, note, example, warning, exercise and problem. The remaining environments verbatim, code, quote, quotation and verse can be used in order to enter multiparagraph text or code, quotations or poetry.

Layout issues

As a general rule, T E X MACS takes care of the layout of your text. Therefore, although we did not want to forbid this possibility, we do not encourage you to typeset your document visually. For instance, you should not insert spaces or blank lines as substitutes for horizontal and vertical spaces between words and lines; instead, additional space should be inserted explicitly using Insert→Space. This will make your text more robust in the sense that you will not have to reconsider the layout when performing some minor changes, which affect line or page breaking, or major changes, such as changing the document style.

Several types of explicit spacing commands have been implemented. First of all, you can insert rigid spaces of given widths and heights. Horizontal spaces do not have a height and are either stretchable or not. The length of a stretchable spaces depends on the way a paragraph is hyphenated. Furthermore, it is possible to insert tabular spaces. Vertical spaces may be inserted either at the start or the end of a paragraph: the additional vertical space between two paragraphs is the maximum of the vertical space after the first one and the vertical space before the second one (contrary to T E X, this prevents from superfluous space between two consecutive theorems).

As to the paragraph layout, the user may specify the paragraph style (justified, left ragged, centered or right ragged), the paragraph margins and the left (resp. right) indentation of the first (resp. last) line of a paragraph. The user also controls the spaces between paragraphs and successive lines in paragraphs.

You can specify the page layout in the Document→Page menu. First of all, you can specify the way pages are displayed on the screen: when selecting "paper" as page type in Document→Page→Type, you explicitly see the page breaks. By default, the page type is "papyrus", which avoids page breaking during the preparation of your document.

The "automatic" page type assumes that your paper size is exactly the size of your window.

The page margins and text width are specified in Document→Page→Layout. Often, it is convenient to reduce the page margins for usage on the screen; this can be done in Document→Page→Screen layout.

The font selection system

In T E X MACS , fonts have five main characteristics:

• Its name (roman, pandora, concrete, etc.).

• Its family (roman, typewriter or sans serif).

• Its size (a base size (in points) and a relative size (normal, small, etc.).

• Its series (bold, medium or light).

• Its shape (right, italic, small caps, etc.).

Notice that in the font selection system of L A T E X 2ε, the font name and family are only one (namely, the family). Notice also that the base font size is specified for the entire document in Document→Font→Size.

Mastering the keyboard

We recall that the section on general conventions contains explanations on the way keyboard shortcuts are printed in this manual. It may also be useful to take a look at the section on keyboard configuration.

General prefix rules

Since there are many keyboard shortcuts, it is important to have some ways of classifying them in several categories, in order to make it easier to memorize them. As a general rule, keyboard shortcuts which fall in the same category are identified by a common prefix. The active prefixes heavily depend on the selected "look and feel" in Edit→Preferences. In the current look and feel of your T E X MACS system, the main common prefixes are as follows:

. Standard shortcuts, which are similar to shortcuts used by other applications (for the selected look and feel). For instance, Y can be used for pasting text on your system.

% . T E X MACS shortcuts, which often rely on the current editing mode. For instance, % S produces strong text in text mode and a square root √ in math mode.

. Compound T E X MACS shortcuts. Usually, these shortcuts first indicate the kind of markup to which the command will apply and then specify the specific command.

For instance, the E prefix is used for insering executable markup, which is useful for writing style files. One example is the shortcut E + for the insertion of an addition.

. This prefix is used in combination with arrow keys and certain other special keys for positioning and resizing objects % . This prefix is used in combination with arrow keys and some other special keys for structured cursor movements.

. This prefix is occasionally used in combination with letters and ponctuation symbols for creating some additional easy to remind shortcuts.

F 5 . This prefix can be used in combination with normal letters for the insertion of special symbols. For instance, F5 S yields ß and F5 A yields ∐. The F5 prefix is also used for the insertion of "literal characters". For instance, F5 " will always produce the \ character, whereas the " key is used for entering hybrid commands.

Unfortunately, -based shortcuts are superseded by system shortcuts on several systems. For instance, accented characters and common special symbols are entered using this prefix under Mac OS. In that case, you may use the key as an equivalent for . For more information, we refer to the section on keyboard configuration.

Keyboard shortcuts for text mode

To write a text in an european language with a keyboard which does have the appropriate special keys, you can use the following shortcuts to create accented characters. Note that they are active regardless of the current language setting.

Shortcut

Example Shortcut Example When you press the " key, an appropriate quote will be inserted. The quote character is chosen according to the current language and the surrounding text. If the chosen quoting style is not appropriate, you can change it in Edit→Preferences→Keyboard→Automatic quotes. You can also insert raw quotes: Shortcuts F5 " " , , "English" quotes are considered ligatures of two successive backticks or apostrophes. They can be created with ``and ' ' but these are not actual keyboard commands: the result is two characters displayed specially, not a special single character.

' Acute ´ ' E é `Grave ' `E è ^Hat ˆ ^E ê " Umlaut ¨ " E ë ~Tilde ˜ ~A ã C Cedilla ¸ C C ç U Breve ˘ U G ğ V Check ˇ V S š O Above ring ˚ O A å . Above dot ˙ . Z ż H Hungarian ˝ H O ő
" < ‹ > › < < « > > »
Some shortcuts are available in specific language contexts. You can set the text language for the whole document with Document→Language or only locally with Format→Language (see generalities for typing text).

Hungarian Spanish Polish 2.5. Language-specific text shorthands.

F5 O ő ! ¡ F5 A ą F5 O ó F5 O Ő ? ¿ F5 A Ą F5 O Ó F5 U ű ! `¡ F5 C ć F5 S ś F5 U Ű ? `¿ F5 C Ć F5 S Ś F5 E ę F5 X ź F5 E Ę F5 X Ź F5 L ł F5 Z ż F5 L Ł F5 Z Ż F5 N ń F5 Z ź F5 N Ń F5 Z Ź Table
Language-specific shortcuts override generic shortcuts; for example, you cannot easily type "ø" in hungarian context.

Hybrid commands and L A T E X simulation

T E X MACS allows you to enter L A T E X commands directly from the keyboard as follows. You first hit the " -key in order to enter the hybrid L A T E X/T E X MACS command mode. Next you type the command you wish to execute. As soon as you finished typing your command, the left footer displays something like <return>: action to be undertaken

When you hit the -key at this stage, your command will be executed. For instance, in math-mode, you may create a fraction by typing \ F R A C .

If the command you have typed is not a (recognized) L A T E X command, then we first look whether the command is an existing T E X MACS macro, function or environment (provided by the style file). If so, the corresponding macro expansion, function application or environment application is created (with the right number of arguments). Otherwise, it is assumed that your command corresponds to an environment variable and we ask for its value. The " -key is always equivalent to one of the commands I L , I E , I A , I # or I V .

To insert a literal " (backslash) character, you can use the F5 " sequence.

Dynamic objects

Certain more complex objects can have several states during the editing process. Examples of such dynamic objects are labels and references, because the appearance of the reference depends on a dynamically determined number. Many other examples of dynamic markup can be found in the documentation about writing style files.

When entering a dynamic object like a label using ! , the default state is inactive. This inactive state enables you to type the information which is relevant to the dynamic object, such as the name of the label in our case. Certain dynamic objects take an arbitrary number of parameters, and new ones can be inserted using . When you finished typing the relevant information for your dynamic object, you may type in order to activate the object. An active dynamic object may be deactivated by placing your cursor just behind the object and hitting + .

Various useful keyboard shortcuts

Some assorted shortcuts which are often useful are displayed in table 2.6. Notice that spaces inserted using Sp ace , Sp ace and Sp ace can be resized a posteriori using the shortcuts and . This kind of resizing actually works for more general horizontal and vertical spaces inserted from the menu Format→Space, as well as several other objects, such as images.

Shortcut Action

+

Remove the containing object or environment.

Sp ace

Insert a non breaking space.

Sp ace

Insert a quad space.

Sp ace

Insert a small space.

Sp ace Insert a small negative space.

Insert a "tab"

<

Go to the start of the document.

>

Go to the end of the document.

:

Insert a line break.

R

Insert a "rigid" piece of text, which cannot be line-broken. Chapter 3

Mathematical formulas

One of the main purposes of T E X MACS is to edit mathematical formulas. If the cursor is inside a formula (i.e. inside "math mode"), then the mode sensitive menus and toolbars provide buttons for entering common mathematical constructs. Similarly, as will be detailed in this section, the bahaviour of the keyboard changes so as to allow for the rapid typing of mathematical symbols. For instance, typing -> inserts the arrow →.

Starting with version 1.0.7.10, T E X MACS also incorporates several features for the "semantic" editing of mathematical formulas, which will be described at the end of this section. When used appropriately, this allows you to write documents in which all formulas are at least correct from a syntactical point of view. A "syntax corrector" is included to assist you with this task. Documents with more semantics are for instance useful when using formulas as inputs for a computer algebra system. Such documents are also less likely to contain "typos". Other interesting features, such as semantic search and replace, should be developed in the feature.

Incorporating mathematical formulas into documents

T E X MACS provides three main ways in order to enter a mathematical formulas into the main text:

Insert→Mathematics→Formula or $.
This entry corresponds to small inline formulas like a 2 + b 2 = c 2 inside a textual paragraph. Note that formulas are typeset specially so they do not take too much vertical space. For example, limits are always displayed on the left. Limits can be displayed below in formulas with Format→Formula style→on. In formulas, formula style is off by default.

Insert→Mathematics→Equation or % $.

This entry is used for entering bigger displayed equations, like

x n + y n = z n , which are typeset in a paragraph of their own. You may use the shortcut % # in order to give the equation a number (or to remove the number of an equation). Also, allows you to switch between inline formulas and displayed equations.

Insert→Mathematics→Equations or % & .

This entry allows you to create an eqnarray*, a three columns wide table-like environment (see creating tables). This environment is typically used for lists of multiple relations like

x + 0 = x x + (-x) = 0

x + y = y + x (x + y) + z = x + (y + z)

The first column is centered to the right, the second one at the middle and the last one at the left. An other typical use of the eqnarray* environment is a step by step computation (e sin x + sin e x) ′ = (e sin x) ′ + (sin e x) ′ = (sin x) ′ e sin x + (e x) ′ sin e x = e sin x cos x + e x sin e x , in which many entries of the left column are left open.

Typing mathematical symbols

The Greek characters are obtained in T E X MACS using the F5 -key. For instance, F5 A yields α and F5 G yields Γ. Similarly, F6 , F7 , F8 and F6 can be used in order to type bold, calligraphic, fraktur and blackboard bold characters. For instance, F8 M yields m, F 6 R yields R and F6 F7 Z yields Z.

Greek characters can also be obtained as "variants" of Latin characters using the -key.

For instance, P yields π. The -key is also used for obtaining variants of the Greek letters themselves. For instance, both F5 P and P yield ̟. An alternative way to enter blackboard bold characters is to type the same capital twice. For instance, Z Z yields Z.

Some symbols admit many variants. For instance, < yields <, < yields ∈, < yields ⊂, < yields ≺, and so on. You may "cycle back" among the variants using .

For instance, < is equivalent to < .

Many other mathematical symbols are obtained by "natural" key-combinations. For instance, -> yields →, --> yields and > = yields . Similarly, | -yields ⊢, | -> yields and -> < -yields ⇄. The following general rules hold in order to enter mathematical symbols:

. is the main key for obtaining variants. For instance, > = yields , but > = yields ≥. Similarly, < yields ⊂, < = yields ⊆ and < = yields . Also, P yields ℘ and E yields the constant e = exp (1).

@ . is used for putting symbols into circles or boxes. For instance, @ + yields ⊕ and @ X yields ⊗. Similarly, @ + yields ⊞.

/ . is used for negations. For instance, = / yields and < = / yields . Notice that < = / yields , while < = / yields .

! . is used after arrows in order to force scripts to be placed above or below the arrow. For instance, --> ^X yields

x , but --> ! ^X yields : x .

The logical relations ∧ and ∨ are obtained using & and % . The operators ∩ and ∪ are natural variants & and % . Various miscellaneous symbols can be optained using the F 5 prefix.

Notice that certain symbols with a different mathematical meaning are sometimes denoted in a similar way; such symbols are called homoglyphs. For instance, the vertical bar | can be used as a separator for defining sets R > = {x ∈ R|x > 0}, but also as the binary relation "divides" 11 Q 1001. Often, but not always, homoglyphs admit a different spacing. The most annoying ambiguity is between invisible multiplication x y and function application sin x, which are entered using the shortcuts * resp. Sp ace .

In order to facilitate certain automated treatments of your documents, such as mathematical syntax checking, we incite authors to pay attention to the homoglyph problem when entering formulas. For more information on this issue and how T E X MACS can assist you to use the appropriate notations, we refer to our section on the semantics of mathematical symbols.

Main mathematical constructs

The main mathematical objects are created using the % prefix as follows: Some important mathematical constructs are actually tabular constructs and are documented separately.

Shortcut Purpose Example

Typing large delimiters

Brackets inside mathematical formulas should always match: as soon as you enter an opening bracket "(", T E X MACS will automatically insert the matching closing bracket ")". You may disable this feature using Edit→Preferences→Keyboard→Automatic brackets→ Disable. Attention (see also below): brackets in old documents will be automatically be upgraded to matching brackets.

Sometimes, you do not want the closing bracket, or you may want to replace it by another closing bracket. No problem: if your cursor is just before the closing bracket inside (a, b|),

then pressing] will turn the expression into (a, b]|. Alternatively, deletion of a bracket will actually turn it into an invisible bracket, after which you can replace it by an arbitrary opening or closing bracket.

By default, the sizes of the brackets are adjusted to the expression between the brackets. Small delimiters, which are created using the % -prefix, keep their sizes independently of the enclosed expression. Alternatively, you may use % * in order to toggle between large and small delimiters.

For some delimiters, such as |, the opening and closing delimiters coincide. For instance, entering a vertical bar | will produce an absolute value. The (small) bar-separator | is obtained using F5 | , or as a variant using | . The big bar-separator is entered using % M | . In T E X and L A T E X, such large separators do not exist; they are used for producing the vertical bars in formulas like a b + c p q + r a b + c .

There may be as many middle delimiters between a left and a right delimiter as one wishes.

Notice that there are still another number of variants of vertical bars. For instance, the binary relation "divides" is entered using F5 | or |

.

In T E X MACS , large delimiters may either be "left delimiters", "right delimiters" or "middle delimiters". By default, (, [, { and are left delimiters,),],} and are right delimiters. But there status can be changed using the % L , % R and % M key combinations. For instance, % L) produces), considered as a large left delimiter.

Sometimes you may want large delimiters of a particular size, instead of self-adjusting ones. This can be achieved by resizing the expression in between the brackets using Format→ Transform→Resize object.

Notice that it is possible to insert a pair of invisible brackets using ? . This is for instance useful in computational contexts, in which formulas should admit a precise, not merely visual semantics. Alternatively, one may put the formula inside a "rigid box" using R , which additionally prevents the formula from being hyphenated.

Typing big operators

The following key-combinations are used in order to create big symbols: The scopes of big operators are indicated visually, through the light cyan boxes around the tags which contain the cursor.

Shortcut Result Shortcut Result F5 I F5 O F5 P F5 A F5 S F5 @ + F5 @ X F5 @ . F5 U F5 N F5 V F5 W
The big integral signs admit two variants, depending on where you want to place subscripts and superscripts. By default, the scripts are placed as follows:

0 ∞ dx 1 + x 2 .
The alternative rendering "with limits"

0 ∞ dx 1 + x 2 .
is obtained using F5 L I . Similarly, you may type F5 L O in order to obtain with limits.

Wide mathematical accents

The table below how to type mathematical accents above symbols or entire formulas. Indeed, some of these accents automatically become as wide as the formulas below them.

Shortcut Example Wide variant Shortcut Result

% ~x ˜x + y % '

x % ^x ˆx + y % `x %

B

x ¯x + y % .

x %

V

x S AB % "

x %

C

x ˇx + y % U

x ˘x + y Table 3.4. Keyboard shortcuts for wide mathemarical accents.

Wide mathematical accents

The same accents may be inserted below the expressions using the % U prefix. For instance, % U B X + Y can be used in order to enter x + y.

Semantic editing facilities

Starting with version 1.0.7.10, T E X MACS incorporates several features for the "semantic" editing of mathematical formulas. When used appropriately, this allows you to write documents in which all formulas are at least correct from a syntactical point of view. For instance, in the formulas a + b, the computer will understand that + is an operator which applies to the arguments a and b. Notice that our "semantics" does not go any further: T E X MACS is unaware of the mathematical nature of addition.

Semantic editing does require additional efforts from the user, at least a little adaptation.

For instance, it is the user's job to enter multiplications using the shortcut * and func- tion applications using Sp ace . Indeed, from the graphical point of view, these operations cannot be distinguished, since they are both printed as invisible whitespace. However, the semantics of these operations is clearly very different.

Although semantically correct documents are usually not very different from informal presentation-oriented documents as far as typesetting is concerned, the additional user effort may pay off for several reasons:

• Documents with more semantics are for instance useful when using formulas as inputs for a computer algebra system.

• Syntactically correct documents are less likely to contain "typos" or more intricate mathematical errors.

• For certain editing operations, such as cut and paste, one may directly select subformulas which are meaningful from the syntactical point of view.

• It reduces the risk of using non standard notations, which will be difficult to understand for potential readers of your work.

Furthermore, other semantic facilities might be integrated in the feature, such as semantic search and replace, or semantic search on the web.

In order to activate the semantic editing facilities, please toggle Edit→Preferences→Math-ematics→Semantic editing. In the semantic editing mode, several of the structured editing features of T E X MACS apply to the syntactic structure of the formula, rather than the visual structure of the document. For instance, the semantic focus is usually a subformula of the current focus. Similarly, only syntactically meaningful subformulas can be selected when making a selection.

The semantic focus is useful for several reasons. First of all, it is displayed in green if the formula is syntactically correct and in red if you made an error. This allows to quickly notice any typos while entering a formula. Secondly, if you have any doubt on the precedence of a mathematical operator or relation, then the semantic focus will inform you on the default interpretation: by putting your cursor right next to your operator, the subexpression to which the operator applies will be highlighted. In the case of an addition, or a more general associative operator, all summands are highlighted.

Common errors and syntax correction

By default, the semantic editing mode "understands" most classical mathematical notations. This is achieved through the use of a carefully designed grammar for mainstream mathematics. Obviously, the use of a fixed grammar may cause the following problems:

• Mathematical formulas frequently contain ad hoc notations. For instance, the formulas might contain some text or meaningful whitespace. Another example of an ad hoc notation is the sign sequence ++-+-+. In such cases, the user should explicitly annotate the appropriate parts of the formula in order to make them semantically meaningful.

• The T E X MACS grammar used for the interpretation of mathematical formulas may be incomplete or inadequate for certain situations. It is possible to customize or extend the grammar using the standard T E X MACS macro mechanism. Notations for specific areas may be grouped together in dedicated style packages.

Besides these intrinsically hard to avoid problems, the following common and "easy-tomake" mistakes are a further source of trouble for associating semantics to mathematical formulas:

• Since T E X MACS is a wysiwyg editor, some of the structure of the document is invisible for the user. For instance, the presence of a mathematical formula x + y is indicated through the use of an italic slant and special spacing. However, in the formula f (x) it is easy to type the closing bracket outside the formula, with no visual difference.

• Various mathematical notations are visually ambiguous. For instance, a (b + c) would usually be understood as a • (b + c), whereas f (x + y) rather corresponds to a function application. In the semantic editing mode, the user is expected to resolve this ambiguity by hand by entering multiplications using * and spaces using Sp ace .

The multiply/apply ambiguity is one of the main sources of syntax errors, since many users do not pay attention to invisible differences. Similarly, the ∧ glyph could be the "logical and" or the "wedge product". This "homoglyph" issue will be adressed in more detail in the section on the semantics of mathematical symbols.

• It could be that a text was originally written in L A T E X or an old version of T E X MACS .

In that case, the document contains no special indication on matching brackets or the scopes of big operators. For instance, in the formula [x, y[, should we interpret the second bracket as a closing bracket? This is indeed the standard french notation for an interval with an open right end. More generally, all problems that we have mentioned so far tend to be present simultaneously when trying to associate semantics to existing documents.

After activation of the semantic editing mode, you may check whether a formula is correct by positioning your cursor inside it and looking at the color of the bounding box of the semantic focus: a green color corresponds to a correct formula and a red color indicates an error in the formula. Alternatively, you may select Document→Add package→Utilities→ math-check, in which all incorrect formulas are highlighted inside red boxes.

For the second kind of "easy-to-make" errors, T E X MACS includes an automatic syntax corrector. Assuming that your cursor is inside a formula, you may use Edit→Correct→Correct all for the correction of all formulas in your document, or the correction of the current selection. If the versioning tool is activated, then you may use Edit→Correct→Correct manually to show the differences between the original and the corrected versions. You may then use the versioning tool to go through these differences and select the preferred versions.

The precise algorithms which are used for the correction may be enabled or disabled from Edit→Preferences→Mathematics→Manual correction:

Remove superfluous invisible operators. This algorithm is used in order to remove any superfluous function applications or multiplications. For instance, users who are accustomed to editing ASCII files often type spaces around binary infixes such as addition. Such "function applications" will be removed by this algorithm.

Insert missing invisible operators. In L A T E X, multiplications and function applications are never entered explicitly. When importing a L A T E X document, it is therefore important to detect and insert missing multiplications and function applications.

Homoglyph substitutions. This algorithm may perform some other useful substitutions of symbols by visually similar, but semantically distinct symbols. For instance, the backslash symbol " is replaced by the binary set differences infix (as in X \ Y), whenever appropriate.

From the Edit→Preferences→Mathematics→Automatic correction, you may also select those corrections algorithms which should be applied automatically whenever you open a file. The various corrections are always carried out when importing a L A T E X file.

After syntax correction, the remaining errors indicate genuine typos at worst or non standard or non supported notations at best. We also notice that "correct" formulas do not necessarily have the intended meaning. In order to check whether the operators indeed apply to the intended arguments, you should keep an eye on the current focus while typing your formulas.

Semantics of mathematical symbols

The mathematical symbols in T E X MACS all come with a certain number of properties which correspond to their intended meaning. For instance, T E X MACS is aware that + is an infix operator, whereas ! is rather a postfix, and , a separator.

T E X MACS has special symbols e = 2.71828 , p = 3.14159 and i for important mathematical constants, which display differently from the mere characters e, π and i, and which can be entered using the shortcuts E , P and I

. We recommend to systematically use these shortcuts.

Inversely, semantically distinct symbols may display in a similar way. For instance, the comma separator, as in f (x, y), is different from the decimal comma, as in 3,14159 . Notice that the two symbols admit different spacing rules. Semantically distinct symbols which are rendered by the same glyph are called homoglyphs . Notice that our semantics is purely syntactic: for instance, the + infix is commonly used for addition, but sometimes also for the concatenation of strings. Nevertheless, these two uses do not differ from a syntactical point of view, since the + symbol remains a binary infix with the same precedence with respect to other symbols.

The most confusing homoglyphs are the various invisible symbols supported by T E X MACS :

• The multiplication, entered by * . Example: a b.

• Function application, entered by Sp ace . Example: sin x.

• An invisible separator, entered by , Sp ace . Example: the matrix A = (a ij).

• An invisible addition, entered by + Sp ace . Example: 17 / 3 8 .

• An invisible symbol, entered by . Sp ace . Example: the increment + 1.

• An invisible bracket (mainly for internal use). A matching pair of invisible brackets is entered using (Sp ace .

Again it is recommended that authors carefully enter these various invisible symbols when appropriate. It is particularly important to distinguish between multiplication and function application, since there is no 100% safe automatic way to make this distinction (we already mentioned the formulas a(b + c) and f (x + y) before).

T E X MACS supports two quite general schemes for entering homoglyphs. On the one hand, we often rely on the standard variant system. For instance, × and * are obtained using

*

and *

. When applicable, we also support the following convention: first type the character with a similar semantics and then type the character which corresponds to the rendering. This convention was already used above for the invisible homoglyphs, and often allows for shorter shortcuts. In table 3.5 we have given the complete list of homoglyphs supported by T E X MACS .

Shortcut

Glyph 3.9 Semantics of mathematical symbols

\ " \x Backslash \ " N > = N \ {0} Set minus & ∧ 1 = 1 ∧ 2 = 2 Logical and * & ∧ dx ∧ dy Wedge product

Customized mathematical semantics

We have done our best to support most of the classical mathematical notations. Nevertheless, the user may sometimes want to define notations with a non standard semantics. Certain areas may also require special notations which are not supported by default.

T E X MACS provides a very simple syntax primitive, which allows the user to manually override the default syntactical semantics of a formula. Assuming that semantic editing was activated, you may insert the syntax primitive using % X X or Insert→Semantics→Other.

The first argument contains the formula as it should be displayed, whereas the second argument contains the formula as it should be interpreted.

For instance, if we enter R as the first argument and < as the second one, then the R will be interpreted as a binary relation, exactly in the same way as <. Moreover, the spacing around R will be adapted, so as to mimick the spacing around <. In this particular example, we might have obtained the same result by using the math-relation primitive, which is equivalent to syntax with < as its second argument. Most standard operator types are available from Insert→Semantics, or using the % X keyboard prefix. In particular, you may use % X Sp ace to simply ignore a formula and % X O in order to make the formula behave as an ordinary symbol (such as the letter "o").

The syntax primitive is especially powerful when used in combination with the T E X MACS macro language. For instance, consider the formula C = 1/2 p i f (z) dz. It is likely that the inteded interpretation of 1/2 p i is 1/(2 p i) and not (1/2) p i. Therefore, if we often use the constant 2 p i, then we might want to define a macro twopii by

assign|twopii | macro| syntax|2 π i|(2 π i)
Such macros may be grouped together into a style package with the user's favourite notations. Future versions of T E X MACS might also provide style packages with notations dedicated to specific areas.

Let us finally notice that there are usually several ways for redefining the semantics of a formula. For instance, an alternative way to define the macro twopii is using

assign|twopii | macro|2 p i
where we inserted a pair of invisible brackets around 2 p i. Similarly, in the formula

e x √ +e log x √ +e log log x √ + +log log log x +log log x +log x ,
we may either select the whole formula and give it the semantics of an ordinary symbol, by pressing % X O . However, a nicer solution is to only select the subformula , and give it the semantics of an ordinary symbol. Yet another example is the sign sequence ++-+-+ mentioned earlier. This sequence can be interpreted correctly by inserting invisible separators between the different signs using the , Sp ace shortcut.

Chapter 4 Tabular material

Tables offer a general way to align markup in complex manners. They can be useful for the presentation of data, but also for typesetting computer programs or the design of web sites. T E X MACS provides a wide variety of parameters to control the precise layout of tables and its cells. There are several other table-like environments and new ones may be created by the user.

Creating tables

For instance, using Insert→Mathematics→Equations or % & , you may insert an eqnarray* environment, which allows mathematically oriented users to align a list of equations which span over entire lines. An example of such a list of equations is

sin (f (x) g(x)) ′ = (f (x) g(x)) ′ cos (f (x) g(x)) = (f ′ (x) g(x) + f (x) g ′ (x)) cos (f (x) g(x))
When starting a new table, its size is minimal (usually 1 × 1) and its cells are empty. New rows and columns are inserted using the % , % , % and % shorthands. For instance,

The formatting mode

In T E X MACS , arbitrary blocks of cells in the table may be formatted in particular ways. For instance, you may give individual cells a background color, but you may also decide an entire column to be horizontally centered. By default, formatting commands operate on individual cells, but this may be changed via Table→Cell operation mode. The following operation modes are available:

T M C . Operate on individual cells.
T M H . Operate on rows.

T M V . Operate on columns.

T M T . Operate on the entire table.

It is also possible to select a block of cells using the mouse and perform a single operation on that rectangle.

Specifying the cell and table alignment

The most frequent formatting operation is the horizontal or vertical alignment of a block of cells. You may use the ? , ? , ? and ? keystrokes to quickly align more to the left, right, top or bottom.

A specific alignment can also be selected in the Table→Horizontal cell alignment and Table→ Vertical cell alignment menus. Alternatively, you may use keyboard shorthands of the types T H x and T V x for horizontal resp. vertical alignment.

Similarly, you may specify how the table itself should be aligned with respect to the surrounding text. This is either done via the Table→Horizontal table alignment and Table→ Vertical table alignment submenus, or using keyboard shorthands of the form T H x or T V x . Here x represents L for "left", C for "centered", R for "right", B for "bottom" and T for "top".

Specifying the cell and table size

Using Table→Cell width→Set width resp. Table→Cell height→Set height you may specify the width or height of a cell. In fact, the specified width (or height) may be taken into account in three different ways:

Minimum mode. The actual width of the cell will be the minimum of the specified width and the width of the box inside the cell.

Exact mode. The width of the cell will be precisely the specified one.

Maximum mode. The actual width of the cell will be the maximum of the specified width and the width of the box inside the cell.

The border width and the cell padding (to be explained below) are taken into account in the size of the box inside the cell.

You may also specify the width and the height of the entire table in Table→Special table properties. In particular, you may specify the table to run over the entire width of a paragraph. When specifying a width (or height) for the entire table, you may specify how the unused space is distributed over the cells using Table→Special cell properties→Distribute unused space. By default, the unused space is equally distributed.

Borders, padding and background color

You may specify the border widths and padding spaces of a cell in all possible four directions: on the left, on the right, at the bottom and at the top (see Table→Cell border). You have keyboard shorthands of the forms T B x and T P x in order to specify border widths and cell padding.

The default border width for cells in the block environment is 1ln, i.e. the standard line width in the current font (like the width of a fraction bar). This width occurs at the right and the bottom of each cell (except when the cell is on the first row or column). The default horizontal cell padding is 1spc: the width of a white space in the current font. The default vertical cell padding is 1sep: the standard minimal separation between two close boxes.

Cells may be given a background color via Table→Cell background color.

The entire table may also be given a border and a table padding in Table→Special table properties→Border. In this case, the padding occurs outside the border.

Advanced table features

In the menus, you also find some other more special features for tables. Very briefly, these include the following:

• Change the "span" of a cell and let it run over its neighbouring cells on its right and below.

• Creation of entire subtables inside cells.

• Correction of the depth and height of text, in order to let the baselines match.

• Horizontal hyphenation of cell contents and vertical hyphenation of the entire table.

• Gluing several rows and/or columns together, so that the glued cells become "part of the borders" of the remaining cells.

• Disactivation of the table, in order to see its "source code".

• Setting the "extension center" of a table. From now on, the formatting properties of this cell will be used for new cells created around this center.

• Specification of the minimal and maximum size of a Chapter 5

Links and automatically generated content

Creating labels, links and references

You may create a new inactive label using ! or Insert→Link→Label and a reference to this label using ? or Insert→Link→Reference. After typing the name of the label or reference, remember to hit in order to activate it. You may also type the first characters of the name of a reference and use the key in order to automatically complete it.

You should be careful to put the label at a point where its number will be correct. When labeling sections, the recommended place is just after the sectional tag. When labeling single equations (created using Insert→Mathematics→Equation), the recommended place is at the start inside the equation. When labeling multiple equations (created using Insert→ Mathematics→Equations), you must put the labels just behind the equation numbers.

Recall that you may use % # in order to transform an unnumbered environment or equa- tion into a numbered one, and vice versa.

It is possible to create hyperlinks to other documents using I > or Insert→Link→Hyper- link. The first field of the hyperlink is the associated text, which is displayed in blue when activated. The second field contains the name of a document, which may be on the web. As is usual for hyperlinks, a link of the form #label points to a label in the same document and a link of the form url #label points to a label in the document located at url.

In a similar fashion, an action may be associated to a piece of text or graphics using I *

or Insert→Link→Action. The second field now contains a Guile/Scheme script command, which is executed whenever you double click on the text, after its activation. For security reasons, such scripts are not always accepted. By default, you are prompted for acceptation; this default behaviour may be changed in Options→Security. Notice that the Guile/Scheme command (system "shell-command")

evaluates shell-command as a shell command.

Finally, you may directly include other documents inside a given document using I I or Insert→Link→Include. This allows you for instance to include the listing of a program in your text in such a way that your modifications in your program are automatically reflected in your text.

Inserting images

You can include images in the text using the menu Insert→Image. Currently, the other file formats are converted into postscript files using the scripts tiff2ps, pdf2ps, pnmtops, giftopnm, ppmtogif, xpmtoppm. If these scripts are not available on your system, please contact your system administrator.

By default, images are displayed at their design sizes and aligned at their bottom lines. Alternative widths, heights and alignment offsets may be specified in the image chooser dialogue window.

• When specifying a new width, but no height at the prompt (or vice versa), the image is resized so as to preserve the aspect ration. For instance, entering a width of 1par will make the image span over the entire paragraph width and adjust the height proportionally.

You may use w and h as special lengths for the default width and height of the image. For instance, specifying 2w and 2h for the width and the height, the image will be displayed at twice its default size.

• When specifying an alternative alignment, you may use the w and h lengths for the displayed width and height (i.e. w and h no longer stand for the default width and height). For instance, using -0.5h for the y-offset will vertically align the image at its center.

We also included a script to convert Xfig pictures, with optional L A T E X formulas in it, into encapsulated postscript. In order to include a L A T E X formula in an xfig picture, we recall you should enter the formula as text, while selecting a L A T E X font and setting the special flag in the text flags.

Generating a table of contents

Compiling a bibliography

At the moment, T E X MACS uses bibtex to compile bibliographies. The mechanism to automatically compile a bibliography is the following:

• Write a .bib file with all your bibliographic references. This file should have the format of a standard bibliography file for L A T E X.

• Use Insert→Link→Citation and Insert→Link→Invisible citation to insert citations, which correspond to entries in your .bib file.

• At the place where your bibliography should be compiled, click on Insert→Auto-matic→Bibliography. At the prompt, you should enter a bibtex style (such as plain, alpha, abbrv, etc.) and your .bib file.

• Use Document→Update→Bibliography in order to compile your bibliography.

Notice that additional BiBT E X styles should be put in the directory ~/.TeXmacs/system/bib.

Generating an index

For the generation of an index, you first have to put index entries in your document using Insert→Link→Index entry. At a second stage, you must put your cursor at the place where you want your index to be generated and click on Insert→Automatic→Index. The index is than generated in a similar way as the table of contents.

In the Insert→Link→Index entry menu, you find several types of index entries. The simplest are "main", "sub", "subsub", which are macros with one, two and three arguments respectively. Entries of the form "sub" and "subsub" may be used to subordinate index entries with respect to other ones.

A complex index entry takes four arguments. The first one is a key how the entry has to be sorted and it must be a "tuple" (created using I <) whose first component is the main category, the second a subcategory, etc. The second argument of a complex index entry is either blank or "strong", in which case the page number of your entry will appear in a bold typeface. The third argument is usually blank, but if you create two index entries with the same non-blank third argument, then this will create a "range" of page numbers. The fourth argument, which is again a tuple, is the entry itself.

It is also possible to create an index line without a page number using "interject" in Insert→Link→Index entry. The first argument of this macro is a key for how to sort the index line. The second argument contains the actual text. This construct may be useful for creating different sections "A", "B", etc. in your index.

Compiling a glossary

Glossaries are compiled in a similar way as indexes, but the entries are not sorted. A "regular" glossary entry just contains some text and a page number will be generated for it.

An "explained" glossary entry contains a second argument, which explains the notation.

A "duplicate" entry may be used to create a page number for the second occurence of an entry. A glossary line creates an entry without a page number.

Books and multifile documents

When a document gets really large, you may want to subdivide it into smaller pieces. This both makes the individual pieces more easily reusable in other works and it improves the editor's responsiveness. An entire file can be inserted into another one using Insert→Link→ Include. In order to speed up the treatment of included documents, they are being buffered.

In order to update all included documents, you should use Tools→Update→Inclusions.

When writing a book, one usually puts the individual chapters in files c1.tm, c2.tm until cn.tm. One next creates one file book.tm for the whole book, in which the files c1.tm, c2.tm until cn.tm are included using the above mechanism. The table of contents, bibliography, etc. are usually put into book.tm.

In order to see cross references to other chapters when editing a particular chapter ci.tm, one may specify book.tm as a "master file" for the files c1.tm to cn.tm using Document→ Master→Attach. Currently, the chapter numbers themselves are not dealt with by this mechanism, so you may want to manually assign the environment variable chapter-nr at the start of each chapter file in order to get the numbering right when editing.

Chapter 6

Creating technical pictures

Besides the possibility to include pictures which were created using other programs, T E X MACS includes a rudimentary tool for creating your own drawings. Although this tool has less features than several most special purpose graphical editors, it does have the advantage that it is fully integrated with T E X MACS . In particular, it is easy to insert text, mathematics and hyperlinks inside your pictures. Moreover, pictures which are created in this way often look nicer, because they use the same fonts and default line width as the surrounding text.

Starting a new picture

You may start drawing a new picture using Insert→Image→Draw image. In some cases, you may also want to draw something on top of an existing image (or other kinds of content). This can be done by selecting the image or content on top of which you want to draw, and then click on Insert→Image→Draw over selection.

By default, the inserted image spans over the whole paragraph. You may adjust its size using the keyboard shortcuts % , % , % , % (to adjust the size a bit faster, you may use % , % , % , %

). You may also specify an explicit size using Insert→ Geometry→Size. After completion of your drawing, you may automatically crop the size of your picture to its actual size (plus some additional padding), using Insert→Geometry→ Crop.

For technical pictures, it is often useful to display a grid while you are drawing. This can be done using Insert→Grid→Type→Cartesian. In the menu Insert→Grid it is also possible to adjust the colors of the axes and the grid-lines, as well as the number of subunit gridlines per unit grid-line. By default, grids will also be printed; you need to remove them after completing your drawing if you do not want this.

By default, T E X MACS places the origin of the grid at the center of the screen and uses a 1cm unit. You may scroll the picture using the arrow keys , , , (or , , , if you want to move fast). You may specify a different unit using the Insert→Geometry→Unit menu. You may also zoom in and out using + and -, or from the Insert→Geometry→Zoom menu.

Inserting new objects

After insertion of a new picture or clicking inside an existing picture, the second mode dependent toolbar shows a list of icons which are useful in graphics mode. In particular, the second group of icons , , , , , , , , on this toolbar allows you to select the kind of objects that you want to insert. T E X MACS currently implements the following primitive graphical objects:

Points. When selecting point mode using or Insert→Point, you may insert simple points with the left mouse button.

Lines and polygons. When selecting line mode using or Insert→Line, you may insert a new broken line with the left mouse button: at every new click a new point is inserted and the last point is inserted using a double click. Polygon mode (or Insert→Polygon) is a variant of line mode, with this difference that an additional segment is inserted between the first and the last points.

Splines and closed splines. Spline mode is selected using or Insert→Spline. This mode is similar to line mode, except that we now draw a smooth curve through the specified points. Again, this mode admits a closed variant (or Insert→Closed spline).

Arcs and circles. Arc mode is selected using or Insert→Arc. In this mode, you may insert arcs going through three points specified through left mouse clicks. Similarly, you may use circle mode (or Insert→Circle) for drawing circles. e pi = -1 Figure 6.9. Mathematics.

Editing objects

Any of the modes which allows for the insertion of new objects (points, lines, polygons, etc.) also allows you to directly edit existing objects. More precisely, as soon as you go over an existing object with your mouse, then the control points for that object will be highlighted automatically. Several editing operations are supported:

Moving control points. When your mouse is sufficiently close to a control point, then it will be possible to drag and drop the control point to somewhere else using the left mouse button.

Inserting new control points. For objects with an arbitrary number of control points, such as broken lines, polygons, splines and closed splines, it is possible to insert new points on existing edges. In order to do so, move the mouse pointer on the edge where you want to insert a new point; the two neighbouring control points should be highlighted. Then insert a new point drag and move it around using drag and drop for the first mouse button.

Removing control points.

Using the middle mouse button, it is possible to remove control points (and eventually the object itself).

Removing the entire object. Using the middle mouse button while simultaneously pressing the shift key removes the entire object which is currently highlighted.

While editing, it should also be noticed that T E X MACS attempts to automatically snap the mouse pointer to control points or edges of existing objects, as well as to intersection points of two curves and points on the grid. This makes it possible to quickly draw complex pictures which are exact, and not merely exact up to one or more pixels (and ugly when magnified or printed). Around boxes with text or mathematical formulas, there are also eight invisible control points to which T E X MACS will attempt to snap the mouse pointer. This makes it easier to draw diagrams as in figure 6.10 below.

Graphical objects are drawn in a specific stacking order which has the effect that certain objects may be hidden by other objects. Using and , you may move the currently highlighted object closer to or farther away from the eye for this stacking order. In a similar vein, certain control points may become unaccessible, because hidden by closer control points. In that case, you may use to cycle through all possibilities for the current cursor position. Notice also that we cropped the graphics to its actual size.

Specification of style properties

Each of the fundamental types of graphical objects also admits a certain number of style properties which affect the rendering. The following style properties exist:

Color. This property applies to any of the graphical object types and specifies the color.

Fill color. This property applies to all graphical object types except text and mathematics. It specifies a fill color for the object. Opacity. This property also applies to any of the graphical object types and specifies an opacity between 0% and 100%. The default is 100% and lower opacities will make the object more transparent. Line width. The line width property applies to all curves (that is, to broken lines, polygons, splines, closed splines, arcs and circles). By default it is 1ln, the width of the fraction bar in mathematical formulas, but any T E X MACS length unit can be used instead.

Editing groups of objects

The rightmost series of icons on the second mode dependent toolbar is used for editing groups of graphical objects. In group editing mode, you may select or unselect objects using right mouse clicks. You may also select all objects in a rectangle by dragging using the right mouse button. When pressing the left mouse button, the current group operation is performed jointly on all selected objects.

The following kinds of group operations are supported:

Changing properties. Selected using or Insert→Set properties. The current properties (as indicated in the focus bar) are applied to the selected objects.

Move objects. Selected using or Insert→Move objects. The selected objects are moved until you press the left mouse button a second time.

Resize objects. Selected using or Insert→Resize objects. The selected objects are resized until you press the left mouse button a second time.

Rotate objects. Selected using or Insert→Rotate objects. The selected objects are rotated until you press the left mouse button a second time.

Group or ungroup objects. Selected using or Insert→Group/ungroup. The selected objects are grouped together into a single object. If you selected one grouped object, then this object will be ungrouped.

In the group editing mode, it is also possible to copy and paste groups of objects.

Chapter 7

Advanced layout features

Flows

Complex documents often contain footnotes or floating objects, which appear differently on pages as the main text. In fact, the content of such complex documents use several flows, one for the main text, one for the footnotes, one for floats, and still another one for two column text. The different flows are broken across pages in a quite independent way.

In order to insert a footnote, you may use Format→Page insertion→Footnote. The number of columns of the text may be changed in Paragraph→Number of columns.

Floating objects

Floating objects are allowed to move on the page independently from the main text. Usually they contain figures or tables which are too large to nicely fit into the main text. A floating object may be inserted using Format→Page insertion→Floating object.

You may also create a floating object and directly insert a figure or table inside it using Format→Page insertion→Floating figure resp. Format→Page insertion→Floating table. However, sometimes you might want to insert several smaller figures or tables inside one floating object. You may do this using Insert→Image→Small figure resp. Insert→Table→Small table.

After creating a floating object, you may control its position using Insert→Position float (when inside the float). You may specify whether you allow the floating object to appear at the top of the page, at the bottom, directly in the text, or on the next page. By default, the float may appear everywhere. However, a floating object will never appear inside the main text at less than three lines from the bottom or the top of a page.

Page breaking

The page breaking may be controlled very precisely by the user inside Document→Page→ Breaking. In the submenu Algorithm, you may specify the algorithm being used. Professional page breaking is best in print, but may slow down the editing when being used interactively in paper mode. Sloppy page breaking is fastest and medium is professional except for multicolumn material, for which the professional algorithm is significantly slower.

You may also allow the page breaking algorithm to enlarge or reduce the length of pages in exceptional cases in the submenu Limits. The stretchability of vertical space between paragraphs and so may be specified in Flexibility. The factor 1 is default; a smaller factor enforces a more rigid spacing, but the quality of the breaks may decrease.

Chapter 8 Editing tools

In this chapter, we discuss the general editing facilities present in T E X MACS . Besides classical features, like "cut and paste", "search and replace", etc., T E X MACS also supports additional functionality which exploits the document structure. Examples of such features are "structured cursor movement" and "structured variants". It should be noticed that more traditional functions like "search and replace" also attempt to exploit the structure. For instance, when searching x in math mode, you will only find matches which are also in math mode.

Cut and paste

You can select text and formulas by maintaining the left mouse button. In order to delete the selected region, use Edit→Cut. In order to copy the selected region, first click on Edit→Copy. Next, paste it as many times as you want to the location of your cursor, using Edit→Paste. Alternatively, you may copy a selected region using the middle mouse button. It is also possible to the change text properties of a selected region. For instance, in order to transform some black text in red, you select it using the left mouse button and click on Format→Color→Red. Similarly, if you select a formula and you click on Insert→Fraction, then the formula becomes the numerator of some fraction.

When using the copy and paste mechanism to communicate with other applications, text is copied and pasted using the T E X MACS data format. You may specify other import and export formats using Edit→Import resp. Edit→Export. By default, copying and pasting uses the primary text buffer. Using Edit→Copy to and Edit→Paste from, you may specify as many other buffers as you like.

There are two ways to make selections using the keyboard. When using the cursor keys , , etc. while holding down the button, you may select text while moving around the cursor. Alternatively, you may press Sp ace once to fix a starting position. When moving around using the cursor keys, the text between the starting position and the current position keeps being selected. The selection gets cleared when pressing G . Notice that the Sp ace shortcut also allows you to make structured selections. You may select the current word you are in by pressing Sp ace twice. Each additional time you press Sp ace results in the selection of the smallest structure which englobes the current selection. Ultimately, when the entire document gets selected, pressing Sp ace once more clears the selection.

Search and replace

You can start searching text by pressing S or Edit→Search. During a search, the "search string" is displayed at the left hand side of the footer. Each character you type is appended to this search string and the next occurrence of it is surrounded by a red box. When pressing S a second time during a search, the next occurrence is being searched. A beep indicates that no more occurrences were found in the document; pressing S will continue the search at the beginning of your document. You may press + in order to undo key presses during a search.

Usually, text is being searched for in a forward manner, starting from the current cursor position. You may also search backwards, using R . During a search, only text in the same mode and the same language will be found, as those which are active at the position where you started your search. In other words, when searching an x in math-mode, you will not find any x's in the ordinary text. As a current limitation, the search string can only contain ordinary text and no math-symbols or more complicated structured text.

A query replace is started by pressing = or Edit→Replace. You are prompted for a string which is to be replaced and the string by which to replace. At each occurrence of the string to be replaced you are prompted and you have to choose between replacing the string (y), not replacing it (n) and replace this and all further occurrences (a). Like in the case of searching, the query-replace command is mode and language sensitive.

The current search and replace system is still quite rudimentary in the sense that it only deals with plain text in a simple way. In the future, we plan to implement a more powerful search and replace mechanism for structured text.

For the time being, you may nevertheless search and replace arbitrary document fragments as follows: somewhere inside your document or another window, select the fragment you want to search using Edit→Copy to→Search. Next hit S twice or more in order to search all occurences of this fragment inside your document. Similarly, using Edit→Copy to→ Replace, you may select a second fragment by which you want to replace the first one. In order to start the replacement, hit = and specify the empty string as the arguments for "Replace" and "Replace by".

Spell checking

If the program ispell has been installed on your system, then you may use it to check your text for misspelled words by pressing $ or Edit→Spell. Notice that you might have to verify that the dictionaries corresponding to the languages in which your texts have been written have been installed on your system; this is usually the case for English.

When you launch the spell checker (either on the whole text or a selected region), you will be prompted at each misspelled word and the footer displays the available options: a). Accepts the misspelled word and all its future occurrences in the text.

r).

Replace the misspelled word by a correction you have to enter.

i). Indicate that the "misspelled" word is actually correct and that it has to be inserted in your personal dictionary.

1-9).

Several suggested corrections for your misspelled word.

Notice that ispell just checks for misspelled words. No grammatical faults will be detected.

When starting the spell checker, it will use the dictionary of the language which is active at the current cursor position (or the start of a selection). Only text in that language will be checked for. If your document contains text in several languages, then you will have to launch the spell checker once for each language being used.

Undo and redo

It is possible to gradually undo the changes you made in a document from the moment that you launched T E X MACS . This can be done via Edit→Undo or using the keystrokes or . Undone changes can be "redone" using Edit→Redo or] .

In order to save memory, the number of successive actions which can be undone is limited to 100 (by default). It is possible to increase this number by adding a command like (set-maximal-undo-depth 1000)

in our personal initialization file (see Help→Scheme). When specifying a negative number as your maximal undo depth, any number of actions can be undone.

Structured editing

As a general rule, the behaviour of most structured editing operations is conditioned by the current focus. By default, the innermost tag which contains the cursor. Whenever some selection is active, the current focus is the innermost tag which contains the selection.

During structured operations, such as navigating among similar tags, the current focus may temporarily be set to something else. The current focus is visually indicated by the innermost cyan box around the cursor.

For instance, the structured insertion commands % , % , % and % have a particular meaning both inside tables and trees. Inside tables, they allow you to insert new rows and columns (see figure 8.1). Inside trees, they correspond to the insertion of new nodes (see figure 8.2). Whenever you inside a tree inside a table, then the innermost tag is a tree, and node insertions will take precedence over the insertion of new rows and columns.

In many cases, a "default particular behaviour" has been defined for all tags minus some exceptional ones. In our example of structured insertion, the default behaviour of % and % is to insert a new argument to the tag at the left or at the right (when allowed).

Structured editing

Similarly, in the case of matrices, the keys % , % , % and % can be used for inserting a new first or last column, resp. a new first or last row. The keys % + and % & are mapped to the commands for backward resp. forward structured deletion . In the case of matrices, this will result in the removal of the column before or after the cursor (see figure 8.3). In order to remove the enclosing environment you may use + or + .

Structured cursor movement

T E X MACS implements the three main mechanisms for structured cursor movement:

1. Traversal of the entire structure of the document.

2. Traversal of tags which are similar to the innermost tag.

3. Movements inside the innermost tag.

Most keyboard shortcuts for structured cursor movements can be used in combination with the -key so as to similtaneously select text while moving around.

To do: customizing the behaviour Structured traversal of the document.

The , , and keys are used for the structured traversal of the entire document. Inside plain text, and allow you to move in a word-by-word manner, while and correspond to paragraph-by-paragraph motion.

In the presence of other markup, the and keys allow you to visit all accessible cursor positions of the document, except that we keep moving in a word-by-word manner inside plain text. The behaviour of the and keys is more context-dependent. Inside matrices, they typically allow you to move one row up or down.

Traversal of tags which are similar to the innermost tag.

This type of cursor movement allows you to quickly visit all other tags in the document which are similar to the innermost tag. The and keys allow you move to the previous or next similar tags, whereas and directly jump to the first or last similar tags.

For instance, when you are inside a section title, you may move to the previous sectional title (which could also be the title of a subsection or a chapter, for instance) using . Notice that you may use to jump to the previous section title.

Movements inside the innermost tag.

It is also possible to quickly move inside the innermost tag without quitting it. The shortcuts % , % , % and % provide a way to move to the previous, next, first or last argument of the innermost tag. Furthermore, the shortcuts % + and % & may be used to exit the innermost tag on the left or on the right.

This default behaviour may be overridden in special contexts. For instance, inside tables or trees, they rather correspond to cell-by-cell or node-by-node cursor movement. In addition, these cases associate vertical cursor movements to % , % , % and % .

Structured variants

When creating an environment like a theorem, an equation or a list, it frequently happens that one would like to change the environment a posteriori . This can be done using the keyboard shortcuts and for cycling through the list of structured variants of the innermost tag in a direct or inverse manner.

For instance, assuming that you are inside a theorem, pressing several times will change the theorem into a proposition, a lemma, a corollary, a conjecture and back into a theorem. The key allows you to cycle in the inverse direction: theorem → conjectur → corollary → lemma → proposition → theorem.

In the case of mathematical formulas, the shortcuts allows you to change an inline formula like a 2 + b 2 = c 2 into a displayed formula like

a 2 + b 2 = c 2
while taking care of potential "trailing spaces and punctuation signs".

T E X MACS also provides the % # shortcut for turning numbered environments into unnum- bered environments and vice versa . This works for most common environments like theorems, remarks, tables, equations, etc. Notice that % # also turns an unnumbered itemize environment into an enumeration and vice versa , whereas allows you to cycle between the available kinds of list items (bullets, dashes, arrows, etc.).

Positioning and resizing objects

The prefix may be used for positioning and resizing objects. For instance, inside a cell of a table, you may use to align the cell more to the right. Behind a space introduced via Format→Space, the same key allows you to increase the width of space. More generally, the following shortcuts are implemented:

. Decrease the horizontal size of an object, or align more to the left.

. Increase the horizontal size of an object, or align more to the right.

. Decrease/increase the vertical size of an object, or align more to the bottom.

. Increase/decrease the vertical size of an object, or align more to the top.

. Decrease the horizontal offset of an object, or left align. . Decrease the vertical offset of an object, or align at the bottom.

. Increase the vertical offset of an object, or align at the top.

+ . Revert the geometry (size, position, alignment) to the defaults.

,

. Circulate among available length units for specifying the geometry.

,

] . Decrease or increase the step size when positioning or resizing.

Particular tags to which the shortcuts apply are the following Spaces. Both horizontal and vertical spaces from the Format→Space menu. You should put the cursor just after the space tag for the shortcuts to apply.

Box modifiers. The tags move, shift, resize and clipped from the Format→Transform menu.

Animations. The durations of animations can be modified using and .

Images. The size and alignment of images can be changed.

Versioning tools

When writing documents in collaboration with other authors, it frequently arises that one wants to go through changes made by the other authors, and either accept, discard or further correct them. After enabling the versioning tool through Edit→Preferences→ Utilities→Versioning tool, a special menu Version appears in the main menu bar, which makes this process automatic. Below, we will describe in more detail how this tool works.

In addition, there exist many stand-alone programs for maintaining several versions of a same file, such as Subversion, Git, Darcs, GNU Arch, just to mention a few of them. T E X MACS currently provides a rudimentary support for Subversion, but interfaces for the other systems could easily be added.

Comparing two versions.

Assume that we have two versions old.tm and new.tm of the same document. In order to see the changes, first load the newer version new.tm, then click on Version→Compare→With older version and select the older version old.tm. The buffer will still be named new.tm, and the changes between both versions will be indicated by special markup. If there are any changes, then the cursor will be positioned at the first difference. In a similar way, you may compare the current buffer to a newer version on disk using Version→Compare→With newer version.

It is possible to go through all the differences between the old and new versions either from the items in the submenu Version→Move, or using the keyboard shortcuts and . One may also use the more general structured navigation shortcuts , , and .

Visualization of the differences.

Differences between the two versions can be displayed in three ways: by showing only the old version, only the new version, or both versions simultaneously. In all cases, the old version is displayed in dark red and the new version in dark green.

The visualization style can be specified individually for each individual change, via Ver-sion→Show or the keyboard shortcuts (old version), (new version) and | (both versions). One may also cycle through the different style using the structured variant key . If you selected some text, then the above actions will apply to the whole selection. In particular, by selecting the entire file, you can visualize the older or the newer version, or both versions.

Retaining a specific version.

It often occurs that we want to go through the changes between two versions and progressively retain either one or the other version for each individual difference. Assuming that the cursor is inside a given difference, this can be done from entries in the submenu Version→Retain. Alternatively, one may use the shortcuts 1 , 2 and to retain the old, new and currently displayed version, respectively. If both versions are displayed, then retains the new version. After retaining one of the versions, we automatically jump to the next difference, which can then be processed.

If you selected some text, then any of the above action will retain the appropriate version for each of the differences in the selection. This applies in particular to the case when you select the entire document. A convenient alternative way to process all differences is to use and to go through the differences, use and to select the preferred version. As soon as all differences have been processed, you select the entire document and click on Version→Retain→Current version.

Grain control and reactualizing the differences.

The entries in the submenu Version→Grain allow you to control the grain with which differences between versions are computed. By default, we use the finest grain Detailed. It is also possible to compute differences on a paragraph-based level, using Block. In that case, the entire paragraphs in which a change occurs will be highlighted. The roughest grain Rough will highlight the entire text, if a change occurs somewhere inside.

The grain is used when comparing two documents using Version→File→Compare, but it is also possible to change the grain for a selected portion of text: simply select the text and choose the new grain in the submenu Version→Grain. This can in particular be applied on the entire buffer. Similarly, if you change the grain inside a difference, then the difference will be recomputed using the new grain.

Notice that you may also "change" the grain to the current grain. This has the effect of reactualizing the differences of a selected portion or of the current difference at the cursor position. This may be useful, if you made some changes to one of the versions. For instance, assume that the old version contained a theorem and that we changed it into a lemma in the new version and also modified part of its inside text. When visualizing the changes, the whole theorem will be highlighted, since there is no appropriate markup to indicate that we just changed from a theorem to a lemma. Nevertheless, if we want to compare the inside texts, we may turn the old theorem into a lemma and then reactualize.

Using external programs for version control such as Subversion.

If the file you are editing belongs to a directory which is under version control (only Subversion is currently supported, although other systems might follow), then the first part of the Version menu will contain some clickable entries.

Versioning tools

First of all, if the current buffer is under version control, then you may take a look at its history using Version→History. The history contains a list of hyperlinks to older revisions, together with short information about who changed what and when. Older revisions cannot be saved, but you may compare them to the current user version (on disk or being edited) using Version→Compare→With current user version.

After making some changes to a file under version control, the version inside the editor or on disk no longer corresponds to the version in the repository. Using Version→Commit, the current user's version can be committed to the repository. When doing so, you will be prompted for a small explanatory message about the changes that you have made. A file which is not yet under version control can be added to the version control system using Version→Register. Registering a file does not commit it to the repository; you still have to use Version→Commit in order to do so.

If, while you were editing, changes to the file were made in the repository, then you may merge the result with your current version using Version→Update. At the moment, no conflict resolution has been implemented yet, although this is planned for the future.

Chapter 9 Laptop presentations T E X MACS features a "presentation mode", for making presentations from a laptop. The presentation mode is activated/deactivated using View→Presentation mode or F9 . In this chapter, we describe several dedicated style packages and markup elements which can be used for making slick presentations.

Several types of remote controllers are supported for laptop presentations. Some of them (such as Apple infrared controllers) should work out of the box (at least for the Qt version). Others map the buttons on the remote controller to certain keys on your keyboard, and you will need to toggle View→Remote control in order to remap these keys to the right actions during presentations. If necessary, the appropriate mappings may be specified in Edit→Preferences→Keyboard→Remote control. By activating the debugging tool Tools→ Debugging tool and Debug→keyboard, you may find out the particular mappings used by your remote control.

Beamer styles

In order to start writing a laptop presentation, you should first select the beamer style using Document→Style→Beamer. Currently, there are two main "themes" for presentations: the default ridged-paper theme and the metal theme, which can be selected using Doc-ument→Add package→Beamer→metal.

The presentation style includes the alt-colors style package, which features the use of colors for mathematical formulas, enunciations, etc. Optionally, one may also select the framed-env package, which puts frames around section titles and several standard environments.

Traversal of a presentation

One major family of markup tags for presentations concerns the traversal of the document during a presentation. The keys F1 0 and F1 1 are used respectively for going back and forth in the presentation. The keys F9 and F1 2 are used to go to the start resp. end of the presentation. When using the beamer style or when enabling the "presentation tool" in the Tools menu, a Dynamic menu and additional icons will appear, which can also be used for the traversal of your presentation.

The most basic traversal tag is called a "switch", and allows the user to show different pieces of text in successive and mutually exclusive manner. The entire presentation itself usually consists of a screens switch, where the pieces are the successive "slides" of the presentation. After selection of the beamer style, this switch can be inserted using Focus→Screens or Insert→Fold→Switch→Screens. You may jump from one screen to another one using and .

Inside a switch, new "branches" can be inserted after or before the currently visible branch using Focus→Insert argument after or Focus→Insert argument before. Besides the screens switch, you may use Insert→Fold→Switch→Standard to insert paragraph-wide switches, and Insert→Fold→Switch→Standard to insert inline switches (similarly to displayed and inline formulas).

Another popular way to traverse is presentation is to progressively unroll content. This can be done by inserting an unroll tag using Insert→Fold→Unroll. Using a "hack" this tag can be combined with the itemize and enumerate tags: first create the list environment, but remove the first (automatically inserted) item tag. Next insert the unroll tag. When pressing en ter inside the unroll tag, new items are created; you still have to use Focus→Insert argument after for inserting new branches to the unroll structure (in particular, several items could be unrolled at once).

A variant of unrolling is unfolding. This is basically an unroll tag with exactly two branches, but different variants are available in Insert→Fold→Folded depending on the desired rendering. In particular, some of the renderings display a button which may be pushed in order to fold or unfold some content. The input-output fields inside computer algebra sessions are also foldable. Similarly, the tags in Insert→Fold→Summarize are switches with two branches, again with different kinds of rendering.

When using T E X MACS in combination with an external plug-in, such as a computer algebra system, you will notice that all input-output fields in sessions are foldable. In addition, you can create so called "executable switches" using the items in the Insert→Fold→Executable submenu. This allows you to switch back and forth between a given input to the system and the corresponding output.

All markup for the traversal of presentations may be nested in a natural way. In the Insert→ Fold→Traversal menu, you may specify whether unrolled and folded structures should be folded back after traversal.

Decorations

In order to decorate your laptop presentations, T E X MACS provides a few extra markup elements: granite, manila-paper, metal, pine, ridged-paper and rough-paper. These tags will put your content on a nice, natural background, as illustrated in the figure below. You may also use the tit tag for giving individual slides a title.

Granite

a 2 + b 2 = c 2 Metal a 2 + b 2 = c 2 Pine a 2 + b 2 = c 2 Manila paper a 2 + b 2 = c 2
Ridged paper

a 2 + b 2 = c 2
Rough paper

a 2 + b 2 = c 2

Animations

T E X MACS provides some rudimentary support for animations inside laptop presentations. This support is likely to be further improved in future T E X MACS distributions.

The simplest animations are available from the menus Insert→Animation→Translate and Insert→Animation→Progressive. Using the first menu, it is possible to create moving content: you first specify a duration for the full animation and then enter the content which has to be moved. The different kinds of moving content are illustrated in figure 9.2. Similarly, using the second menu, it is possible to create content which only progressively appears on the screen. The various kinds of progressive content are illustrated in figure 9.3. The duration of the animations can be modified a posteriori by putting your cursor inside them and using the shortcuts and .

Rightwards Leftwards

Hello world Other basic animations are "animated gif pictures", which can be inserted from Insert→ Animation→Animation, and sounds, which can be inserted from Insert→Animation→Sound. Support for movies should be added later.

Upwards

Hello world

Downwards

It is also possible to combine animation, so as to form larger animations. For instance, using Insert→Animation→Compose you can play several animations one after another. Often the individual elements of a composed animations are fixed animation of a given duration, which can be inserted using Insert→Animation→Fixed. Of course, you may also use moving or progressive content or even composed animations as building blocks. An animation can be repeated indefinitely using Insert→Animation→Repeat. This may for instance be used to create a blinking effect. Some examples of the various possibilities can be found in figure 9.4.

Hello

Compose

Hello

Blinking T e X macs T E X MACS logo Magix animation

Animations

Chapter 10

Using GNU T E X MACS as an interface

An important feature of T E X MACS is it's ability to communicate with extern systems. For computer algebra systems or other scientific computation systems, this is typically done in shell-like sessions, in which it is possible to evaluate commands and display the results in a nice, graphical way. Some systems can also be used more in the background as scripting languages.

See Help→Plug-ins for a list of existing plug-ins and more documentation on these systems.

Creating sessions

A session can be started from the Insert→Session menu. Since T E X MACS is based on the Scheme language, it is always possible to start a Scheme session using Insert→Session→ Scheme. On Unix systems, it is usually also possible to start Bash shell sessions using Insert→Session→Shell. The remainder of the items in the Insert→Session menu depend on the plug-ins which are installed on your system.

A session consists of a sequence of input and output fields and possible text between them. When pressing inside an input field of a session, the text inside the environment is evaluated and the result is displayed in an output field.

When entering a command in a session, the application attempts to execute it. Several commands may be launched concurrently in the same document, but the output will only be active in the session where the cursor is and at the place of the cursor. Therefore, we recommend to use different buffers for parallel executions.

For each type of extern application, one may choose between sharing a single process by different sessions, or launching a separate process for each different session. More precisely, when inserting a session using Insert→Session→Other, you may specify both a "session type" (Shell, Pari, Maxima, etc.) and a "session name" (the default name is "default"). Sessions with different names correspond to different processes and sessions with the same name share a common process.

In order to finish the process which underlies a given session, you may use Session→Close session. When pressing in the input of a non-connected system, the system will be restarted automatically. You may also use Session→Interrupt execution in order to interrupt the execution of a command. However, several applications do not support this feature.

In order to evaluate all fields of e.g. a previously created session, you may use Session→Eval-uate→Evaluate all. Similarly, Session→Evaluate→Evaluate above and Session→Evaluate→ Evaluate below allow you to evaluate all field above or below the current field.

Editing sessions

Inside input fields of sessions, the cursor keys have a special meaning: when moving upwards or downwards, you will move to previous or subsequent input fields. When moving to the left or to the right, you will never leave the input field; you should rather use the mouse for this. Some facilities for editing input, output and text fields are available in the Session→Field menu. Keyboard shortcuts for inserting fields are % (insert above) and % . Keyboard shortcuts for removing matching text/input/output fields are % + (remove backwards) and % & (remove current fields).

It is possible to create "subsessions" using Session→Session→Create subsession or % . In that case, the current input-output field becomes the body of an unfolded subsession. Such a subsession consists of an explanatory text together with the subsession body. Subsessions can be folded and unfolded using F1 0 resp. F1 1 . Subsessions have a nice rendering on the screen when using the varsession package in Document→Use package→Program.

Notice that input/output fields and subsessions are foldable: when clicking on the prompt with the mouse, you may fold or unfold the entry to hide or show the output. For laptop presentations, this folding and unfolding process is done automatically when traversing your presentation. It is also possible to fold or unfold all fields in a session using Session→ Session→Fold all fields and Session→Session→Unfold all fields.

Other useful editing operations are Session→Session→Clear all fields, which is useful for creating a demo session which will be executed later on, and Session→Split session, which can be used for splitting a session into parts for inclusion into a paper.

Example 10.1. A typical Maxima session is given below. If Maxima is present on your system, then you may put your cursor in one of the inputs, perform some edits, and try to reexecute it.

Maxima 5.25.1 http://maxima.sourceforge.net using Lisp SBCL 1.0.51 Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information.

(%i1) diff (x^x^x, x) (%o1) x x x (x x log (x) (log (x) + 1) + x x-1) (%i2) integrate (%o1, x) (%o2) e e xlog (x) log (x) (%i3) integrate (x^5 / (x^2 -x + 17), x) (%o3) 239 log (x 2 -x + 17) 2 + 1361 arctan 2 x -1 67 √ 67 √ + 3 x 4 + 4 x 3 -96 x 2 -396 x 12
10.3. Selecting the input method By default, T E X MACS will attempt to evaluate the input field when pressing . Multiline input can be created using . Alternatively, when selecting the multiline input mode using Session→Input mode→Multiline input, the key will behave as usual and may be used in order to evaluate the input field. Notice finally that certain systems admit builtin heuristics for testing whether the input has been completed; if not, then the may behave as usual.

Certain applications allow you to type the mathematical input in a graphical, two dimensional form. This feature can be used by selecting Session→Input mode→Mathematical input. If this feature is available, then it is usually also possible to copy and paste output back into the input. However, it depends on the particular application how well this works. Keep in mind that some key combinations may be used by the Mathematical input mode: for instance the key $ is usually redefined inside math mode, so if you want to input it you'll have to type F5 $. You can read more about the prefix key F5 in "Keyboard shortcuts fot text mode".

Example 10.2. Below, you will find the previous example session, but now using mathematical input: Maxima 5.25.1 http://maxima.sourceforge.net using Lisp SBCL 1.0.51 Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information.

(%i1) diff(x x x , x) (%o1) x x x (x x log (x) (log (x) + 1) + x x-1) (%i2) %o1 dx (%o2) e e xlog (x) log (x) (%i3) x 5 x 2 -x + 17 dx (%o3) 239 log (x 2 -x + 17) 2 + 1361 arctan 2 x -1 67 √ 67 √ + 3 x 4 + 4 x 3 -96 x 2 -396 x 12
10.4. Plug-ins as scripting languages T E X MACS provides a few other kinds of additional interfaces to external systems in addition to shell-like interfaces. First of all, it is possible to insert a so called "executable switch" anywhere in the document using Insert→Fold→Executable.

For instance, if Maxima is installed on your system, then Insert→Fold→Executable→ Maxima should yield something like Maxima . You may enter a Maxima expression in the yellow part of this markup, say Maxima diff(x^x,x) . Using , you may now switch back and forth between the unevaluated input and the evaluated output x x (log (x) + 1). Using , you enable multi-line input. This kind of executable switches are very useful for plug-ins such as DraT E X, Eukleides, Feynmf, etc., which are mainly used for the efficient computation and insertion of special graphics inside T E X MACS documents. Some plug-ins such as Maxima can even be selected as a scripting language using Docu-ment→Scripts→Maxima. When doing so, a special Maxima menu will appear, which allows for many useful operations directly on formulas. For instance, when putting the cursor inside the formula 1 + 1 and pressing or Evaluate, the formula gets evaluated automatically to yield 2.

If a plug-in can be used as a scripting language, then it is possible to create executable switches with links between them. More precisely, assuming that you selected a scripting language from Document→Scripts, you may insert a new executable input field using \ ! or Insert→Link→Executable input field. As before, when pressing , the current input is evaluated and you will see the corresponding output; you may switch back to the input by pressing once more.

Contrary to executable switches, you may attach an identifier to the executable input field by disactivating the field or by editing the Ref field in the focus bar. Inside other executable input fields, you may then refer to the value of the field by inserting a field reference using \ ? or Insert→Link→Field reference. As a variant to executable input fields, you may sometimes prefer to insert plain input fields using \ \ or Insert→Link→Input field. These fields can only be used as inputs and pressing inside such a field will only recompute those other fields which depend on it.

Example 10.3. The excutable input fields may for instance be nice in pedagogic documents in which parts of the document may be modified and recomputed by the reader. For instance, evaluation of the input fragment The derivative of x x equals diff(function,x). The second derivative is given by diff(derivative,x). yields The derivative of x x equals x x (log (x) + 1). The second derivative is given by x x (log (x) + 1) 2 + x x-1 .

Of course, if the reader changes the input function x x into something else and presses , then the first and second derivatives will be updated automatically.

Spreadsheets

T E X MACS provides rudimentary spreadsheet-like facilities with the advantage that the computations can be carried out using any of the plug-ins that can be used as a scripting language. In order to use the spreadsheet facilities, you should therefore start with the selection of a scripting language in the menu Document→Scripts.

As soon as you have selecting a scripting language, such as Maxima, then you may enter a new spreadsheet using Insert→Table→Textual spreadsheet or Insert→Table→Numeric spreadsheet. You may edit the spreadsheet as an ordinary table, except that the key will attempt to reevaluate the cells of the table.

In addition, when preceding the contents of a cell by =, then cell will be considered as an input-output switch. More precisely, the input is a formula which will be evaluated using the current scripting language. After the evaluation, only the result of the evaluation is shown in the cell. After pressing a second time in the cell, it will be possible switch back and edit the input. In the formulas, one may refer to the others using names such as c5 for the third row and the fifth column.

Example 10.4. On the left-hand side of the figure below, we have displayed a simple table with formulas for evaluating the sums of the first two items of each row. On the right-hand side, we have shown the result after evaluation. Example 10.5. The cells may contain mathematical formulas and the spreadsheet may take advantage of any of the capacities of the scripting language. For instance, the figure below demonstrates another possible use of Maxima.

sin (x 2) =diff(a1,x) =diff(a2,x) =diff(a3,x) sin (x 2) 2 x cos (x 2) 2 cos (x 2) -4 x 2 sin (x 2) -12 x sin (x 2) -8 x 3 cos (x 2)
Figure 10.2. Computation of successive derivatives using Maxima.

T E X MACS supports a few special notations for applying operations on all cells in a subtable. For instance, as in Excel, one may use the notation c3:d5 for indicating all cells c3, c4, c5, d3, d4, d5 in the block from c3 to d5. An alternative notation , , for : can be entered by typing , , . In a similar way, one may enter the special notation + + by typing + + .

For instance, c3+ + d5 stands for the sum of all cells between c3 and d5.

Example 10.6. The figure below shows an example on how to use taking sums of cells. Notice that empty cells count for zero. Notice that copying and pasting of subtables works in the same way as for ordinary tables, with the additional features that the names of the cells and references to cells in the formulas are renumbered automatically. Similarly, automatic renumbering is used when inserting new columns or rows, or when removing existing columns or rows.

We also notice that field references can be used inside spreadsheet cells in order to refer to some computational markup outside the Chapter 11

Writing T E X MACS style files

One of the fundamental strengths of T E X MACS is the possibility to write your own style files and packages. The purpose of style files is multiple:

• They allow the abstraction of repetitive elements in texts, like sections, theorems, enumerations, etc.

• They form a mechanism which allow you to structure your text. For instance, you may indicate that a given portion of your text is an abbreviation, a quotation or "important".

• Standard document styles enable you to write professionally looking documents, because the corresponding style files have been written with a lot of care by people who know a lot about typography and aesthetics.

The user may select a major style from the Document→Style menu. The major style usually reflects the kind of document you want to produce (like a letter, an article or a book) or a particular layout policy (like publishing an article in a given journal).

Style packages, which are selected from the Document→Style menu, are used for further customization of the major style. For instance, the number-europe package enables European-style theorem numbering and the maxima package contains macros for customizing the layout of sessions of the Maxima computer algebra system. Several packages may be used together.

When you want to add your own markup to T E X MACS or personalize the layout, then you have to choose between writing a principal style file or a style package. In most cases, you will probably prefer to write a style package, since this will allow you to combine it arbitrary other styles. However, in some cases you may prefer to create a new principal style, usually by personalizing an existing style. This is usually the case if you want to mimic the layout policy of some journal. In this chapter, we will both explain how to write your own style packages and how to customize the standard styles.

Writing a simple style package

Let us explain on an example how to write a simple style package. First of all, you have to create a new buffer using File→New and select the source document style using Doc-ument→Style→source. Now save your empty style package in your personal style package directory In a similar way, you may create macros with arguments. For instance, assume that we started entering a macro hello in a similar way as above. Instead of typing "Hello world", we first type % inside the macro body so as to create an additional argument on the left hand side of the cursor. We next enter the name of the argument, say "name". You should now see something like below:

$
assign|hello| macro|name|

In the second argument of the body, we now type "Hello ", # , "name", and ", how are you today?". After this you should see assign|hello| macro|name|Hello name, how are you today?

The # shortcut is used to retrieve the macro argument name. Instead of typing # , "name" and , you may also use the hybrid " -key and type \ N A M E followed by .

After saving your style package, you may again use the macro in any document which uses your package by typing \ H E L L O and hitting .

From the internal point of view, all macro definitions are stored in the environment of the T E X MACS typesetter. Besides macros, the environment also contains normal environment variables, such as section counters or the font size. The environment variables can either be globally changed using the assign primitive, or locally, using the with primitive. For instance, when including the line assign|section-nr |-1 in your package, and using article as your major style, then the first section will be numbered 0. Similarly, the variant assign|hello| macro|name|Hello with|font-shape|small-caps|name ! of the hello macro displays the name of the person in Small Capitals. Notice that the with primitive can also be used to locally redefine a macro. This is for instance used in the definitions of the standard list environments, where the macro which renders list icons is changed inside the body of the list. Yet another variant of the hello macro relies on the standard person macro:

assign|hello| macro|name|Hello person|name !

In order to produce the macro application person | name , you first have to start a compound tag using C , type the name "person", insert an argument % , and enter the argument name as before. When you are done, you may press in order to change the compound tag into a person tag. Alternatively, you may type " , "person", % and "name".

By combining the above constructs, an ordinary user should already be able to produce style packages for all frequently used notations. An interesting technique for writing macros which involve complex formulas with some subformulas which may change goes as follows:

1. Type the formula, say (a 1 , , a n), in an ordinary document.

(a 1 , , a n) = (b 1 , , b n).

Rendering of style files and packages

ASCII-based or tree-based editing: an intricate choice

Most users are used to edit source code using a conventional editor like Emacs, while presenting the source code in ASCII format. Since all T E X MACS documents are stored as trees, an interesting but complicated question is which format is most suitable for editing such documents. One option is to represent the tree using an ASCII-based format, such as XML, Scheme, or the native format for storing files on a disk. The other option is to edit the trees as such, making no fundamental distinction between source code and normal documents.

In T E X MACS we have chosen to implement the second option. More precisely, any document can be edited in "source mode", which is merely a mode for rendering the document in a way which makes its tree structure particularly apparent. It may be instructive to take an arbitrary document of yours and to take a look at it in "source mode" by enabling Document→View→Edit source tree.

The choice between ASCII-based editing and tree-based editing is non-trivial, because T E X MACS style files and packages have a double nature: they may be seen as programs which specify how to render macros, but these programs naturally contain ordinary content.

There are several reasons why users often prefer to edit source code in an ASCII-based format:

1. It is easy to manually format the code so as to make it more readable.

2. In particular, it is easy to add comments.

Standard editors like

Emacs provide tools for automatic highlighting, indentation, etc.

4. One is not constraint by any "structure" during the editing phase.

Our approach is to reproduce as much of the above advantages in a structured document environment. Although point 4 will obviously be hard to meet when following this approach, we believe that the first three advantages might actually become greater in a structured environment. However, this requires a more profound understanding of how users format and edit source code.

For instance, consider a piece of manually formatted code like if (cond) hop = 2; else holala= 3;

Clearly, the user had a particular formatting policy when writing this code. However, this policy does not appear in the document: manual intervention will be necessary if the variable cond is renamed c, or if the variable holala is renamed hola.

At the moment, T E X MACS provides no tools for dealing with the above example in an automatic way, but a few tools are already provided. For instance, the user is given a great amount of control on how to indent source code and reasonable defaults are provided as a function of the structure. We also provide high level environments for comments and structured highlighting. Further tools will be developed later and we are open for any suggestions from our users.

Global presentation

In the Source tags group of the Document→View menu, you find several ways to customize the rendering of source trees in your document. We recommend you to play around with the different possibilities in a document of your own (after enabling Document→View→Source tree) or a standard style package in $TEXMACS_PATH/packages.

First of all, you may choose between the different major styles "angular", "scheme", "functional" and "L A T E X" for rendering source trees, as illustrated in the figure below: Secondly, you may wish to reserve a special treatment to certain tags like concat and document. In the menu Document→View→Special you may specify to which extent you want to treat such tags in a special way:

None. No tags receive a special treatment.

Formatting. Only the formatting tags concat and document are represented as usual.

Normal. In addition to the formatting tags, a few other tags like compound, value and arg are represented in a special way.

Maximal. At the moment, this option is not yet implemented. The intention is to allow the user to write his own customizations and to allow for special rendering of basic operations like plus.

These different options are illustrated below: Another thing which may be controlled by the user is whether the presentation of tags should be compact or stretched out across several lines. Several levels of compactification may be specified in the Document→View→Compactification menu:

Minimal. The tags are all stretched out across several lines.

Only inline tags.

All non-inline tags are stretched out across several lines.

Normal.

All inline arguments at the start of the tag are represented in a compact way. As soon as we encounter a block argument, the remainder of the arguments are stretched out across several lines.

Inline arguments.

All inline arguments are represented in a compact way and only block tags are stretched out across several lines.

Maximal. All source code is represented in a compact way.

The "normal" and "inline arguments" options rarely differ. The visual effect of the different options is illustrated below: Finally, the user may specify the way closing tags should be rendered when the tag is stretched out across several lines. The rendering may either be minimalistic, compact, long, or recall the matching opening tag. The different options are illustrated below:

Local customization

Even though T E X MACS tries hard to render source code in a nice way following the global rendering options that you specified, the readability of the source code often needs to be further enhanced locally. In source mode, this can be done using the menus Source→ Activation and Source→Presentation. Any local hints on how to render source code are automatically removed from the document when it is being used as a style file or package.

First of all, for certain pieces of content the user may prefer to see them in their "activated" form instead as dead source code. This may for instance be the case for embedded images, or for mathematical symbols, like in assign|R | macro|R Such an active presentation may also be preferred for certain more complex macros:

assign|diag| macro|var |dim|   var 1 0 0 var dim  
A piece of code can be activated by selecting it and using Source→Activation→Activate or + . Similarly, a piece of content may be deactivated using ? (we used this in the second example above for the rendering of the arguments var and dim). Activation and deactivation either apply to the whole tree, or to the root only (e.g. Source→Activation→ Activate once).

Another way to customize the rendering is to override some of the global rendering options. This is mainly interesting for controlling more precisely which tags have to be stretched across several lines and which tags have to be represented in a compact fashion. For instance, the concat tag can be used in order to concatenate content, as well as for specifying a block of sequential statements, or a combination of both. For instance, in the piece of code

assign|my-section | macro|title| concat| header-hook|title | toc-hook|title | my-section-title|title
we have stretched the concat tag along several lines using Source→Presentation→Stretched (notice that this implies the concat tag to appear explicitly, so as to avoid confusion with the document tag). Similarly, if a part of the concatenation were to be displayed as usual, then one may use Source→Presentation→Compact:

assign|my-section | macro|title| concat| header-hook|title | toc-hook|title | with|font-series|bold|Section: title
At present, we did not implement a way to mark arguments as inline or block, but we might do this later.

A final way to customize the rendering of source code is to apply an arbitrary macro using Source→Presentation→Apply macro or Source→Presentation→Apply macro once. This macro will be automatically removed when you use your document as a style file or package.

The style-sheet language

In the section about writing a simple style package we already gave you a first impression about the style-sheet language of T E X MACS . In this section, we will give a more complete survey of the available features. For more detailed descriptions, we refer to the chapter about the T E X MACS primitives.

The style-sheet primitives can be obtained from the Source menu when you are in source mode. In all other modes, the Source menu becomes visible after enabling the Source macros tool in the Tools menu. Alternatively, you may use the % and E keyboard prefixes in source mode and the I and E prefixes otherwise. Furthermore, we recall that the hybrid " -key may be used for creating macro-applications or arguments, depending on the context. Finally, the % and % keys are used for inserting arguments.

Assignments

All user defined T E X MACS macros and style variables are stored in the "current typesetting environment". This environment associates a tree value to each string variable. Variables whose values are macros correspond to new primitives. The others are ordinary environment variables. The primitives for operating on the environment are available from Source→Define.

You may permanently change the value of an environment variable using the assign primitive, as in the example assign|hi | macro|Hi there! You may also locally change the values of one or several environment variables using the with primitive:

with|font-series |bold|color |red|Bold red text

The value of an environment variable may be retrieved using the value primitive. This may for instance be used in order to increase a counter:

assign|my-counter | plus|my-counter |1
Finally, you may associate logical properties to environment variables using the drd-props primitive. This is explained in more detail in the section about macro primitives.

Macro expansion

The main interest of the T E X MACS ' style-sheet language is the possibility to define macros. These come in three flavours: ordinary macros, macros which take an arbitrary number of arguments and external macros, whose expansion is computed by Scheme or a plug-in. The macro-related primitives are available from the Source→Macro menu. Below, we will only describe the ordinary macros. For more details, we refer to the section about macro primitives.

Ordinary macros are usually defined using

assign|my-macro| macro|x 1 | |x n |body
After such an assignment, my-macro becomes a new primitive with n arguments, which may be called using We finally notice that you are allowed to compute with macros, in a similar way as in functional programming, except that our macros are not closures (yet). For instance:

assign|my-macro-copy |my-macro

The compound tag may be used to apply macros which are the result of a computation:

assign|overloaded-hi | macro|name| compound| if | nice-weather |happy-hi |sad-hi | name

Formatting primitives

This section contains some important notes on formatting primitives which are not really part of the style-sheet language, but nevertheless very related.

First of all, most T E X MACS presentation tags can be divided in two main categories: inline tags and block tags. For instance, frac is a typical inline tag, whereas theorem is a typical block tag. Some tags, like strong are inline if their argument is and block in the contrary case. When writing macros, it is important to be aware of the inline or block nature of tags, because block tags inside a horizontal concatenation are not rendered in an adequate way. If you need to surround a block tag with some inline text, then you need the surround primitive:

assign|my-theorem| macro|body | surround| no-indent with|font-series|bold|Theorem. | right-flush | body

In this example, we surrounded the body of the theorem with the bold text "Theorem." at the left hand side and a "right-flush" at the right-hand side. Flushing to the right is important in order to make the blue visual border hints look nice when you are inside the environment.

In most cases, T E X MACS does a good job in determining which tags are inline and which ones are not. However, you sometimes may wish to force a tag to be a block environment.

For instance, the tag very-important defined by assign|very-important| macro|body | with|font-series|bold|color |red|body may both be used as an inline tag and a block environment. When placing your cursor just before the with-tag and hitting followed by + , you obtain

assign|very-important| macro|body | with|font-series |bold|color |red|body

Since the body of the macro is now a block, your tag very-important will automatically become a block environment too. In the future, the drd-props primitive will give you even more control over which tags and arguments are inline and which ones are block.

Another important property of tags is whether they contain normal textual content or tabular content. For instance, consider the definition of the standard eqnarray* tag (with a bit of presentation markup suppressed):

assign|eqnarray* | macro|body | with|par-mode|center|mode|math|math-display |true|par-sep|0.45fn| surround| no-page-break* vspace*|0.5fn | vspace|0.5fn no-indent* | tformat| twith|table-hyphen |y | twith|table-width|1par | twith|table-min-cols |3 | twith|table-max-cols|3 | cwith|1|-1|1|1|cell-hpart|1 | cwith|1|-1|-1|-1|cell-hpart|1 | body
The use of surround indicates that eqnarray* is a block environment and the use of tformat specifies that it is also a tabular environment. Moreover, the twith and cwith are used to specify further formatting information: since we are a block environment, we enable hyphenation and let the table span over the whole paragraph (unused space being equally distributed over the first and last columns). Furthermore, we have specified that the table contains exactly three columns.

Finally, it is important to bear in mind that style-sheets do not merely specify the final presentation of a document, but that they may also contain information for the authoring phase. Above, we have already mentioned the use of the right-flush tag in order to improve the rendering of visual border hints. Similarly, visual hints on invisible arguments may be given in the form of flags:

assign|labeled-theorem| macro|id|body | surround| concat| no-indent | flag|Id: id|blue|id | with|font-series |bold|Theorem. | right-flush | body
More generally, the specific tag with first argument "screen" may be used to display visual hints, which are removed when printing the document.

Evaluation control

The Source→Evaluation menu contains several primitives to control the way expressions in the style-sheet language are evaluated. The most frequent use of these primitives is when you want to write a "meta-macro" like new-theorem which is used for defining or computing on other macros. For instance: Next, this expression is evaluated, thereby defining a macro theorem.

It should be noticed that the T E X MACS conventions for evaluation are slightly different then those from conventional functional languages like Scheme. The subtle differences are motivated by our objective to make it as easy as possible for the user to write macros for typesetting purposes.

For instance, when T E X MACS calls a macro macro|x 1 | |x n |body with arguments y 1 until y n , the argument variables x 1 until x n are bound to the unevaluated expressions y 1 until y n , and the body is evaluated with these bindings. The evaluation of y i takes place each time we request for the argument x i . In particular, when applying the macro macro|x |x and again x to an expression y, the expression y is evaluated twice.

In Scheme, the bodies of Scheme macros are evaluated twice, whereas the arguments of functions are evaluated. On the other hand, when retrieving a variable (whether it is an argument or an environment variable), the value is not evaluated. Consequently, a T E X MACS macro

assign|foo| macro|x | blah|x |x would correspond to a Scheme macro (define-macro (foo x) '(let ((x (lambda () ,x))) (blah (x) (x)))
Conversely, the Scheme macro and function

(define-macro (foo x) (blah x x)) (define (fun x) (blah x x))
admit the following analogues in T E X MACS :

assign|foo| macro|x | eval| blah| quote-arg|x | quote-arg|x assign|fun | macro|x | with|x* |x | blah| quote-value|x* | quote-value|x*
Here the primitives quote-arg and quote-value are used to retrieve the value of an argument resp. an environment variable. The T E X MACS primitives eval, quote, quasiquote and unquote behave in the same way as their Scheme analogues. The quasi primitive is a shortcut for quasi-quotation followed by evaluation.

Flow control

Besides sequences of instructions, which can be achieved using the concat primitive, and the mechanism of macro expansion, the T E X MACS style-sheet language provides a few other primitive for affecting the control flow: if, case, while and for-each. These primitives are available from the Source→Flow control menu. However, we have to warn the user that the conditional constructs are quite fragile: they only apply to inline content and the accessibility of macro arguments should not to much depend on the conditions.

The most important primitive if, which can be entered using ? , allows for basic condi- tional typesetting:

assign|appendix | macro|title|body | compound| if | long-document |chapter-appendix |section-appendix | title| body
In this example, appendix is a block environment consisting of a title and a body, and which is rendered as a chapter for long documents and as a section for short ones. Notice that the following implementation would have been incorrect, since the if primitive currently only works for inline content:

assign|appendix | macro|title|body | if| long-document | chapter-appendix|title|body | section-appendix|title|body
The if primitive may also be used in order to implement optional arguments:

assign|hey | macro|first|second| if| equal|second|? |
Hey first, you look lonely today...| Hey first and second, you form a nice couple! However, T E X MACS is not clever enough to detect which arguments are optional and which arguments are accessible (i.e. which arguments can be edited by the user). Therefore, you will have to manually give this information using the drd-props primitive. The case, while and for-each primitives are explained in more detail in the corresponding section on the T E X MACS primitives.

Computational markup

In the menus Source→Arithmetic, Source→Text, Source→Tuple and Source→Condition you will find different primitives for computing with integers, strings, tuples and boolean values. For instance, in the following code, the new-important tag defines a new "important tag" as well as a variant in red:

assign|new-important| macro|name| quasi| concat| assign| unquote|name | macro|x | with|font-series |bold|x | assign| unquote| merge|name|-red | macro|x | with|font-series |bold|color |red|x
Here we use the merge primitive in order to concatenate two strings. The different computational primitives are described in more detail in the corresponding section on the T E X MACS primitives.

Customizing the standard T E X MACS styles

Whenever the standard T E X MACS style files are inadequate for a given purpose, it is possible to write your own style files. However, designing your own style files from scratch may be a complex task, so it is usually preferable to customize the existing styles. This requires some understanding of the global architecture of the standard style files and a more precise understanding of the parts you wish to customize. In this section, we will explain the general principles. For more details, we refer to the chapter on the principal T E X MACS tags.

Organization of style files and packages

Each standard T E X MACS style file or package is based on a potentially finite number of subpackages. From an abstract point of view, this organization may be represented by a labeled tree. For instance, the tree which corresponds to the article style is represented below: When building your own style files or packages, you may use the use-package primitive in order to include other packages. For instance, the article style essentially consists of the line

use-package|std|env|title-generic|header-article|section-article

More precisely, the use-package package sequentially includes the style packages corresponding to its arguments. The packages should be in $TEXMACS_PACKAGE_PATH, which contains ., ~/.TeXmacs/packages and $TEXMACS_PATH/packages by default. Furthermore rendering information for the source code like style-with tags are discarded before evaluation of the files.

Remark 11.1. We strongly recommend the user to take a look at some of the standard style files and packages which can be found in $TEXMACS_PATH/styles $TEXMACS_PATH/packages When loading using X F , these paths are in the standard load path. For instance, if you want to take a look at the std-markup package, then it suffices to type X F , followed by the file name std-markup.ts and .

Remark 11.2. It is also possible to customize the presentation of the source code of the style files and packages themselves, by using other packages in addition to source or by using another major style file based on source. In that case, the extra markup provided by such packages may be used for presentation purposes of the source code, but it is not exported when using your package in another file.

General principles for customization

Style files and packages basically enrich the current typesetting environment with a combination of • Environment variables.

• Tags for the end-user.

• Customizable macros.

Furthermore, they may define some tags for intern implementation purposes, which will not be documented in this manual. They may also specify some logical properties of tags using the drd-props primitive.

Environment variables are almost always attributes for controlling the rendering of content, or counters for sections, equations, etc.. Although several simple tags for the end-user like strong may be redefined in your own style files, this practice is not recommended for more complex tags like section. Indeed, the section tag involves many things like resetting subcounters, entering the title into the table of contents and so on. Therefore, special additional macros are provided the customization of such tags, like section-title, sectionclean and section-toc.

Customizing the general layout

The general layout of a document is mainly modified by setting the appropriate environment variables for page layout and paragraph layout. For instance, by including the following lines in your style file, you can set the page size to letter and the left and right margins to 2in:

assign|page-type|letter assign|page-odd|2in assign|page-even |2in assign|page-right|2in

It should be noticed that the environment variables for page layout are quite different in T E X MACS and T E X/L A T E X. In order to make it easier to adapt L A T E X style files to T E X MACS , we have therefore provided the std-latex package, which emulates the environment variables from T E X/L A T E X. Typically, this allows you determine the global layout by lines like assign|tex-odd-side-margin | macro|20pt assign|tex-even-side-margin | macro|20pt assign|tex-text-width| macro|33pc

We notice that macros which return lengths are considered as lengths themselves. In the case of the T E X/L A T E X emulation package, we actually require all lengths to be macros.

The page headers and footers are usually not determined by global environment variables or macros, since they may change when a new chapter or section is started. Instead, T E X MACS provides the call-back macros header-title, header-author, header-primary and header-secondary. These macros are called when the document title or author are specified or when a new primary or secondary section is started (primary sections are typically chapters in books, or sections in articles). For instance, the following redefinition makes the principal section name appear on even pages, together with the current page number and a wide underline.

Customizing list environments

Lists are made up of two principal ingredients: the outer list environment and the inner items. List environments may either be customized by customizing or redefining the rendering macros for these environments, or defining additional list environments which match the same abstract interface.

The rendering of the outer list environment is controlled by the render-list macro which takes the body of the list as its argument. For instance, consider the following redefinition of render-list: This redefinition affects the rendering of all list environments (itemize, enumerate, etc.) by reducing the right margin with a length of 3fn:

• This text, which has been made so long that it does not fit on a single line, is indented on the right hand side by 3fn.

1. This text is indented by an additional 3fn on the right hand side, since it occurs inside a second list environment.

• Once again: this text, which has been made so long that it does not fit on a single line, is indented on the right hand side by 3fn.

In a similar way, you may customize the rendering of list items by redefining the macros aligned-item and compact-item. These macros both take one argument with the text of the item and render it either in a right-aligned way (such that subsequent text is left aligned) or in a left-aligned way (such that subsequent text may not be aligned). For instance, consider the following redefinition of aligned-item:

assign|aligned-item| macro|x | concat| vspace*|0.5fn | with|par-first|-3fn| yes-indent | resize| with|color |red|x | minus|1r|2.5fn || plus|1r|0.5fn |
Then items inside all list environments with compact items will appear in red:

• This list and aligned descriptions have red items.

C1. First condition.

C2. Second condition.

• The items of compact description lists are rendered using compact-item.

Gnus and gnats. Nice beasts.

Micros and softies. Evil beings.

Remark 11.3. The macros aligned-item and compact-item are required to produce inline content, so that they may be used in order to surround blocks. In particular, several other internal macros (aligned-space-item, long-compact-strong-dot-item, etc.) are based on aligned-item and compact-item, and used for the rendering of the different types of lists (itemize-arrow, description-long, etc.). In the future, we also plan to extend item and item* with a compulsory body argument. When customizing the list environments, it is important to keep that in mind, so as to make your style-sheets upward compatible.

The std-list d.t.d. also provides a macro new-list to define new lists. Its syntax is new-list| name|item-render |item-transform , where name is the name of the new list environment, item-render an (inline) macro for rendering the item and item-transform an additional transformation which is applied on the item text. For instance, the enumerate-roman environment is defined by

new-list|enumerate-roman|aligned-dot-item| macro|x | number|x |roman

Customizing numbered textual environments

T E X MACS provides three standard types of numbered textual environments: theorem-like environments, remark-like environments and exercise-like environments. The following aspects of these environments can be easily customized:

• Adding new environments.

• Modifying the rendering of the environments.

• Numbering the theorems in a different way.

Defining new environments.

First of all, new environments can be added using the meta-macros new-theorem, newremark and new-exercise. These environments take two arguments: the name of the environment and the name which is used for its rendering. For instance, you may wish to define the environment experiment by

new-theorem|experiment|Experiment

When available in the T E X MACS dictionaries, the text "Experiment" will be automatically translated when your document is written in a foreign language. In the section about how to define new environments, it is also explained how to define other numbered textual environments (besides theorems, remarks and exercises).

Customization of the rendering.

The principal rendering of the environments can be customized by redefining the rendertheorem, render-remark and render-exercise macros. These macros take the name of the environment (like "Theorem 1.2") and its body as arguments. For instance, if you want theorems to appear in a slightly indented way, with a slanted body, then you may redefine render-theorem as follows:

assign|render-theorem| macro|which|body | padded-normal|1fn|1fn| surround| theorem-name|which theorem-sep || with|font-shape|slanted|par-left| plus|par-left|1.

5fn |body

This redefinition produces the following effect:

Theorem 11.4. This is a theorem which has been typeset in a slanted font.

By default, the theorems are rendered as remarks with the only difference that their bodies are typeset in an italic font. Hence, redefining the render-remark macro will also affect the rendering of theorems. The default render-proof macro is also based on render-remark.

Instead of redefining the entire rendering, the user might just wish to customize the way names of theorems are rendered or redefine the separator between the name and the body.

As the user may have noticed by examining the above redefinition of render-theorem, these aspects are controlled by the macros theorem-name and theorem-sep. For instance, consider the following redefinitions:

assign|theorem-name| macro|name| with|color |dark red|font-series|bold|name assign|theorem-sep| macro|:

Then theorem-like environments will be rendered as follows:

Proposition 11.5: This proposition is rendered in is a fancy way.

Customization of the numbering.

In the sections about counters and counter groups, it is explained how to customize the counters of numbered environments for particular purposes. For instance, by redefining inc-theorem, you may force theorems to reset the counter of corollaries:

quasi| assign| inc-theorem| macro| compound| unquote|inc-theorem reset-corollary
Notice the trick with quasi and unquote in order to take into account additional action which might have been undertaken by the previous value of the macro inc-theorem.

The following code from number-long-article.ts is used in order to prefix all standard environments with the number of the current section:

assign|section-clean | macro| reset-subsection reset-std-env assign|display-std-env | macro|nr | section-prefix nr

Customizing sectional tags

By default, T E X MACS provides the standard sectional tags from L A T E X part, chapter, section, subsection, subsubsection, paragraph, subparagraph, as well as the special tag appendix.

T E X MACS also implements the unnumbered variants part*, chapter*, etc. and special sectionlike tags bibliography, table-of-contents, the-index, the-glossary, list-of-figures, list-of-tables.

Remark 11.6. Currently, the sectional tags take one argument, the section title, but a second argument with the body of the section is planned to be inserted in the future (see the experimental structured-section package). For this reason (among others), style files should never redefine the main sectional tags, but rather customize special macros which have been provided to this effect.

From a global point of view, an important predicate macro is sectional-short-style. When it evaluates to true, then appendices, tables of contents, etc. are considered to be at the same level as sections. In the contrary case, they are at the same level as chapters. Typically, articles use the short sectional style whereas book use the long style.

The rendering of a sectional tag x is controlled through the macros x-sep, x-title and xnumbered-title. The x-sep macro prints the separator between the section number and the section title. It defaults to the macro sectional-sep, which defaults in its turn to a wide space. For instance, after redefining assign|sectional-sep| macro|sectional titles would typically look like

-Hairy GNUs

The x-title and x-numbered-title macros respectively specify how to render unnumbered and numbered section titles. Usually, the user only needs to modify x-title, since x-numberedtitle is based on x-title. However, if the numbers have to be rendered in a particular way, then it may be necessary to redefine x-numbered-title. For instance, consider the redefinition assign|subsection-numbered-title| macro|name| sectional-normal| with|font-series|bold| the-subsection . name

This has the following effect on the rendering of subsection titles:

Very hairy GNUs

Notice that the section-base package provides several useful helper macros like sectionalnormal.

Remark 11.7. Sectional titles can either be rendered in a "short" or in the "long" fashion. By default, paragraphs and subparagraphs use the short rendering, for which the body starts immediately at the right of the title:

My paragraph. Blah, blah, and more blahs...

All other sectional tags use the long rendering, in which case the section title takes a separate line on its own:

My section

Blah, blah, and more blahs...

We do not recommend to modify the standard settings (i.e. to render paragraphs in a long way or sections in a short way). If you really want to do so, then we recommend to redefine the corresponding environment variables enrich-x-long. This will ensure upward compatibility when sectional tags will take an additional argument (see remark 11.6).

Besides their rendering, several other aspects of sectional tags can be customized:

• The call-back macro x-clean can be used for cleaning some counters when a new section is started. For instance, in order to prefix all standard environments by the section counter, you may use the following lines:

assign|section-clean | macro| reset-subsection reset-std-env assign|display-std-env | macro|nr | section-prefix nr

• The call-back macro x-header should be used in order to modify page headers and footers when a new section is started. Typically, this macro should call headerprimary, or header-secondary, or do nothing.

• The call-back macro x-toc should be used in order to customize the way new sections appear in the table of contents.

Customizing the treatment of title information

T E X MACS uses the doc-data tag in order to specify global data for the document. These data are treated in two stages by the doc-data macro. First, the document data are separated into several categories, according to whether the data should be rendered as a part of the main title or in footnotes or the abstract. Secondly, the data in each category are rendered using suitable macros.

Each child of the doc-data is a tag with some specific information about the document.

Currently implemented tags are doc-title, doc-subtitle, doc-author, doc-date, doc-runningtitle, doc-running-author, doc-keywords, doc-msc and doc-note. The doc-author tag may occur several times. The author-data tag is used in order to specify structured data for each of the authors of the document. Each child of the author-data tag is a tag with information about the corresponding author. Currently implemented tags with author information are author-name, author-affiliation, author-email, author-homepage and author-misc.

Most of the tags listed above also correspond to macros for rendering the corresponding information as part of the main title. For instance, if the date should appear in bold italic at a distance of at least 1fn from the other title fields, then you may redefine doc-date as

assign|doc-date| macro|body | concat| vspace*|1fn | doc-title-block| with|font-shape|italic|font-series|bold|body | vspace|1fn
The title-block macro is used in order to make the text span appropriately over the width of the title. The doc-title and author-name are special in the sense that they also render possible references to footnotes. For this reason, you should rather customize the docrender-title and author-render-name macros in order to customize the rendering of the title and the name themselves.

Notice also that the doc-running-title and author-running-author macros do not render anything, but rather call the header-title and header-author call-backs for setting the appropriate global page headers and footers. By default, the running title and author are extracted from the usual title and author names.

In addition to the rendering macros which are present in the document, the main title (including author information, the date, etc.) is rendered using the doc-make-title macro. The author information, as part of the main title, is rendered using render-doc-author or render-doc-authors, depending on whether the document has one or more authors. Footnotes to the title or to one of the authors are rendered using doc-title-note resp. doc-authornote. These footnote macros always expect a document tag on input, because they may compress it into a horizontal concatenation.

The first stage of processing the document data is more complex and the reader is invited to take a look at the short descriptions of the macros which are involved in this process.

It is also good to study the definitions of these macros in the package itself. In order to indicate the way things work, we finish with an example on how the email address and homepage of an author can be rendered in a footnote instead of the main title:

. Customizing arbitrary tags

Imagine that you want to change the rendering of a given tag, like lemma. As a general rule, T E X MACS provides a set of well-chosen macros which can be customized by the user so as to obtain the desired effect. For instance, as we have seen above, you should use modify one of the macros render-theorem, theorem-name or theorem-sep in order to customize the rendering of lemma and all other theorem-like environments.

However, in some cases, it may not be clear which "well-chosen" macro to customize. If we just wanted to change the presentation of lemmas and not of any other theorem-like environments, then we clearly cannot modify render-theorem, theorem-name or theorem-sep.

In other cases, the user may not want to invest his time in completely understanding the macro hierarchy of T E X MACS , and find out about the existence of render-theorem, theoremname and theorem-sep.

So imagine that you want all lemmas to appear in red. On the one hand side, this mechanism is a bit more complex than CSS, where it suffices to respecify the par-par-sep attribute of lists inside theorems. On the other hand, it is also more powerful, since the render-theorem macro applies to all theorem-like environments at once. Furthermore, if the above mechanism is to be used frequently, then real hackers may simplify the notations using further macro magic.

Standard utilities

In the package std-utils, the user may find several useful additional macros for writing style files. It mainly contains macros for

• Writing block environments which span over the entire paragraph width. Notice that the title-base package provides some additional macros for wide section titles.

• Writing wide block environments which are underlined, overlined or in a frame box.

• Recursive indentation.

• Setting page headers and footers.

• Localization of text.

It is good practice to use these standard macros whenever possible when writing style files. Indeed, the low-level T E X MACS internals may be subject to minor changes. When building upon standard macros with a clear intention, you increase the upward compatibility of your style-sheets.

Chapter 12

Customizing T E X MACS

One major feature of T E X MACS is that it can be highly customized. First of all, the most important aspects of the program can be configured in Edit→Preferences. Most other parts of T E X MACS can be entirely adapted or reprogrammed using the Guile/Scheme extension language. In the sequel, we give a short overview of how this works in simple cases.

Introduction to the Guile extension language

Like Emacs, T E X MACS comes with a Lisp-like extension language, namely the Guile Scheme dialect from the Gnome project. For documentation about Guile Scheme, we refer to http://www.gnu.org/software/guile/guile.html

Scheme has the advantage that it may be extended with extern C and C++ types and routines. In our case, we have extended Scheme with routines which you can use to create your own menus and key-combinations, and even to write your own extensions to T E X MACS .

If you have downloaded the source files of T E X MACS , then it may be interesting for you to take a look at the files Guile/Glue/build-glue-basic.scm Guile/Glue/build-glue-editor.scm Guile/Glue/build-glue-server.scm

These three "glue" files contain the C++ routines, which are visible within Scheme. In what follows, we will discuss some of the most important routines. We plan to write a more complete reference guide later. You may also take a look at the scheme .scm files in the directory $TEXMACS_PATH/progs.

Writing your own initialization files

When starting up, T E X MACS executes the file

Creating your own dynamic menus

You may define a menu with name name either using

(menu-bind name . def) or (tm-menu (name) . def)
Here def is a program which represents the entries of the menu. In particular, you may take a look at the files in the directory $TEXMACS_PATH/progs/menu in order to see how the standard T E X MACS menus are defined. In the case of tm-menu, it is possible to specify additional arguments, which makes it possible to dynamically construct more complex menus which depend on parameters.

More precisely, the program def in menu-bind or tm-menu is a list of entries of one of the following forms:

(=> "pulldown menu name" menu-definition) (-> "pullright menu name" menu-definition) ("entry" action) ---

(if condition menu-definition) (link variable)
The constructors => and -> are used to create pulldown or pullright menus and menudefinition should contain a program which creates the submenu. The constructor ("entry" action) creates an ordinary entry, where action will be compiled and executed when you click on entry. Items of a menu may be separated using ---. The constructor if is used for inserting menu items only if a certain condition is satisfied (for instance, if we are in math mode).

Finally, if you declared a menu name , then you may use this menu indirectly using the link constructor. This indirect way of declaring submenus has two advantages

• An "indirect" submenu may be linked to as many menus as we like.

• New items may be added to "indirect" submenus a posteriori using menu-append.

The main T E X MACS menus are texmacs-menu, texmacs-popup-menu, texmacs-mainicons, texmacs-mode-icons, texmacs-focus-icons and texmacs-extra-icons.

Other standard indirect menus are file-menu, edit-menu, insert-menu, text-menu, paragraph-menu, document-menu, options-menu and help-menu.

12.4. Creating your own keyboard shortcuts Keymaps are specified using the command (kbd-map . keymaps)

Optionally, you may specify conditions which must be satisfied for the keymap to be valid using the :mode option. For instance, the command (kbd-map (:mode in-math?) . keymaps) specifies a list of keyboard shortcuts which will only be valid in math-mode. Each item in keymaps is of one of the following forms:

(key-combination action_1 ... action_n) (key-combination result) (key-combination result help-message)

In the first case, the action_i are Scheme commands associated to the string keycombination. In the second and third case, result is a string which is to be inserted in the text when the key-combination has been completed. An optional help-message may be displayed when the key-combination is finished.

Other interesting files

Some other files may also be worth looking at:

• $TEXMACS_PATH/fonts/enc contains encodings for different T E X fonts.

• $TEXMACS_PATH/fonts/virtual contains definitions of virtual characters.

• $TEXMACS_PATH/langs/natural/dic contains the current dictionaries used by T E X MACS .

• $TEXMACS_PATH/langs/natural/hyphen contains hyphenation patterns for various languages.

• $TEXMACS_PATH/progs/fonts contains Scheme programs for setting up the fonts.

12.5 Other interesting files

Chapter 13

The T E X MACS plug-in system

There are many ways in which T E X MACS can be customized or extended: users may define their own style files, customize the user interface, or write links with extern programs. The plug-in system provides a universal mechanism to combine one or several such extensions in a single package. Plug-ins are both easy to install by other users and easy to write and maintain.

Installing and using a plug-in

From the user's point of view, a plug-in myplugin will usually be distributed on some website as a binary tarball with the name myplugin-version-architecture .tar.gz If you installed T E X MACS yourself in the directory $TEXMACS_PATH, then you should unpack this tarball in the directory $TEXMACS_PATH/plugins, using tar -zxvf myplugin -version -architecture.tar.gz This will create a myplugin subdirectory in $TEXMACS_PATH/plugins. As soon as you restart T E X MACS , the plug-in should be automatically recognized. Please read the documentation which comes with your plug-in in order to learn using it.

Remark 13.1. If you did not install T E X MACS yourself, or if you do not have write access to $TEXMACS_PATH, then you may also unpack the tarball in $TEXMACS_HOME_PATH/plugins. Here we recall that $TEXMACS_HOME_PATH defaults to $HOME/.TeXmacs. When starting T E X MACS , your plug-in should again be automatically recognized.

Remark 13.2. If the plug-in is distributed as a source tarball like myplugin -versionsrc.tar.gz, then you should first compile the source code before relaunching T E X MACS . Depending on the plug-in (read the instructions), this is usually done using cd myplugin ; make or cd myplugin ; ./configure; make Remark 13.3. In order to upgrade a plug-in, just remove the old version in $TEXMACS_PATH/plugins or $TEXMACS_HOME_PATH/plugins using rm -rf myplugin and reinstall as explained above.

Writing your own plug-ins

In order to write a plug-in myplugin , you should start by creating a directory $TEXMACS_HOME_PATH/plugins/myplugin where to put all your files (recall that $TEXMACS_HOME_PATH defaults to $HOME/.TeXmacs). In addition, you may create the following subdirectories (when needed): bin -For binary files. doc -For documentation (not yet supported). langs -For language related files, such as dictionaries (not yet supported).

lib -For libraries.

packages -For style packages.

progs -For Scheme programs. src -For source files.

styles -For style files.

As a general rule, files which are present in these subdirectories will be automatically recognized by T E X MACS at startup. For instance, if you provide a bin subdirectory, then $TEXMACS_HOME_PATH/plugins/myplugin /bin will be automatically added to the PATH environment variable at startup. Notice that the subdirectory structure of a plug-in is very similar to the subdirectory structure of $TEXMACS_PATH.

Example 13.4. The easiest type of plug-in only consists of data files, such as a collection of style files and packages. In order to create such a plug-in, it suffices to create directories $TEXMACS_HOME_PATH/plugins/myplugin $TEXMACS_HOME_PATH/plugins/myplugin /styles $TEXMACS_HOME_PATH/plugins/myplugin /packages and to put your style files and packages in the last two directories. After restarting T E X MACS , your style files and packages will automatically appear in the Document→Style and Document→Use package menus.

For more complex plug-ins, such as plug-ins with additional Scheme or C++ code, one usually has to provide a Scheme configuration file $TEXMACS_HOME_PATH/plugins/myplugin /progs/init-myplugin .scm This configuration file should contain an instruction of the following form (plugin-configure myplugin configuration-options)

Here the configuration-options describe the principal actions which have to be undertaken at startup, including sanity checks for the plug-in. In the next sections, we will describe some simple examples of plug-ins and their configuration.

How it works.

The file init-world.scm essentially contains the following code:

(define (world-initialize) (display* "Using world plug-in!\n"))

(plugin-configure world (:require #t) (:initialize (world-initialize)))

The configuration option :require specifies a condition which needs to be satisfied for the plug-in to be detected by T E X MACS (later on, this will for instance allow us to check whether certain programs exist on the system). The configuration is aborted if the requirement is not fulfilled.

The option :initialize specifies an instruction which will be executed during the initialization (modulo the fulfillment of the requirement). In our example, we just send a message to the standard output that we are using our plug-in. In general, the initialization routine should be very short and rather load a module which takes care of the real initialization. Indeed, keeping the init-myplugin.scm files simple will reduce the startup time of T E X MACS .

Example of a plug-in with C++ code

The minimal plug-in.

Consider the example of the minimal plug-in in the directory

How it works.

The minimal plug-in demonstrates a minimal interface between T E X MACS and an extern program; the program minimal.cpp is explained in more detail in the chapter about writing interfaces. The initialization file init-minimal.scm essentially contains the following code:

(plugin-configure minimal (:require (url-exists-in-path? "minimal.bin")) (:launch "minimal.bin") (:session "Minimal"))

The :require option checks whether minimal.bin indeed exists in the path (so this will fail if you forgot to run the Makefile). The :launch option specifies how to launch the extern program. The :session option indicates that it will be possible to create sessions for the minimal plug-in using Insert→Session→Minimal.

Summary of the configuration options for plugins

As explained before, the Scheme configuration file myplugin/progs/init-myplugin .scm of a plug-in with name plugin should contain an instruction of the type (plugin-configure myplugin configuration-options)

Here follows a list of the available configuration-options :

(:require condition) -This option specifies a sanity condition which needs to be satisfied by the plug-in. Usually, it is checked that certain binaries or libraries are present on your system. If the condition fails, then T E X MACS will continue as whether your plug-in did not exist. In that case, further configuration is aborted. The :require option usually occurs first in the list of configuration options.

(:version version-cmd) -This option specifies a Scheme expression version-cmd which evaluates to the version of the plug-in.

(:setup cmd) -This command is only executed when the version of the plug-in changed from one execution of T E X MACS to another one. This occurs mainly when installing new versions of T E X MACS or helper applications.

(:initialize cmd) -This option executes the Scheme expression cmd . It usually occurs just after the :require option, so that the plug-in will only be configured if the plug-in really exists. For large plug-ins, it is important to keep the file myplugin /progs/init-myplugin.scm small, because it will be rerun each time you start T E X MACS . In order to reduce the boot time, most Scheme commands of the plug-in therefore occur in separate modules, some of which may be loaded by the initialization command.

(:launch shell-cmd) -This option specifies that the plug-in is able to evaluate expressions over a pipe, using a helper application which is launched using the shellcommand shell-cmd.

(:link lib-name export-struct options) -This option is similar to :launch, except that the extern application is now linked dynamically. For more information, see the section about dynamic linking.

(:session menu-name) -This option indicates that the plug-in supports an evaluator for interactive shell sessions. An item menu-item will be inserted to the Insert→Session menu in order to launch such sessions.

(:serializer ,fun-name) -If the plug-in can be used as an evaluator, then this option specifies the Scheme function fun-name which is used in order to transform T E X MACS trees to strings.

(:commander ,fun-name) -This command is similar to the :serializer option except that it is used to transform special commands to strings.

(:tab-completion #t) -This command indicates that the plug-in supports tabcompletion.

(:test-input-done #t) -This command indicates that the plug-in provides a routine for testing whether the input is complete.

Chapter 14

The T E X MACS format 14.1. T E X MACS trees

All T E X MACS documents or document fragments can be thought of as trees . For instance, the tree with mode math concat

x + y + frac

1 2 + sqrt y + z
typically represents the formula

x + y + 1 2 + y + z √ (14.1)

Internal nodes of T E X MACS trees.

Each of the internal nodes of a T E X MACS tree is a string symbol and each of the leafs is an ordinary string. A string symbol is different from a usual string only from the efficiency point of view: T E X MACS represents each symbol by a unique number, so that it is extremely fast to test weather two symbols are equal.

Leafs of T E X MACS trees.

Currently, all strings are represented using the universal T E X MACS encoding. This encoding coincides with the Cork font encoding for all characters except "<" and ">". Character sequences starting with "<" and ending with ">" are interpreted as special extension characters. For example, <alpha> stands for the letter α. The semantics of characters in the universal T E X MACS encoding does not depend on the context (currently, cyrillic characters are an exception, but this should change soon). In other words, the universal T E X MACS encoding may be seen as an analogue of Unicode. In the future, we might actually switch to Unicode.

The string leafs either contain ordinary text or special data. T E X MACS supports the following atomic data types:

Boolean numbers. Either true or false.

Integers. Sequences of digits which may be preceded by a minus sign.

Floating point numbers. Specified using the usual scientific notation.

Lengths. Floating point numbers followed by a length unit, like 29.7cm or 2fn.

Serialization and preferred syntax for editing.

When storing a document as a file on your harddisk or when copying a document fragment to the clipboard, T E X MACS trees have to be represented as strings. The conversion without loss of information of abstract T E X MACS trees into strings is called serialization and the inverse process parsing. T E X MACS provides three ways to serialize trees, which correspond to the standard T E X MACS format, the XML format and the Scheme format.

However, it should be emphasized that the preferred syntax for modifying T E X MACS documents is the screen display inside the editor. If that seems surprising to you, consider that a syntax is a way to represent information in a form suitable to understanding and modification. The on-screen typeset representation of a document, together with its interactive behaviour, is a particularly concrete syntax. Moreover, in the Document→View menu, you may find different ways to customize the way documents are viewed, such as different levels of informative flags and a "source tree" mode for editing style files.

T E X MACS documents

Whereas T E X MACS document fragments can be general T E X MACS trees, T E X MACS documents are trees of a special form which we will describe now. The root of a T E X MACS document is necessarily a document tag. The children of this tag are necessarily of one of the following forms:

TeXmacs|version (T E X MACS version)
This mandatory tag specifies the version of T E X MACS which was used to save the document.

project|ref (part of a project)

An optional project to which the document belongs. An optional list of all valid references to labels in the document. Even though this information can be automatically recovered by the typesetter, this recovery requires several passes. In order to make the behaviour of the editor more natural when loading files, references are therefore stored along with the document.

The table is of a similar form as above. In this case a tuple is associated to each label. This tuple is either of the form tuple|content|page-nr or tuple|content|page-nr |file .

The content corresponds to the displayed text when referring to the label, page-nr to the corresponding page number, and the optional file to the file where the label was defined (this is only used when the file is part of a project).

auxiliary|table (auxiliary data attached to the file)

This optional tag specifies all auxiliary data attached to the document. Usually, such auxiliary data can be recomputed automatically from the document, but such recomputations may be expensive and even require tools which are not necessarily installed on your system. The

Default serialization

Documents are generally written to disk using the standard T E X MACS syntax (which corresponds to the .tm and .ts file extensions). This syntax is designed to be unobtrusive and easy to read, so the content of a document can be easily understood from a plain text editor. For instance, the formula (14.1) is represented by <with|mode|math|x+y+<frac|1|2>+<sqrt|y+z>>

On the other hand, T E X MACS syntax makes style files difficult to read and is not designed to be hand-edited: whitespace has complex semantics and some internal structures are not obviously presented. Do not edit documents (and especially style files) in the T E X MACS syntax unless you know what you are doing.

Main serialization principle.

The T E X MACS format uses the special characters <, |, >, " and / in order to serialize trees. By default, a tree like

f x 1 x n (14.2)
is serialized as

<f|x 1 |...|x n >
If one of the arguments x 1 , , x n is a multi-paragraph tree (which means in this context that it contains a document tag or a collection tag), then an alternative long form is used for the serialization. If f takes only multi-paragraph arguments, then the tree would be serialized as

<\f> x 1 <|f> ... <|f> x n </f>
In general, arguments which are not multi-paragraph are serialized using the short form. For instance, if n=5 and x 3 and x 5 are multi-paragraph, but not x 1 , x 2 and x 4 , then (14.2) is serialized as

<\f|x 1 |x 2 > x 3 <|f|x 4 > x 5 </f>
The escape sequences \<, \|, \> and \ may be used to represent the characters <, |, > and ". For instance, α + β is serialized as \<alpha\>+\<beta\>.

Formatting and whitespace.

The document and concat primitives are serialized in a special way. The concat primitive is serialized as usual concatenation. For instance, the text "an important note" is serialized as

an <em|important> note
The document tag is serialized by separating successive paragraphs by double newline characters. For instance, the quotation Ik ben de blauwbilgorgel. Als ik niet wok of worgel, is serialized as

<\quote-env>

Ik ben de blauwbilgorgel.

Als ik niet wok of worgel, </quote-env>

Notice that whitespace at the beginning and end of paragraphs is ignored. Inside paragraphs, any amount of whitespace is considered as a single space. Similarly, more than two newline characters are equivalent to two newline characters. For instance, the quotation might have been stored on disk as

<\quote-env>

Ik ben de blauwbilgorgel.

Als ik niet wok of worgel, </quote-env>

The space character may be explicitly represented through the escape sequence "\ ". Empty paragraphs are represented using the escape sequence "\;".

Raw data.

The raw-data primitive is used inside T E X MACS for the representation of binary data, like image files included into the document. Such binary data is serialized as

<#binary-data >
where the binary-data is a string of hexadecimal numbers which represents a string of bytes.

XML serialization

For compatability reasons with the XML technology, T E X MACS also supports the serialization of T E X MACS documents in the XML format. However, the XML format is generally more verbose and less readable than the default T E X MACS format. In order to save or load a file in the XML format (using the .tmml extension), you may use File→Export→XML resp. File→Import→XML.

It should be noticed that T E X MACS documents do not match a predefined DTD, since the appropriate DTD for a document depends on its style. The XML format therefore merely provides an XML representation for T E X MACS trees. The syntax has both been designed to be close to the tree structure and use conventional XML notations which are well supported by standard tools.

The encoding for strings.

The leafs of T E X MACS trees are traslated from the universal T E X MACS encoding into Unicode. Characters without Unicode equivalents are represented as entities (in the future, we rather plan to create a tmsym tag for representing such characters).

XML representation of regular tags.

Trees with a single child are simply represented by the corresponding XML tag. In the case when a tree has several children, then each child is enclosed into a tm-arg tag. For instance, x + y √ is simply represented as <sqrt>y+z</sqrt> whereas the fraction 1 2 is represented as <frac> <tm-arg>1</tm-arg> <tm-arg>2</tm-arg> </frac>

In the above example, the whitespace is ignored. Whitespace may be preserved by setting the standard xml:space attribute to preserve.

Special tags.

Some tags are represented in a special way in XML. The concat tag is simply represented by a textual concatenation. For instance, A with tag with only string attributes and values is represented using the standard XML attribute notation. For instance, "some blue text" would be represented as some <with color="blue">blue</with> text Conversily, T E X MACS provides the attr primitive in order to represent attributes of XML tags. For instance, the XML fragment some <mytag beast="heary">special</mytag> text would be imported as "some my-tag| attr|beast | heary |special text". This will make it possible, in principle, to use T E X MACS as an editor of general XML files.

1 2 + x + y √ is

Scheme serialization

Users may write their own extensions to T E X MACS in the Scheme extension language. In that context, T E X MACS trees are usually represented by Scheme expressions. The Scheme syntax was designed to be predictable, easy to hand-edit, and expose the complete internal structure of the document. For instance, the formula (14.1) is represented by (with "mode" "math" (concat "x+y+" (frac "1" "2") "+" (sqrt "y+z")))

The Scheme representation may also be useful in order to represent complex macros with a lot of programmic content. Finally, Scheme is the safest format when incorporating T E X MACS snippets into emails. Indeed, both the standard T E X MACS format and the XML serialization may be quite sensitive to white-space.

In order to save or load a document in Scheme format, you may use File→Export→Scheme resp. File→Import→Scheme. Files saved in Scheme format can easily be processed by external Scheme programs, in the same way as files saved in XML format can easily be processed by tools for processing XML, like XSLT.

In order to copy a document fragment to an email in Scheme format, you may use Edit→ Copy to→Scheme. Similarly, you may paste external Scheme fragments into T E X MACS using Edit→Paste from→Scheme. The Scheme format may also used interactively inside Scheme sessions or interactive commands. For instance, typing X followed by the inter- active command (insert '(frac "1" "2")) inserts the fraction 1 2 at the current cursor position.

The typesetting process

In order to unserstand the T E X MACS document format well, it is useful to have a basic understanding about how documents are typeset by the editor. The typesetter mainly rewrites logical T E X MACS trees into physical boxes , which can be displayed on the screen or on paper (notice that boxes actually contain more information than is necessary for their rendering, such as information about how to position the cursor inside the box or how to make selections).

The global typesetting process can be subdivided into two major parts (which are currently done at the same stage, but this may change in the future): evaluation of the T E X MACS tree using the stylesheet language, and the actual typesetting.

The typesetting primitives are designed to be very fast and they are built-in into the editor. For instance, one has typesetting primitives for horizontal concatenations (concat), page breaks (page-break), mathematical fractions (frac), hyperlinks (hlink), and so on. The precise rendering of many of the typesetting primitives may be customized through the built-in environment variables. For instance, the environment variable color specifies the current color of objects, par-left the current left margin of paragraphs, etc.

The stylesheet language allows the user to write new primitives (macros) on top of the built-in primitives. It contains primitives for definining macros, conditional statements, computations, delayed execution, etc. The stylesheet language also provides a special extern tag which offers you the full power of the Scheme extension language in order to write macros.

It should be noticed that user-defined macros have two aspects. On the one hand they usually perform simple rewritings. For instance, the macro assign|seq| macro|var |from|to|var from , , var to is a shortcut in order to produce sequences like a 1 , , a n . When macros perform simple rewritings like in this example, the children var , from and to of the seq tag remain accessible from within the editor. In other words, you can position the cursor inside them and modify them. User defined macros also have a synthetic or computational aspect. For instance, the dots of a seq tag as above cannot be edited by the user. Similarly, the macro assign|square| macro|x | times|x |x serves an exclusively computational purpose. As a general rule, synthetic macros are sometimes easier to write, but the more accessability is preserved, the more natural it becomes for the user to edit the markup.

It should be noticed that T E X MACS also produces some auxiliary data as a byproduct of the typesetting product. For instance, the correct values of references and page numbers, as well as tables of contents, indexes, etc. are determined during the typesetting stage and memorized at a special place. Even though auxiliary data may be determined automatically from the document, it may be expensive to do so (one typically has to retypeset the document). When the auxiliary data are computed by an external plug-in, then it may even be impossible to perform the recomputations on certain systems. For these reasons, auxiliary data are carefully memorized and stored on disk when you save your work.

Data relation descriptions

The rationale behind D.R.D.s.

One major advantage of T E X MACS is that the editor uses general trees as its data format. Like for XML, this choice has the advantages of being simple to understand and making documents easy to manipulate by generic tools. However, when using the editor for a particular purpose, the data format usually needs to be restricted to a subset of the set of all possible trees.

In XML, one uses Data Type Definitions (D.T.D.s) in order to formally specify a subset of the generic XML format. Such a D.T.D. specifies when a given document is valid for a particular purpose. For instance, one has D.T.D.s for documents on the web (XHTML), for mathematics (MathML), for two-dimensional graphics (SVG) and so on. Moreover, up to a cetain extent, XML provides mechanisms for combining such D.T.D.s. Finally, a precise description of a D.T.D. usually also provides some kind of reference manual for documents of a certain type.

In T E X MACS , we have started to go one step further than D.T.D.s: besides being able to decide whether a given document is valid or not, it is also very useful to formally describe certain properties of the document. For instance, in an interactive editor, the numerator of a fraction may typically be edited by the user (we say that it is accessible), whereas the URL of a hyperlink is only editable on request. Similarly, certain primitives like itemize correspond to block content, whereas other primitives like sqrt correspond to inline content. Finally, certain groups of primitives, like chapter, section, subsection, etc. behave similarly under certain operations, like conversions.

A Data Relation Description (D.R.D.) consists of a Data Type Definition, together with additional logical properties of tags or document fragments. These logical properties are stated using so called Horn clauses, which are also used in logical programming languages such as Prolog. Contrary to logical programming languages, it should nevertheless be relatively straightforward to determine the properties of tags or document fragments, so that certain database techniques can be used for efficient implementations. At the moment, we only started to implement this technology (and we are still using lots of C++ hacks instead of what has been said above), so a more complete formal description of D.R.D.s will only be given at a later stage.

One major advantage of the use of D.R.D.s is that it is not necessary to establish rigid hierarchies of object classes like in object oriented programming. This is particularly useful in our context, since properties like accessability, inline-ness, etc. are quite independent one from another. In fact, where D.T.D.s may be good enough for the description of passive documents, more fine-grained properties are often usefull when manipulating documents in a more interactive way.

Current D.R.D. properties and applications.

Currently, the D.R.D. of a document contains the following information:

• The possible arities of a tag.

• The accessability of a tag and its children.

In the near future, the following properties will be added:

• Inline-ness of a tag and its children.

• Tabular-ness of a tag and its children.

• Purpose of a tag and its children.

The above information is used (among others) for the following applications:

• Natural default behaviour when creating/deleting tags or children (automatic insertion of missing arguments and removal of tags with too little children).

• Only traverse accessible nodes during searches, spell-checking, etc.

• Automatic insertion of document or table tags when creating block or tabular environments.

• Syntactic highlighting in source mode as a function of the purpose of tags and arguments.

Determination of the D.R.D. of a document.

T E X MACS associate a unique D.R.D. to each document. This D.R.D. is determined in two stages. First of all, T E X MACS tries to heuristically determine D.R.D. properties of userdefined tags, or tags which are defined in style files. For instance, when the user defines a tag like assign|hi | macro|name|Hello name! T E X MACS automatically notices that hi is a macro with one element, so it considers 1 to be the only possible arity of the hi tag. Notice that the heuristic determination of the D.R.D. is done interactively: when defining a macro inside your document, its properties will automatically be put into the D.R.D. (assuming that you give T E X MACS a small amount of free time of the order of a second; this minor delay is used to avoid compromising the reactivity of the editor).

Sometimes the heuristically defined properties are inadequate. For this case, T E X MACS provides the drd-props tag in order to manually override the default properties.

T E X MACS lengths

A simple T E X MACS length is a number followed by a length unit, like 1cm or 1.5mm. T E X MACS supports three main types of units:

Absolute units. The length of an absolute unit like cm or pt on print is fixed.

Context dependent units. Context-dependent length units depend on the current font or other environment variables. For instance, 1ex corresponds to the height of the "x" character in the current font and 1par correspond to the current paragraph width.

User defined units. Any nullary macro, whose name contains only lower case roman letters followed by -length, and which returns a length, can be used as a unit itself. For instance, the following macro defines the dm length:

assign|dm-length| macro|10cm

Furthermore, length units can be stretchable. A stretchable length is represented by a triple of rigid lengths: a minimal length, a default length and a maximal length. When justifying lines or pages, stretchable lengths are automatically sized so as to produce nicely looking layout.

In the case of page breaking, the page-flexibility environment provides additional control over the stretchability of white space. When setting the page-flexibility to 1, stretchable spaces behave as usual. When setting the page-flexibility to 0, stretchable spaces become rigid. For other values, the behaviour is linear.

Absolute length units.

cm. One centimeter.

mm. One millimeter.

in. One inch.

pt. The standard typographic point corresponds to 1/72.27 of an inch.

bp. A big point corresponds to 1/72 of an inch.

dd. The Didôt point equals 1/72 of a French inch, i.e. 0.376mm. pc. One "pica" equals 12 points. cc. One "cicero" equals 12 Didôt points.

Rigid font-dependent length units.

fs. The font size. When using a 12pt font, 1fs corresponds to 12pt.

fbs. The base font size. Typically, when selecting 10 as the font size for your document and when typing large text, the base font size is 10pt and the font size 12pt.

ln. The width of a nicely looking fraction bar for the current font.

sep. A typical separation between text and graphics for the current font, so as to keep the text readable. For instance, the numerator in a fraction is shifted up by 1sep.

yfrac. The height of the fraction bar for the current font (approximately 0.5ex).

ex. The height of the "x" character in the current font.

emunit. The width of the "M" character in the current font.

Stretchable font-dependent length units.

fn. This is a stretchable variant of 1quad. The default length of 1fn is 1quad. When stretched, 1fn may be reduced to 0.5fn and extended to 1.5fn.

fns. This length defaults to zero, but it may be stretched up till 1fn.

bls. The "base line skip" is the sum of 1quad and par-sep. It corresponds to the distance between successive lines of normal text.

Typically, the baselines of successive lines are separated by a distance of 1fn (in T E X MACS and L A T E X a slightly larger space is used though so as to allow for subscripts and superscripts and avoid a too densely looking text. When stretched, 1fn may be reduced to 0.5fn and extended to 1.5fn.

spc. The (stretchable) width of space character in the current font.

xspc. The additional (stretchable) width of a space character after a period.

Box lengths.

Box length units can only be used within some special markup elements, such as move, shift, resize, clipped and image. The principal body of this content (e.g. the content being "moved" in the case of move) is typeset as a box. The following lengths units then correspond to the size and the extents of the box.

w. The width of the box.

h. The height of the box.

l. The logical left x-coordinate of the box.

r. The logical right x-coordinate of the box.

b. The logical bottom y-coordinate of the box.

t. The logical top y-coordinate of the box.

For instance, the code move|Hello there|| plus|-0.5b|-0.5t can be used to center Hello there at the base-line.

Other length units.

par. The width of the paragraph. That is the length the text can span. It is affected by paper size, margins, number of columns, column separation, cell width (if in a table), etc.

pag. The height of the main text in a page. In a similar way as par, this length unit is affected by page size, margins, etc.

px. One screen pixel, the meaning of this unit is affected by the shrinking factor.

tmpt. The smallest length unit for internal length calculations by T E X MACS . 1px divided by the shrinking factor corresponds to 256tmpt.

Different ways to specify lengths.

There are three types of lengths in T E X MACS :

Simple lengths. A string consisting of a number followed by a length unit.

Abstract lengths. An abstract length is a macro which evaluates to a length. Such lengths have the advantage that they may depend on the context.

Normalized

Chapter 15

Built-in environment variables

The way T E X MACS typesets documents is influenced by so called environment variables.

The style-sheet language uses a so called environment (or context) to store both environment variables and macros. The environment variables are subdivided into two catagories: built-in variables and additional variables provided by style files. Built-in variables usually affect the layout, while additional variables mostly serve computational purposes. In the next sections of this chapter, we will describe all built-in environment variables.

A typical built-in environment variable is color . The value of an environment variable may be changed permanently using assign and temporarily using the with primitive:

Some colored text.

Some with|color |dark red|colored text.

Counters are typical environment variables defined in style-sheets.

1. A weirdly 4. numbered list...

enumerate| item A weirdly assign|item-nr |3 item numbered list...
The typesetting language uses dynamic scoping of variables. That means that macros can access and modify variables in their calling context. In the previous example, the enumerate macro locally initializes item-nr to 0 (uses with) and the item macro increments it by one and shows its value. Since enumerate locally redefines item-nr , the original value of itemnr is restored on exit.

Each document comes with an initial environment with the initial values of environment values, i.e. their values just before we typeset the document. If an environment variable does not occur in the initial environment, then its initial value defaults to its value after typesetting the document style and possible additional packages. The initial environment before typesetting the style files and packages is built-in into the editor.

Some variables, like header and footer variables, must be set inside the document, their initial environment value is ignored. Generally, they should be set by header and sectioning markup.

General environment variables mode8 text (major mode)

This very important environment variable determines the current mode. There are four possible values: text (text mode), math (mathematical mode), prog (programming mode) and src (source mode). The behaviour of the editor (menus, keystrokes, typesetting, etc.) depends heavily on the mode. For example, the following code may be used in order to include a mathematical formula inside text:

The formula a 2 + b 2 = c 2 is well known.

The formula math|a rsup|2 +b rsup|2 =c rsup|2 is well known.

Some other environment variables (mainly the language and the font) also depend on the current mode (in this context, the source mode always behaves in a similar way as the text mode). During copy&paste and search&replace operations, T E X MACS tries to preserve the mode.

language8 english math-language8 texmath prog-language8 scheme (language)

A second major environment variable is the current language. In fact, there are three such environment variables: one for each mode. The language in which content is written is responsible for associating a precise semantics to the content. This semantics is used for different purposes:

• The language may specify rules for typesetting content. For instance, the text language specifies punctuation and hyphenation rules. Similarly the mathematical language containns spacing information for mathematical operators.

• Several editing operations depend on the current language: when performing a search or replace operation, T E X MACS is both mode and language sensitive. Similarly, the text language determines the dictionary to use when spell-checking the document.

• The language controls (among other parameters like the mode and the document format) the way content is being converted from one context to another.

Currently, no real language-dependent conversions have been implemented yet.

But in the future one may imagine that copying a piece of English text to a document written in French will perform an automatic translation. Similarly, a mathematical document might be converted from infix to postfix notation.

• The programming language determines the current scripting language in use.

Other scripting languages than Scheme are currently only used for interactive sessions, but primitives like extern might become language-sensitive in the future.

At the moment, the current language is mainly used as a hint for indicating the semantics of text: it is not required that a text written in English contains no spelling errors, or that a formula written in a mathematical language is mathematically or even syntactically correct. Nevertheless, the editor is intended to enforce correctness more and more, especially for mathematics.

The language may be specified globally for the whole document in Document→Language and locally for a piece of text in Format→Language.

prog-session 8 default (name of programming session)

This environment variables is used in addition to the prog-language variable in order to determine a concrete implementation as well as a particular instance of the current programming language. For instance, in case of the Maxima language, different implementation may be used fooor the underlying Lisp. Similarly, one may wish to run two different instances of Maxima in parallel.

magnification 8 1 (magnification)
This variable determines the magnification which is applied to all content. Magnifications bigger than one are typically useful for presentations (from slides or from a laptop): normal big huge normal htab|5mm with|magnification |2|big htab|5mm with|magnification |3|huge

The magnification should not be confused with the font size: contrary to the magnification, the font size may also affect the shapes of the glyphs. The magnification is usually specified for the entire document in Document→Magnification.

bg-color 8 white (background color)

The background color for your document, as specified in Document→Color→Background.

color 8 black (foreground color)

The current foreground color of text and graphics, as specified in Document→Color→ Foreground or Format→Color.

preamble8 false (edit source tree?)

This flag determines whether we are editing normal text or a style-sheet. The source tree or preamble mode may be selected in Document→View→Edit source tree.

info-flag8 short (informative flags style)

This variable controls the rendering of informative flags, which are for instance used to indicate the locations of otherwise invisible labels or typesetting directives. The infoflag may take the values none, short and detailed:

Label 1, Label 2, Label 3.

with|info-flag|none|Label 1 label|flag-label-1 , with|info-flag|short|Label 2 label| flag-label-2 , with|info-flag|detailed|Label 3 label|flag-label-3 .

Usually, the rendering of informative flags is specified document-wide in Document→ View→Informative flags.

Specifying the current font

In this section, we describe the environment variables which control the rendering of fonts. Several parameters may be defined independently for each mode (the font name, variant, series and shape), whereas other parameters are uniform for all modes. Font properties may be controlled globally for the whole document in Document→Font and locally for document fragments in Format→Font.

From an abstract point of view, a font is defined to be a graphically consistent way of rendering strings. Fonts are usually made up from glyphs like "x", "ffi", "α", " ", etc. When rendering a string, the string is decomposed into glyphs so as to take into account ligatures (like fi, fl, ff, ffi, ffl). Next, the individual glyphs are positioned while taking into account kerning information (in "xo" the "o" character is slightly shifted to the left so as to take profit out of the hole in the "x"). In the case of mathematical fonts, T E X MACS also provides a coherent rendering for resizable characters, like the large brackets in

((())).
Similarly, a font family is a family of fonts with different characteristics (like font weight, slant, etc.), but with a globally consistent rendering. One also says that the fonts in a font family "mix well together". For instance, the standard computer modern roman font and its bold and italic variants mix well together, but the computer modern roman font and the Avant Garde font do not.

Remark 15.1. For the future, it is planned to replace the font variant and font shape variables by a larger range of properties to individually control the slant, serifs, small-caps, and so on. It is also planned to systematically use Unicode fonts with possible additional glyphs for mathematics. This should automatically enable the use of Cyrillic characters inside Russian text and similarly for other languages.

font8 roman math-font8 roman prog-font8 roman (font name)

These variables control the main name of the font, also called the font family . For instance:

Computer modern roman, Pandora, Chancery, Palatino Similarly, T E X MACS supports various mathematical fonts:

Roman: a 2 + b 2 = c 2 Adobe: a 2 +b 2 =c 2
New roman:

a 2 + b 2 = c 2 Concrete: a 2 +b 2 =c 2
font-family 8 rm math-font-family 8 mr prog-font-family 8 tt

(font variant)
This variable selects a variant of the major font, like a sans serif font, a typewriter font, and so on. As explained above, variants of a given font are designed to mix well together. Physically speaking, many fonts do not come with all possible variants (sans serif, typewriter, etc.), in which case T E X MACS tries to fall back on a suitable alternative font.

Typical variants for text fonts are rm (roman), tt (typewriter) and ss (sans serif):

roman, typewriter and sans serif

In maths mode, a distinction is made between the mathematical variants mr (roman), mt (typewriter) and ms (sans serif) and textual variants rm (roman), bf (bold), etc. In the first case, variables and operators are usually rendered in a different slant, contrary to the second case: ms: sin (x + y) = sin x cos y + cos x sin y ss: sin (x + y) = sin x*cos y + cos x*sin y font-series8 medium math-font-series8 medium prog-font-series 8 medium (font weight)

The font series determines the weight of the font. Most fonts only provide regular and bold font weights. Some fonts also provide light as a possible value.

medium, bold

font-shape8 right math-font-shape8 normal prog-font-shape8 right (font shape)

The font shape determines other characters of a font, like its slant, whether we use small capitals, whether it is condensed, and so on. For instance, upright, slanted, italic, left slanted, Small Capitals, proportional typewriter, bold condensed, at sans serif, long font-base-size8 10 (font base size)

The base font size is specified in pt units and is usually invariant throughout the document. Usually, the base font size is 9pt, 10pt, 11pt or 12pt. Other font sizes are usually obtained by changing the magnification or the relative font-size. From a mathematical point of view, the multipliers are in a geometric progression with factor 2 4 √ . Notice that the font size is also affected by the index level.

dpi 8600

(fonts rendering quality)

The rendering quality of raster fonts (also called Type 3 fonts), such as the fonts generated by the Metafont program is controlled through its discretization precision in dots per inch. Nowadays, most laser printers offer a printing quality of at least 600dpi, which is also the default dpi setting for T E X MACS . For really high quality printing, professionals usually use a precision of 1200dpi. The dpi is usually set once and for all for the whole document.

Typesetting mathematics

math-level 8 0

(index level)
The index level increases inside certain mathematical constructs such as indices and fractions. When the index level is high, formulas are rendered in a smaller font. Nevertheless, index levels higher than 2 are all rendered in the same way as index level 2; this ensures that formulas like e e e e x = 1 +

1 x + e x 1 + 1 e x + 1 e e x
remain readable. The index level may be manually changed in Format→Index level, so as to produce formulas like x y z

x rsup| with|math-level |0|y rsup|z math-display 8 false (display style) This environement variable controls whether we are in display style or not. Formulas which occur on separate lines like

n H(α 1 , , α n) = 1 α 1 + + 1 α n
are usually typeset in display style, contrary to inline formulas like

n H(α 1 , , α n) = 1 α 1 + + 1 α n
. As you notice, formulas in display style are rendered using a wider spacing. The display style is disabled in several mathematical constructs such as scripts, fractions, binomial coefficients, and so on. As a result, the double numerators in the formula

H(α 1 , , α n) = n 1 α 1 + + 1 α n
are typeset in a smaller font. You may override the default settings using Format→ Display style.

math-condensed8 false (condensed display style)

By default, formulas like a + + z are typeset using a nice, wide spacing around the + symbol. In formulas with scripts like e a+ +z + e α+ +ζ the readability is further enhanced by using a more condensed spacing inside the scripts: this helps the reader to distinguish symbols occurring in the scripts from symbols occurring at the ground level when the scripts are long. The default behaviour can be overridden using Format→ Condensed.

math-vpos8 0 (position in fractions)

For a high quality typesetting of fraction, it is good to avoid subscripts in numerators to descend to low and superscripts in denominators to ascend to high. T E X MACS therefore provides an additional environment variable math-vpos which takes the value 1 inside numerators, -1 inside denominators and 0 otherwise. In order to see the effect the different settings, consider the following formula:

a -1 2 + a 0 2 + a 1 2 with|math-vpos |-1| rigid|a -1 2 + with|math-vpos |0| rigid|a 0 2 + with| math-vpos | 1| rigid|a 1 2
In this example, the grouping is necessary in order to let the different vertical positions take effect on each a i 2 . Indeed, the vertical position is uniform for each horizontal concatenation. This paragraph is aligned to the left. This paragraph is aligned to the left. This paragraph is aligned to the left.

Paragraph layout

This paragraph is has been centered. This paragraph is has been centered. This paragraph is has been centered. This paragraph is aligned to the right. This paragraph is aligned to the right. This paragraph is aligned to the right.

This paragraph has been justified. Justification is the default alignment mode for paragraphs. So be it. When using the justified alignment mode, it sometimes occurs that certain lines need to be stretched a lot, thereby leaving abnormally large spaces in the middle of those lines. This is typically the case inside bibliographies with unbreakable hyperlinks. The parflexibility variable specifies a threshold above which justification of a line is abandoned.

More precisely, we switch to left alignment whenever the remaining space on a line exceeds par-flexibility times the maximal amount of stretching which still "looks nice" for the given font.

For certain paragraphs with wide unbreakable pieces of text, such as the hyperlink http://www.texmacs.org it is sometimes preferrable to switch from justified to left aligned text when the spacing between words becomes to wide.

For certain paragraphs with wide unbreakable pieces of text, such as the hyperlink http://www.texmacs.org it is sometimes preferrable to switch from justified to left aligned text when the spacing between words becomes to wide. par-hyphen 8normal

(quality of hyphenation)

This parameter controls the quality of the hyphenation algorithm. Possible values are normal and professional. The professional hyphenation algorithm uses a global algorithm on the entire paragraph, whereas the normal one uses a faster first-fit algorithm.

The difference between the different hyphenation algorithms provided by T E X MACS is seen best for long paragraphs which are typeset into a narrow column. The professional hyphenation usually succeeds to minimize the number of ugly gaps between words.

The difference between the different hyphenation algorithms provided by T E X MACS is seen best for long paragraphs which are typeset into a narrow column. The professional hyphenation usually succeeds to minimize the number of ugly gaps between words.

Table 15.4. Comparison different hyphenation algorithms. At the left hand side, we have used the normal algorithm and on the right hand side the professional one. Even though there are some ugly gaps at the right hand side around "hyphenation", the really bad gap around "The" on the left hand side has been avoided.

par-width8 auto (paragraph width)

This environment variable controls the width of paragraphs. By default, it is automatically determined as a function of the page (or screen) size and margins. The sum of the font size and par-sep determines the ideal distance between two successive base lines in a paragraph (also called the "base line skip"). Of course, when the lines contain large boxes, then this distance may need to be increased. When 1fn for par-sep, one may for instance produce documents with a double interline space:

A double interline space corresponds to par-sep8 1fn. Double interline spaces are often used by lazy people who want to pretend that they have written many pages.

They generally do not care about tropical rain forests.

In the case when two successive lines use different base line skips, then the maximal value is used in order to compute the ideal distance between their baselines. This allows for a reasonable spacing when the font size is changed from one paragraph to another:

Normal text.

Some very large text.

And back to normal.

par-line-sep8 0.025fn* (extra space between lines)

This parameter corresponds an additional stretchable amount of whitespace between successive lines in a paragraph. Setting par-line-sep to a small stretchable value which defaults to 0 allows the page breaker to correctly stretch pages which contain a very long textual paragraph. Indeed, par-line-sep vanishes, then the height of a textual paragraph is of the form a + b n, where a and b are constants and n is the number of lines. There is no reason why the usable height of a page should be of this form.

par-par-sep8 0.5fn* (extra space between paragraphs)

The par-par-sep parameter specifies the amount of vertical whitespace which separates two successive paragraphs. This space is determined in stretchable length units. By default, T E X MACS does not use any whitespace between successive paragraphs, except when no nice page breaks could be found (this explains the use of the fn* length unit).

Starts of new paragraphs are rather indicated through the use of first indentations (see table 15.5).

In the case when two successive paragraph use different paragraph separations, then the maximum of the two is taken. In fact, the par-par-sep length is added to both the vertical spacing before and the vertical spacing after the paragraph.

par-hor-sep8 0.5fn par-ver-sep8 0.2fn (minimal space between ink)

When a paragraph contains several exceptionally large boxes, then T E X MACS attempts to "shove successive lines into another" as long as none of the boxes collide:

Consider a fraction which decends more than usual like 1

x + 1 at the end of a line and an expression like e e x which is higher than usual. When these expressions occur at different places, then T E X MACS tries to render the successive lines in a compact manner. In the case of a fraction 1

x + 1 and an exceptionally high expression at the wrong place, like the expression e e x here, the boxes are separated by env-ver-sep.

As soon as the horizontal distance between two large boxes is less than par-hor-sep, then they are considered to be in collision. In that case, the vertical distance between them must be at least par-ver-sep. Also, the amount of showing never exceeds 1ex.

When using an interline space of 1.5 or 2, the default value of par-ver-sep allows the user to type larger formulas in the text while preserving a uniform layout. When using a small par-sep and a large par-ver-sep, the distance between two successive lines remains small, except when their contents are horizontally close. This may for instance be used to reduce the space between a short like followed by a centered equation.

par-fnote-sep8 0.2fn (minimal space between different footnotes)

This parameter controls the amount of vertical space between successive footnotes.

par-columns8 1

(number of columns)

This environment variable specifies the number of columns into which the text is being typeset. Different numbers of columns may be used successively in the same document.

par-columns-sep8 2fn (distance between columns)

This environment variable specifies the amount of horizontal whitespace which separates different columns in multi-column mode.

Page layout

In this section, we describe how T E X MACS fills pages with typesetted content. Besides specifying the settings on how to print a document, the user may also determine the way pages should be rendered on screen. It should be noticed that the number of environment variables is redundant in the sense that some variables are computed as a function of other ones. For instance, by default, the paragraph width is computed as a function of the page size and the left and right margins.

Paper specific variables.

page-type8 a4 (the size of pages)

Specify the size of a page when printing out. Most standard formats are available in Document→Page→Size. By default, the paper size is the one of your printer (the default printer settings may be changed in Edit→Preferences→Printer). When the page-type is set to user, then the page size is given by page-width and page-height.

page-orientation 8 portrait (page orientation)

The orientation of pages can be either portrait or landscape.

page-nr 8 0

(current page number)

The current page number. This environment variable should be manipulated with care, since it is not yet available at typesetting time. For a reliable determination of page numbers, one may combine the label and page-ref primitives. Nevertheless, the page-nr variable can be used in the macros which render page headers and footers.

page-the-page (display the page number)

This environment variable really contains the macro which is used for rendering the page-number. By default, it renders page-nr . The macro takes no arguments. In order to simulate a document whose first page number os 123, one may redefine assign|page-the-page| macro| plus|page-nr |122 page-breaking8 optimal (page breaking algorithm)

This parameter specifies the page breaking algorithm. The default optimal algorithm takes into account the global document and tries hard to avoid bad page breaks. The alternative sloppy algorithm uses a fast first-fit algorithm, but produces bad page break with a higher probability. The medium quality algorithm is the same as the optimal algorithm, except for two column content.

page-flexibility 8 1.0

(flexibility for stretching)

This parameter specifies how much stretchable spaces may be extended or reduced in order to fill pages which are too short or too long. A page flexibility of 1 allows spaces to be stretched to their minimal and maximal values. A page flexibility of 0 prevents spaces to be stretched. For other values of page-flexibility the behaviour is linear.

page-shrink8 1fn (allowed amount of page shrinking)

In the case when it is very hard to find good page breaks, this parameter specifies an additional amount of space by which a page is allowed to be reduced.

page-extend8 0fn

(allowed amount of page extensions)

In the case when it is very hard to find good page breaks, this parameter specifies an additional amount of space by which a page is allowed to be extended.

Screen specific variables.

page-medium8 papyrus (the page medium)

This environment variable, which is initialized using Document→Page→Type, specifies how pages are rendered on the screen. The following values are available:

paper. Page breaks are visually indicated on the screen. This mode is useful for ajusting the final version of a document before printing or sending it to a publisher. However, the use of this mode slows down the editor since every modification in the document triggers the page-breaking algorithm.

Notice also that the mere selection of this mode does not imply the screen margins and page decorations to be as on paper. In order to previsualize a document in a fully realistic way, you should also set Document→View→Page layout→Show header and footer and Document→View→Page layout→Margins as on paper.

papyrus. The paragraph width is the same as on paper, but page breaking is disabled. This mode is most useful during the editing phase of a document which will ultimately be printed out. It combines a reasonable editing speed with realistic line breaks.

automatic. The paragraph width is as large as possible so as to fit into the current window and page breaking is disabled. This setting, which makes optimal use of the available space on your screen, is useful for documents which are not intended to be printed out. It may for instance be selected when using T E X MACS as a browser or as an interface to computer algebra systems.

page-screen-width8 10cm (width of the rendering window)

In automatic mode, this environement variable contains the width of the screen.

page-screen-height8 10cm (height of the rendering window)

In automatic mode, this environement variable contains the height of the screen.

page-screen-margin 8 true (special margins for screen editing?)

This flag specifies whether the screen margins are manually specified by the user, or whether they are the same as on paper.

page-screen-left8 5mm page-screen-right8 5mm page-screen-top8 15mm page-screen-bot8 15mm (left margin on screen)

When page-screen-margin is true, then these environment variables determine the margins which are to be used for rendering on the screen.

page-show-hf 8 false (show headers and footers on screen?)

This flag determines whether the page headers and footers should be visible on the screen. When set to true, it should be noticed that the headers and footers are not always correctly updated when editing. In the case when you suspect them to be wrong, refreshing the display by scrolling down and up should display the correct values.

Specifying the margins.

The parameters for page margins are represented schematically at the left hand side in figure 15.1. One may either specify the paragraph width as a function of the left and right margins, or vice versa . The left and right margins may depend on whether the page number is odd or even.

page-width-margin 8 false page-height-margin 8 false (compute margins from main text dimensions?)

When page-width-margin is set to false, then the paragraph width par-width is determined automatically from the page size and the left and right margins. When set to true, the left and right margins are determined as a function of the page size, the paragraph width, page-odd-shift and page-even-shift. For compatability with T E X/L A T E X, it is also possible to set page-width-margin to tex, in which case the horizontal margins are determined from page-odd, page-even and par-width. The page-height-margin variable plays a similar role for the vertical margins.

page-width8 auto page-height8 auto (page width)

By default, the width and height of a page are automatically determined from the page type. When page-type is set to user, then the user may manually specify the page size using page-width and page-height.

page-odd8 auto page-even 8 auto (left margin)

If page-width-margin is set to false, then page-odd and page-even specify the left margins for odd and even pages. If page-width-margin is true, then these values are computed as a function of the page size, the paragraph width, page-odd-shift and pageeven-shift. When page-odd and page-even are set to auto, then a nice default left margin is determined as a function of the specified page type.

page-right8 auto (right margin)

If page-width-margin is set to false, then page-right specifies the right margin for odd pages. The right margin for even pages is given by the formula page-right+page-even -page-odd

If page-width-margin is true or when page-right is set to auto, then the right margin is determined in a similar way as the left margin.

page-odd-shift8 0mm page-even-shift8 0mm (margin shifts)

If page-width-margin is set to true, then the left margins for odd and even pages are determined from the page size, paragraph width and the margin shifts using the formulas page-even = page-width-par-width 2 + page-odd-shift page-odd = page-width-par-width 2 + page-even-shift

The right margin is always taken to be such that the paragraph width and the left and right margins sum up to the page width.

Page decorations.

page-odd-header 8 page-odd-footer 8 page-even-header 8 page-even-footer 8

(header for odd pages)

These environment variables contain the header and footer texts for odd and even pages.

page-head-sep8 8mm page-foot-set8 8mm (separation between headers/fotters and text)

These parameters determine the space between the main text and page headers and footers. They correspond to the h and f distances at the right hand side of figure 15.1.

page-fnote-sep8 1.0fn (space between footnotes and text)

The separation between the main text and footnotes, i.e. the distance d in figure 15.1.

page-fnote-barlen 8 7.5fn

(length of footnote bars)

The length of the foornote bar.

page-float-sep8 1.5fn (separation between floats and text)

The separation between the main text and floating objects.

page-mnote-sep8 5mm (separation between marginal notes and text)

The separation between marginal notes and the main text (not implemented yet).

page-mnote-width8 15mm (width of marginal notes)

The width of marginal notes (not implemented yet).

Table layout

The environment variables for tables can be subdivided in variables (prefixed by 2. The rows whether the page break occurs has no borders.

An example of a tabular environment which allows for page breaks is eqnarray*.

Layout of the individual cells. cell-background8 (background color)

A background color for the cell.

cell-width8 cell-height8

(hint for cell dimensions)

Hints for the width and the height of the cell. The real width and height also depend on the modes cell-hmode and cell-vmode, possible filling (see cell-hpart and cell-vpart below), and, of course, on the dimensions of other cells in the same row or column.

cell-hpart8

128 Built-in environment variables

cell-vpart8

(fill part of unused space)

When the sum s of the widths of all columns in a table is smaller than the width w of the table itself, then it should be specified what should be done with the unused space. The cell-hpart parameter specifies a part in the unusued space which will be taken by a particular cell. The horizontal part taken by a column is the maximum of the horizontal parts of its composing cells. Now let p i the so determined part for each column (i ∈ {1, , n}). Then the extra horizontal space which will be distributed to this column is p i (ws)/(p 1 + + p n). A similar computation determines the extra vertical space which is distributed to each row.

cell-hmode8 exact cell-vmode8 exact (determination of cell dimensions)

These parameters specify how to determine the width and the height of the cell. If cellhmode is exact, then the width is given by cell-width. If cell-hmode is min or max, then the width is the minimul resp. maximum of cell-width and the width of the content.

The height is determined similarly. cell-lsep8 0fn cell-rsep8 0fn cell-bsep8 0fn cell-tsep8 0fn (cell padding)

The amount of padding around the cell (at the left, right, bottom and top).

cell-lborder 8 0ln cell-rborder 8 0ln cell-bborder 8 0ln cell-tborder 8 0ln

(cell borders)

The borders of the cell (at the left, right, bottom and top). The displayed border between cells T i,j and T i,j +1 at positions (i, j) and (i, j + 1) is the maximum of the borders between the right border of T i,j and the left border of T i,j +1 . Similarly, the displayed border between cells T i,j and T i+1,j is the maximum of the bottom border of T i,j and the top border of T i+1,j .

cell-vcorrect8 a (vertical correction of text)

As described above, the dimensions and the alignment of a cell may depend on the dimensions of its content. When cells contain text boxes, the vertical bounding boxes of such text may vary as a function of the text (the letter "k" resp. "y" ascends resp. descends further than "x"). Such differences sometimes leads to unwanted, non-uniform results. The vertical cell correction allows for a more uniform treatment of text of the same font, by descending and/or ascending the bounding boxes to a level which only depends on the font. Possible values for cell-vcorrect are n (no vertical correction), b (vertical correction of the bottom), t (vertical correction of the top), a (vertical correction of bottom and the top).

cell-hyphen 8 n (allow for hyphenation inside cells)

By default, the cells contain inline content which is not hyphenated. By selecting Table→Special cell properties→Hyphenation→Multi-paragraph, the cell contents becomes multi-paragraph. In that case, cell-hyphen determines how this content is hyphenated. Possible values are n (disable line breaking) and b, c and t (enable line breaking and align at the bottom, center resp. top line).

cell-row-span 8 1 cell-col-span 8 1 (span of a cell)

Certain cells in a table are allowed to span over other cells at their right or below them.

The cell-row-span and cell-col-span specify the row span and column span of the cell.

cell-decoration 8 Other orientations for cells than portrait have not yet been implemented.

(
cell-row-nr 8 1 cell-col-nr 8 1 (current cell position)

In the future, these environment variables should contain the current cell position during the typesetting process.

Editing source trees

The different rendering styles for source trees are described in more detail in the section about the global presentation of source trees. The corresponding environment variables are briefly described here.

src-style8 angular (rendering style for source tags)

The principal rendering style for source trees as specified in Document→View→Style.

Possible values are angular, scheme, functional and latex.

src-special 8 normal (how to render special tags)

How to render special tags like concat, document, compound, etc., as specified in Doc-ument→View→Special. Possible values are raw, format, normal and maximal.

src-compact8 normal (compactication level)

How compact should tags be rendered, as specified in Document→View→Compactification. Possible values are none, inline, normal, inline tags and all.

src-close8 compact (closing style for long tags)

The rendering style of closing tags as specified in Document→View→Closing style. Possible values are repeat, long, compact and minimal.

Miscellaneous environment variables

The following miscellaneous environment variables are mainly intended for internal use:

save-aux 8 true (save auxiliary content)

This flag specifies whether auxiliary content has to be saved along with the document.

sfactor 8 5 (shrinking factor)

The shrinking factor which is used for rendering.

par-no-first8 false (disable first indentation for next paragraph?)

This flag disables first indentation for the next paragraph.

cell-format (current cell format)

This variable us used during the typsetting of tables in order to store the with-settings which apply to the current cell.

atom-decorations line-decorations page-decorations xoff-decorations yoff-decorations (auxiliary variables for decorations)

These environment variables store auxiliary information during the typsetting of decorations.

Chapter 16

Built-in T E X MACS primitives

In this chapter, we describe those built-in T E X MACS primitives which are intended to be used in normal documents. The additional primitives which are used for writing style files are described in a separate chapter. From the visual point of view, different paragraphs are often separated by some vertical whitespace. Alternatively, new paragraphs are indicated through the use of an additional indentation. The root of a T E X MACS document is usually a document node.

Fundamental primitives

The document tag is also used for marking multi-paragraph content inside other tags, such lists or theorem-like environments. Environments which require the use of a document tag for at least one argument are called "block environments".

paragraph|unit-1 | |unit-n (vertical sequence of paragraph units)

This not yet implemented primitive is a variant of document. While a document is made up of logical paragraphs, a paragraph is made up of "paragraph units". From a visual point of view, different paragraphs are singled out using some additional space or indentation. New paragraph units rather correspond to simple new lines. Typically, displayed equations are also paragraph units in a larger paragraph.

concat|item-1 | |item-n (horizontal sequence of inline markup)

This primitive is used for sequences of line items, also called "inline content". For instance, Some emphasized text.

is internally represented as:

concat|Some | em|emphasized | text.
The concat operator is essential to put compound structures in trees taking multiple parameters. For example, let us place the previous fragment in a multi-paragraph context:

Multiple paragraphs. Some emphasized text.

In this example, we need the concat tag in order to indicate that "Some emphasized text." correponds to a single paragraph:

document| A simple document.| concat|Some | em|emphasized | text.
Notice that block tags like document may contain inline tags such as concat as its children, but not vice versa . In order to typeset line content before or after block content, one has to use the surround tag below.

surround|left|right|body (surround block content with inline content)

Although it is not possible in T E X MACS to use block content inside horizontal concatenations, it is sometimes useful to add some additional inline content before or after a block environment. The surround primitive serves this purpose, by adding a left and right surrounding to some block content body . For instance, surround| || theorem| Given P ∈ T{F } and f < g ∈ T with P (f) P (g) < 0, there exists an h ∈ T with P (h) = 0.

produces Theorem 16.1. Given P ∈ T{F } and f < g ∈ T with P (f) P (g) < 0, there exists an h ∈ T with P (h) = 0.

In general, the surround is mainly used in style files, but it occasionally turns out to be useful in regular documents as well.

Formatting primitives

White space primitives vspace|len vspace|len |min |max (vertical space after)

This primitive inserts an elastic vertical space after the current paragraph. All operands must be length values. The len argument specifies the default length and the min and max arguments the bounds to vertical stretching for page breaking and filling. If min and max are not specified, then they are determined implicitly from the length unit of len .

Notice that operands are not evaluated, so they must be literal strings.

vspace*|len vspace*|len |min |max

(vertical space before)

This primitive is similar to vspace, except that the vertical space is inserted before the current paragraph. The actual vertical space between two consecutive paragraphs is the maximum, not the sum, of the vertical spaces specified by the the vspace and vspace* tags in the surrounding paragraphs.

space|len space|len |bot|top (rigid horizontal space)

This primitive inserts an empty box whose width is len , and whose bottom and top sides are at distances bot and top from the baseline.

If bot and top are not specified, then an empty box is inserted whose bottom is on the baseline and whose height is the same as the lowercase letter x in the current font.

Notice that operands are not evaluated, so they must be literal strings.

hspace|len hspace|len |min |max (stretchable horizontal space)

This primitive inserts inserts a stretchable horizontal space of nominal width len , which must be a length value. The min and max arguments specify bounds to horizontal stretching for line breaking and filling. If min and max are not specified, then they are determined implicitly from the length unit of len .

Notice that operands are not evaluated, so they must be literal strings.

htab|min htab|min |weight (horizontal spring)

Springs are horizontal spaces which extend so the containing paragraph takes all the available horizontal space. When a paragraph is line wrapped, split in several visual lines, only springs in the last line are extended.

A spring has a minimal width and a weight. If the weight is 0, the spring is weak, otherwise it is strong. If a line contains mixed weak and strong springs, only the strong springs extend.

The fraction of the available horizontal space taken up by each strong spring is proportional to its weight. If there are only weak springs, they share the available space evenly.

htab|min inserts a strong spring of minimal width min and of weight unity. The min operand must be a length value.

htab|min |weight specifies the weight, which can be a positive decimal number or one of the two special values documented below.

htab | min | first inserts a tail weak spring, only the first one in a paragraph is significant.

htab | min | last inserts a head weak spring, only the last one in a paragraph is significant.

Operands are not evaluated and must be literal strings.

Weak springs are useful in style-sheets. For example, tail weak springs are used to make the list environment extend to across the full paragraph, so vertical motion commands in nested lists behave as expected. In regular documents, springs are often used to place some text on the right side of the page and some other text on the left side.

Line breaking primitives

A simple document is a sequence of logical paragraphs, one for each subtree of a document or paragraph node. Paragraphs whose width exceed the available horizontal space are broken into physical lines by the hyphenation algorithm. By default, hyphenated lines are justified: horizontal spaces can be shrunk or extended in order to produce a good-looking layout.

new-line (start a new paragraph)

This is a deprecated tag in order to split a logical paragraph into several logical paragraphs without creating explicit subtrees for all paragraphs.

We recall that logical paragraphs are important structures for the typesetting process. Many primitives and environment variables (vertical spacing, paragraph style, indentation, page breaking, etc.) operate on whole paragraphs or at the boundaries of the enclosing paragraph.

next-line (start a new line)

This is a tag which will become deprecated as soon as the paragraph primitive will be correctly implemented. Its usage is similar to the new-line tag with the difference that we start a new logical paragraph unit instead of a new logical paragraph.

Currently, the next-line tag can also be used in order to force a line break with the addional property that the line before the break is not justified or filled.

line-break (line breaking hint, with filling)

Print an invisible space with zero hyphenation penalty. The line breaking algorithm searches for the set of hyphenation points minimizing the total penalty, so line breaking is much more likely to occur at a line-break than anywhere else in its vicinity.

Unlike next-line, this is a hint which may or may not be obeyed by the typesetter, and it does not prevent the previous line from being filled.

no-break (forbid line breaking at this point)

Set an hyphenation point with an infinite penalty. That is useful when the hyphenation patterns for a language fall short of preventing some forbidden patterns like "arse-nal" or "con-genital". An alternative way to prevent breaks is to use the rigid tag.

Indentation primitives

There are two main ways to distinguish between successive paragraphs: separate them by a small vertical space, or use an indentation for each new paragraph. The indentation can be explicitly controlled using the no-indent, yes-indent, no-indent* and yes-indent* tags. The no-indent and yes-indent primitives apply to the current paragraph, while the no-indent* and yes-indent* apply the next paragraph.

no-indent yes-indent

Disable or enable indentation for the current paragraph. For instance, the code no-indent This is a long paragraph which demonstrates the disabling indentation using the markup|no-indent primitive. yes-indent This is a long paragraph which demonstrates enabling indentation using the markup|yes-indent primitive.

typically produces This is a long paragraph which demonstrates the disabling indentation using the noindent primitive. This is a long paragraph which demonstrates enabling indentation using the yesindent primitive. A second paragraph.

Notice that no-indent and yes-indent override no-indent* and yes-indent* directives in the previous paragraph.

Currently, the no-indent* and yes-indent* tags are mainly used in order to control the indentation after section titles or environments like equation which usually correspond to paragraph units. In the future, when sectional tags will take the section bodies as arguments, and when the paragraph tag will be correctly implemented, the no-indent* and yes-indent* will become deprecated.

Page breaking primitives

The physical lines in a document are broken into pages in a way similar to how paragraphs are hyphenated into lines. The page breaker performs page filling, it tries to distribute page items evenly so text runs to the bottom of every page. It also tries to avoid orphans and widows, which are single or pairs of soft lines separated from the rest of their paragraph by a page break, but these can be produced when there is no better solution.

no-page-break (prevent automatic page breaking after this line)

Prevent the occurrence of an automatic page break after the current line. Set an infinite page breaking penalty for the current line, similarly to no-break.

Forbidden page breaking points are overridden by "new page" and "page break" primitives.

no-page-break* (prevent automatic page breaking before this line)

Similar to no-page-break, but set the page breaking penalty of the previous line.

new-page (start a new page after this line)

Cause the next line to appear on a new page, without filling the current page. The page breaker will not try to position the current line at the bottom of the page.

new-page* (start a new page before this line)

Similar to new-page, but start the new page before the current line. This directive is appropriate to use in chapter headings.

page-break (force a page break after this line)

Force a page break after the current line. A forced page break is different from a new page, the page breaker will try to position the current line at the bottom of the page.

Use only to fine-tune the automatic page breaking. Ideally, this should be a hint similar to line-break, but this is implemented as a directive, use only with extreme caution.

page-break* (force a page break before this line)

Similar to page-break, but force a page break before the current line.

When several "new page" and "page break" directives apply to the same point in the document, only the first one is effective. Any new-page or page-break after the first one in a line is ignored. Any new-page or page-break in a line overrides any new-page* or page-break* in the following line. Any new-page* or page-break* after the first one in a line is ignored.

Box operation primitives move|content|delta-x |delta-y (adjust position)

This primitive moves the box with the specified content by delta-x to the right and delta-y upwards. It may be used for fine-grained positioning. During the evaluation of delta-x and delta-y , the box lengths w, h, l, r, b and t of content are defined.

shift|content|delta-x |delta-y (shift contents, not the bounding box)

This primitive is similar to move, except that the bounding box of the shifted content is the same as the bounding box of the original content. This primitive is similar to resize, except that the content is clipped so as to fit in the specified new bounding box.

if*|condition |content (conditional appearance of box)

The box with the content is displayed as usual if the condition is satisfied and displayed as whitespace otherwise. This primitive is used in particular for the definition of the phantom macro. For instance, the non-text " " is produced using if* | false | phantom .

repeat|content|pattern (fill line)

This primitive can be used to decorate some content with a given pattern . For instance, when defining the macro assign|wipe-out| macro|x | repeat|x | with|color |red|/ the code wipe-out|obsolete produces obsolete ///////. The repeat primitive may also be used to fill the current line with a given content, like the dots in tables of contents.

datoms|foo|content dlines|foo|content dpages|foo|content (decorations)
These primitives are used to decorate a posteriori the lines of a paragraph, the lines of a page, or the pages of a document. Currently, only decorations of atoms on lines of a paragraph have been implemented.

The first argument foo is a macro which will be applied to all boxes in the line and the second argument content is the part of the paragraph to which the decoration will be applied. For instance, the construction datoms| macro|x | x | body may be used in order to visualize the boxes in a given paragraph:

Here is a sufficiently long paragraph. Here is a sufficiently long paragraph.

Here is a sufficiently long paragraph. Here is a sufficiently long paragraph.

Here is a sufficiently long paragraph. Here is a sufficiently long paragraph.

When used in combination with the repeat primitive, one may for instance produce the dotted lines in tables of contents using the macro

assign| toc-dots| macro| datoms| macro|x | repeat|x | space|0.2fn . space|0.2fn | htab|5mm
Notice that the datoms primitive is quite fragile, because the foo macro has no access to the environment in which content is typeset. These primitives are used for producing large delimiters, like in the formula

Mathematical primitives

1 a 1 1 a 2 1 a n .
Matching left and right delimiters are automatically sized so as contain the enclosed expression. Between matching left and right delimiters, the formula may contain an arbitrary number of middle delimiters, which are sized in a similar way. Contrary to T E X, the depth of a large delimiter is not necessarily equal to its height, so as to correctly render formulas like

f   1 x + 1 y + 1 z  
The user may override the automatically determined size by specifying additional length parameters size or bottom and top. For instance, f left|(|-8mm|4mm x mid|||8mm y right|)|-4mm|8mm is rendered as

f x y
The size may also be a number n, in which case the n-th available size for the delimiter is taken. For instance,

g left|(|0 left|(|1 left|(|2 left|(|3 z right|)|3 right|)|2 right|)|1 right|)|0
is rendered as g((((z))))

big|big-symbol (big symbols)

This primitive is used in order to produce big operators as in

i=0 ∞ a i z i (16.1)
The size of the operator depends on whether the formula is rendered in "display style" or not. Formulas in separate equations, like (16.1), are said to be rendered in display style, contrary to formulas which occur in the main text, like i=0 ∞ a i z i . The user may use Format→Display style to override the current settings.

Notice that the formula (16.1) is internally represented as big|sum rsub|i=0 rsup|<infty> a rsub|i *z rsup|i big|.

The invisible big operator big|. is used to indicate the end of the scope of big|sum .

frac|num|den (fractions)

The frac primitive is used in order to render fractions like x y . In display style, the numerator num and denominator den are rendered in the normal size, but display style is turned of when typesetting num and den . When the display style is turned of, then the arguments are rendered in script size. For instance, the content frac|1|a rsub|0 + frac|1|a rsub|1 + frac|1|a rsub|2 +<ddots> is rendered in display style as

1 a 0 + 1 a 1 + 1 a 2 + sqrt|content sqrt|content|n (roots)
The sqrt primitive is used in order to render square roots like x √ or n -th roots like x 3 √ .

The root symbol is automatically sized so as to encapsulate the content:

f (x) y 2 + z 2 i + j lsub|script lsup|script rsub|script rsup|script (scripts)
These primitives are used in order to attach a script to the preceeding box in a horizontal concatenation (in the case of right scripts) or the next one (in the case of left scripts). When there is no such box, then the script is attached to an empty box. Moreover, when both a subscript and a superscript are specified on the same side, then they are merged together. For instance, the expression rsub|a rsup|b + lsub|1 lsup|2 x rsub|3 rsup|4 =y rsub|1 + lsub|c is rendered as

a b + x 1 2 3 4 = y 1 + c
When a right script is attached to an operator (or symbol) which accepts limits, then it is rendered below or above instead of beside the operator:

lim n→∞ a n
Scripts are rendered in a smaller font in non-display style. Nevertheless, in order to keep formulas readable, the size is not reduced below script-script-size.

lprime|prime-symbols rprime|prime-symbols (primes)

Left and right primes are similar to left and right superscripts, except that they behave in a different way when being edited. For instance, when your cursor is behind the prime symbol in f ′ and you press backspace, then the prime is removed. If you are behind f n and you press backspace several times, then you first enter the superscript, next remove n and finally remove the superscript. Notice also that prime-symbols is necessarily a string of concatenated prime symbols. For instance, f ′ † is represented by f rprime|'<dag> .

below|content|script above|content|script (scripts above and below)

The below and above tags are used to explicitly attach a script below or above a given content. Both can be mixed in order to produce content with both a script below and above:

xor i=1 ∞ x i
can be produced using above| below|xor|i=1 |<infty> x rsub|i wide|content|wide-symbol wide*|content|wide-symbol (wide symbols)

These primitives can be used in order to produce wide accents above or below some mathematical content. For instance x + y corresponds to the markup wide | x+y | <bar> .

neg|content (negations)

This primitive is mainly used for producing negated symbols or expressions, such as or a.

tree|root|child-1 | |child-n (trees)

This primitive is used to produce a tree with a given root and children child-1 until child-n . The primitive should be used recursively in order to produce trees. For instance,

+

x y × 2 y z corresponds to the markup tree|+|x|y| tree|<times>|2|y|z

In the future, we plan to provide further style parameters in order to control the rendering.

Table primitives

Tables are always present in documents inside evaluable tags which take a tformat operand. The formatting of cells is specified by a number of cell variables, which are used internally and do not appear in the environment like regular typesetter variables. Rows, columns, and generally any rectangular range of cells can associated to a cell variable setting by a single cwith tag.

The cwith primitive sets the cell variable var (literal string) to the value val (evaluated) for the range of cells spanning rows top-row to bot-row and columns left-col to rightcol (literal non-zero integers).

Range coordinates must be non-zero literal integers, positive values are counted left to right and top to bottom, negative values are counted right to left and bottom to top. For example, 2 means the second row or column and -1 means the last row or column.

Typical values for (top-row , bot-row , left-col , right-col) are (r, r, 1, -1) for "row r", (1, -1, c, c) for "column c", and (r, r, c, c) for "the cell at row r, column c". When new cells are inserted, it makes a difference whether the rows are counted from the top or bottom, and the columns are counted from the left or right. If m is the number of rows and n the number of columns, then r and rm -1 represent the same row-the former is relative to the top border while the latter is relative the bottom border. Similarly, c and cn -1 represent the same column.

table|row-1 | |row-n (row container)

The only purpose of the table tag is to contain row tags. The number of rows in a table is the number of subtrees in its table tag.

row|cell-1 | |cell-k (cell container)

The only purpose of the row tag is to contain cell tags. All row tags in a given table must have exactly as many subtrees, all cell tags, as there are columns in the table.

cell|content (cell data container)

Table cells can contain any document fragment. A cell may directly contain an inline content tag or a concat, if it has block content it must always contain a document tree.

A cell whose operand is a document is a multi-paragraph cell . Since tables are allowed in line context, this is the only construct which allows, indirectly, the nesting of a block context within a line context. Note that most block content can only be typeset correctly within an hyphenated cell, this is controlled by the cell-hyphen table variable.

subtable|table (subtable cell data)

In addition to regular markup, cells can accept subtable as an operand. The operand of subtable is a tformat tree containing regular table data.

A similar effect can be obtained with normal table by setting the cell's padding to zero in all directions, the extra twist of a subtable is its inaccessible border positions.

tmarker|table (decoration origin marker)

This tag is used in the definition of cell decorations, see the documentation of the celldecoration environment variable.

It is also used outside tables, in the switch tag to mark the currently displayed position.

tabular|table (built-in tabular macro)

This macro implements standard left aligned tables without borders. Although the tabular macro is built-in into T E X MACS , it should not really be considered as a primitive. However, it is not part of any style file either.

Linking primitives label|name (reference target)

The operand must evaluate to a literal string, it is used as a target name which can be referred to by reference, pageref and hlink tags.

Label names should be unique in a document and in a project.

Examples in this section will make references to an example label named "there". label|there reference|name (reference to a name)

The operand must evaluate to a literal string, which is the name of a label defined in the current document or in another document of the current project.

reference|there

The reference is typeset as the value of the variable the-label at the point of the target label. The the-label variable is set by many numbered structures: sections, figures, numbered equations, etc.

A reference reacts to mouse clicks as an hyperlink.

pageref|name

(page reference to a name)

The operand must evaluate to a literal string, which is the name of a label defined in the current document or in another document of the current project.

pageref|there

The pageref is typeset as the number of the page containing the target label. Note that page numbers are only computed when the document is typeset with page-breaking, that is not in "automatic" or "papyrus" page type.

A pageref reacts to mouse clicks as an hyperlink.

hlink|content|url (inline hyperlink)

This primitive produces an hyperlink with the visible text content pointing to url . The content is typeset as inline url . The url must evaluate to a literal string in URL syntax and can point to local or remote documents, positions inside documents can be be specified with labels.

The following examples are typeset as hyperlinks pointing to the label "there", respectively in the same document, in a document in the same directory, and on the web.

hlink|same document|../devel/format/regular/#there hlink|same directory|../devel/format/regular/file.tm#there hlink|on the web|http://example.org/#there If the document is not editable, the hyperlink is traversed by a simple click, if the document is editable, a double-click is required.

include|url (include another document)

The operand must be a literal string and is interpreted as a file name. The content of this file is typeset in place of the include tag, which must be placed in block context.

action|content|script (attach an action to content)

Bind a Scheme script to a double mouse click on content. For instance, when clicking here, you may launch an xterm. This action is encoded by action|here|(system "xterm &") .

When clicking on actions, the user is usually prompted for confirmation, so as to avoid security problems. The user may control the desired level of security in Edit→Prefer-ences→Security. Programmers may also declare certain Scheme routines to be "secure". Scheme programs which only use secure routines are executed without confirmation from the user.

Miscellaneous physical markup rigid|content (atomic entity)

Typeset the content, which must be line content, as an atomic line item. Hyphenation within the rigid and special spacing handling on its borders are disabled. The where operand must evaluate to a string which may contain the following characters:

t. Allow the floating box at page top.

b. Allow the floating box at page bottom.

h. Allow the floating box "here", in the middle of the page near the anchor box.

f. Force the floating box within the same page as the anchor box.

specific|medium|body (medium-specific content)

This primitive marks body for output only on the specified medium. The following values of medium are supported:

texmacs. The body is typeset as usual line content.

latex.

The body , which must be a string, is not visible from within T E X MACS , but it will be included in a verbatim way when the document is exported to L A T E X.

html. Similar to the latex medium, but for HTML exports.

screen. The body is only typeset when the document is visualized on a screen. This may be useful to provide additional visual information to the user during the editing phase which should disappear when printing out. A similar tag which may be used for this purpose is flag.

printer. This medium is complementary to screen, when the body should only be visible when printing out, but not when the document is displayed on the screen.

raw-data|data (binary content)

In some contexts you need to embed uneditable data inside a document, most of the time this is uneditable binary data. The raw-data primitive makes it impossible to view or modify its subtree from within the editor.

Chapter 17

Primitives for writing style files

Environment primitives

The current environment both defines all style parameters which affect the typesetting process and all additional macros provided by the user and the current style. The primitives in this section are used to access and modify environment variables.

assign|var |val (variable mutation)

This primitive sets the environment variable named var (string value) to the value of the val expression. This primitive is used to make non-scoped changes to the environment, like defining markup or increasing counters.

This primitive affects the evaluation process -through value, provides, and macro definitions-and the typesetting process -through special typesetter variables.

Example 17.1. Enabling page breaking by style.

The page-medium is used to enable page breaking. Since only the initial environment value for this variable is effective, this assignation must occur in a style file, not within a document.

assign|page-medium|paper

Example 17.2. Setting the chapter counter.

The following snippet will cause the immediately following chapter to be number 3. This is useful to get the the numbering right in book style when working with projects and include.

assign|chapter-nr |2

The operand must be a literal string and is interpreted as a file name. The content of this file is typeset in place of the include tag, which must be placed in block context.

with|var-1 |val-1 | |var-n |val-n |body (variable scope)

This primitive temporarily sets the environment variables var-1 until var-n (in this order) to the evaluated values of val-1 until val-n and typesets body in this modified environment. All non-scoped change done with assign to var-1 until var-n within body are reverted at the end of the with.

This primitive is used extensively in style files to modify the typesetter environment. For example to locally set the text font, the paragraph style, or the mode for mathematics.

value|var (variable value)

This primitive evaluates the current value of the environment variable var (literal string). This is useful to display counters and generally to implement environmentsensitive behavior.

This primitive is used extensively in style files to modify the typesetter environment. For example to locally set the text font, the paragraph style, or the mode for mathematics.

provides|var (definition predicate)

This predicate evaluates to true if the environment variable var (string value) is defined, and to false otherwise.

That is useful for modular markup, like the session environments, to fall back to a default appearance when a required package is not used in the document.

Macro primitives

Macros can be used to define new tags and to build procedural abstractions in style files.

Older versions of T E X MACS used to make a distinction between macros (all children accessible) and functions (no accessible child). In modern T E X MACS there are only macros: the accessibility of children is determined heuristically and can be controlled with drd-props.

macro|var-1 | |var-n |body (macro of fixed arity)

This primitive returns a macro (the T E X MACS analogue of a λ-expression) with n arguments, named after the literal strings var-1 until var-n .

New tags are defined by storing macros in the environment. Most of the time, macros are stored without scope with assign, but it is sometimes useful to redefine a tag locally within the scope of a with. For example, itemized and enumerated environment redefine item locally.

Example 17.3. Definition of the abbr tag

assign|abbr | macro|x | rigid|x
Storing a macro in the environment defines a tag whose arity is fixed to the number of arguments taken by the macro.

arg|var |index-1 | |index-n (retrieve macro arguments)
This primitive is used to retrieve the arguments of a macro within its body. For instance, arg | var expands the content of the macro argument with name var (literal string). Of course, this argument must be defined by a macro containing the arg tag.

This tag is similar to value, but differs in important ways:

• The argument namespace is distinct from the environment, arg|var and value| var will generally evaluate to different values (although you should not rely on this).

• The value of arg retains the position of the macro argument in the document tree, that makes it possible to edit the arguments of a macro-defined tag while it is active.

When more than one arguments are specified, arg|var |index-1 | |index-n expands to a subtree of the argument var . The value of the named argument must be a compound tree (not a string). The operands var until index-n must all evaluate to positive integers and give the path to the subtree of the macro argument.

xmacro|var |body (macro with a variable arity)

This primitive returns a macro (the T E X MACS analogue of a λ-expression) capable of taking any number of arguments. The arguments are stored in the macro variable with name var (a literal string) during the evaluation of the body . The i-th individual argument can then be accessed using arg|var |i .

map-args|foo|root|var map-args|foo|root|var |first map-args|foo|root|var |first|last (map a tag on subtrees of an argument)

This primitive evaluates to a tree whose root is labeled by root and whose children are the result of applying the macro foo to the children of the macro argument with name var .

By default, the macro foo is applied to all children. If first has been specified, then we rather start at the i-th child of var , where i is the result of evaluating first. If last has been specified too, then we stop at the j-th child of var (the j-th child not being included), where j is the result of evaluating last. In this last case, the arity of the returned tree is therefore ji.

Stated otherwise, map-args applies foo to all subtrees of the macro argument var (or a range of subtrees if first and last are specified) and collect the result in a tree with label root. In addition, the second argument to foo gives its position of the first argument in the expansion of var .

The map-args is analogue to the Scheme function map. Since T E X MACS use labeled trees, the label of the mapping list must also be specified.

Example 17.4. Comma-separated lists.

The comma-separated tag has any arity (though it does not make much sense with arity zero) and typeset its operands interspersed with commas.

assign|comma-extra | macro|x |, x assign|comma-separated| xmacro|args | concat| arg|args |0 | map-args|comma-extra |concat|args |1
eval-args|var (macro with a variable arity)

This primitive evaluates to the tree with the same label as the expansion of the argument var and whose subtrees are the result of the evaluation of the subtrees of the expansion of var .

compound|foo|arg-1 | |arg-n

(expand an unnamed macro)

This primitive is useful to expand macros which are the result of a computation: it applies the macro which is the result of the evaluation of foo to the arguments arg-1 until arg-n . The compound primitive is useful in call-back and lambda programming idioms, where a higher-level macro is given a macro as an operand, which it may later apply under certain conditions or with operands which are not known to the client code.

Actually, in the current implementation, foo may either evaluate to a macro or to a literal string which gives the name of a macro. However, we discourage users to rely on the second case.

Example 17.5. Lambda programming with macros.

In the code below, filter|pred|t expects a macro pred and a tuple t on input and returns a tuple containing the elements of t for which pred evaluates to true.

assign|filter | macro|pred|t| if| equal| length|t |0 | tuple | merge| if| compound|pred| look-up|t|0 | tuple| look-up|t|0 | tuple | filter|pred| range|t|1| length|t
As an application, we may define a macro evens | t , which expects t to be a tuple containing integers, and which returns the tuple of integers in t which are divisible by 2. The arity and children accessibility of tags defined by macros are determined heuristically by default. The drd-props primitive overrides this default for the environment variable (usually a macro) with name var . The currently supported property-value pairs are:

(arity, n) -Sets the arity to the given fixed value n (literal integer).

(accessible, all) -Make it impossible to deactivate the tag with normal editor actions. Inaccessible children become effectively uneditable.

(accessible, none) -Make it impossible to position the caret within the tag when it is active, so children can only be edited when the tag is inactive.

get-label|expression (label of an expression)

Returns the label of the tree obtained when evaluating expression .

get-arity|expression (arity of an expression)

Returns the arity of the tree obtained when evaluating expression .

Flow control primitives if|condition |if-body if|condition |if-body |else-body (conditional markup)

This primitive can be used to typeset if-body only if the condition is satisfied. If the optional else-body is specified, then it is typeset if and only if the condition fails.

Remark 17.6. It should be noticed that the use of conditional markup can be a bit tricky due to the fact that the accessability of arguments cannot necessarily be checked beforehand. For instance, in the macro definition macro|x | if| visibility-flag |x the macro argument x is accessible if and only if visibility-flag evaluates to true. This condition cannot necessarily be checked a priori . For certain editing operations, like searches or spell checking, the incorrect determination of the accessability may lead to the positioning of the cursor at unaccessible places, or to the ignorance of certain markup. In the future, we plan to improve this aspect of the editor, but it is better to avoid conditional markup whenever another solution can be found.

Remark 17.7. The conditional constructs are only fully implemented for inline markup. In the case when you need conditional markup for block structures you currently have to write macros for the if-case and the else-case and use the compound tag. For instance: , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50

assign|cold|

Evaluation control primitives

This section describes several primitives for controlling the way expressions in the stylesheet language are evaluated. The primitives are analoguous to the Scheme primitives eval, quote, quasiquote, etc., although the T E X MACS conventions are slightly different than those used by conventional functional languages like Scheme.

eval|expr (force evaluation)

Typeset the result of the evaluation of expr . This primitive is usually combined with a tag like quote or quasiquote for delaying the evaluation.

quote|expr (delayed evaluation)

Evaluation of the expression quote | expr yields expr itself. This kind of delayed evaluation may be useful in combination with the eval primitive which forces evaluation.

quasiquote|expr (delay evaluation and substitution)

This tag is a variant of the quote tag, which returns the expression expr in which all subexpressions of the form unquote|subexpr have been replaced by the evaluations of subexpr . For instance, assign|hello| quasiquote| macro|name| unquote| localize|Hello name.

may be used to define a macro hello whose value is localized for the current language.

In a French document, the declaration would typically be equivalent to assign|hello| macro|name|Bonjour name.

Notice however that it is usually better not to use the quasiquote primitive for such applications. When defining assign|hello| macro|name| localize|Hello name.

the typesetting of hello | Name would naturally adapt itself to the current language, while the above version would always use the language at the moment of the definition of the macro. Nevertheless, the first form does have the advantage that the localization of the word "Hello" only has to be computed once, when the macro is defined. Therefore, the quasiquote primitive may sometimes be used in order to improve performance.

unquote|subexpr (mark substitutable subexpressions)

This tag is used in combination with quasiquote and quasi in order to mark the subexpressions which need to be evaluated. quote-value|var (retrieve a value but don't evaluate)

When retrieving an environment variable var , one is usually interested in its typesetted value, as given by value|var . In some cases, it may be useful to access the real, nontypesetted value. This can be done with quote-value|var .

quote-arg|var |index-1 | |index-n

(retrieve an argument but don't evaluate)

When retrieving (a subexpression of) a macro argument var , one is usually interested in its typesetted value, as given by arg|var |index-1 | |index-n . In some cases, it may be useful to access the real, non-typesetted value. This can be done with quote-arg | var |index-1 | |index-n .

Functional operators

Functional operators are used for computational purposes during the typesetting phase, such as increasing counters, localizing strings like "theorem" and so on. A fundamental set of basic functional operators are built-in primitives. New functional operators can easily be added using the extern primitive. Functional operators operate on five main types of arguments: strings, numbers, lengths, booleans and tuples. Some operators are overloaded, so that they can be used for several types. Returns the current date in a specified format (which defaults to a standard languagespecific format when empty) and a specified language (which defaults to English). The format is similar to the one used by the Unix date command. For instance, date evaluates to "February 6, 2013", date||french to "6 février 2013" and date|%d %B om %k:%M|dutch to "%6 %B o37 %k:%2".

translate|what|from|into (translation of strings)

Returns the translation of a string what of the language from into the language into, using the built-in T E X MACS dictionaries. The languages should be specified in lowercase letters. For instance, translate|File|english|french yields "Fichier".

The list of currently available languages can be checked in the Document→Language menu. The built-in T E X MACS dictionaries can be found in

$TEXMACS_PATH/languages/natural/dic
When attempting to use a non-existing dictionary, the program may quit. For most purposes, it is more convenient to use the localize macro, which converts a string from English into the current language.

Arithmetic operations

plus|expr-1 | |expr-n minus|expr-1 | |expr-n (addition and subtraction)

Add or subtract numbers or lengths. For instance, plus|1|2.3|5 yields 8.3 and plus| 1cm|5mm produces tmlen|90708.6 . In the case of subtractions, the last argument is subtracted from the sum of the preceding arguments. For instance, minus|1 produces -1 and minus|1|2|3|4 yields 2.

times|expr-1 | |expr-n (multiplication)

Multiply two numbers expr-1 until expr-n . One of the arguments is also allowed to be a length, in which case a length is returned. For instance, times|3|3 evaluates to 9 and times|3|2cm to tmlen|362835 .

over|expr-1 | |expr-n (division)
Divide the product of all but the last argument by the last argument. For instance, over|1|2|3|4|5|6|7 evaluates to 102.857, over|3spc|7 to tmlen|2214|3318.86|4976.57 , and over|1cm|1pt to 28.4528.

div|expr-1 |expr-2 mod|expr-1 |expr-2 (division with remainder)

Compute the result of the division of an integer expr-1 by an integer expr-2 , or its remainder. For instance, div|18|7 =2 and mod|18|7 =4.

equal|expr-1 |expr-2 unequal|expr-1 |expr-2 less|expr-1 |expr-2 lesseq|expr-1 |expr-2 greater|expr-1 |expr-2 greatereq|expr-1 |expr-2 (comparing numbers or lengths)

Return the result of the comparison between two numbers or lengths. For instance, less|123|45 yields false and less|123mm|45cm yields true.

Boolean operations

or|expr-1 | |expr-n and|expr-1 | |expr-n
Returns the result of the boolean or/and on the expressions expr-1 until expr-n . For instance, or|false| equal|1|1 |false yields true.

xor|expr-1 |expr-2

Returns the exclusive or of two expressions expr-1 and expr-2 , i.e. xor|true|true yields false.

not|expr Returns the negation of expr . This primitive may be used to concatenate several tuples expr-1 until expr-n . For instance, merge| tuple|1|2 | tuple|3|4|5 produces tuple|1|2|3|4|5 .

Operations on tuples

Transient markup

The tags described in this section are used to control the rendering of style files and style file elements. It both contains markup for activation and disactivation of content and for the rendering of tags.

active|content active*|content inactive|content inactive*|content (activation/disactivation of content)
These tags can be used to temporarily or permanently change the activity of the content. In usual documents, tags are by default active. In style files, they are by default inactive. For instance, an activated fraction is rendered as 1 2 ; when deactivated, it is rendered as frac|1|2 .

The active and inactive tags only activate or desactivate the root tag of the content. Typically, a tag which contains hidden information (like hlink) can be disactivated by positioning the cursor just behind it and pressing + . This action just disactivates the hyperlink, but not the potentially complicated body of the hyperlink. Therefore, the hyperlink is transformed into an inactive tag of the form inactive| hlink|body |ref .

The active* and inactive* variants are used to activate or disactivate the whole content (except when other (dis-)activation tags are found inside the content). The inactive* is used frequently inside the present documentation in order to show the inactive representation of T E X MACS content. Nevertheless, it is sometimes desirable to reactivate certain subtrees inside disactivated content. For instance, the following piece of disactivated code (using disactive*) contains the reactivated subexpression ♥♥♥ (using active*): This tag may be used in order to temporarily modify the rendering of inactive tags, by setting each environment variable var-i to val-i in the local typesetting context of body . When importing a style file, each style-with/style-with* tag is replaced by its body .

In the case of style-with, the modified rendering is only applied to the root tag of the body . In the case of style-with*, the rendering is modified for the entire body .

style-only| foo|content style-only*| foo|content (content for use in style files only)

This tag may be used in order to render an inactive tags as whether we applied the macro foo on it. When importing a style file, each style-only/style-only* tag is replaced by its content. In the case of style-only, the modified rendering is only applied to the root tag of the content. In the case of style-only*, the rendering is modified for the entire content.

symbol|symbol latex|cmd hybrid|cmd hybrid|cmd|arg (auxiliary tags for entering special content)

These tags are used only temporarily when entering special content.

When pressing I $, a symbol tag is created. After entering the name of the symbol, or the ASCII-code of the symbol and pressing return, the symbol tag is replaced by the corresponding symbol (usually a string enclosed in <>).

When pressing " , a hybrid tag is created. After entering a string and pressing return, it is determined whether the string corresponds to a L A T E X command, a macro argument, a macro or an environment variable (in this order). If so, then the hybrid tag is replaced by the appropriate content. When pressing " while a selection is active, then the selection automatically becomes the argument of the hybrid command (or the hybrid command itself, when recognized).

The latex tag behaves similarly as the hybrid tag except that it only recognizes L A T E X commands.

The rendering macros for source trees are built-in into T E X MACS . They should not really be considered as primitives, but they are not part of any style file either.

indent|body (indent some content)

Typeset the body using some indentation.

rightflush (indent some content)

Flush to the right. This macro is useful to make the end of a block environment run until the right margin. This allows for more natural cursor positioning and a better layout of the informative boxes.

src-macro|macro-name src-var|variable-name src-arg|argument-name src-tt|verbatim-content src-integer|interger src-length|length src-error|message (syntactic highlighting on purpose)

These macros are used for the syntactic highlighting of source trees. They determine how to render subtrees which correspond to macro names, variable names, argument names, verbatim content, integers, lengths and error messages. This primitive allows the user to implement macros in Scheme. The primitive applies the Scheme function or macro scheme-foo to the arguments arg-1 until arg-n . For instance, the code extern|(lambda (name) '(concat "hi " ,name))|dude yields "hi dude".

The arguments arg-1 until arg-n are evaluated and then passed as trees to scheme-foo.

When defining a macro which relies on extern scheme code, it is therefore recommended to pass the macro arguments using the quote-arg primitive:

assign|inc-div | macro|x |y | extern| (lambda (x y) '(frac ,x (concat "1+" ,y)))| quote-arg|x | quote-arg|y
It has been foreseen that the accessability of the macro arguments x and y is preserved for this kind of definitions. However, since T E X MACS does not heuristically analyze your Scheme code, you will have to manually set the D.R.D. properties using drd-props.

Notice also that the Scheme function scheme-foo should only rely on secure scheme functions (and not on functions like system which may erase your hard disk). User implemented Scheme functions in plug-ins may be defined to be secure using the :secure option. Alternatively, the user may define all Scheme routines to be secure in Edit→Preferences→Security→Accept all scripts.

write|aux |content (write auxiliary information)

Please document.

flag|content|color flag|content|color |var (display an informative flag)

This tag is used to in order to inform the user about information which is present in the document, but not visible when printed out. T E X MACS displays such informative flags for labels, formatting directives such as page breaks, and so on. In Document→View→ Informative flags, the user may specify how the informative flags should be rendered.

The two-argument variant displays an informative flag with a given content and color .

The content is only rendered when selecting Document→View→Informative flags→ Detailed. For instance, flag | warning | red is rendered as . The optional var argument may be used in order to specify that the flag should only be visible if the macro argument var corresponds to an accessible part of the document. For instance, T E X MACS automatically generated labels for section titles (so as to include them in the table of contents), but it is undesirable to display informative flags for such labels.

Internal primitives

The primitives in this section are merely for internal use by This primitive is mainly used for default uninialized value of environment variables; the main advantage of this tag is to be distinct from the empty string.

unknown (unknown content or unintialized data)

This primitive is mainly used for default uninialized value of environment variables; the main advantage of this tag is to be distinct from the empty string.

This value is less likely to be encountered than uninit error|message (error messages)

This primitive should never appear in documents. It is provided as aid in tracking down invalid constructs. It is produced at evaluation time by any kind of primitive which is given improper operands.

collection|binding-1 | |binding-n associate|key |value (collections of bindings)

The collection tag is used to represent hashtables with bindings binding-1 until bindingn . Each binding is of the form associate|key |value , with a key and an associated value.

attr|key-1 |val-1 | |key-n |val-n (XML-like attributes)

This tag is included for future compatability with XML. It is used for encoding XMLstyle attributes by T E X MACS trees. For instance, the fragment <blah color="blue" emotion="verbose"> Some XML stuff </blah> would typically be represented as blah| attr|color |blue|emotion |verbose |Some XML stuff tag|content|annotation meaning|content|annotation (associate a meaning to some content)

Associate a special meaning to some content. Currently, no real use has been made of these tags.

backup|save|stack (save values on stack)

Used to represent temporarily saved values on a stack.

dbox (marker for decorations)

This primitive is only intended for internal use by the datoms, dlines and dpages primitives.

rewrite-inactive|t|var (internal primitive for rendering inactive markup)

This internal primitive is used for rewriting an inactive tree into a new tree whose rendering corresponds to the rendering of the inactive tree. It may be successfully invoked from within a macro. Yet to be implemented primitives for starting a new double page.

identity|markup (identity macro)

The identity macro is built-in into T E X MACS . It should not really be considered as a primitive, but it is not part of any style file either.

In addition to these primitives for internal use only, there are also quite a few obsolete primitives, which are no longer being used by T E X MACS , but whose names should be avoided when creating your own macros. The full list of obsolete primitives is: format, line-sep, withlimits, split, old-matrix, old-table, old-mosaic, old-mosaic-item, set, reset, expand, expand*, hide-expand, apply, begin, end, func, env, authorize.

Chapter 18

The standard T E X MACS styles

The user may select a major style from the Document→Style menu. The major style usually reflects the kind of document you want to produce (like a letter, an article or a book) or a particular layout policy (like publishing an article in a given journal). In addition to a major style, the user may select one or more additional packages from Document→Use package. Such packages may customize the major style, provide additional markup, or a combination of both.

In this chapter, we will survey the standard document styles and packages provided by

General organization

Standard T E X MACS styles

The main T E X MACS styles are:

generic. This is the default style when you open a new document. The purpose of this style is to produce quick, informal documents. For this reason, section numbering is disabled and the layout of paragraphs is very simple: instead of indenting the first lines of paragraphs, they are rather separated by white-space.

article. This style may be used for writing short scientific articles, which are subdivided into sections. The numbering of environments like theorems, remarks, etc. is relative to the entire document. If you use the number-long-article package, then the numbers are prefixed by the section number.

book. This is the basic style for writing books. Books are assumed to be subdivided into chapters and numbers of environments are prefixed by the chapter number. In general, it is also comfortable to store each chapter in a separate file, so that they can be edited more efficiently. This issue is explained in more detail in the section about books and multifile documents.

seminar. Documents based on this style are typically printed on slides for presentations using an overhead projector. You may also want to use it when making presentation directly from your laptop, after selecting View→Presentation mode. Notice however, that slides correspond to real pages, whereas you rather should use "switches" in presentation mode.

source. This is the privileged style for editing style files and packages. It enables "source mode", so that documents are rendered in a way which makes the structure fully apparent. For more details, we refer to the section on the rendering of style files.

The article style admits several variants, so as to make the layout correspond to the policy of specific journals. Currently, we have implemented the T E X MACS analogue of the L A T E X style amsart, as well as the styles acmconf and jsc. Similarly, we are developing styles tmarticle and tmbook which provide an alternative layout for articles and books.

In addition to variants of the article and book styles, T E X MACS provides also a few other styles, which are based on the main styles, but which provide some additional markup.

letter. This style is based on the informal generic style, but it provides additional markup for writing letters. The additional macro are mainly used for headers and endings of letters.

exam. This style, which is again based on generic, provides some additional markup for headers of exams. It also customizes the rendering of exercises.

tmdoc. This style is used for writing the T E X MACS documentation. It contains several tags for special types of content and extensions for linking, indexing, document traversal, etc.. Some aspects of this style are still under heavy development.

Standard T E X MACS packages

First of all, T E X MACS provides several packages for customizing the behaviour of the standard styles:

number-long-article. This package induces all numbers of environments (theorems, remarks, equations, figures, etc.) to be prefixed by the current section number. It is usually used in combination with the article style (for long articles) and the book style (for books with long chapters).

number-europe. By default, T E X MACS uses "American style numbering". This means that the same counter is used for numbering similar environments like theorem and proposition. In other words, a remark following "Theorem 3" will be numbered "Remark 4". If you want each environment to have its individual counter, then you should enable "European style numbering", by selecting the number-europe package.

number-us. This package may be used in order to switch back to American style numbering in the case when a third parties style file enforces European style numbering.

structured-list. This is an experimental package. By default, items in unnumbered lists or enumerations take no arguments and items in descriptions one argument. When using the structured-list package, they take an optional additional argument with the body of the item.

structured-section. This is an experimental package. By default, sectional tags only take a title argument. When using the structured-section package, they take an optional additional argument with the body of the section. Moreover, the environment rsection for recursive sections is provided.

varsession. This package may be used in order to obtain an alternative rendering of interactive sessions. The rendering is designed to be nice for interactive use, although less adequate for printing.

In addition to these packages, and the many packages for internal use, T E X MACS also provides a few personal example style packages allouche, bpr and vdh and several style packages for use in combination with external plug-ins (axiom, giac, macaulay2, etc.). These logical size tags should be used by preference when typesetting parts of your document in a larger or smaller font. Environments like footnotes or captions of tables may also be based on logical size tags. Document styles from professional publishers often assign very precise font settings to each of the logical size tags. By default, the size tags are rendered as follows:

The common base for most styles

Really tiny

Tiny

Really small

Very small Smaller

Small

Normal size

Large

Larger

Very large

Really large

Huge

Really huge

The following are standard environments: verbatim|body Described above.

code|body Similar to code*, but for pieces of code of several lines.

quote-env|body

Environment for short (one paragraph) quotations.

block*|table

Centered tables with a border of standard 1ln width.

The following miscellaneous tags don't take arguments:

TeXmacs

The T E X MACS logo.

TeXmacs-version

The current version of T E X MACS (1.0.7.17).

made-by-TeXmacs

A macro which may be used to indicate that your document was written using T E X MACS .

TeX

The T E X logo.

LaTeX

The L A T E X logo.

hrule

A horizontal rule like the one you see below:

The following miscellaneous tags all take one or more arguments: phantom|content This tag takes as much space as the typeset argument content would take, but content is not displayed. For instance, phantom|phantom yields " ".

overline|content

For overlined text, which can be wrapped across several lines.

underline|content

For underlined text, which can be wrapped across several lines.

fold|summary |body

The summary is displayed and the body ignored: the macro corresponds to the folded presentation of a piece of content associated to a short title or abstract. The second argument can be made visible using Insert→Switch→Unfold.

unfold|summary |body

Unfolded presentation of a piece of content body associated to a short title or abstract summary . The second argument can be made invisible using Insert→Switch→Fold.

switch|current|alternatives Content which admits a finite number of alternative representation among which the user can switch using the function keys F9 , F1 0 , F1 1 and F1 2 . This may for instance be used in interactive presentations. The argument current correspond to the currently visible presentation and alternative to the set of alternatives.

Standard symbols

The std-symbol d.t.d. defines the special symbols ć, ď, ě, ©, , ®, ř, š, ş, ź, µ, ű, ij, ¡, ¿, € and ™. It also provides the macro nbsp for non-breakable spaces.

As soon as the font support will be further improved, this d.t.d. should become obsolete.

Standard mathematical markup

Standard mathematical markup is defined in std-math.

binom|among|nr For binomial coefficients, like n m .

choose|among|nr Alternative name for binom, but depreciated.

shrink-inline|among|nr

A macro which switches to scriptsize text when you are not in display style. This macro is mainly used by developers. For instance, the binom macro uses it.

The following are standard mathematical tabular environments:

matrix|table

For matrices M = 1 2 3 4 . det|table For determinants ∆ = 1 2 3 4 . choice|table For choice lists |x| = -x, if x 0 x, if x 0 .

Standard lists

Using list environments

The standard T E X MACS lists are defined in std-list. The unnumbered lists environments are:

itemize|body

The tag before each item depends on the nesting depth.

itemize-minus|body

Usesfor the tag.

itemize-dot|body

Uses • for the tag.

itemize-arrow|body

Uses → for the tag.

The following environments can be used for producing numbered lists:

enumerate|body

The kind of number before each item depends on the nesting depth.

enumerate-numeric|body

Number the items by 1, 2, 3, etc.

enumerate-roman|body

Number the items by i, ii, iii, etc.

enumerate-Roman|body

Number the items by I, II, III, etc.

enumerate-alpha|body

Number the items by a), b), c), etc.

enumerate-Alpha|body

Number the items by A), B), C), etc.

The following environments can be used for descriptive lists:

description|body

The environment for default descriptive lists (usually description-compact).

description-compact|body

Align the left hand sides of the items in the list and put their descriptions shortly behind it.

description-dash|body

Similar to description-compact, but use a -to separate each item from its description.

description-align|body

Align the left hand sides of the descriptions, while aligning the items to the right.

description-long|body

Put the items and their descriptions on distinct lines.

New items in a list are indicated through the item tag or the item* tag in the case of descriptions. The item tag takes no arguments and the item* tag one argument. When using the experimental structured-list package, these tags may take an optional body argument. In the future, all list items should become structured.

By default, items in sublists are numbered in the same way as usual lists. Each list environment list admits a variant list* whose items are prefixed by the last item in the parent list. Of course, this feature can be used recursively.

Customization of list environments

The std-list provides the following redefinable macros for customizing the rendering of lists and items in lists:

render-list|body

This block environment is used to render the body of the list. Usually, the macro indents the body and puts some vertical space around it.

aligned-item|item-text

This inline macro is used to render the item-text in a right-aligned way. As a consequence, text after such items will appear in a left-aligned way.

compact-item|item-text

This inline macro is used to render the item-text in a left-aligned way. As a consequence, text after such items may be indented by the width of the item-text (except when the text is rendered on a different paragraph).

Automatic content generation

The std-automatic d.t.d. contains macros for the automatic generation and rendering of auxiliary content. There are four main types of such content in T E X MACS : bibliographies, tables of contents, indexes and glossaries. Other types of automatically generated content like lists of figures are usually similar to one of the four above types (in the case of lists of figures, we use glossaries). The rendering of the entire sections which contain the bibliographies, tables of contents, etc. are specified in the section-base d.t.d..

Bibliographies

The following macros may be used in the main text for citations to entries in a bibliographic database.

cite|ref-1 | |ref-n

Each argument ref-i is a citation corresponding to an item in a BiB-T E X file. The citations are displayed in the same way as they are referenced in the bibliography and they also provide hyperlinks to the corresponding references. The citations are displayed as question marks if you did not generate the bibliography. Once you've added a bibliography file, pressing inside the arguments will auto-complete with the citekeys in your file.

nocite|ref-1 | |ref-n

Similar as cite, but the citations are not displayed in the main text.

cite-detail|ref |info

A bibliographic reference ref like cite and nocite, but with some additional information info, like a chapter or a page number.

The following macros may be redefined if you want to customize the rendering of citations or entries in the generated bibliography:

render-cite|ref

Macro for rendering a citation ref at the place where the citation is made using cite. The content may be a single reference, like "TM98", or a list of references, like "Euler1, Gauss2".

render-cite-detail|ref |info

Similar to render-cite, but for detailed citations made with cite-detail.

render-bibitem|content transform-bibitem|content

At the moment, bibliographies are generated by BibT E X and imported into T E X MACS . The produced bibliography is a list of bibliographic items with are based on special L A T E X-specific macros (bibitem, block, protect, etc.). These macros are all defined internally in T E X MACS and eventually boil down to calls of the render-bibitem, which behaves in a similar way as item*, and which may be redefined by the user.

The transform-bibitem is used to "decorate" the content. For instance, transform-bibitem may put angular brackets and a space around content.

bib-list|largest|body

The individual "bibitems" are enclosed in a bib-list, which behaves in a similar way as the description environment, except that we provide an extra parameter largest which contains a good indication about the largest width of an item in the list.

Tables of contents

The following macros may be used in the main text for adding entries to the table of contents. They are automatically called by most sectional macros, but it is sometimes desirable to manually add additional entries.

toc-main-1|entry toc-main-2|entry

Create an important entry in the table of contents. The macro toc-main-1 is intended to be used only for very important entries, such as parts of a book; it usually has to be added manually. The macro toc-main-2 is intended to be used for chapter or sections. Important entries are usually displayed in a strong font.

toc-normal-1|entry toc-normal-2|entry toc-normal-3|entry

Add a normal entry to the table of contents, of different levels of importance. Usually, toc-normal-1 corresponds to sections, toc-normal-2 to subsections and toc-normal-3 to subsubsections.

toc-small-1|entry toc-small-2|entry

Add an unimportant entry to the table of contents, like a paragraph. Since such entries are not very important, some styles may simply ignore the toc-small-1 and toc-small-2 tags.

By redefining the following macros, it is possible to customize the rendering of tables of contents: toc-strong-1|content|where toc-strong-2|content|where

Used for rendering table of contents entries created using toc-main-1 resp. toc-main-2. toc-1|content|where toc-2|content|where toc-3|content|where toc-4|content|where toc-5|content|where

Used for rendering table of contents entries created using toc-normal-1, toc-normal-2, toc-normal-3, toc-small-1 resp. toc-small-2.

toc-dots

The separation between an entry in the table of contents and the corresponding page number. By default, we use horizontal dots.

Indexes

The following macros may be used in the main text for inserting entries into the index. index|primary Insert primary as a primary entry in the index.

subindex|primary |secondary

Insert secondary in the index as a subentry of primary .

subsubindex|primary |secondary |ternary

Similar to subindex but for subsubentries ternary .

index-complex|key |how|range|entry

Insert complex entries into the index. This feature is documented in detail in the section about index generation.

index-line|key |entry

Adds entry to the index, by sorting it according to key .

The following macros may be redefined if you want to customize the rendering of the index: index-1|entry |where index-2|entry |where index-3|entry |where index-4|entry |where index-5|entry |where Macro for rendering an entry in the index on page(s) where. The macro index-1 corresponds to principal entries, the macro index-2 to secondary entries, and so on.

index-dots

Macro for producing the dots between an index entry and the corresponding page number(s).

Glossaries

The following macros may be used in the main text for inserting glossary entries. glossary|entry Insert entry into the glossary.

glossary-dup|entry

For creating an additional page number for an entry which was already inserted before.

glossary-explain|entry |explanation

A function for inserting a glossary entry with its explanation .

glossary-line|entry

Insert a glossary entry without a page number.

The following macros can be redefined if you want to customize the rendering of the glossary:

glossary-1|entry |where

Macro for rendering a glossary entry and its corresponding page number(s).

glossary-2|entry |explanation |where

Macro for rendering a glossary entry, its explanation, and its page number.

glossary-dots

Macro for producing the dots between a glossary entry and the corresponding page number(s).

Utilities for writing style files

The std-utils package provides several macros which may be useful when writing style files. First of all, the following macros may be used for rendering purposes: hflush left-flush right-flush Low level tags for flushing to the right in the definition of environments. One usually should use wide-normal or wide-centered instead.

wide-normal|body wide-centered|body

These tags are used to make the body span over the entire paragraph width. The text is left-aligned in the case of wide-normal and centered in the case of wide-centered. Making a body span over the entire paragraph width does not change the rendering on paper, but it facilitates the editing on the document. Indeed, on the one hand side, the box which indicates that you are inside the environment will span over the entire paragraph width. On the other hand, when clicking sufficiently close to the text inside this box, it becomes easier to position your cursor at the start or at the end inside the environment. You may check this by clicking on one of the texts below: >Some text inside a wide-normal environment. < > Some text inside a wide-centered environment. < padded-normal|space-above|space-below|body padded-centered|space-above|space-below|body These tags are variants of wide-normal|body and wide-centered|body , which put some vertical white space space-above and space-below above and below the body .

wide-bothlined|top-border |bot-border |top-sep|bot-sep|body wide-std-bothlined|body padded-bothlined|space-above|space-below|top-border |bot-border |top-sep|bot-sep|body padded-std-bothlined|space-above|space-below|body wide-underlined|bborder |bsep|body wide-std-underlined|body These tags are used to make the body span over the entire paragraph width and to put a horizontal rule above and/or below it. The widths of the rules are given by topborder and bot-border and the separation between the rules by top-sep and bot-sep.

The standard width and separation (used by wide-std-bothlined, padded-std-bothlined and wide-std-underlined) are 1ln and 1sep. The padded variants specify additional spaces space-above and space-below above and below the rules. As an example, widestd-underlined|left htab|5mm right yields: left right Wide underlined environments are typically used for page headers. Wide environments which are both overlined and underlined are typically used for abstracts or floating figures and tables.

wide-framed|border-width|hsep|vsep|body wide-std-framed|body wide-framed-colored|border-color |body-color |border-width|hsep|vsep|body wide-std-framed-colored|border-color |body-color |body These tags put the body inside a frame box which spans over the whole paragraph.

The user may specify a border-width, horizontal and vertical separations hsep and vsep between the border and the text, and colors border-color and body-color for the border and the background. For instance, wide-std-framed-colored|brown|pastel green| Hi there! yields Hi there! indent-left|left-amount|body indent-right|right-amount|body indent-both|left-amount|right-amount|body These environments may be used in order to increase the current left and/or right indentation by the amounts left-amount and/or right-amount.

margin-first-other|first-margin |other-margin |body

This environment allows to set the margin first-margin for the first lines of paragraphs in the body , as well as the margin other-margin for the other lines. This environment is for instance useful for glossaries, indexes, etc., in which case other-margin is often larger than first-margin . Notice that this environment enables indentation for the first line of body .

The following macros may be used in order to set headers and footers:

set-header|header-text

A macro for permanently changing the header. Notice that certain tags in the style file, like sectional tags, may override such manual changes.

set-footer|footer-text

A macro for permanently changing the footer. Again, certain tags in the style file may override such manual changes.

blanc-page

Remove all headers and footers from this page.

simple-page

Remove the header of this page and set the footer to the current page number (centered). This macro is often called for title pages or at the start of new chapters.

Other macros provided by std-utils are:

localize|text This macro should be used in order to "localize" some English text to the current language. For instance, with|language|french| localize|Theorem yields Théorème.

map|fun |tuple

This macro applies the macro fun to each of the entries in a tuple (or the children of an arbitrary T E X MACS tag) and returns the result as a tuple. For instance, map| macro| x | em|x | tuple|1|2|3 yields quote| tuple|1 |2 |3 (the quote only appears when rendering the result, not when performing further computations with it).

Counters and counter groups

In T E X MACS , all automatic numbering of theorems, sections, etc. is done using "counters". Such counters may be individual counters (like equation-nr) or belong to a group of similar counters (like in the case of theorem-nr). T E X MACS allows for the customization of counters on an individual or groupwise basis. Typically, you may redefine the rendering of a counter (and let it appear as roman numerals, for instance), or undertake special action when increasing the counter (such as resetting a subcounter).

New individual counters are defined using the following meta-macro:

new-counter|x

Defines a new counter with name x . The counter is stored in the numerical environment variable x-nr and in addition, the following macros are defined:

the-x

Retrieve the counter such as it should be displayed on the screen.

reset-x

Reset the counter to 0.

inc-x

Increase the counter. This macro may also be customized by the user so as to reset other counters (even though this is not the way things are done in the standard style files).

next-x

Increase the counter, display the counter and set the current label.

For the purpose of customization, the new-counter macro also defines the following macros:

display-x|nr

This is the macro which is used for transforming the numerical value of the counter into the value which is displayed on the screen.

counter-x|x

This internal macro is used in order to retrieve the name of the environment variable which contains the counter. By default, this macro returns "nr-x", but it may be redefined if the counter belongs to a group.

As noticed in the introduction, T E X MACS uses counter groups in order to make it possible to treat similar counters in a uniform way. For instance the counter group theorem-env regroups the counters theorem, proposition, lemma, etc.. New counter groups and are defined using:

new-counter-group|g

Create a new counter group with name g. This results in the creation of the following macros:

display-in-g |x |nr counter-in-g |x These macros are similar to the macros display-x and counter-x from above, but relative to the counter group. The name x of the counter in consideration is passed as an argument.

New counters can be added to the group using:

add-to-counter-group|x |g

Defines a new counter x and add it to the counter group g. For counters in groups, the macros display-x and counter-x are replaced with the corresponding macros display-in-g and counter-in-g for their groups. Nevertheless, two new macros ind-display-x and indcounter-x are defined which may take over the roles of display-x and counter-x in the case when the group consists of individual counters.

At any moment, you may decide whether the counters of a group share a common group counter, or whether they all use their individual counters. This feature is used for instance in order to switch between American style numbering and European style numbering:

group-common-counter|g

Use a common counter for the group (which is stored in the environment variable g-nr).

group-individual-counters|g

Use an individual counter for each member of the group (this is the default).

We notice that group counters may recursively belong to super-groups. For instance, the following declarations are from env-base.ts:

new-counter-group|std-env new-counter-group|theorem-env add-to-counter-group|theorem-env|std-env group-common-counter|theorem-env

Special markup for programs

The program d.t.d. provides markup for the layout of computer programs. However, these tags should be considered as very unstable, since we plan to replace them by a set of more detailed tags:

algorithm|name|body

The name of the algorithm and its body , which includes its possible specification.

body|body

The real body of the algorithm.

indent|content

For indenting part of an algorithm.

Special markup for sessions

The session d.t.d. provides the following environments for computer algebra sessions:

session|body Environment for marking a session. All macros below are only for use inside sessions.

input|prompt|body An input field with a prompt and the actual input.

output|body An output field.

textput|body Fields with ordinary text. These may for instance be used for comments and explanations.

errput|body

This macro is used inside output fields for displaying error messages.

In fact, these environments are based on environments of the form lan-session, lan-input, lan-output, lan-textput and lan-errput for every individual language lan.

If language-specific environments do not exist, then generic-session, generic-input, genericoutput, generic-textput and generic-errput are taken instead. It is recommended to base the language-specific environments on the generic ones, which may have different implementations according to the style (e.g. the varsession package). For this purpose, we also provide the generic-output* environment, which is similar to generic-output, except that margins remain unaltered.

Standard environments

The env d.t.d. contains the standard environments which are available in most styles. It is subdivided into the following parts:

Defining new environments

The env-base d.t.d. contains high-level markup which can be used by the user to define new numbered environments for theorems, remarks, exercises and figures:

new-theorem|env-name|display-name

This meta-macro is used for defining new theorem-like environments. The first argument env-name specifies the name for the environment (like "experiment") and displayname the corresponding text (like "Experiment"). When defining a new theoremlike environment like experiment, an unnumbered variant experiment* is automatically defined as well.

new-remark|env-name|display-name

Similar as new-theorem, but for remarks.

new-exercise|env-name|display-name

Similar as new-theorem, but for exercises.

new-exercise|env-name|display-name

Similar as new-theorem, but for figures. When defining a new type of figure, like "picture", the new-figure macro defines both the inline environment small-picture and the block-environment big-picture, as well as the unnumbered variants small-picture* and big-picture*.

The theorem-like and remark-like environments belong to a common counter-group theorem-env. By default, we use American-style numbering (one common counter for all environments). When selecting the package number-europe, each environment uses its own counter. All exercises and figures use their own counter-group.

More generally, the std-env counter-group regroups the counters for all standard T E X MACS environments. Typically, all counters in this group are prefixed in a similar way (for instance by the number of the chapter). Figure 18.1 shows how the hierarchical organization of this counter group.

Standard environments

In addition to the standard theorem-like, remark-like, exercise-like and figure-like environments, other numbered textual environments may be defined using the new-env macro. These environments may be based on arbitrary counter-groups:

new-env|group|env|env-name|display-name

The first argument is the name of the counter group to which the new environment belongs. The second argument env is the name of a binary macro for rendering the environment. The arguments of the rendering macro are a name (like "Theorem 3.14") and its body. The remaining arguments are similar as for new-theorem. For instance, in the standard style-sheets, new-theorem is defined by

assign | new-theorem | macro | env | name | new-env | env | name | theorem-env | render- theorem
We recall that you may add new counters or counter-groups to the theorem-env countergroup using the new-counter-group and add-to-counter-group macros, as described in the section about counters.

Mathematical environments

The env-math d.t.d. specifies which mathematical environments can be used inside textmode. In other words, the environments should be used inside text-mode, but their bodies contain mathematical formulas or tables of mathematical formulas.

eqnarray*|table

An array of unnumbered equations.

Inside the eqnarray* environment, you can use the eq-number tag in order to number the equation.

Warning 18.1. The numbering of equations inside tables is not yet as it should be. In particular, the eqnarray tag is equivalent to eqnarray* at the moment. Later on, when the eqnarray tag will be implemented correctly, you will also have a no-number tag in order to suppress the number of an equation, and a style package for numbering equations at the left hand side.

Warning 18.2. There is no option for numbering equations at the left hand side available yet. Nevertheless, you may use the manual tag leq-number for this. You also have a tag next-number which directly display the next number and increases the equation counter.

Warning 18.3. We do not encourage the use of the AMS-T E X environments align, gather and split. Nevertheless, they are available under the names align, gather, eqsplit together with their variants align*, gather* and eqsplit*. In the future, we plan to provide more powerful environments.

Theorem-like environments

Using the theorem-like environments

The env-theorem d.t.d. contains the default theorem-like and other textual environments, which are available through Insert→Environment. They are subdivided into three main categories:

Variants of theorems. The bodies of theorem-like environments are usually emphasized. By default, the following such environments are available via Insert→Environment: theorem, proposition, lemma, corollary, axiom, definition, notation, conjecture.

Variants of remarks.

The following ones are available via Insert→Environment: remark, example, note, warning, convention.

Variants of exercises. Two such environments are provided by default and available via Insert→Environment: exercise and problem.

The environments are all available in unnumbered versions theorem*, proposition*, etc. as well. You may use % # in order to switch between the unnumbered and numbered version.

The following tags are also provided:

proof|body For proofs of theorems.

dueto|who

An environment which can be used to specify the inventors of a theorem. It should be used at the start inside the body of a theorem, like in

Theorem. (Pythagoras) a 2 + b 2 = c 2 .

Customization of the theorem-like environments

The following customizable macros are used for the rendering of textual environments:

render-enunciation|name|body

This macro is used for displaying a theorem-like and remark-like environments. The first argument name specifies the name of the theorem, like "Theorem 1.2" and the second argument body contains the body of the theorem.

render-theorem|name|body

This macro, based on render-enunciation, is used for displaying a theorem-like environments, and used for environments defined by new-theorem.

render-remark|name|body

This macro, based on render-enunciation, is used for displaying a remark-like environments, and used for environments defined by new-remark.

render-exercise|name|body

Similar to render-enunciation, but for exercise-like environments.

render-proof|name|body

Similar to render-enunciation, but for proofs. This environment is mainly used for customizing the name of a proof, like in "End of the proof of theorem 1.2".

Notice that you may also use these macros if you want an environment which is rendered in a similar way as a theorem, but with another name (like "Corollary of Theorem 7").

The following tags can be used for further customization of the rendering:

enunciation-name|name

This macro controls the appearance of the names of theorem-like, remark-like and exercise-like environments. Most styles use bold face or small capitals.

theorem-name|name remark-name|name exercise-name|name

These macros default to enunciation-name, but can be customized individually.

enunciation-sep

The separator between the name of a theorem-like, remark-like or exercise-like environment and its main body. By default, this is a period followed by a space.

theorem-sep remark-sep exercise-sep

These macros default to enunciation-sep, but can be customized individually.

Each standard environment x also comes with a customizable macro x-text which renders the localized name of the environment. For instance, with|language|dutch| theorem-text yields "Stelling".

Environments for floating objects

Using the environments for floating objects

The env-float d.t.d. provides the following environments for floating objects:

small-figure|body |caption

This macro produces an inline figure with body as its main body and caption as a caption. Inline figures may for instance be used to typeset several small figures side by side inside a floating object.

big-figure|body |caption

This macro produces a big figure with body as its main body and caption as a caption. Big figures span over the whole paragraph width.

small-table|body |caption

Similar to small-figure, but for tables.

big-table|body |caption

Similar to big-figure, but for tables.

footnote|body Produces a footnote.

The figure-like environments also admit unnumbered versions small-figure*, big-figure*, etc., which are obtained using % # .

Customization of the environments for floating objects

The following macros can be used for customizing the rendering of figure-like environments:

render-small-figure|aux |name|body |caption

This macro is used for rendering small figure-like environments. The first argument aux specifies an auxiliary channel (like "figure" or "table ") which is used for inserting the caption inside the list of figures. The second argument name specifies the name of the figure (like "Figure 2.3" or "Table 5"). The last arguments body and caption correspond to the figure itself and a caption.

render-big-figure|aux |name|body |caption

Similar to render-small-figure, but for displaying a big figure-like environments.

The following tags can be used for customizing the appearance the text around figures, tables and footnotes:

figure-name|name

This macro controls the appearance of the text "Figure ". By default, we use bold face.

figure-sep

This macro produces the separator between the figure and its number and the caption. By default, it produces a period followed by a space.

footnote-sep

This macro produces the separator between the number of the footnote and the text. By default, it produces a period followed by a space. Specify data attached to your document (title, authors, etc.; see below) and render the title.

abstract|body

The abstract for your paper.

When creating a doc-data tag using Insert→Title→Insert title, T E X MACS automatically inserts a doc-title tag as its first arguments. New data may be inserted from the Insert→ Title menu. Each child data-1 , , data-n of the doc-data tag is of one of the following forms:

doc-title|title

Specify the title of the document.

doc-subtitle|subtitle

Specify the subtitle of the document.

doc-author|data-1 | |data-n

Specify datas for one of the authors of the document (name, affiliation, etc.; see below).

doc-date|date

The creation date of the document. In particular you may take date for the value of date for the current date.

doc-running-title|title

Specify a running title for your document which may be used in page headers.

doc-running-author|author

Specify a running author for your document which may be used in page headers.

doc-keywords|kw-1 | |kw-n

Specify keywords kw-1 until kw-n for your document.

doc-msc|nr-1 | |nr-n

Specify A.M.S. subject classification numbers nr-1 until nr-n for your document.

doc-note|note

A note about your document. In particular, you may take with-TeXmacs-text for the value of note in order to indicate that your document has been written using T E X MACS .

author-data|data-1 | |data-n

Specify structured datas for one of the authors of the document (name, affiliation, etc.; see below).

When inserting an additional author using Insert→Title→Author→Insert author, T E X MACS inserts a doc-author| author-data|... tree with an author-name tag as its first argument. New author data may be inserted from the Insert→Title→Author menu. Each child data-1 , , data-n of the author-data tag is of one of the following forms:

author-name|name Specify the name of the author.

author-affiliation|affiliation

The affiliation of the author.

author-email|email

An email address for the author.

author-homepage|homepage

The homepage of the author.

author-misc|note

A miscellanous note attached to the author, like a thank-word.

As a general rule, the use of any of the subtags of doc-data or author-data is optional. An individual subtag may also be specified several times. This is useful for documents with several authors, or authors with several addresses. The rendering of title information is very style-dependent: some styles render addresses in a single line or even as a footnote, where other styles use a more widely spaced presentation. Often, some information like keywords or AMS subject classification numbers are only rendered as a part of the abstract.

Customizing the global rendering of titles

Depending on the kind of attributes, complex titles often use several rendering styles in a simultaneous version. More precisely, a title usually consists of the following parts:

• A well visible part at the top of the title page.

• Additional notes, which are displayed in the footer.

• An potentially invisible part, with information like running titles and authors.

• A postponed part, which is only rendered in the abstract.

Similarly, individual authors may also contain a main part, which is rendered as part of the title, and an additional part, which is rendered as a footnote. Moreover, the layout often changes if the paper has more than one author.

The T E X MACS mechanism for rendering titles therefore relies on several macros which extract the information corresponding to each of the above parts. This process may also involve some sorting, like putting the authors before the date or vice versa . At a second stage, each extracted part of the title is passed to the appropriate rendering macro. The following macros are used for extracting title information:

doc-data-main|data-1 | |data-n doc-data-main*|data-1 | |data-n
This macro only keeps and sorts the data which should be displayed in the main title.

The doc-data-main* variant is used in the case when the document has more than one author.

doc-data-note|data-1 | |data-n

This macro only keeps and sorts the data which should be displayed as a footnote.

doc-data-abstract|data-1 | |data-n

This macro only keeps and sorts the data which should be displayed in the abstract.

doc-data-hidden|data-1 | |data-n
This macro only keeps and sorts the data which might or should not be displayed at all.

In a similar fashion, the following macros are used for extracting author information:

doc-author-main| author-data|data-1 | |data-n
This macro only keeps and sorts the data which should be displayed inside the main title.

doc-author-note|data-1 | |data-n

This macro only keeps and sorts the data which should be displayed as a footnote.

It should be noticed that each of the above macros should return a document tag with the selected data as its children. The only exception to this rule is doc-data-hidden which should return a concat tag instead.

Customizing the rendering of title fields

Both title information and author information is rendered as a vertical stack of "title blocks" and "author blocks". The following macros may be used to customize the global rendering of such blocks:

doc-title-block|content doc-author-block|content

Macros for rendering one component of the title or author information.

The following macros may be used to customize the rendering of title information; notice that they are usually built on top of doc-title-block.

doc-make-title|content

This macro is used for the rendering of the main title information. Usually, it contains at least the title itself, as well as one or several authors.

doc-render-title|title

This macro is used for rendering the title of the document. The doc-title macro also takes care of rendering references to potential footnotes.

doc-subtitle|title

This macro is used for rendering the subtitle of the document.

render-doc-author|content

In the case when the document has a single author, then this macro is used for rendering the content information about him or her.

render-doc-authors|content

In the case when the document has several authors, then this macros is used for rendering all author-related content which is part of the main title.

doc-date|date

This macro is used for rendering the creation date of the document.

The following macros may be used to customize the rendering of author information; notice that they are usually built on top of doc-author-block.

author-render-name|name

Renders the name of the author.The author-name macro also takes care of rendering references to potential footnotes.

author-by|name

A macro which may put the text "by " in front of the name of an author.

author-affiliation|affiliation

Renders the affiliation of the author.

author-email|email

Renders the email address of the author.

author-homepage|email

Renders the homepage of the author.

The following macros are used for information which is usually not rendered as a part of the main title, but rather as a footnote or part of the abstract.

doc-title-note|note doc-author-note|note

A macro for rendering a note attached to the document or one of its authors. The note will usually appear as part of a footnote. By default, notes that consist of several lines are compressed into a single paragraph.

doc-keywords|kw-1 | |kw-n

A macro for displaying a list of keywords.

doc-msc|nr-1 | |nr-n

A macro for displaying a list of A.M.S. subject classification numbers.

Standard headers

The header d.t.d. provides call-back macros which allow page headers and footers to change automatically when specifying the title information of the document or when starting a new section.

header-title|title

This macro is called when specifying the title of a document.

header-author|author

This macro is called when specifying the author (s) of a document.

header-primary|section-title|section-nr |section-type

This macro is called at the start of each new primary section (e.g. chapter for book style, or section for article style). The section-type is a literal text like "Chapter" or "Section".

header-secondary|section-title|section-nr |section-type

This macro is called at the start of each new secondary section (e.g. section for book style, or subsection for article style). The section-type is a literal text like "Section" or "Paragraph".

In style files, page headers and footers are usually set by the above call-back macros, and not manually. You may directly modify headers and footers by setting the corresponding environment variables or using several helper macros supplied by std-utils.

18.5. L A T E X style sections

Using sectional tags

The section-base d.t.d. provides the standard tags for sections, which are the same as in L A T E X. Most sectional tags take one argument: the name of the section. The intention of the following tags is to produce numbered sections:

part|title chapter|title section|title subsection|title subsubsection|title paragraph|title subparagraph|title appendix|title
The intention of this macro is to produce a numbered title for a part (resp. chapter, section, subsection, etc.). The numbering is not required, but merely an intention: the paragraph and subparagraph tags are usually not numbered and some styles (like the generic style) do not produce numbers at all.

The tags part*, chapter*, section*, subsection*, subsubsection*, paragraph*, subparagraph* and appendix* can be used for producing the unnumbered variants of the above tags.

By default, all sectional only produce the section title. When using the experimental package structured-section, all sectional tags are enriched, so that they take the body of the section as an optional argument. Moreover, an additional tag rsection is provided in order to produce recursively embedded sections. For instance, an rsection inside a section behaves like a subsection. In the future, all list items should become structured.

The section-base d.t.d. also provides the following sectional environments with automatically generated content bibliography|aux |style|file-name|body

This macro is used for producing bibliographies. The first argument aux specifies the auxiliary channel with the data for generating the bibliography (bib, by default). The arguments style and file-name contain the bibliography style and the file with the bibliographic database. The body argument corresponds to the automatically generated content.

table-of-contents|aux |body

This macro is used for producing tables of contents. The first argument aux specifies the auxiliary channel with the data for generating the bibliography (toc, by default).

The body argument corresponds to the automatically generated content.

the-index|aux |body

Similar to table-of-contents but for indices and default channel idx.

the-glossary|aux |body list-of-figures|aux |body list-of-tables|aux |body

Similar to table-of-contents but for glossaries (default channel gly), lists of figures (default channel figure) and lists of tables (default channel table).

The above tags also admit the variants bibliography*, table-of-contents*, the-index* and the-glossary* with an additional argument name before body , which specifies the name of the section. For instance, the the-glossary* was formerly used for lists of figures and lists of tables.

Customization of the sectional tags

The section-base d.t.d. also contains many tags for customizing the rendering of sections and other section-related behaviour. The following two tags affect all sections:

sectional-sep

A macro for customizing the separator between the number of a section and its title. By default, we use two spaces.

sectional-short-style

A predicate which tells whether documents for this style are intended to be short or long. When sectional-short-style evaluates to true, then appendices, bibliographies, etc. are supposed to be special types of sections. Otherwise, they will be special types of chapters.

For each sectional tag x, the following tags are provided for customization:

x-text A macro which displays the (localized) name of the sectional environment. For instance, with|language|french| appendix-text produces "Annexe".

x-title|title

A macro for displaying the unnumbered section title.

x-numbered-title|title

A macro for displaying the numbered section title.

x-display-numbers

A predicate which specifies whether numbers will really be displayed. For instance, in the case of paragraph, this macro evaluates to false. Consequently, even though xnumbered-title does display the paragraph number, the main macro x will call x-title and not x-numbered-title, so that paragraph titles are not numbered.

x-sep

A macro for customizing the separator between the number of a section and its title.

By default, we call sectional-sep.

x-clean

A hook for resetting all subcounters of the section.

x-header|name

A hook for changing the page headers.

x-toc|name

A hook for putting the section title into the table of contents.

Finally, the section-base d.t.d. provides rendering macros render-table-of-contents, renderbibliography, render-index and render-glossary, each of which takes two arguments: the name of the section and its body. It also provides the macros prologue-text, epilogue-text, bibliography-text, table-of-contents-text, index-text, glossary-text, list-of-figures-text and list-oftables-text for customizing the names of special sections.

Helper macros for rendering section titles

The section-base d.t.d. contains several helper macros which can (should) be used when customizing the rendering of section titles:

sectional-short|body sectional-short-italic|body sectional-short-bold|body

These macros should be used for rendering "short section titles", for which the section body starts immediately at the right of the title. Usually, titles of paragraphs and subparagraphs are rendered in a short fashion, while the other section titles span over the entire width of a paragraph.

sectional-normal|body sectional-normal-italic|body sectional-normal-bold|body

These macros should be used for rendering "normal left-aligned section titles". Such titles span over the entire paragraph width.

sectional-centered|body sectional-centered-italic|body sectional-centered-bold|body

These macros should be used for rendering "normal centered section titles". Such titles span over the entire paragraph width.

Chapter 19

Compatibility with other formats T E X MACS documents can be saved without loss of information in three formats: the native T E X MACS format, Xml and as a Scheme expression. T E X MACS documents can be converted in a wysiwyg (what-you-see-is-what-you-get) way to either Postscript or Pdf, which are used as the primary formats for printing documents. T E X MACS finally provides converters for L A T E X, Html and MathML.

T E X MACS documents can be converted to other formats using the different items in the File→Export menu. Similarly, the File→Import menu contains all formats which can be imported into T E X MACS . Besides exporting or importing entire documents, it is also possible to copy and paste document fragments using Edit→Copy to and Edit→Paste from.

The default formats for copy and pasting can be specified in Tools→Selections→Export and Tools→Selections→Import.

19.1. Converters for L A T E X

Introduction

T E X MACS offers high quality converters to and from L A T E X. For simple documents, it suffices to use File→Export→LaTeX resp. File→Import→LaTeX. However, in order to take fully advantage out of the converts, it is necessary to understand some particularities of L A T E X.

First of all, it should be emphasized that T E X/L A T E X is not a data format. Indeed, T E X is a programming language for which no real standardization process has taken place: valid T E X programs are defined as those which are recognized by the T E X program. In particular, there exists no formal specification of the language and it is not even clear what should be considered to be a valid T E X document. As a consequence of this, a converter from L A T E X to T E X MACS can only be designed to be 100% reliable for a (substantial) subset of the T E X/L A T E X language.

A second important point is that publishers usually impose additional constraints on the kind of L A T E X documents which they accept for submissions. For instance, certain journals provide additional macros for title information, theorems, specific layout features, etc.

Other journals forbid for the definition of new macros in the preamble. Since T E X MACS is not a T E X/L A T E X front-end, it is difficult for us to write specific code for each possible journal. Nevertheless, some general principles do hold, and we will describe below how to customize the converter so as to make the conversion process as simple and automatic as possible.

Another point which should be stressed is that T E X MACS aims to provide a strict superset of T E X/L A T E X. This not completely the case yet, but it is already true that many features in T E X MACS admit no direct analogues in T E X/L A T E X or one of its packages. This is for instance the case for computer algebra sessions, folding, actions, graphics and presentations, but also for certain typsetting constructs, like vertical alignment and background filling in tables. When using such additional features, you should be prepared that they will not be converted correctly to L A T E X.

Finally, when preparing journal papers with T E X MACS , please consider submitting them in T E X MACS format. The editors of the journal will probably force you to convert your paper to L A T E X, but repeated submissions in T E X MACS format will put pressure upon them to accept this new format.

Conversion from T E X MACS to L A T E X

A T E X MACS document can be exported to L A T E X using File→Export→LaTeX. In the case of certain journal styles like svjour or elsart, the user should also make sure that the appropriate style files can be found by L A T E X, when compiling the result of the conversion. Please consult your L A T E X documentation for how to do this; one solution which usually works is to put the style file in the same directory as your file.

Notice that the exportation of a T E X MACS document with images may cause the creation of additional image files. If your destination file is called name.tex, these files are named name-1.eps, name-2.eps, etc. and they are stored in the same directory. In particular, all pictures drawn with the editor, and all images which are not already in Postscript format, will be converted to encapsulated Postscript files.

In order to ensure that the generated L A T E X document compiles, style files and packages or macros with no L A T E X equivalents are either ignored or replaced by a reasonable substitute.

The precise behaviour of the converter may be customized using several user preferences in the Edit→Preferences→Converters→TeXmacs->LaTeX menu:

Replace unrecognized styles. This option (which is set by default) tells T E X MACS to replace style files with no L A T E X equivalents by the letter style. Furthermore, all additional style packages are ignored.

In the case when you know how to write your own style files, then you might wish to create T E X MACS equivalents of certain journal styles which you often use. Similarly, you might wish to create a style package with your own macros together with its L A T E X counterpart. In both cases, you might want to disable the style replacement option.

Replace unrecognized macros.

By default, all T E X MACS macros are expanded until they admit direct L A T E X counterparts. Primitives with no L A T E X counterparts (like graphics or trees) are ignored. Moreover, in order to convert certain frequently used macros like theorem or strong, T E X MACS may put additional definitions in the preamble.

In some cases, the user may wish to keep unrecognized macros in their unexpanded form. For instance, this may be convenient if you want to import the generated document back into T E X MACS . Another typical situation is when you defined additional macros in a style package. In these cases, you may disable to macro replacement option. Of course, any missing macro definitions may result in L A T E X errors during the compilation.

Expand user-defined macros.

When your document or its preamble contains macro definitions, then T E X MACS will convert these macro definitions into L A T E X macro definitions and keep all macro applications in their unexpanded forms. This allows you to preserve as much structure of your document as possible. When enabling the Expand user-defined macros option, all macro definitions in your document will be ignored and all macro applications will be expanded.

Export bibliographies as links.

In order to produce stand-alone L A T E X files whenever possible, it is assumed that you generate your bibliographies from within T E X MACS . When exporting to L A T E X, the generated bibliography will be directly included into your L A T E X file. In some cases however, the user might wish to regenerate the bibliography from the L A T E X and the bibliography files, using BibT E X. In this case, you need to enable the Export bibliographies as links option.

Use catcode definitions in preamble.

By default, accented characters like "é" are exported to L A T E X as \'e. In order to increase readability and especially in case that you want to edit the resulting L A T E X file, you may wish to keep the accented characters "as is". This can be achieved by allowing T E X MACS to put additional catcode definitions into your preamble.

Allow for macro definitions in preamble.

Certain T E X MACS macros like strong have no direct L A T E X analogues. For a certain number of frequently used macros, T E X MACS automatically generates macro definitions in the preamble of the L A T E X target file. This allows you to preserve as much structure as possible of your document, which is for instance useful if you import the document back into T E X MACS .

However, certain journals instruct authors to refrain from the definition of additional macros in the preamble. When disallowing for macro definitions in preambles, T E X MACS will automatically expand all corresponding macro applications.

Sometimes, the converter does not produce a satisfactory L A T E X file even after some twiddling with the above preferences. The most frequent problem concerns bad line breaks. Occasionally, certain document fragments are also better converted by hand. In order to minimize the need for corrections in the generated L A T E X file (which would be lost when re-exporting the T E X MACS source file after some modifications), T E X MACS provides a mechanism to specify manual conversions to L A T E X in the T E X MACS source file: using Format→Specific→Texmacs and Format→Specific→Latex, you may force certain document fragments to appear only in the source file or the L A T E X target.

For instance, assume that the word "blauwbilgorgel" is hyphenated correctly in the T E X MACS source, but not in the L A T E X conversion. Then you may proceed as follows:

1. Select "blauwbilgorgel".

2. Click on Format→Specific→Texmacs to make the text "blauwbilgorgel" T E X MACSspecific.

3. Click on Format→Specific→Latex.

4. Type the latex code blauw\-bil\-gor\-gel with the correct hyphenation.

Press to activate the L

A T E X-specific text.

In a similar fashion, you may insert L A T E X-specific line breaks, page breaks, vertical space, style parameter modifications, etc. You may also force arbitrary content to be exported as an image using Format→Specific→Image.

Conversion from L A T E X to T E X MACS

In order to import a L A T E X document into T E X MACS , you may use File→Import→Latex. Don't forget to save the file under a new name with the .tm extension, if you want to edit it.

As explained in the introduction, the conversion of L A T E X documents into T E X MACS is more problematic than conversions the other way around. As long as you restrict yourself to using the most common L A T E X commands, the conversion process should not give rise to any major difficulties. However, as soon as your documents contain "weird macro definitions", then the converter may get confused. We also notice that T E X MACS is currently unable to convert L A T E X style files and no plans exist to enhance the converter in this direction.

There are two major reasons for L A T E X documents to get imported in an inappropriate way, and which can easily be corrected by the user. First of all, the parser may get confused because of some exotic syntactic construct. This typically happens in presence of catcodes or uncommon styles of macro definitions. Sometimes, the parser may also be mistaken about the current mode, in which case text gets parsed as a mathematical formula or vice cersa . In both cases, the imported document usually becomes "weird" at a certain point. In order to solve the problem, we suggest you to identify the corresponding point in the L A T E X source file and to make an appropriate change which avoids the parser of getting confused.

A second common error is that certain L A T E X macros are not recognized by the converter, in which case they will appear in red. This typically happens if you use one of the hundreds additional L A T E X packages or if you defined some additional macros in another document.

In the case when the troublesome macro occurs only a few times, then we suggest you to manually expand the macro in the L A T E X source file before importation. Otherwise, you may try to put the definitions of the missing macros in the preamble of the L A T E X document. Alternatively, you may create a small style package with T E X MACS counterparts for the macros which were not recognized.

Limitations of the current L A T E X converters

Limitations of the T E X MACS to L A T E X converter.

Some of the T E X MACS primitives have no analogues in L A T E X. When converting such primitives from T E X MACS into L A T E X, they will usually be either ignored or replaced by an approximative translation. A (probably incomplete) list of T E X MACS features with no L A T E X counterparts is as follows:

• Left primes.

• Big separators between big parentheses.

• Trees.

• Certain features of tables (background color, cell span, vertical alignment, etc.).

• Complex user macros.

• Vertical spaces "before" and "after".

• Indentation flags "before" and "after".

• Most types of interactive content: hyperlinks, actions, sessions, tags for the presentation mode, animations and sounds, etc.

In addition, several issues are only partially implemented:

• Non standard fonts.

• Certain table properties

• Style parameters.

Of course, there are also differences between the typesetting algorithms used by T E X MACS and T E X/L A T E X, so the T E X MACS to L A T E X is not intended to be wysiwyg.

Limitations of the L

A T E X to T E X MACS converter.

As explained in the introduction, the conversion of L A T E X documents into T E X MACS is more problematic than conversions the other way around. Only a subset of L A T E X can be converted to T E X MACS in a fully reliable way. This subset comprises virtually all common constructs, including macro definitions and the additional macros uses by the T E X MACS to L A T E X converter. However, the converter has no knowledge about style parameters. In particular, it cannot be used for the conversion of L A T E X style files.

Converters for Html and MathML

Html generation.

T E X MACS supports reasonably good converters to Html and MathML. A document can be exported to Html using File→Export→Html. T E X MACS makes moderate use of Css in order to improve the presentation of the generated Html.

By default, T E X MACS does its best in order to render formulas using existing Html/Css primitives. When selecting Edit→Preferences→Converters→TeXmacs->Html→Use MathML, all formulas will be exported as MathML. Notice that this requires you to save the generated documents using the .xhtml extension.

T E X MACS also provides a facility for the creation of entire websites. For this, you just have to regroup the files for your website into a single directory. Using Tools→Web→Create website you may now convert all T E X MACS files in this directory to Html files in a new directory. The conversion procedure recursively traverses all subdirectories and all non-T E X MACS files are simply copied.

Customized Html generation.

The following T E X MACS environment variables can be used to customize the Html generation: html-title. The title of your exported document.

html-css.

A cascaded style sheet for your exported document.

html-head-javascript-src. An external Javascript file to be executed before the body.

html-head-javascript.

A Javascript script to be executed before the body.

You may also use the following macros:

html-div|class |body

Associate a CSS class to the content body .

html-style|style|body

Associate a CSS style to the content body .

html-javascript-src|src

Execute a Javascript script from the file src.

html-javascript|code

Execute the Javascript script code.

Html importation.

T E X MACS also contains a rudimentary input converter for Html in File→Import→Html.

Most of HTML 2.0 and parts of HTML 3.0 are currently supported. However, no browsing facilities have been added yet. The converter also contains a reasonably complete input converter for embedded MathML fragments.

When importing HTML documents, files whose names start with http: or ftp: will be downloaded from the web using wget. If you compiled T E X MACS yourself, then you can download wget from ftp://ftp.gnu.org/pub/gnu/wget/

In the binary distributions, we have included wget.

Adding new data formats and converters

Using the Guile/Scheme extension language, it is possible to add new data formats and converters to T E X MACS in a modular way. Usually, the additional formats and converters are declared in your personal ~/.TeXmacs/progs/my-init-texmacs.scm or a dedicated plug-in. Some examples may be found in the directory $TEXMACS_PATH/progs/convert, like init-html.scm.

Declaring new formats.

A new format is declared using the command (define-format format (:name format-name) options)

Here format is a symbol which stands for the format and format-name a string which can be used in menus. In fact, a data format usually comes in several variants: a format format -file for files, a format format-document for entire documents, a format formatsnippet for snippets, like selections, and format -object for the preferred internal scheme representation for doing conversions (i.e. the parsed variant of the format). Converters from format -file to format -document and vice versa are provided automatically.

The user may specify additional options for the automatic recognition of formats by their file suffix and contents. The possible suffixes for a format, with the default one listed first, may be specified using (:suffix default-suffix other-suffix-1 ... other-suffix-n)

A (heuristic) routine for recognizing whether a given document matches the format can be specified using either one of the following:

(:recognize predicate) (:must-recognize predicate)

In the first case, suffix recognition takes precedence over document recognition and in the second case, the heuristic recognition is entirely determined by the document recognition predicate.

Declaring new converters.

New converters are declared using (converter from to options)

The actual converter is specified using either one of the following options:

(:function converter) (:function-with-options converter-with-options) (:shell prog prog-pre-args from progs-infix-args to prog-post-args)

In the first case, the converter is a routine which takes an object of the from format and returns a routine of the to format. In the second case, the converter takes an additional association list as its second argument with options for the converter. In the last case, a shell command is specified in order to convert between two file formats. The converter is activated only then, when prog is indeed found in the path. Also, auxiliary files may be created and destroyed automatically.

T E X MACS automatically computes the transitive closure of all converters using a shortest path algorithm. In other words, if you have a converter from x to y and a converter from y to z, then you will automatically have a converter from x to z. A "distance between two formats via a given converter" may be specified using (:penalty floating-point-distance)

Further options for converters are:

(:require cond) (:option option default-value)

The first option specifies a condition which must be satisfied for this converter to be used. This option should be specified as the first or second option and always after the :penalty option. The :option option specifies an option for the converter with its default value. This option automatically become a user preference and it will be passed to all converters with options.

Converters. The behaviour of converters between T E X MACS various other data formats may be configured from this menu. For more details, we refer to the chapter on compatibility with other formats.

Scripts. Specify a default scripting language for all external scripts.

Tools. T E X MACS features a few additional tools which the user may wish to work under certain circumstances:

• A debugging tool for T E X MACS developers.

• A linking tool for entering typed hyperlinks and complex annotations.

• A versioning tool for comparing two versions of a T E X MACS document.

• A remote connection tool (which currently does not work anymore).

Autosave. This preference specifies how often documents will be "autosaved". Any edits to a file which was not autosaved will be lost on undesired termination of T E X MACS . This typically occurs after an erroneous manipulations by the user, certain bugs in T E X MACS , or a power problem.

Bibtex command. The user may specify an alternative to bibtex for the compilation of bibliographies using BibT E X. Notice that recent versions of T E X MACS integrate a native alternative tool for the compilation of bibliographies.

A.2. Keyboard configuration

The behaviour of keyboard inside T E X MACS depends on a few user preferences, as specified in the menu Edit→Preferences:

• The Look and feel determines the main rules for keyboard shortcuts and attempts to make the behaviour as close as possible to the standards for the selected look and feel.

• Some minor customizations are possible via Edit→Preferences→Keyboard.

We will now detail specific issues related to the keyboard configuration on various systems.

Please refer to the section on general conventions for explanations on the way keyboard shortcuts are printed in this manual. For more information on keyboard shortcuts, we refer to the general section on how the master the keyboard.

Standard conformance.

T E X MACS attempts to be as standard-conformant regarding the various look and feels. However, there are a few general situations in which T E X MACS reserves some keyboard shortcuts for the sake of user-friendliness:

• The function keys F5 -F1 2 are reserved for special actions.

• Most standards admit a "principal modifier key" for forming keyboard shortcuts (for your look and feel) and sometimes another modifier key for other shortcuts (e.g. the Wi n d ows key under Windows and % under Mac OS). The remaining free modifier (% for your look and feel) is reserved for T E X MACS .

• T E X MACS contains many keyboard macros involving one or more modifier keys and the special keys , , , , , , , , + , & , Sp ace , and . The behaviour of shortcuts of this kind is occasionally non standard.

One solution to the above problems is to change the problematic global shortcuts in the responsible applications. For instance, Spaces can be configured to use % as a prefix instead of (click on the popup menu behind "To switch between spaces" and simultaneously press , % and). Notice that fn is another key which is not used by T E X MACS .

If you cannot or do not want to change the system-wide shortcuts, then you may use the -key in order to produce equivalents for the modifier keys , % and . For instance, under Mac OS, is equivalent to . Hence, the T E X MACS shortcut can also be obtained by typing , which may coexist with the Spaces shortcut . Table A.2 shows the modifier key combinations which can be obtained using .

Shortcut

Modifier keys % % % User-defined shortcuts.

If, for some reason, the standard T E X MACS shortcuts are not sufficient or suitable for you, then you may define your own shortcuts.

A.3. Notes for users of Cyrillic languages

In order to type Russian (and similarly for other Cyrillic languages) text, you have several options:

• Select Russian as your default language in Edit→Preferences→Language→Russian. If T E X MACS starts with Russian menus, then this is done automatically if the Russian locale is set.

• Select Russian for an entire document using Document→Language→Russian.

• Select Russian for a portion of text in another document using Format→Language→ Russian.

If In older Linux systems, the xkb extension is often disabled. Keysyms are 1-byte, and are configured by xmodmap. When X starts, it issues this command with the systemwide Xmodmap (usually living in /etc/X11/xinit), if it exists; and then with the user's ~/.Xmodmap, if it exists. You can configure the mode toggling key combination, and use a 1-byte Russian encoding (such as koi8-r) in the Russian mode. It is easier to download the package xruskb, and just run xrus jcuken-koi8 at the beginning of your X session. This sets the layout jcuken (see below) and the encoding koi8-r for your keyboard in the Russian mode. If you use such keyboard setup, you should select Options → international keyboard → russian → koi8-r.

It is also possible to use the Windows cp1251 encoding instead of koi8-r, though this is rarely done in UNIX. If you do use xrus jcuken-cp1251, select cp1251 instead of koi8-r.

All the methods described above require some special actions to "russify" the keyboard. This is not difficult, see the Cyrillic-HOWTO or, better, its updated version http://www.inp.nsk.su/~baldin/Cyrillic-HOWTO-russian/Cyrillic-HOWTOrussian.html Also, all of the above methods globally affect all X applications: text editors (emacs, nedit, kedit...), xterms, T E X MACS etc.

If you need to type Russian only once, or very rarely, a proper keyboard setup may be more trouble than it's worth. For the benefit of such occasional users, T E X MACS has methods of Russian input which require no preliminary work. Naturally, such methods affect only T E X MACS , and no other application.

The simplest way to type some Russian on the standard US-style keyboard with no software setup is to select Edit→Preferences→Keyboard→Cyrillic input method→translit. Then, typing a Latin letter will produce "the most similar" Russian one. In order to get some Russian letters, you have to type 2-or 3-letter combinations: Shorthand for Shorthand(s) for If you want to get, e.g., "ñõ", and not "ø", you have to type S / H . Of course, the choice of "optimal" mapping of Latin letters to Russian ones in not unique. You can investigate the mapping supplied with T E X MACS and, if you don't like something, override it in your ~/.TeXmacs/progs/my-init-texmacs.scm.

% " E ij " E IJ Y O ij Y O Y O IJ Z H ae Z H Z H AE J ae J AE C H oe C H C H OE S H ø S H S H Ø S C H ù S C H S C H Ù E ý E Ý Y U þ Y U Y U Þ Y A ß Y A Y A
If you select jcuken instead of translit, you get the "official" Russian typewriter layout. It is so called because the keys "qwerty" produce "éöóêåí". This input method is most useful when you have a Russian-made keyboard, which has additional Russian letters written on the key caps in red, in the jcuken layout (a similar effect can be achieved by attaching transparent stickers with red Russian letters to caps of a US-style keyboard). It is also useful if you are an experienced Russian typist, and your fingers remember this layout.

Those who have no Russian letters indicated at the key caps often prefer the yawerty layout, where the keys "qwerty" produce "ßâåðòû". Each Latin letter is mapped into a "similar" Russian one; some additional Russian letters are produced by -digits. T E X MACS comes with a slightly modified yawerty layout, because it does not redefine the keys $, £ , " , which are important for T E X MACS , are not redefined. The corresponding Russian letters are produced by some -digit combinations instead.

A.4. Notes for users of oriental languages

In order to type oriental languages, you first have to start a conversion server which can be used in combination with the X input method and set the environment variables accordingly. For instance, in the case of Japanese, one typically has to execute the folowing shell commands:

kinput2 & export LANG="ja_JP.eucJP" export LC_ALL="ja_JP.eucJP" export XMODIFIERS="@im=kinput2" You also have to install Japanese fonts. For instance, you may download the ipag fonts ipam.ttf, ipag.ttf, ipamp.ttf, ipagm.ttf and ipagui.ttf and copy them to ~/.TeXmacs/fonts/truetype After doing this, you may launch T E X MACS using texmacs --delete-font-cache and select Japanese from the icon on the first icon bar. If everything went allright, the menus should now show up in Japanese and the current document is also in Japanese. Notice that you may also select Japanese as your default language in Edit→Preferences→ Language→Japanese. It is also possible to select Japanese for a portion of text in a document using Format→Language→Japanese.

Inside a Japanese portion of text, and depending on your input method, you usually have to type Sp ace in order to start Kana to Kanji conversion. A small window shows up where you can type phonetic characters and use Sp ace in order to start conversion to Kanji characters. When pressing , the text is inserted into the main T E X MACS window.

Pressing Sp ace once again returns to the classical T E X MACS input method.

B.2. The philosophy behind T E X MACS

B.2.1. A short description of GNU T E X MACS

GNU T E X MACS is a free wysiwyw (what you see is what you want) editing platform with special features for scientists. The software aims to provide a unified and user friendly framework for editing structured documents with different types of content (text, graphics, mathematics, interactive content, etc.). The rendering engine uses high-quality typesetting algorithms so as to produce professionally looking documents, which can either be printed out or presented from a laptop.

The software includes a text editor with support for mathematical formulas, a small technical picture editor and a tool for making presentations from a laptop. Moreover, T E X MACS can be used as an interface for many external systems for computer algebra, numerical analysis, statistics, etc. New presentation styles can be written by the user and new features can be added to the editor using the Scheme extension language. A native spreadsheet and tools for collaborative authoring are planned for later.

T E X MACS runs on all major Unix platforms and Windows. Documents can be saved in T E X MACS , Xml or Scheme format and printed as Postscript or Pdf files. Converters exist for T E X/L A T E X and Html/Mathml.

GNU T E X MACS is hosted by the Centre de Ressources Informatiques de Haute Savoie, Archamps, France.

B.2.2. Why freedom is important for scientists

One major objective of T E X MACS is to promote the development of free software for and by scientists, by significantly reducing the cost of producing high quality user interfaces. If you plan to write an interface between T E X MACS and other software, then please contact us.

As a mathematician, I am deeply convinced that only free programs are acceptable from a scientific point of view. I see two main reasons for this:

• A result computed by a "mathematical" system, whose source code is not public, can not be accepted as part of a mathematical proof.

• Just as a mathematician should be able to build theorems on top of other theorems, it should be possible to freely modify and release algorithms of mathematical software.

However, it is strange, and a shame, that the main mathematical programs which are currently being used are proprietary. The main reason for this is that mathematicians often do not consider programming as a full scientific activity. Consequently, the development of useful software is delegated to "engineers" and the resulting programs are used as black boxes.

This subdivision of scientific activity is very artificial: it is often very important from a scientific point of view to know what there is in the black box. Inversely, deep scientific understanding usually leads to the production of better software. Consequently, I think that scientists should advocate the development of software as a full scientific activity, comparable to writing articles. Then it is clear too that such software should be diffused in a way which is compatible with the requirements of science: public availability, reproducibility and free usability.

B.3. The authors of T E X MACS

The GNU T E X MACS system, which is part of the GNU project, was designed and written by Joris van der Hoeven. The system was inspired both by the T E X system, written by D. Knuth, and by Emacs, written by R. Stallman. Special thanks goes to them, as well as to the C.N.R.S. (the French national institute for scientific research), which employs me and authorized me to freely distribute this program. Further thanks go to the contributors below.

B.3.1. Developers of T E X MACS

• Massimiliano Gubinelli is responsable for the new Qt port and several improvements for the MacOS X platform.

• Andrey Grozin has constantly helped us with many issues: interfaces to several computer algebra systems, support for Cyrillic, tools for the manipulation of dictionaries, etc.

• David Allouche replaced the gencc preprocessor by the more standard C++ template system. He also made many other patches, bug reports and he did a lot of the administration of TeXmacs.

• François Poulain works on the L A T E X converters and character transcodings.

• Miguel Benito Delgado works on the Qt port and automatic documentation of the Scheme files.

• Henri Lesourd developed a native mode for drawing technical pictures inside T E X MACS . He also fixed a bug in the presentation mode.

• Dan Martens made the Windows port.

• David Michel provided help concerning the Qt-based Windows port and several portability issues.

• Andreas Seidl has been helping with documentation, a Cygwin package and several other things.

• Dan Grayson helped me to implement communications with computer algebra systems via pipes. He also provided some money support for T E X MACS , and he made many useful comments and suggestions.

• Fabrice Rouillier provided help on a simplified T E X MACS installer based on Cygwin.

• Nobuki Takayama invited me to Japan in order to add CJK support to T E X MACS . He also provided a lot of help with this task.

• Karim Belabas designed and developed with me the first protocol for interfacing T E X MACS with scientific computation or computer algebra systems. He also implemented the interface with the Pari system.

• Felix Breuer helped with the support of Unicode and other character encodings. He also made a donation to the project.

• Norbert Nemec contributed a series of patches.

• Josef Weidendorfer made several patches for improving the performance of T E X MACS .

• Zou Hu for his help on CJK support and the Windows port.

• Stéphane Payrard made an important bugfix for destroying windows.

• Bruno Rino has helperd us migrating from CVS to SVN.

• Fabien Chéreau has helped us with the Qt port of T E X MACS .

• Johann Dréo for the new T E X MACS icon and many other graphics.

• Bill Page and David Mentré for the support of the free version of Axiom.

• Chu-Ching Huang for writing CAS documentation and making a Knoppix CD for T E X MACS .

• Nelson Beebe helped with manifacturing a more robust configure.in.

• Kai Krüger fixed several details for the new Maple interface.

• Mickael Floc'hlay and Arnaud Ébalard for their work on searching for help.

• Gwenael Gabard for some fixes in the L A T E X to T E X MACS converter.

• Igor V. Kovalenko and Teemu Ikonen for their help on debugging TeXmacs and a few patches.

• Gareth McCaughan made several patches and comments.

• Immanuel Normann is working on an OpenMath converter.

• Jonas Lööf for a precise installation procedure on Cygwin.

• Rob Clark made a patch which improves the system time support.

• Stanislav Brabec for several patches so as to increase portability.

Octave -Michael Graffam.

Pari -Karim Belabas.

Python -Ero Carrera.

Qcl -Andrey Grozin.

R -Michael Lachmann.

Reduce -Andrey Grozin.

Scilab -Serge Steer and Claude Gomez.

Shell -Joris van der Hoeven.

TeXgraph -Emmanuël Corcelle.

XYpic -Nicolas Ratier.

Yacas -Ayal Pinkus.

B.3.3. Administration of T E X MACS and material support

• Rennes Métropôle and the C.N.R.S. for financially supporting the development of T E X MACS .

• Christoph Benzmueller and his team for financially supporting the development of T E X MACS .

• Springer-Verlag for their financial support for making a better Windows version.

• Jean-Claude Fernandez, Fabien Salvi and the other persons from the CRI host and administrate the T E X MACS website.

• Álvaro Tejero Cantero maintains up the T E X MACS Wiki.

• Loic Dachary made T E X MACS accessible on Savannah.

B.3.4. Porting T E X MACS to other platforms

• Dan Martens is working on a the experimental Windows port.

• Marciano Siniscalchi ported T E X MACS to Cygwin. His work was further perfected by Loïc Pottier. Andreas Seidl made a the standard Cygwin package.

• Martin Costabel ported T E X MACS to MacOSX.

• Ralf Treinen and others has been ensuring the portability of T E X MACS to all architectures supported by Debian Gnu/Linux.

• Bruno Haible and Gregory Wright helped with porting T E X MACS to the SUN system and maintaining it.

• Philipp Tomsich and Chuck Sites for their help with the IRIX port.

B.3.5. Contributors to T E X MACS packages

• Atsuhito Kohda and Kamaraju Kusumanchi maintain the Debian package for T E X MACS .

• Christophe Merlet and Bo Forslund helped with making a portable RPM package.

• Lenny Cartier maintains the T E X MACS RPM for Mandrake Cooker.

• Jean Pierre Demailly and Yves Potin made T E X MACS part of the CNDP project to support free software.

or by regular mail at

Joris van der Hoeven LIX, École polytechnique 91128 Palaiseau Cedex France

There are also several T E X MACS mailing lists:

texmacs-users@texmacs.org texmacs-info@texmacs.org texmacs-dev@gnu.org

B.4. Important changes in T E X MACS

Below, we briefly describe the most important changes which have occurred in T E X MACS since version 0.3.3.15. We also maintain a more detailed change log.

In general, when upgrading to a new version, we recommend you to make backups of your old T E X MACS files before opening them with the newer version of T E X MACS . In the unlikely case when your old file does not open in the correct way, please send a bug report to bugs@texmacs.org and send your old document as an attached file. Do not forget to mention your version of T E X MACS and the system you are using.

B.4.1. Improved spacing inside formulas (1.0.7.10)

In the new version, the spacing around mathematical operators has been made dependent on the semantic context. For instance, when used as an infix operator in a subtraction xy, there are small spaces around the minus sign -; this is no longer the case in -x, where we use the minus as a prefix. Similarly, the spacing inside lists of operators +, -, × is now correct. However, the modification may alter the spacing inside some formulas in existing documents. For critical documents, you may thus want to review the line breaking.

Some of the keyboard shortcuts inside formulas have also been modified. For instance, ∧ and ∨ are now obtained by typing & resp. % . The shortcuts for ∈, ≺ and | have also been changed. For more information, please refer to the documentation on editing mathematical formulas. At this place, you will also find more information about the newly added semantic editing features.

B.4.2. Auto-matching brackets (1.0.7.9)

From now on, inside mathematical formulas, all brackets have to match and all big operators should admit well-specified scopes. To this effect, the way parenthesized expressions are edited has changed, although the old non-matching editing style can be restored using Edit→Preferences→Keyboard→Automatic brackets→Disable.

Documents for previous versions of T E X MACS will be upgraded automatically in order to make all brackets match and determine the scopes of big operators. Although this task is accomplished using heuristics, the result should be correct most of the time. In any case, from the typesetting point of view, the upgraded documents will always look the same.

B.4.3. More context dependent interface (1.0.7.8)

The interface of the new version of T E X MACS is more context dependent. On the one hand, the menus and toolbars have been reorganized. Several items from the Insert menu have been moved to the Format menu, whereas the context dependent menus Text, Mathematics, Table , Session, etc. have disappeared, their contents being moved to the Insert menu.

On the other hand, a new top-level Focus menu has been created. Its contents is highly context dependent and determined as a function of the current focus . Similarly, a third focus toolbar has been introduced. For more information, we refer to the section on typing structured text.

T E X MACS developers should also notice that the introduction of the focus has modified the way contextual overloading is done. For more details, we refer to the sections on contextual overloading and the T E X MACS editing model.

B.4.4. Default look and feel (1.0.7.7)

From this version on, the default look and feel of T E X MACS depends on your operating system and environment. The implemented look and feels (Emacs, Gnome, KDE, MacOS, Windows) attempt to be as compatible as possible with the look and feel of other applications on your system. You may choose an alternative look and feel in Edit→ Preferences→Look and feel.

In order to make the T E X MACS keyboard shortcuts as compatible as possible with the standards on your system, we have redefined many of the keyboard shortcuts. Although these changes will only marginally affect the Emacs look and feel , there will be substential changes for all other look and feels.

If you upgrade from a previous T E X MACS version with the Emacs look and feel , then you will be able to keep most of your habits. In all contrary cases, including installation of T E X MACS on a new computer, you probably need to retake a look at our sections on keyboard configuration and mastering the keyboard. In cases of doubt, please refer to the user manual; the keyboard shortcuts in the manual are automatically adapted to the active look and feel .

B.4.5. Linking tool (1.0.6.3)

From this version on, T E X MACS includes a linking tool, as well as a tool for remote connections to a T E X MACS server. In the 1.0.6.* series, these tools are still under development, so we ask users for their kind feedback. In order to enable the tools, you have to activate them in Edit→Preferences→Utilities. Notice that the linking tool replaces the Proclus plug-in.

If you were a user of this plug-in, then please check with its author Alain Herreman whether an automatic upgrade facility is available.

B.4.6. Type 1 fonts become the default (1.0.5.10)

From now on, T E X MACS uses Type 1 fonts by default, which enable you to generate higher quality Pdf files. The basic T E X MACS distribution (for Unix) comes with a minimal set of EC fonts for European languages, but an additional font package can be downloaded from our web site (the additional fonts are directly included in the Windows version). Whenever a given font is not available as a type 1 font, then T E X MACS falls back on Metafont in order to generate a Type 3 substitute. This behaviour can be further customized in Edit→Preferences→Printer→Font type.

B.4.7. New multi-part document mechanism (1.0.5.6 -1.0.5.7)

Previous versions of T E X MACS provided the "project" mechanism for dealing with large documents like books. In the new version, any large structured document can be transformed into a multi-part document whose individual parts can be viewed and edited in an efficient way (see Document→Part). Former multi-file projects are deprecated although still supported. They can be transformed into multi-part documents using Tools→Project→ Expand inclusions. A new multi-part document corresponds to a single file.

B.4.8. Improved scheme interface (1.0.5.1 -1.0.5.6)

The Scheme interface has been further improved and stabilized. For those users who customized the behaviour of T E X MACS using a personal initialization file, it may be necessary to make a few corrections. Some information about the new Scheme interface can be found in Scheme→Extensions. Further documentation will be written later.

B.4.9. Improved titles (1.0.4.1)

From now on, titles of documents are more structured. This makes it easier to render the same title information in the appropriate ways for different styles. Old-style titles are automatically upgraded, but the result is only expected to be correct for documents with a single author. For documents with multiple authors, you may have to re-enter the title using our new interface.

B.4.10. Improved style sheets and source editing mode (1.0.3.5)

We are making it easier for users to edit style sheets. This improvement made it necessary to simplify many of the standard T E X MACS styles and packages, so that it will be easier to customize them. However, if you already designed some style files, then this may break some of their features. We mainly redesigned the list environments, the section environments and automatic numbering. Please report any problems to us. The new approach favorites a uniform treatment of macros and functions and makes the internal representation match with the corresponding Scheme representation. More and more information about tags will gradually be stored in the D.R.D. (Data Relation Definition). This information is mostly determined automatically using heuristics.

Notice that some perverse errors might arise because of the above changes. Please keep copies of your old files and report any suspicious behaviour to us. The T E X MACS keybindings have been rationalized. Here follows a list of the major changes:

• The E-prefix has been renamed to .

• is equivalent to and -to % .

• Mode dependent commands are now prefixed by % . In particular, accents are typed using % instead of E-.

• Variants are now obtained using instead of * and you can circle back using .

• Greek characters are now typed using % , F5 , or the hyper modifier, which can be configured in Edit→Preferences. You may also obtain Greek characters as variants of Latin characters. For instance, P yields π.

• The signification of the cursor keys in combination with control, alt and meta has changed.

You may choose between several "look and feels" for the keyboard behaviour in Edit→ Preferences→Look and feel. The default is Emacs, but you may choose Old style if you want to keep the behaviour to which you may be used now.

B.4.15. Menus (1.0.0.7 -1.0.1)

Several changes have been made in the menus. Here follows a list of the major changes:

• Buffer has been renamed as Go.

• Several items from File have been moved to View.

• The Edit→Import and Edit→Export items have been moved to Tools→Selections.

• The Insert menu has been split up into the menus Insert, Text and Mathematics.

• The Text and Paragraph menus have been merged together in one Format menu.

• We are working towards a stabilization of the standard style files and packages. At the end of this process, it should be easy to adapt existing L A T E X style files for journals to T E X MACS by customizing these standard style files and packages. As soon as we have time, we plan to provide online documentation on how to do this at Help→Online documentation.

B.4.17. Tabular material (0.3.5)

The way tabular material is treated has completely changed. It has become much easier to edit tables, matrices, equation arrays, etc. Also, many new features have been implemented, such as background color, border, padding, hyphenation, subtables, etc. However, the upgrading of old tabular material might sometimes be erroneous, in which case we invite you to submit a bug report.

B.4.18. Document format (0.3.4)

The TeXmacs document format has profoundly changed in order to make TeXmacs compatible with XML in the future. Most importantly, the old style environments like <assign|env|<environment|open|close>>, which are applied via matching pairs <begin|env>text<end|env>, have been replaced by macros <assign|env|<macro|body|open<body>close>>, which are applied via single macro expansions <expand|env|text>. Similarly, matching pairs <set|var|val>text<reset|var> of environment variable changes are replaced by a <with|var|val|text> construct (close to XML attributes). From a technical point of view, these changes lead to several complications if the text body consists of several paragraphs. As a consequence, badly structured documents may sometimes display differently in the new version (although I only noticed one minor change in my own documents). Furthermore, in order to maintain the higher level of structure in the document, the behaviour of the editor in relation to multiparagraph environments has slightly changed. Don't forget to note on your check or e-mail for wire transfers that the money should be spent on the TeXmacs projet. In addition you may specify a more specific purpose on which you would like us to spend the money. You may also contact us for a more detailed discussion on this issue.

Important notes.

Let the SPI Treasurer (treasurer@spi-inc.org) know if you have problems. When you have completed the electronic wire, please send a copy of the receipt to the above address so there is a copy of your donation. The copy you send to the treasurer is important. You may also want to contact the TeXmacs team in order to make sure that the money arrived on the TeXmacs account.

Note:

The SPI address and account numbers may change from time to time. Please do not copy the address and account numbers, but rather point to the page http://www.spiinc.org/donations to ensure that donors will always see the most current information.

Donations in Europe can be done through our partner in Germany, ffis e.V. If you are interested in using their bank account (to save international money transfer costs), please check the instructions on http://www.ffis.de/Verein/spi-en.html.

C.3. Contribute to the GNU T E X MACS documentation

There is a high need for good documentation on T E X MACS as well as people who are willing to translate the existing documentation into other languages. The aim of this site is to provide high quality documentation. Therefore, you should carefully read the guide-lines on how to write such documentation.

C.3.1. Introduction on how to contribute

High quality documentation is both a matter of content and structure. The content itself has to be as pedagogic as possible for the targeted group of readers. In order to achieve this, you should not hesitate to provide enough examples and illustrative screen shots whenever adequate. Although the documentation is not necessarily meant to be complete, we do aim at providing relatively stable documentation. In particular, you should have checked your text against spelling errors.

It is also important that you give your documentation as much structure as possible, using special markup from the tmdoc style file. This structure can be used in order to automatically compile printable books from your documentation, to make it suitable for different ways of viewing, or to make it possible to efficiently search a certain type of information in the documentation. In particular, you should always provide copyright and license information, as well as indications on how to traverse your documentation, if it contains many files.

When selecting the tmdoc document style, the top level Manual menu will appear automatically, together with some additional icons. The most important tags for documentation purposes can be found in this menu.

Warning C.1. Don't forget to select Document→Language→Your language for each translated file. This will cause some content to be translated automatically, like the menus or some names of keys. Also, we recommend to run the T E X MACS spell checker on each translated document; this also requires the prior selection of the right document language.

C.3.2. Using SVN

The present T E X MACS documentation is currently maintained on texmacs.org using SVN.

In order to contribute, you should first create an account as explained on http://www.texmacs.org/tmweb/download/svn.en.html

In fact, SVN is not ideal for our documentation purpose, because it is not very dynamic.

In the future, we plan to create a dedicated publication website, which will allow you to save documents directly to the web. It should also allow the automatic conversion of the documentation to other formats, the compilation of books, etc.

C.3.3. Conventions for the names of files

Most documentation should be organized as a function of the topic in a directory tree. The subdirectories of the top directory are the following:

about. Various information about the T E X MACS system (authors, changes, etc.).

devel. Documentation for developers.

main. The main documentation.

Please try to keep the number of entries per directory reasonably small.

File names in the main directory should be of the form type-name.language.tm. In the other directories, they are of the form name.language.tm. Here type is a major indication for the type of documentation; it should be one of the following:

man. For inclusion in the T E X MACS manual.

tut. For inclusion in the T E X MACS tutorial.

You should try to keep the documentation on the same topic together, regardless of the type. Indeed, this allows you to find more easily all existing documentation on a particular topic. Also, it may happen that you want to include some documentation which was initially meant for the tutorial in the manual. The language in which is the documentation has been written should be a two letter code like en, fr, etc. The main name of your file should be the same for the translations in other languages. For instance, mankeyboard.en.tm should not be translated as man-clavier.fr.tm.

C.3.4. Specifying meta information for documentation files

Appropriate meta data for T E X MACS documentation can be entered from the Manual→Meta data menu. In particular, you should specify a title for each documentation file using Manual→Meta data→Title, or by directly clicking on the Title button on the focus bar after creating a new document with the tmdoc style.

All T E X MACS documentation falls under the GNU Free Documentation License. If you want your documentation to be included in T E X MACS , then you have to agree that it will be distributed under this license too. The license information

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

should be specified at the end of each file. This can be done by clicking on Manual→Meta data→GNU FDL.

In a similar manner, you may add a copyright notice by clicking on Manual→Meta data→ Copyright. You keep (part of) the copyright of any documentation that you will write for T E X MACS . When you or others make additions to (or modifications in, or translations of) the document, then you should add your own name (at an appropriate place, usually at the end) to the existing copyright information. The first argument of the tmdoc-copyright macro contains a year or a period of years. Each remaining argument indicates one of the copyright holders. When combining (pieces of) several documents into another one, you should merge the copyright holders. For cover information (on a printed book for instance), you are allowed to list only the principal authors, but a complete list should be given at a clearly indicated place.

C.3.5. Traversing the T E X MACS documentation

As a general rule, you should avoid the use of sectioning commands inside the T E X MACS documentation and try to write small help pages on well identified topics. At a second stage, you should write recursive "meta help files" which indicate how to traverse the documentation in an automatic way. This allows the reuse of a help page for different purposes (a printed manual, a web-oriented tutorial, etc.).

The tmdoc style provides three markup macros for indicating how to traverse documentation. The traverse macro is used to encapsulate regions with traversal information. It can be inserted using the Traverse entry in the Manual→Traversal or menu. The branch and extra-branch macros indicate help pages which should be considered as a subsection and an appendix respectively, whereas the continue macro indicates a follow-up page. Each of these macros should be used inside a traverse environment and each of these macros takes two arguments. The first argument describes the link and the second argument gives the physical relative address of the linked file.

Typically, at the end of a meta help file you will find several branch or continue macros, inside one traverse macro. At the top of the document, you should also specify a title for your document using the tmdoc-title macro, as described before. When generating a printed manual from the documentation, a chapter-section-subsection structure will automatically be generated from this information and the document titles. Alternatively, one might automatically generate additional buttons for navigating inside the documentation using a browser.

C.3.6. Using the tmdoc style

Besides the copyright information macros and traversal macros, which have been documented before, the tmdoc style comes with a certain number of other macros and functions, which you should use whenever appropriate.

Notice that the tmdoc style inherits from the generic style, so you should use macros like em, verbatim, itemize, etc. from this style whenever appropriate. In particular, when documentating program code, you should use Insert→Program→Inline code and Insert→ Program→Block of code in order to mark such pieces of code.

C.3.6.1. Explanations of macros, environment variables, and so on

The main environment which is used for explanations of macros, environment variables, Scheme functions, etc. is inserted using the Explanatory item entry of the Manual→Explain and menus. The environment comes with two arguments: the first argument consists of the concept or concepts to be explained, and the second one contains the actual explanation. A typical example would be the following:

demo-tag|body demo-tag|extras |body (short and long versions of a demo tag)

The demo-tag is used for demonstration purposes and decorates the body argument. An optional argument extras can be given with details on the way to decorate the body .

In this example, we used Manual→Explain→TeXmacs macros twice in order to insert the macros to be described. We also used Manual→Explain→Synopsis in order to give a short description of the tags (in grey). In a similar way, one may use Manual→Explain→Environment variable in order to describe an environment variable. Another example is:

(foo-bar K x)
The function foo-bar computes the foo-bar transform of the operator K and applies it to x.

In this example, we notice that all Scheme code was encapsulated into scm tags (see Insert→Program→Inline code→Scheme) and arguments were tagged using scm-arg.

C.3.6.2. Graphical user interface related markup

The following markup elements can be used in order to describe various graphical user interface elements, such as keyboard shortcuts, menus or icons.

shortcut. This macro is used to indicate a keyboard shortcut for a Scheme command.

For instance, the shortcut for (new-buffer) is F2 .

key. This unary macro is used for explicit keyboard input. For instance, when giving submenu. Consider the following sentence:

"You may use the Load and Save entries of the File menu in order to load and save files."

In this example, the menu entries Load and Save were marked using the submenu tag, which takes the implicit File menu as its first invisible argument. This invisible argument is still taken into account when building the index (for instance). In a similar way, we provide subsubmenu and subsubsubmenu tags.

icon. Can be used in order to specify one of the T E X MACS icons, such as and . The macro takes one argument with the file name of the icon (the full path is not needed).

screenshot. Similar to the icon tag, but for screenshots.

Notice that the contents of none of the above tags should be translated into foreign languages. Indeed, for menu tags, the translations are done automatically, so as to keep the translations synchronized with the translations of the actual T E X MACS menus. In the cases of markup, styles, packages and d.t.d.s, it is important to keep the original name, because it often corresponds to a file name.

C.3.6.3. Common annotations

The Manual→Annotate and menus contain the following useful macros for common annotations. You should use them whenever appropriate.

markup. This macro is used in order to indicate a macro or a function like section. src-arg. This macro should be used in order to indicate macro arguments such as body . src-var. This macro is used for the indication of environment variables such as fontsize.

src-length. This macro is used in order to indicate a length such as 12em.

tmstyle. This macro indicates the name of a T E X MACS style file or package like article.

tmpackage. This macro indicates the name of a T E X MACS package like std-markup.

tmdtd. This macro indicates the name of a T E X MACS d.t.d. like number-env.

C.3.6.4. Miscellaneous markup

Some other potentially useful macros are the following: tm-fragment. For indicating some T E X MACS document fragment. This macro is especially useful for T E X MACS source code, as in assign|red-text| macro|body | with|color |red|body

In this example, we used the keyboard shortcutin order to disactivate the source code inside an active outer document.

descriptive-table. For descriptive tables; such tables can be used to document lists of keyboard shortcuts, different types of markup, etc.

cursor. This macro can be used to indicate a cursor position, as in a 2 + b 2| = c 2 .

small-focus, small-envbox. This macro can be used for indicating the visual aids around the current focus and the further outer context (e.g. a + b c), in the case of inline elements.

Appendix D

Interfacing T E X MACS with other programs

D.1. Introduction

In this chapter we describe how to interface T E X MACS with an extern application. Such interfaces should be distributed in the form of plugins. The plug-in may either contain the extern application, or provide the "glue" between T E X MACS and the application. Usually, interfaces are used interactively in shell sessions (see Insert→Session). But they may also be designed for background tasks, such as spell checking or typesetting.

The communication between T E X MACS and the application takes place using a customizable input format and the special T E X MACS meta-format for output from the plug-in. The metaformat enables you to send structured output to T E X MACS , using any common format like verbatim, L A T E X, Postscript, HTML, or T E X MACS itself. This is useful when adding a T E X MACS interface to an existing system, since L A T E X or Postscript output routines are often already implemented. It will then suffice to put the appropriate markers in order to make a first interface with T E X MACS .

As soon as basic communication between your application and T E X MACS is working, you may improve the interface in many ways. Inside shell sessions, there is support for prompts, default inputs, tab-completion, mathematical and multi-line input, etc. In general, your application may take control of T E X MACS and modify the user interface (menus, keyboard, etc.) or add new Scheme routines to T E X MACS . Your application may even extend the typesetter.

In the directory $TEXMACS_PATH/examples/plugins, you can find many examples of simple plug-ins. In the next sections, we will give a more detailed explanation of the interfacing features of T E X MACS on the hand of these examples. In order to try one of these examples, we recall that you just have to copy it to either one of the directories $TEXMACS_PATH/plugins $TEXMACS_HOME_PATH/plugins and run the Makefile (if there is one).

D.2. Basic input/output using pipes

The configuration and the compilation of the minimal plug-in is described in the chapter about plug-ins. We will now study the source file minimal/src/minimal.cpp. Essentially, the main routine is given by cout << DATA_BEGIN << "verbatim:"; cout << "You typed " << buffer; cout << DATA_END; cout.flush (); Remark D.1. For synchronization purposes, T E X MACS will assume that the output is finished as soon as it encounters the DATA_END which closes the initial DATA_BEGIN . So all output has to be inside one single outer DATA_BEGIN -DATA_END block: if you send more blocks, then T E X MACS will retake control before reading all your output. It is possible to nest DATA_BEGIN -DATA_END blocks though, as we will see below.

Remark D.2. In our example, the C++ code for the application is included in the plug-in. In the case when you are writing a T E X MACS interface for an existing application myapp , the convention is to create a --texmacs option for this program. Then it is no longer necessary to have myapp/src and myapp /bin directories for your plug-in and it suffices to configure the plug-in by putting something like the following in myapp/progs/init-myapp.scm:

(plugin-configure myapp (:require (url-exists-in-path? "myapp")) (:launch "myapp --texmacs") (:session "Myapp"))

In the case when you do not have the possibility to modify the source code of myapp, you typically have to write an input/output filter tm_myapp for performing the appropriate rewritings. By looking at the standard plug-ins distributed with T E X MACS in $TEXMACS_PATH/plugins you can find several examples of how this can be done.

D.3. Formatted and structured output

In the previous section, we have seen that output from applications is encapsulated in blocks of the form DATA_BEGIN format :message DATA_END

In fact, the message may recursively contain blocks of the same form. Currently implemented formats include verbatim, latex, html, ps, scheme. The scheme format is used for sending T E X MACS trees in the form of Scheme expressions.

The formula plug-in.

The formula plug-in demonstrates the use of L Similarly, the use of nested output blocks is demonstrated by the nested plug-in; see in particular the source file nested/src/nested.cpp.

Remark D.3. At the moment, we only implemented L A T E X as a standard transmission format for mathematical formulas, because this is the format which is most widely used. In the future, we intend to implement more semantically secure formats, and we recommend you to keep in mind the possibility of sending your output in tree format.

Nevertheless, we enriched standard L A T E X with the * and \bignone commands for multiplication and closing big operators. This allows us to distinguish between a * (b + c) (i.e. a multiplied by b + c) and f(x + y) (i.e. f applied to x + y). Similarly, in \sum_{i=1}^m a_i \bignone + \sum_{j=1}^n b_j \bignone the \bignone command is used in order to specify the scopes of the \sum operators.

It turns out that the systematic use of the * and \bignone commands, in combination with clean L A T E X output for the remaining constructs, makes it a priori possible to associate an appropriate meaning to your output. In particular, this usually makes it possible to write additional routines for copying and pasting formulae between different systems.

The markup plug-in.

It is important to remind that structured output can be combined with the power of T E X MACS as a structured editor. For instance, the markup plug-in demonstrates the definition of an additional tag foo, which is used as an additional primitive in the output of the application. More precisely, the markup plug-in consists of the following files: The foo tag is used in the following way in the body of the main loop of markup.cpp: char buffer[100]; cin.getline (buffer, 100, '\n'); cout << DATA_BEGIN << "latex:"; cout << "$\foo{" << buffer << "}$"; cout << DATA_END; cout.flush ();

Notice that the style package markup.ts also defines the markup-output environment:

assign|markup-output| macro|body | generic-output| with|par-mode|center|body

This has the effect of centering the output in sessions started using Insert→Session→ Markup.

D.4. Output channels, prompts and default input

Besides blocks of the form DATA_BEGIN format :message DATA_END the T E X MACS meta-format also allows you to use blocks of the form DATA_BEGIN channel #message DATA_END Here channel specifies an "output channel" to which the body message has to be sent. The default output channel is output, but we also provide channels prompt and input for specifying the prompt and a default input for the next input in a session. Default inputs may be useful for instance be useful for demo modes of computer algebra systems. In the future, we also plan to support error and status channels.

The prompt plug-in.

D.5. Sending commands to T E X MACS

The application may use command as a very particular output format in order to send Scheme commands to T E X MACS . In other words, the block DATA_BEGIN command:cmd DATA_END will send the command cmd to T E X MACS . Such commands are executed immediately after reception of DATA_END . We also recall that such command blocks may be incorporated recursively in larger DATA_BEGIN -DATA_END blocks.

The menus plug-in.

The nested plug-in shows how an application can modify the T E X MACS menus in an interactive way. The plug-in consists of the files menus/Makefile menus/progs/init-menus.scm menus/src/menus.cpp

The body of the main loop of menus.cpp simply contains char buffer[100]; cin.getline (buffer, 100, '\n'); cout << DATA_BEGIN << "verbatim:"; cout << DATA_BEGIN << "command:(menus-add "" << buffer << "")" << DATA_END; cout << "Added " << buffer << " to menu"; cout << DATA_END; cout.flush ();

The Scheme macro menus-add is defined in init-menus.scm:

(define menu-items '("Hi")) (tm-menu (menus-menu) (for (entry menu-items) ((eval entry) (insert entry))))

(tm-define (menus-add entry) (set! menu-items (cons entry menu-items)))

(plugin-configure menus (:require (url-exists-in-path? "menus.bin")) (:launch "menus.bin") (:session "Menus"))

(menu-bind plugin-menu (:require (in-menus?)) (=> "Menus" (link menus-menu)))

The configuration of menus proceeds as usual:

(plugin-configure menus (:require (url-exists-in-path? "menus.bin")) (:launch "menus.bin") (:session "Menus"))

D.6. Background evaluations

Until now, we have always considered interfaces between T E X MACS and applications which are intended to be used interactively in shell sessions. But there also exists a Scheme command (plugin-eval plugin session expression)

for evaluating an expression using the application. Here plugin is the name of the plug-in, session the name of the session and expression a Scheme expression which represents a T E X MACS tree.

The substitute plug-in.

Background evaluations may for instance be used in order to provide a feature which allows the user to select an expression and replace it by its evaluation. For instance, the substitute plug-in converts mathematical L A T E X expressions into T E X MACS , and it provides the ? keyboard shortcut for replacing a selected text by its conversion. The plugin consists of the following files substitute/Makefile substitute/progs/init-substitute.scm substitute/src/substitute.cpp

The main evaluation loop of substitute.cpp simply consists of Moreover, the configuration file init-substitute.scm contains the following code for replacing a selected region by its evaluation

(define (substitute-substitute) (import-from (texmacs plugin plugin-cmd)) (if (selection-active-any?) (let* ((t (tree->stree (the-selection))) (u (plugin-eval "substitute" "default" t))) (clipboard-cut "primary") (insert (stree->tree u)))))

as well as the keyboard shortcut for ? :

(kbd-map ("C-F12" (substitute-substitute)))
Notice that these routines should really be defined in a separate module for larger plug-ins.

The secure plug-in.

Another example of using an interface in the background is the secure plug-in which consists of the files (tm-define (latexer s) (:type (tree -> object)) (:synopsis "convert LaTeX string to TeXmacs tree using plugin") (:secure #t) (plugin-eval "secure" "default" (tree->string s)))

It is important to define latexer as being secure, so that it can be used in order to define additional markup using the extern primitive. This is done in the style file secure.ts:

See a LaTeX math command as a TeXmacs expression via plug-in assign|latexer | macro|x | extern|latexer|x After compilation, installation, relaunching T E X MACS and selecting Document→Use package→secure, you will now be able to use latexer as a new primitive. The primitive takes a mathematical L A T E X expression as its argument and displays its T E X MACS conversion.

D.7. Mathematical and customized input

The T E X MACS meta-format allows application output to contain structured text like mathematical formulas. In a similar way, you may use general T E X MACS content as the input for your application. By default, only the text part of such content is kept and sent to the application as a string. Moreover, all characters in the range 0-31 are ignored, except for '\t' and '\n' which are transformed into spaces. There are two methods to customize the way input is sent to your application. First of all, the configuration option (:serializer ,routine) specifies a scheme function for converting T E X MACS trees to string input for your application, thereby overriding the default method. This method allows you for instance to treat multi-line input in a particular way or the perform transformations on the T E X MACS tree.

The :serialize option is a very powerful, but also a very abstract way to customize input: it forces you to write a complete input transformation function. In many circumstances, the user really wants to rewrite two dimensional mathematical input to a more standard form, like rewriting This command specifies input conversion rules for myplugin for "mathematical input" and reasonable defaults are provided by T E X MACS . Each rule is of one of the following two forms:

Leaf transformation rules.

Given two strings symbol and conversion , the rule (symbol conversion)

specifies that the T E X MACS symbol symbol should be converted to conversion.

Tag transformation rules.

Given a symbol tag and a Scheme function routine, the rule (tag routine)

specifies that routine will be used as the conversion routine for tag . This routine should just write a string to the standard output. The Scheme function plugininput may be used for the recursive transformation of the arguments of the tag.

The input plug-in.

The input plug-in demonstrates the use of customized mathematical input. It consists of the files This tag is rewritten using the special conversion rule

(define (input-input-special t) (display "[[[SPECIAL:") (plugin-input (car t)) (display "]]]"))
As to the C++ code in input.cpp, the startup banner automatically puts the shell session in mathematical input mode:

cout << DATA_BEGIN << "verbatim:"; cout << DATA_BEGIN << "command:(session-use-math-input #t)" << DATA_END; cout << "Convert mathematical input into plain text"; cout << DATA_END; cout.flush ();

In the main loop, we content ourselves the reproduce the input as output:

char buffer[100]; cin.getline (buffer, 100, '\n'); cout << DATA_BEGIN << "verbatim:"; cout << buffer; cout << DATA_END; cout.flush ();

D.8. Tab-completion

By default, T E X MACS looks into your document for possible tab-completions. Inside sessions for your application, you might wish to customize this behaviour, so as to complete builtin commands. In order to do this, you have to specify the configuration option (:tab-completion #t) in your init-myplugin .scm file, so that T E X MACS will send special tab-completion requests to your application whenever you press inside a session. These commands are of the form DATA_COMMAND (complete input-string cursor-position)

Here DATA_COMMAND stands for the special character '\20' (ASCII 16). The input-string is the complete string in which the occurred and the cursor-position is an integer which specifies the position of the cursor when you pressed

. T E X MACS expects your application to return a tuple with all possible tab-completions of the form DATA_BEGIN scheme:(tuple root completion-1 completionn) DATA_END D.8 Tab-completion else { cout << DATA_BEGIN << "scheme:"; cout << "(tuple "h" "ello" "i there" "ola" "opsakee")"; cout << DATA_END; } cout.flush ();

As you notice, the actual command is ignored, so our example is really very rudimentary.

D.9. Dynamic libraries

Instead of connecting your system to T E X MACS using a pipe, it is also possible to connect it as a dynamically linked library. Although communication through pipes is usually easier to implement, more robust and compatible with gradual output, the second option is faster.

In order to dynamically link your application to T E X MACS , you should follow the T E X MACS communication protocol, which is specified in the following header file: which contains an installation routine for your application, as well as an evaluation routine for further input (for more information, see the header file). T E X MACS will on its turn export a structure typedef struct TeXmacs_exports_1 { char* version_protocol; /* "TeXmacs communication protocol 1" */ char* version_TeXmacs; } TeXmacs_exports_1; It is assumed that each application takes care of its own memory management. Hence, strings created by T E X MACS will be destroyed by T E X MACS and strings created by the application need to be destroyed by the application.

$TEXMACS_PATH/include/
The string version_protocol should contain "TeXmacs communication protocol 1" and the string version_package the version of your package. The routine install will be called once by T E X MACS in order to initialize your system with options options. It communicates the routines exported by T E X MACS to your system in the form of a pointer to a structure of type TeXmacs_exports_1. *errors either contains one or more warning messages or an error message, if the evaluation failed. The formats being used obey the same rules as in the case of communication by pipes.

Finally, the configuration file of your plug-in should contain something as follows:

(plugin-configure myplugin (:require (url-exists? (url "$LD_LIBRARY_PATH" "libmyplugin.so"))) (:link "libmyplugin.so" "myplugin_exports" "") further-configuration)

Here myplugin _exports is a pointer to a structure of the type package_exports_1.

Remark D.6. It is possible that the communication protocol changes in the future. In that case, the data structures TeXmacs_exports_1 and package_exports_1 will be replaced by data structures TeXmacs_exports_n and package_exports_n, where n is the version of the protocol. These structures will always have the abstract data structures TeXmacs_exports and package_exports in common, with information about the versions of the protocol, T E X MACS and your package.

The dynlink plug-in. Notice that the application takes care of the memory allocation and deallocation of output.

D.10. Miscellaneous features

Several other features are supported in order to write interfaces between T E X MACS and extern applications. Some of these are very hairy or quite specific. Let us briefly describe a few miscellaneous features:

Interrupts.

The "stop" icon can be used in order to interrupt the evaluation of some input. When pressing this button, T E X MACS will just send a SIGINT signal to your application. It expects your application to finish the output as usual. In particular, you should close all open DATA_BEGIN -blocks.

Testing whether the input is complete.

D.10 Miscellaneous features

Some systems start a multiline input mode as soon as you start to define a function or when you enter an opening bracket without a matching closing bracket. T E X MACS allows your application to implement a special predicate for testing whether the input is complete. First of all, this requires you to specify the configuration option (:test-input-done #t)

As soon as you will press in your input, T E X MACS will then send the command DATA_COMMAND (input-done? input-string)

Your application should reply with a message of the form DATA_BEGIN scheme:done DATA_END where done is either #t or #f. The multiline plug-in provides an example of this mechanism (see in particular the file multiline/src/multiline.cpp).

D.11. Writing documentation

Documentation for your plug-in myplugin should be put in the doc subdirectory of the main directory myplugin. We recommend to write at least the following three documentation files: myplugin.en.tm. This file should mainly contain a traverse tag with links to the other documentation files, as described in the section "traversing the T E X MACS documentation".

myplugin-abstract.en.tm. This file should contain a short description of the purpose of the plugin-in. If appropriate, then you should also describe how to get the plug-in and how to install it. The contents of this file should also be suitable for publication on the web site of T E X MACS .

myplugin-demo.en.tm. This file should contain a short demonstration of your plug-in, such as an example session.

The first two files are mandatory, if you want your plug-in to show up in the Help→Plugins menu. Please refrain from putting too many images in the documentation files, so as to keep the size of the documentation reasonable when integrated into the main T E X MACS distribution.

D.12. Plans for the future

There are many improvements to be made in the T E X MACS interface to computer algebra systems. First of all, the computer algebra sessions have to be improved (better hyphenation, folding, more dynamic subexpressions, etc.).

As to interfaces with computer algebra systems, out main plans consist of providing tools for semantically safe communication between several system. This probably will be implemented in the form of a set of plug-ins which will provide conversion services. . 171, 188, 189, 189, 190, 190

Figure

 Figure 2.1. Inactive label

%Figure 4 . 1 .

 41 Figure 4.1. Example of the insertion of a new column in a matrix. Assuming that the cursor is at the position indicated in the left-hand matrix, insertion of a new column using % results in the right-hand matrix.

 Text and mathematics. When selecting text mode (or Insert→Text) or mathematics mode (or Insert→Mathematics), you may enter text (or mathematics) at an arbitrary position in the picture, again using the left mouse button. Typical examples of these basic objects are shown in the figures below:

Figure

 Figure 6.1. Points.Figure 6.2. Lines. Figure 6.3. Polygons.

Figure

 Figure 6.4. Splines.Figure 6.5. Closed splines. Figure 6.6. Arcs.

Figure

 Figure 6.7. Circles.

Figure 6 . 10 .

 610 Figure 6.10. Example of a diagram which was drawn by using snapping to the eight control points around each box with a mathematical formula. Notice also that we cropped the graphics to its actual size.

Figure 6 . 11 .

 611 Figure 6.11. Examples of a few closed splines with different colors and fill colors.

Figure 6 . 12 .

 612 Figure 6.12. Examples of the same object with increasing opacities on top of another object.

Figure 6

 6 Figure 6.14. The same curve using different line widths.

Figure 6 . 15 .

 615 Figure 6.15. The same curve using different dashing styles.

Figure 6 . 16 .

 616 Figure 6.16. The same segment using different types of arrows at the extremities.

Figure 8 . 1 .Figure 8 . 2 .

 8182 Figure 8.1. Assume that the cursor is at the position of | inside the left-most matrix. Then the four other matrices respectively correspond to the insertion of a new column at the left (%) or right (%), resp. a new row above (%) or below (%).

Figure 8 . 3 .

 83 Figure 8.3. Assume that the cursor is at the position of | inside the left-most matrix. Then pressing the keys % + and % & respectively result in the next two matrices. Pressing either + or + replaces the matrix by the content of the cell in which you are, leaving you with the b at the right-hand side.

8. 8

 8 Positioning and resizing objects . Increase the horizontal offset of an object, or right align.

Figure 9 . 1 .

 91 Figure 9.1. Some standard ornaments for decorating your presentations.

Figure 9 . 2 .Figure 9 . 3 .

 9293 Figure 9.2. Moving content, as inserted from Insert→Animation→Translate.

Figure 9 . 4 .

 94 Figure 9.4. Different kinds of composed animations.

Figure 10 . 1 .

 101 Figure 10.1. Evaluation of a simple spreadsheet.

2.

 Create the skeleton of your macro in your style package: assign|n-tuple| macro|a | 3. Copy the formula and paste it into the body of your macro: assign|n-tuple| macro|a |(a rsub|1 ,<ldots>,a rsub|n) 4. Replace the subformulas you want to parameterize by macro arguments: assign|n-tuple| macro|a |(a rsub|1 ,<ldots>,a rsub|n) 5. You may now use the macro in documents which use your package:

 my-macro|y 1 | |y n Inside the body of the macro, the arg primitive may be used to retrieve the values of the arguments to the macro. assign|hello| macro|name|Hello name, you look nice today! It is possible to call a macro with less or more arguments than the expected number. Superfluous arguments are simply ignored. Missing arguments take the nullary uninit primitive as value: assign|hey | macro|first|second| if| equal|second|? | Hey first, you look lonely today...| Hey first and second, you form a nice couple!

 macro|body | surround| no-indent strong| unquote|text . | right-flush | body When calling new-theorem|theorem|Theorem in this example, we first evaluate all unquote instructions inside the quasi primitive, which yields the expression assign|theorem| macro|body | surround| no-indent strong|Theorem. | right-flush | body

Figure 11 . 5 .

 115 Figure11.5. The tree with the packages from which the article style has been built up. In order to save space, we have regrouped the numerous children of std and env in vertical lists.

 no-page-break* vspace*|0.5fn | right-flush vspace|0.5fn no-indent* | with|par-left| plus|par-left|3fn |par-right| plus|par-right|3fn |body

 assign|doc-author-main | macro|data | quasi| unquote*| select| quote-arg|data |author-name unquote*| select| quote-arg|data |author-affiliation assign|doc-author-data-note| xmacro|data | quasi| unquote*| select| quote-arg|data |author-email unquote*| select| quote-arg|data |author-homepage unquote*| select| quote-arg|data |author-misc|document| pat-any 11.5. Further notes and tips 11.5.1

 par-mode8 justify (paragraph alignment) This environment variable specifies the alignment of the different lines in a paragraph. Possible values are left, center, right and justify:

 par-left8 0cm par-right8 0cm(left and right margins)These environment variables specify absolute left and right margins for the paragraph, with respect to the default left and right margins (which are determined as a function of the page layout). For instance:This text uses the default margins. This text uses a left margin of 1cm This text uses a left margin of 2cm This text uses a left margin of 3cmThe left and right margins of this text have both been set to 3cm.Environments like itemize and quote-env which maybe nested usually compute new margins as a function of the old values by adding or subtracting some space: assign|quote-env| macro|body | surround| vspace*|0.5fn | right-flush vspace|0.5fn | with|par-left| plus|par-left|3fn |par-right| plus|par-right|3fn |par-first|0fn| par-par-sep|0.25fn|body par-first8 1.5fn (first indentation) The par-first parameter specifies the additional indentation which is used for the first line of the paragraph. The aim of first indentations is to indicate the starts of new paragraphs. An alternative technique is the use of vertical whitespace. The article and book styles in T E X MACS indictate the starts of new paragraphs through the use of a first indentation. The generic and letter styles rather use vertical whitespace. The generic and letter styles in T E X MACS indictate the starts of new paragraphs through the use of vertical whitespace. The article and book styles rather use a first indentation.

Figure 15 . 1 .

 151 Figure15.1. Schematic representation of the layout of pages. On the left hand side, the parameters l, r, t and b respectively correspond to the left, right, top and bottom margins, and w corresponds to the paragraph width. On the right hand side, h, f , d and m correspond to the header, footer, footnote and marginal note separations, w to the width of marginal notes, and l to the length of the footnote bar.

 cell-halign 8 l cell-valign 8 B (cell alignment) These parameters determine the horizontal and vertical alignment of the cell. Possible values of cell-halign are l (left), c (center), r (right), . (decimal dot), , (decimal comma) and R (vertical baseline). Possible values of cell-valign are t (top), c (center), b (bottom) and B (baseline).

 no-indent* yes-indent* Disable or enable indentation for the next paragraph. For instance, A first paragraph. yes-indent* A second paragraph. typically produces A first paragraph.

 resize|content|left-lim|bot-lim|right-lim|top-lim (adjust size) Resize the box for the content according to new left, bottom, right and top limits leftlim, bot-lim, right-lim and top-lim. The limits may be specified in terms of the box lengths w, h, l, r, b and t of content. For instance, the code (resize|Hopsa| minus|1l|5mm || plus|1r|5mm |) widens the box for "Hopsa" by 5mm on each side: (Hopsa) clipped|content|left-lim|bot-lim|right-lim|top-lim (adjust size and clip)

 page items which are typeset "out of band", they are associated to two boxes: the anchor box marks the structural position of the float, the floating box contains the typeset body operand. This facility is used by footnotes and floating blocks.The first and second operands are evaluated, but for clarity the first operand appears as a literal string in the examples. Since the body is typeset out of band, it may be block content even if the float occurs in line context. float|footnote||body produces a footnote insertion, this should only be used within the footnote macro and is considered style markup. The floating box of a footnote is typeset at the end of the the page containing the anchor box. float | float | where | body produces a floating block, this is considered physical markup. The position of the floating box is chosen by the page breaker, which uses this extra freedom to minimize the page breaking penalty.

 assign|evens | macro|t| filter| macro|x | equal| mod|x |2 |0 |t drd-props|var |prop-1 |val-1 | |prop-n |val-n (set D.R.D. properties of a tag)

 macro|x | with|color |blue|x assign|hot| macro|x | with|color |red|x assign|adaptive| macro|x | compound| if | summer |hot|cold |x case|cond-1 |body-1 | |cond-n |body-n case|cond-1 |body-1 | |cond-n |body-n |else-body (case distinction) These commands are respectively equivalent to if|cond-1 |body-1 | if|cond-n |body-n if|cond-1 |body-1 | if|cond-n |body-n |else-body while|condition |body (repeated evaluation) This construct maybe used in order to repeatly execute a given body while a given condition is satisfied. For instance, when declaring assign|count| macro|from|to| with|i |from| concat| while| less|i |to |i , assign|i | plus|i |1 | to the code count|1|50 produces 1

 similar to unquote, except that the argument subexprs now evaluates to a list of subexpressions, which are inserted into the arguments of the parent node. For instance, consider the macro assign|fun | xmacro|x | quasi| tree|dup| unquote*| quote-arg|x | unquote*| quote-arg|x Then fun|a|b|c is typeset as dup a b c a b c quasi|expr (substitution) This tag is a shortcut for eval| quasiquote|expr . This primitive is often used in the T E X MACS style files in order to write macros which define sets of other macros. For instance, the macro assign|new-theorem| macro|name|text| quasi| assign| unquote|name | macro|body | surround| no-indent strong| unquote|text . | right-flush | body may be used in order to define new theorem-like environments.

 assign|love| macro|from|♥♥♥ from from. inline-tag|name|arg-1 | |arg-n (rendering of inline tags) This tag is used for the default inline rendering of an inactive tag with a given name and arguments arg-1 until arg-n . For instance, inline-tag|foo|x|y produces foo|x|y . The style of the rendering may be customized in the Document→View→Source tags menu, or by modifying the src-style, src-special , src-compact and src-close environment variables. open-tag|name|arg-1 | |arg-n middle-tag|name|arg-1 | |arg-n close-tag|name|arg-1 | |arg-n (rendering of multi-line tags) These tags are similar to inline-tag, when some of the arguments of the tag run over several lines. Typical HTML-like tags would correspond to open-tag|name and close-tag|name . Since T E X MACS macros may take more than one argument, a middle-tag is provided for separating distinct multi-paragraph arguments. Moreover, the opening, middle and closing tags may take additional inline arguments for rendering in a compact fashion. For instance, the code open-tag|theorem indent|The weather should be nice today. close-tag|theorem is rendered by default as theorem| The weather should be nice today. The rendering may be customized in a similar way as in the case of inline-tag. style-with|var-1 |val-1 | |var-n |val-n |body style-with*|var-1 |val-1 | |var-n |val-n |body (alter presentation in style files only)

 -dtd|name|version |dtd|dtd-version (style and package administration)These macros are used for the identification of style files and packages and their corresponding D.T.D.s. The src-title is a container for src-style-file, src-package, src-packagedtd as well as src-license and src-copyright macros.The src-style-file tag specifies the name and version of a style file and sets the environment variable with name-style to version . The src-package-dtd specifies the name and version of a package, as well as the corresponding dtd and its version dtd-version . It sets the environment variable name-package to version and dtd-dtd to dtd-version . The src-package tag is a shorthand for src-package-dtd when the name of the D.T.D. coincides with the name of the package.

17. 7 .

 7 Miscellaneous style-sheet primitives extern|scheme-foo|arg-1 | |arg-n (apply extern typesetting macro)

 e.g. assign|show-inactive| macro|x | rewrite-inactive|x | which might be invoked to show itself or another assigned variable using quasiquote in this manner: quasiquote| show-inactive| unquote|show-inactive new-dpage new-dpage* (new double page)

 Similar to index-1 until index-5, but without the page number(s).

Figure 18 . 1 .

 181 figure-env

eqnarray|table

 An array of numbered equations (not yet implemented).

 1.1. Entering titles and abstractsThe header-title d.t.d. provides tags for entering information about the entire document. The two top-level tags are doc-data|data-1 | |data-n

 For instance, doc-author-main| author-affiliation|Somewhere in Africa | author-name|The big GNU | author-misc|Very hairy indeed! should typically return document| author-affiliation|Somewhere in Africa | author-name|The big GNU

 Options has been spread out across Document, View, Tools and Edit→Preferences.Many changes have been made in the organization of the T E X MACS style files. Personal style files which depend on intermediate T E X MACS packages may require some slight adaptations.

A

 C-b return as argument, the result is A B . menu. This function with an arbitrary number of arguments indicates a menu like File or Document→Language. Menu entries are automatically translated by this function.

 /session/markup.ts markup/progs/init-markup.scm markup/src/markup.cpp The style package markup.ts contains the following definition for foo: math| assign|foo| macro|x | frac|1|1+x

ab

 to ((a)/(b)). Therefore, a second way for customizing the input is to use the command (plugin-input-converters myplugin rules)

 The routine should return a status message like "yourcas-version successfully linked to TeXmacs" If installation failed, then you should return NULL and *errors should contain an error message. The routine evaluate is used to evaluate the expression what inside a T E X MACS -session with name session. It should return the evaluation of what or NULL if an error occurred.

 Debug keyboard default . ? demo-tag 225, description description-align description-compact description-dash description-long det . Detailed . Details in menus dfn . display-in-g display-x div . dlines . doc-author 184, doc-author-block doc-author-main doc-author-note 186, doc-data . doc-data-abstract doc-data-hidden 186 doc-data-main 185 doc-data-main* 185 doc-data-note 186 doc-date 184, 187 doc-keywords 184, 187 doc-make-title 186 doc-msc 184, 188 doc-note . 184 doc-render-title 187 doc-running-author 184 doc-running-title 184 doc-subtitle 184, 187 doc-title . 184 doc-title-block 186 doc-title-note 187 Document

 . 179 env-base 80 env-base 179 env-float 80 env-float 182 env-math 80 env-math 180 env-theorem 80 env-theorem 181 environments 15 eqnarray . 180 eqnarray* 180 equal . 155 Equation 16 equation . 180 equation* 180 error . 160 errput . 178 eval 152, 153 eval-args . 149 Evaluate . 63 evens . 150 exam . 15, 164 exercise-name 182 exercise-sep 182 Expand user-defined macros 194, 194 Export bibliographies as links 194, 194 extern . 159 figure-name 183 figure-sep 183 File 225, 225, 225 Export

 150 hlink 145, 156 Homoglyph substitutions 30 hrule . 168 hspace 135, 135 htab 135, 135, 135, 135, 135, 136 html-div . 198 html-javascript 198 html-javascript-src 198 html-style 198 huge . 166 hybrid 157, 158 identity . 161 if . 151, 151 if* . 139 inactive 156, 156 inactive* 156 inc-x . 176 include . 145 indent 158, 178 indent-both 175 indent-left 175 indent-right 175 index . 173 index-1 . 173 index-1* . 173 index-2 . 173 index-2* . 173 index-3 . 173 index-3* . 173 index-4 . 173 index-4* . 173 index-5 . 173 index-5* . 173 index-complex 173 index-dots

 Scheme Extensions 217 Scripts . 201 section . 188 section-article 80 section-base 80, 86 section-base . . 171, 188, 189, 189, 190, 190 sectional-centered 191 sectional-centered-bold 191 sectional-centered-italic 191 sectional-normal 191 sectional-normal-bold 191 sectional-normal-italic 191 sectional-sep 189 sectional-short 190 sectional-short-bold 190 sectional-short-italic 190 sectional-short-style 189 Security . ?, ? seminar 15, 163 session . 80 Session . 216 Close session 61

 Text . Tuple Source macros tool Source tags space 135, specific . sqrt 141, src-arg . src-error . src-integer src-length src-macro src-package src-package-dtd src-style-file src-title . src-tt . src-var . std . 80, std . std-automatic std-automatic std-counter std-latex std-list std-list 83, 169, std-markup 80, 80, 81, std-markup 80, std-math std-math std-symbol std-symbol std-utils 80, 89, std-utils 174, strong . structured-list 164, structured-list structured-section 85, 164, 164, style 102, style-only style-only* style-with style-with* subindex . subparagraph subsection subsubindex subsubsection subtable .

 surround

 144 tabular* . 167 tag . 160 TeX . 168 TeXmacs 102, 167 TeXmacs-version 168 Text . 216 textput . 178 Texts . 67 tformat 143, 143, 143 the-glossary 189 the-index 189 the-x . 176 theorem-name 182 theorem-sep 182 times . 155 tiny . 166 Title . 223 title-base 80, 89 title-generic 80 tmarker . 144 tmarticle 163 tmbook . 163 tmdoc 164, 222, 222, 223, 224, 224, 225 tmlen 112, 112 toc-1 . 172 toc-2 . 172 toc-3 . 172 toc-4 . 173 toc-5 . 173 toc-dots . 173 toc-main-1 172 toc-main-2 172 toc-normal-1 172 toc-normal-2 172 toc-normal-3 172 toc-small-1

 175 wide-std-framed 175 wide-std-framed-colored 175 wide-std-underlined 175 wide-underlined 175 Windows . ? with . 147 World . write . x -clean . x -display-numbers x -header . x -numbered-title x -sep . x -text . x -title . x -toc . xmacro . xor . yes-indent yes-indent*

Table 1 . 1 .

 11 Special keys.

		Alternate modifier	Cursor down
		Meta modifier	Home
		Return	End
	&	Forward delete	Page up
	+	Backspace	Page down
		Escape	Sp ace Space
		Tab	

Table 2 .

 2

1. Some of the most common content-based tags.

Table 2 .

 2 2. Typing accented characters.

	Special characters can also be created in any language context:
		Shortcuts	
	F5 A ae	F5 A AE	F5 A E ae	F5 A E AE
	F5 O ø	F5 O Ø	F5 O E oe	F5 O E OE
	F5 S ß	F5 S		
	F5 ! ¡	F5 ?		

¿ F5 P § F5 P £ Table 2.3. Typing special characters.

Table 2 .

 2

4. Typing raw quotes.

Table 2

 2

.6. Various useful keyboard shortcuts

Table 3 . 1 .

 31 Creation of major mathematical markup.

	Primes, subscripts and superscripts are created as follows:
	Shortcut Purpose	Example
	'	Primes	f ′ or (g + h) ′′′
	`Back-primes	f
	_	Subscripts	x n or x i 3
	^Superscripts	x 2 , x n 2 or e e x
	% L _	Left subscripts	x

2 % L ^Left superscripts x π or He * * * *

Table 3.2. Creation of primes, subscripts and superscripts 3.3 Main mathematical constructs

Table 3 .

 3

3. Big mathematical operators.

Table 3

 3

.5. Homoglyphs supported by T E X MACS .

 In order to create a table, you may either use Insert→Table or one of the following keyboard shorthands:

T N T . Create a plain table. T N T . Create a table whose cells are centered.

T N B . Create a "block", whose cells all have a small border.

T N B . Create a block whose cells are centered.

In math mode, a few other table-like structures are provided:

T N M . Create a matrix.

 Examples of a plain table, a centered block and a matrix are shown below. Notice that the environments with the explanatory text below the tables were created using Insert→ Table→Small table. The use of "small tables" allows you to put several tables besides each other on the same line. For a single large table, one may use Insert→Table→Big table.

	boom	tree
	hallo	hello
	wiskunde mathematics

T N D . Create a determinant.

T N C . Create a choice list.

Table 4 .

 4

	boom	tree
	hallo	hello
	wiskunde mathematics
	1. A plain table.	

Table 4 .

 4 2. A centered block.

Table 4 .

 4

3. A matrix.

 table, which will be respected during further editing. (this is mainly useful when creating table macros). Currently, all tables come inside an environment like tabular, block, matrix, etc. When creating your own table macros, you may use Table→Special table properties→Extract format to extract the format from a given table.

 table. Inversely, each spreadsheet also carries an invisible Ref field which can be edited by deactivating the spreadsheet or from the focus bar (when selecting the entire spreadsheet). The Ref field of the spreadsheet is used as a prefix for refering to the contents of cells outside the table or from within other spreadsheets. For instance, if Ref equals sheet, then sheet-c4 will refer to the field c4 inside the spreadsheet.

 Different styles for rendering the same source tree.

	Angular	Scheme
	assign|quick-theorem | macro|body | surround| no-indent Theorem. || body	(assign "quick-theorem" (macro "body" (surround (no-indent)"Theorem. " "" (arg "body"))))
	Functional	L A T E X
	assign (quick-theorem , macro (body , surround (no-indentTheorem. , , body)))	assign{quick-theorem }{ macro{body }{ surround{no-indentTheorem. }{} { body}}}
	Figure 11.1.	

 One thing you can always do is copy the original definition of lemmas in a safe place and redefine the lemma macro on top of the original definition:Another frequent situation is that you only want to modify the rendering of a tag when it is used inside another one. On the web, the Cascading Style Sheet language (CSS) provides a mechanism for doing this. In T E X MACS , you may simulate this behaviour by redefining macros inside a with. For instance, imagine that we want the inter-paragraph space inside lists inside theorem-like environments to vanish. Then we may use:

	assign|orig-render-theorem|render-theorem
	assign|render-theorem|
	macro|name|body | with|orig-render-list|render-list|
	with|render-list| macro|x | orig-render-list|x | orig-render-theorem|
	name|
	body

assign|orig-lemma |lemma assign|lemma | macro|body | with|color |red| orig-lemma|body Alternatively, if only the text inside the lemma should be rendered in red, then you may do: assign|orig-lemma |lemma assign|lemma | macro|body | orig-lemma| with|color |red|body

Of course, you have to be careful that the name orig-lemma is not already in use.

 Some of these are described in more detail in the chapter about writing new interfaces. This plug-in shows how to extend T E X MACS with some additional Scheme code in the file world/progs/init-world.

	$TEXMACS_PATH/examples/plugins
	$TEXMACS_PATH/plugins
	13.3. Example of a plug-in with Scheme code
	The world plug-in.
	Consider the world plug-in in the directory
	$TEXMACS_PATH/examples/plugins
	Many other examples
	can be found in the directories

scm

In order to test the world plug-in, you should recursively copy the directory $TEXMACS_PATH/examples/plugins/world to $TEXMACS_PATH/plugins or $TEXMACS_HOME_PATH/plugins. When relaunching T E X MACS , the plug-in should now be automatically recognized (a World menu should appear in the menu bar).

 Optional specification of the initial environment for the document, with information about the page size, margins, etc.. The table is of the form collection | binding-1 | | binding-n . Each binding-i is of the form associate|var-i |val-i and associates the initial value val-i to the environment variable var-i . The initial values of environment variables which do not occur in the table are determined by the style file and packages.

	style|version	
	style| tuple|style|pack-1 | |pack-n An optional style and additional packages for the document.	(style and packages)
	body|content	(body of the document)
	This mandatory tag specifies the body of your document.	
	initial|table	(initial environment)
	references|table	(references)

 table, which is specified in a similar way as above, associates auxiliary content to a key. Standard keys include bib, toc, idx, gly, etc.

	Example 14.1. An article with the simple text "hello world!" is represented as
		document
	TeXmacs	style	body
	1.0.7.17	article	document
			hello world!

 The document tag is not explicitly exported. Instead, each paragraph argument is enclosed within a tm-par tag. For instance, the quotation

	14.4 XML serialization <frac><tm-arg>1</tm-arg><tm-arg>2</tm-
	arg></frac>+<sqrt>y+z</sqrt>
	Ik ben de blauwbilgorgel.
	Als ik niet wok of worgel,
	is represented as
	<quote-env>
	<tm-par>
	Ik ben de blauwbilgorgel.
	</tm-par>
	<tm-par>
	Als ik niet wok of worgel,
	</tm-par>
	</quote-env>
	represented as

 lengths. All lengths are ultimately converted into a normalized length, which is a tag of the form tmlen|l (for rigid lengths) or tmlen|min |def |max (for stretchable lengths). The user may also use this tag in order to specify stretchable lengths. For instance, tmlen | minus | 1quad | 1pt | 1quad | 1.5quad evaluates to a length which is 1quad by default, at least 1quad-1pt and at most 1.5quad.

 The real font size is obtained by multiplying the font-base-size by the font-size multiplier. The following standard font sizes are available from Format→Size:

	9pt, 10pt, 11pt, 12pt			
	font-size8 1			(font size)
	size	multiplier size	multiplier
	Tiny	0.59	Very small	0.71
	Small	0.84	Normal	1
	Large 1.19	Very large	1.41
	Huge 1.68	Really huge 2

Table 15.1. Standard font sizes. 15.2 Specifying the current font

Table 15

 15

.2. The supported modes for alignment.

Table 15 .

 15 3. Difference between a large and small flexibility (on the left and right hand sides respectively).

Table 15 .5. Two

 15 classical ways to indicate the starts of new paragraphs.

	par-sep8 0.2fn	(extra separation between successive lines)

table -)

 - which apply to the whole table and those (prefixed by cell-) which apply to individual cells. Whereas usual environment variables are set with assign and with, the tabular environment variables are rather set with the tformat primitive. This makes it possible to apply certain settings to any rectangular subtable of the entire table and in particular to rows or columns. For more details, see the documentation of the twith and cwith primitives.These parameters specify how to determine the dimensions of the table. At the moment, the values of table-hmode and table-vmode are actually ignored and table-width and table-height are interpreted as the minimal width and height of the table. These parameters determine how the table should be aligned in the surrounding text. Possible values for table-halign are l (left), c (center) and r (right), and possible values for table-valign are t (top), f (centered at fraction bar height), c (center) and b (bottom). In addition to the above values, the alignment can take place with respect to the baselines of particular cells. Such values for table-halign are L (align w.r.t. the left column), C (align w.r.t. the middle column), R (align w.r.t. the right column) and O

	table-width8	
	table-height8	(hint for table dimensions)
	table-hmode8	
	table-vmode8	(determination of table dimensions)
	table-halign 8 l table-valign 8 f	(alignment inside text)

Layout of the table as a whole.

These parameters indicate a hint for the dimensions of the table. The table-hmode and table-vmode variables determine how to take into account these settings. (align w.r.t. the priviledged origin column table-col-origin). Similarly, table-halign may take the additional values T (align w.r.t. the top row), C (align w.r.t. the middle row), B (align w.r.t. the bottom row) and O (align w.r.t. the priviledged origin row table-roworigin).

 Table coordinates of an priviledged "origin cell" which may be used for aligning the table in the surrounding text (see above).Padding around the table (in addition to the padding of individual cells).Border width for the table (in addition to borders of the individual cells).

	table-row-origin 8 0 table-col-origin 8 0	(priviledged cell)
	table-lsep8 0fn	
	table-rsep8 0fn	
	table-bsep8 0fn	
	table-tsep8 0fn	(padding around table)
	table-lborder 8 0ln table-rborder 8 0ln table-bborder 8 0ln table-tborder 8 0ln	(border around table)
	table-hyphen 8 n	(allow for hyphenation?)

A flag which specifies whether page breaks may occur at the middle of rows in the table. When table-hyphen is set to y, then such page breaks may only occur when 1. The table is not surrounded by other markup in the same paragraph.

 decorating table for cell)This environment variable may contain a decorating table for the cell. Such a decoration enlarges the table with extra columns and cells. The tmarker primitive determines the location of the original decorated cell and its surroundings in the enlarged table are filled up with the decorations. Cell decorations are not really used at present and may disappear in future versions of T E X MACS .

	cell-orientation 8 portrait	(orientation of cell)

 All fundamental table structures have inaccessible borders. The basic top-level table tag is tabular. tformat|table means the table and cell variables defined in the top-level table tag are not modified. The table argument may be a table or a nested tformat tag, the latter does not appear in documents but is produced by the evaluation of the top-level tag. tformat | with-1 | | with-n | table is used when the table contains specific formatting information. The with-1 to with-n arguments must all be twith or cwith tags.

	(table formatting container) Every tabular structure in a document contains a tformat tag. tformat|with-1 | |with-n |table
	twith|var |val	(set a table variable)

The formatting of the table as a whole is specified by a number of table variables, which are used internally and do not appear in the environment like regular typesetter variables.

The twith primitive sets the table variable var (literal string) to the value val (evaluated).

cwith|top-row|bot-row|left-col |right-col |var |val

(set a cell variable for a range)

 If expr is a string, the length of the string is returned. For instance, length | Hello evaluates to 5.

	17.5.1. Operations on text	
	length|expr		(length of a string)
	(extract a substring) Return the substring of expr starting at position start and ending at position end (not range|expr |start|end
	included). For instance, range | hottentottententententoonstelling | 9 | 15 evaluates to tenten.
	(concatenate strings) This primitive may be used to concatenate several strings expr-1 until expr-n . For merge|expr-1 | |expr-n
	instance, merge|Hello|World produces HelloWorld.	
	(alternative rendering of numbers) Renders a number in a specified way. Supported values for render-as are number|number |render-as
	roman. Lower case Roman: number|18|roman	xviii.
	Roman. Upper case Roman: number|18|Roman		XVIII.
	alpha. Lower case letters: number|18|alpha	r.
	Alpha. Upper case letters: number|18|Alpha	R.
	arabic. Arabic numbers: number|18|arabic	18.
	fnsymbol. Footnotes symbols: number|2|fnsymbol	†.
	date	
	date|format	
	date|format|language		(obtain the current date)

 Return the subtuple of expr starting at position start and ending at position end (not included). For instance, range| tuple|a|hola|hop|b|c |2|4 evaluates to tuple|hop|b .

	tuple|expr-1 | |expr-n Forms a tuple from the expressions expr-1 until expr-n .	(construct a tuple)
	is-tuple|expr	(tuple predicate)
	Tests whether a given expression expr evaluates to a tuple.
	length|expr	(length of a tuple)
	If expr is a tuple, then we return its arity. For instance, length | tuple | hop | hola evaluates to 2.
	look-up|tuple|which	(access an entry in a tuple)
	Returns the element with index which in tuple. For instance, look-up| tuple|a|b|c |1 yields b.
	range|expr |start|end	(extract a subtuple)
	merge|expr-1 | |expr-n	(concatenate tuples)

 T E X MACS . Most style files and packages have an abstract interface, the d.t.d. (data domain definition), which specifies which macros are exported by the style or package, and how to use them. Distinct styles or packages (like header-article and header-book) may share the same abstract interface, but differ in the way macros are rendered. For this reason, we will mainly be concerned with the description of the standard d.t.d.s, except when we focus on the rendering. Users may customize standard styles by defining new ones which match the same abstract interface (see the chapter on writing T E X MACS style files).

 The std d.t.d. contains the markup which is common to virtually all styles. It is subdivided into the following parts:Various standard markup is defined in std-markup. The following textual content tags all take one argument. Most can be found in the Insert→Content tag menu.An acronym is an abbreviation formed from the first letter of each word in a name or a phrase, such as HTML or IBM. In particular, the letters are not separated by dots. You may enter an acronym using Insert→Content tag→Acronym.verbatim|content Verbatim text like output from a computer program. Example: the program said hello. You may enter verbatim text via Insert→Content tag→Verbatim. The tag may also be used as an environment for multi-paragraph text.kbd|content Text which should be entered on a keyboard. Example: please type return. This tag corresponds to the menu entry Insert→Content tag→Keyboard.

	18.2.1. Standard markup
	really-tiny|content , tiny|content
	cite*|content really-small|content , very-small|content , smaller|content , small|content
	normal-size|content A bibliographic citation like a book or magazine. Example: Melville's Moby Dick. This large|content , larger|content , very-large|content , really-large|content tag, which is obtained using Insert→Content tag→Cite, should not be confused with cite. The latter tag is also used for citations, but where the argument refers to an entry in huge|content , really-huge|content
	a database with bibliographic references.

strong|content Indicates an important region of text. You can enter this tag via Insert→Content tag→Strong. em|content Emphasizes a region of text like in "the real thing". This tag corresponds to the menu entry Insert→Content tag→Emphasize. dfn|content For definitions like "a gnu is a horny beast". This tag corresponds to Insert→Content tag→Definition. samp|content A sequence of literal characters like the ae ligature ae. You can get this tag via Insert→ Content tag→Sample. name|content The name of a particular thing or concept like the Linux system. This tag is obtained using Insert→Content tag→Name. person|content The name of a person like Joris. This tag corresponds to Insert→Content tag→Person. abbr|content An abbreviation. Example: I work at the C.N.R.S. An abbreviation is created using Insert→Content tag→Abbreviation or the % A keyboard shortcut. acronym|content code*|content Code of a computer program like in "cout << 1+1; yields 2". This is entered using Insert→Content tag→Code. For longer pieces of code, you should use the code environment. var|content Variables in a computer program like in cp src-file dest-file . This tag corresponds to the menu entry Insert→Content tag→Variable. math|content This tag is used for mathematics inside regular text. Example: the formula sin 2 x + cos 2 x = 1 is well-known.

op|content This is a tag which can be used inside mathematics for specifying that an operator should be considered on itself, without any arguments. Example: the operation + is a function from R 2 to R. This tag may become depreciated. tt|content This is a physical tag for typewriter phase. It is used for compatibility with HTML, but we do not recommend its use.

Most of the following logical size tags can be found in Insert→Size tag (or Insert→Size tag):

Table A .

 A 2. Keyboard shortcuts for modifier keys or modifier key combinations.

 your X server uses the xkb extension, and is instructed to switch between the Latin and Russian keyboard modes, you need not do anything special. Just switch your keyboard to the Russian mode, and go ahead. All the software needed for this is included in modern Linux distributions, and the xkb extension is enabled by default in XF86Config. With the xkb extension, keysyms are 2-byte, and Russian letters are at 0x6??. The keyboard is configured by setxkbmap. When X starts, it issues this command with the systemwide Xkbmap file (usually living in /etc/X11/xinit), if it exists; and then with the user's ~/.Xkbmap, if it exists. A typical ~/.Xkbmap may look like ru basic grp:shift_toggle This means that the keyboard mode is toggled by l-shift r-shift . Other popular choices are or % , see /usr/X11R6/lib/X11/xkb/ for more details. This is the preferred keyboard setup for modern Linux systems, if you plan to use Russian often.

Table A .

 A 3.Typing Cyrillic text on a Roman keyboard.A.3 Notes for users of Cyrillic languages

Table B . 1 .

 B1 Summary of the principal information about GNU T E X MACS .

B.4.11. Renaming of tags and environment variables (1.0.2.7 - 1.0.2.8)

 Most environment variables and some tags have been renamed, so that these names no longer contain whitespace and only dashes (and no underscores) as separators.Moreover, functions have systematically been replaced by macros. The few built-in functions which may take an arbitrary number of arguments have been rewritten using the new xmacro construct. If you ever wrote such a function yourself, then you will need to rewrite it too.

	(tag arg-1 ... arg-n)
	B.4.12. Macro expansion (1.0.2.3 -1.0.2.7)
	An important internal change concerning the data format has been made: macro expan-
	sions and function applications like
	(expand tag arg-1 ... arg-n)
	(apply tag arg-1 ... arg-n)
	are now replaced by hard-coded tags

 All formattings constructs without arguments (like line breaks, indentation directives, etc.) have been replaced by tags of arity zero. This makes most new documents badly unreadable for older versions of T E X MACS and subtle errors might occasionnaly occur when saving or loading, or during other editing operations.

	B.4.13. Formatting tags (1.0.2 -1.0.2.1)

B.4.14. Keyboard (1.0.0.11 -1.0.1)

 The prompt plug-in shows how to use prompts. It consists of the files

	cout << DATA_BEGIN << "verbatim:";
	cout << "A LaTeX -> TeXmacs converter";
	next_input ();
	cout << DATA_END;
	cout.flush ();
	and in the body of the main loop
	char buffer[100];
	cin.getline (buffer, 100, '\n');
	cout << DATA_BEGIN << "verbatim:";
	cout << DATA_BEGIN;
	cout << "latex:$" << buffer << "$";
	cout << DATA_END;
	next_input ();
	cout << DATA_END;
	cout.flush ();
	prompt/Makefile
	prompt/progs/init-prompt.scm
	prompt/src/prompt.cpp
	The routine for displaying the next prompt is given by
	void
	next_input () {
	counter++;
	cout << DATA_BEGIN << "prompt#";
	cout << "Input " << counter << "] ";
	cout << DATA_END;
	}
	This routine is both used for displaying the startup banner

 Just as substitute.cpp above, the main program secure.cpp just converts mathematical L A T E X expressions to T E X MACS . The secure-secure.scm module contains the secure Scheme routine latexer:

	secure/Makefile
	secure/packages/secure.ts
	secure/progs/init-secure.scm
	secure/progs/secure-secure.scm
	secure/src/secure.cpp

 TeXmacs.hIn this file it is specified that your application should export a data structure

	typedef struct package_exports_1 {
	char* version_protocol; /* "TeXmacs communication protocol 1" */
	char* version_package;
	char* (*install) (TeXmacs_exports_1* TeXmacs,
	char* options, char** errors);
	char* (*evaluate) (char* what, char* session, char** errors);
	} package_exports_1;

 The dynlink plug-in gives an example of how to write dynamically linked libraries. It consists of the following files: The tmsrc variable should contain $TEXMACS_PATH, so as to find the include file TeXmacs.h. The configuration file init-dynlink.scm simply contains As to the C++ file dynlink.cpp, it contains a string

	static char* output= NULL;
	with the last output, the initialization routine
	char*	
	dynlink_install (TeXmacs_exports_1* TM, char* opts, char** errs) {
	output= (char*) malloc (50);
	strcpy (output, "\2verbatim:Started dynamic link\5");
	return output;
	}	
	the evaluation routine
	char*	
	dynlink_eval (char* what, char* session, char** errors) {
	free (output);
	output= (char*) malloc (50 + strlen (what));
	strcpy (output, "\2verbatim:You typed ");
	strcat (output, what);
	strcat (output, "\5");
	return output;
	}	
	and the data structure with the public exports:
	dynlink/Makefile
	package_exports_1 dynlink_exports= { dynlink/progs/init-dynlink.scm "TeXmacs communication protocol 1", dynlink/src/dynlink.cpp "Dynlink 1",
	dynlink_install, The Makefile contains dynlink_eval
	};	tmsrc = /home/vdhoeven/texmacs/src/TeXmacs
		CXX = g++
		LD = g++
		lib/libtmdynlink.so: src/dynlink.cpp
		$(CXX) -I$(tmsrc)/include -c src/dynlink.cpp -o
		src/dynlink.o
		$(LD) -shared -o lib/libtmdynlink.so src/dynlink.o
	so that running it will create a dynamic library dynlink/lib/libdynlink.so from
	dynlink.cpp. (plugin-configure dynlink
	(:require (url-exists? (url "$LD_LIBRARY_PATH"
		"libtmdynlink.so")))
	(:link "libtmdynlink.so" "dynlink_exports" "")
	(:session "Dynlink"))

 Index abbr . 165 above . 142 abstract . 184 acmconf . 163 acronym . 166 action . 145 active . 156 active* . 156 add-to-counter-group 177 Algorithm 47 algorithm 178 aligned-item 171 allouche 164 Allow for macro definitions in preamble 195 alt-colors 57 amsart . 163 and . 155 appendix 188 arg 148, 148, 148, 149, 149, 153 article . 15, 69, 80, 80, 80, 80, 121, 121, ?, 163, 163, 164, 226 assign . 147 associate 102, 160, 160 attr . 160 author-affiliation 185, 187 author-by 187 author-data 184, 184, 186 author-email 185, 187 author-homepage 185, 187 author-misc 185 author-name 185 author-render-name 187 Automatic quotes 201 Automatically close brackets 201 Autosave 202 auxiliary . 103 axiom . 164 backup . 160 beamer 15, 57, 57, 57 below . 142 bib-list . 172 bibliography 189 Bibtex command 202 big . 140 big-figure 182 big-table . 183 binom . 169 blanc-page 176 Block . 55 block . 167 block content 144, 146 block context 144, 145, 147 block* . body 102, book 15, 121, 121, 163, 163, bpr . case 151, cell . center . chapter . choice . choose . cite . cite* . cite-detail clipped . close-tag 157, code .

code* . collection 102, compact-item compound concat . Converters counter-in-g counter-x cwith . Cyrillic input method date 154, 154, datoms . dbox .

 11, 15 document 133 Add package Beamer metal 57 Utilities math-check 29 Color Background 115 Foreground 115 Font . 116 Dpi 13 Size 19 Language 12, 15, 21, 115, 154, 225 Russian 204 Your language 222 Magnification 115 Master Attach 40 Package 68, 68 Page . 19 Breaking 47 Layout 19 Screen layout 19 Margins as on paper 13 Size 12, 123 Type 19, 38, 124 Paper 13 Part . 217 Scripts 64, 64 Maxima 63 Style 12, 15, 67, 67, 96, 163 Beamer 57 source 67 Update All 38 Bibliography 39 Table of contents 38 Use package 68, 96, 163 Program 62 secure 237 View 70, 102 Closing style 130 Compactification 71, 130 Edit source tree 70, 115 Informative flags 115, 159 Detailed 159 Redo . 51 Replace 50 Search 49 Spell . 50 Undo 51 em . 165 Emacs . ?, ? enumerate 169 enumerate-alpha 170 enumerate-Alpha 170 enumerate-numeric 170 enumerate-roman 170 enumerate-Roman 170 enunciation-name 182 enunciation-sep 182 env . 80, 80 env

 193 Html 197 LaTeX 193, 194 Pdf 13 Postscript 13 Scheme 106 XML 105 Import 193 Html 198 Latex 195 LaTeX 193 Scheme 106 XML 105 Load 11, 12, 225, 225 New 12, 67 Print Print all 13 Print all to file 13 Save 12, 225, 225 Save as 12 filter . 150 flag 159, 159 Flexibility 47 float 146, 146, 146 Focus 12, 16, 216 Insert argument after 58, 58 Insert argument before 58 Line arrows 45 Line dashes 44 Screens 57 fold . 168 foo 157, 157 footnote . 183 footnote-sep 183 Format 15, 15, 16, 216 Color 115 Red 49 Condensed 119 Display style 119, 141 Font . 116 Font shape Italic 11 Formula style on . ? Index level 118 Language 21, 115 Japanese 206 Russian 204 Page insertion Floating figure 47 Floating object 47 Floating table 47 Footnote 47 Size . 117 Space 22, 53, 54 Specific Image 195, 197 Latex 195, 195 Texmacs 195, 195 Transform 54 Resize object 26 Formula . 16 frac . 141 framed-env 57 From center 59 generic 15, 121, 121, ?, 164, 164, 225 get-arity . 150 get-label . 150 giac . 164 glossary . 174 glossary-1 174 glossary-2 174 glossary-dots 174 glossary-dup 174 glossary-explain 174 glossary-line 174 Gnome . ? Go . 12 greater . 155 greatereq 155 group-common-counter 177 group-individual-counters 177 header 80, 188 header-article 80, 80, 163 header-author 188 header-book 80, 163 header-primary 188 header-secondary 188 header-title 183 header-title 188 Help . 221 Interfacing 228 Plug-ins 61, 244 Scheme 51 Source code Data conversion 227 Data format 227 hflush . 174 higher-level macro

 . . 173 index-line 173 initial . 102 initial environment 147 inline content 144 inline-tag 157 input . 178 Insert 16, 216, 216 Animation Animation 59 Compose 59 Fixed 59 Progressive 59, 59 Repeat 59 Sound 59 Translate 59, 59 Arc . 42 Automatic Bibliography 39 Index 39 Table of contents 38 Circle 42 Closed spline 42 Content tag 165 Abbreviation 165 Acronym 166 Cite 165 Code 166 Definition 165 Emphasize 165 Keyboard 166 Name 165 Person 165 Sample 165 Strong 165 Variable 166 Verbatim 166 content tags 16 Description 17 Enumerate 15, 17 Roman 17 Enunciation 15 Environment 18, 181, 181, 181, 181 Fold Executable 58, 63 Maxima 63 Folded 58 Summarize 58 Switch Screens 57 Standard 58, 58 Traversal 58 Unroll 58 Fraction 49 Geometry Crop 41 Size 41 Unit 41 Zoom 41 Grid . 41 margin-first-other 175 markup.ts 232, 233 math . 166 Mathematics 216 matrix . 169 Maxima . 63 maxima . 67 meaning . 160 merge 154, 156 metal . 57 mid . 140 middle-tag 157 minus . 155 mod . 155 move . 138 multi-paragraph cell 144 name . 165 neg . 142 new-counter 176 new-counter-group 177 new-dpage 161 new-dpage* 161 new-env . 180 new-exercise 179, 179 new-line

 sectional-centered 191 sectional-centered-bold 191 sectional-centered-italic 191 sectional-normal 191 sectional-normal-bold 191 sectional-normal-italic 191 sectional-sep 189 sectional-short 190 sectional-short-bold 190 sectional-short-italic 190 sectional-short-style 189 Security . ?, ? seminar 15, 163 session . 80 Session . 216 Close session 61 Evaluate Evaluate above 61 Evaluate all 61 Evaluate below 61 Field . 62 Input Mathematical input 63 Input mode Mathematical input 63 Multiline input 62 Interrupt execution 61 Session Clear all fields 62 Create subsession 62 Fold all fields 62 Unfold all fields 62 Split session 62 session . 178 session . 178 set-footer 176 set-header 176 shift . 138 shrink-inline 169 simple-page 176 Simplified menus 201 small . 166 small-figure 182 small-table 183 smaller . 166 source 15, 67, 81, 81, 163 Source 74, 74 Activation 73 Activate 73 Activate once 73 Arithmetic Condition Define Evaluation Flow control Macro Presentation Apply macro Apply macro once Compact Stretched

 . 134 switch . 168 symbol . 157 table . 143 Table . 216 Cell background color 35 Cell border 35 Cell height Set height 35 Cell operation mode 34 Cell width Set width 35 Horizontal cell alignment 34 Horizontal table alignment 34 Special cell properties Distribute unused space 35 Hyphenation Multi-paragraph 130 Special table properties 35 Border 35 Extract format 36 Vertical cell alignment 34 Vertical table alignment 34 table-of-contents 189 tabular . .

 . . 172 toc-small-2 172 toc-strong-1 172 toc-strong-2 172 Tools 57, 74, 202 Debugging tool 57 Project Expand inclusions 217 Selections Export 193 Import 193 Update Inclusions 39 Web Create website 197 transform-bibitem 172 translate . 154 tree . 142 tt . 166 tuple 102, 103, 103, 156 twith . 143 underline 168 unequal . 155 unfold . 168 uninit . 160 unknown 160 unquote 152, 152 unquote* 153 Upwards 59, 59 Use catcode definitions in preamble 195 value 148, 148, 153 var . 166 varsession 62, 164, 178 vdh . 164 verbatim 166, 167 verse . 167 Version 54, 55 Commit 56, 56 Compare With current user version 56 With newer version 54 With older version 54 File Compare 55 Grain 55, 55 History 56 Move 54 Register 56 Retain 55 Current version 55 Show 55 Update 56 very-large 166 very-small 166 View 201, 201 Presentation mode 57, 163 Remote control 57 vspace 134, 135 vspace* 135, 135 while . 151 wide . 142 wide* . 142 wide-bothlined 175 wide-centered 174, 175 wide-framed 175 wide-framed-colored 175 wide-normal 174, 175 wide-std-bothlined

1.4 Printing documents

2.8 Mastering the keyboard

Mathematical formulas

Tabular material

5.7 Books and multifile documents

6.4 Specification of style properties

6.5 Editing groups of objects

10.4 Plug-ins as scripting languages

10.5 Spreadsheets

11.2 Rendering of style files and packages

11.3 The style-sheet language

11.4 Customizing the standard T E X MACS styles

11.5 Further notes and tips

The T E X MACS plug-in system

14.3 Default serialization

The T E X MACS format

14.6 The typesetting process

14.8 T E X MACS lengths

15.1 General environment variables

Built-in environment variables

Built-in environment variables

15.4 Paragraph layout

15.5 Page layout

Built-in environment variables

15.6 Table layout

15.8 Miscellaneous environment variables

16.2 Formatting primitives

16.3 Mathematical primitives

16.4 Table primitives

16.6 Miscellaneous physical markup

Primitives for writing style files

17.2 Macro primitives

17.3 Flow control primitives

17.5 Functional operators

17.6 Transient markup

17.8 Internal primitives

18.2 The common base for most styles

The standard T E X MACS styles

18.3 Standard environments

18.4 Headers and footers

18.5 L A T E X style sections

19.1 Converters for L A T E X

19.2 Converters for Html and MathML

Compatibility with other formats

19.3 Adding new data formats and converters

B.3 The authors of T E X MACS

B.4 Important changes in T E X MACS

C.3 Contribute to the GNU T E X MACS documentation

Contributing to GNU T E X MACS

D.4 Output channels, prompts and default input

D.9 Dynamic libraries

Appendix A Configuration of T E X MACS

A.1. User preferences

For an optimal typing experience, you may wish to configure T E X MACS in a way which suits your needs best. This can be done from within the Edit→Preferences menu. Most importantly, you should choose a "look and feel" in Edit→Preferences→Look and feel. This will enable you for instance to let the keyboard shortcuts used by T E X MACS be similar to what you are used to in other applications.

The following user preferences are available:

Look and feel. This preference controls the general "look and feel" of T E X MACS , and mainly affects the behaviour of the keyboard. The default look and feel depends on your system (Gnome, KDE or Emacs under Linux, Mac OS under Mac OS, and Windows under Windows). The Emacs look and feel can be used as an alternative on all systems; it has been the default for all T E X MACS versions prior to 1.0.7.6.

More details on the keyboard configuration on different systems can be found below.

Interactive questions. This preference specifies how the user will be prompted for input when required. Questions may either be displayed in separate windows or on the status bar of T E X MACS .

Details in menus.

This preference specify the level of detail in the menus. The less frequently used features will be left out when selecting Simplified menus.

View. The preference corresponds to the same viewing options as in the top-level View menu.

Language. Your preferred language for the T E X MACS interface.

Keyboard. In addition to the general look and feel, a few additional settings determine the behaviour of the keyboard:

• The Cyrillic input method specifies how to type text in Cyrillic languages.

• Quotes can be automatically closed according to the Automatic quotes style.

• Brackets can be automatically closed by enabling Automatically close brackets.

Printer. The printer setup can be configured from this submenu.

Security. In theory, T E X MACS documents may embed macros or hyperlinks which give rise to the execution of arbitrary commands (as specified by the author). In practice, this feature may involve a security risk,. Therefore, the Security preference allows the user to specify what should be done with untrusted executable code.

Potential conflicts.

The T E X MACS -specific shortcuts are rarely in conflict with standard conventions. Nevertheless, in System-wide shortcuts which may take precedence.

In addition to the above standard shortcuts, some system-wide applications may define additional global shortcuts, which take precedence over the T E X MACS shortcuts. For instance, under Mac OS X, the application Spaces uses the shortcuts , , ,

, 1 , 2 , 3 and 4 to switch between multiple screens. One of the best ways to contribute to GNU T E X MACS is by using it a lot, talk about it to friends and collegues, and to report me about bugs or other unnatural behaviour. Please mention the fact that you wrote articles using T E X MACS when submitting them. You can do this by putting the made-by-TeXmacs tag somewhere inside your title using Insert→Title→TeXmacs notice.

Besides these general (but very important) ways to contribute, your help on the more specific subjects below would be appreciated. Don't hesitate to contact us if you want to contribute to these or any other issues. In the Help menu you can find documentation about the source code of T E X MACS , its document format, how to write interfaces with other formats, and so on.

C.2. Making donations to the T E X MACS project

Making donations to TeXmacs through the SPI organization.

One very important way to support T E X MACS is by donating money to the project. T E X MACS is currently one of the projets of SPI (Software in the Public Interest; see http://www.spi-inc.org). You may make donations of money to TeXmacs via this organization, by noting on your check or e-mail for wire transfers that your money should go to the TeXmacs project. You may also make donations of equipment or services or donations through vendors. See the SPI website for more information. The list of donators is maintained at our website.

Details on how to donate money.

To make a donation, write a check or money order to: To make an electronic transfer (this will work for non-US too), you need to give your bank the routing number and account number as follows:

The SPI bank account is at American Express Centurion Bank. Routing Number: 124071889 Account Number: 1296789 big-focus, big-envbox. Block versions of small-focus and small-envbox.

C.4. Internationalization

The support of a maximal number of foreign languages is another major challenge in which your help would be appreciated. Making the translations to support a new language usually requires several days of work. We therefore recommend you to find some friends or collegues who are willing to help you.

The procedure for adding a new language is as follows

• You copy the file english-new.scm to english-yourlanguage .dic in langs/natural/dic and fill out the corresponding translations. You may want to use Andrey Grozin's dictionary tool at http://www.texmacs.org/Data/dictool.py.gz

In order to use it, may sure that Python is installed on your system, download the file, gunzip it, make it executable and run it.

• You tell me about any special typographical rules in your language and handy keystrokes for producing special characters.

• I take care of the hyphenation and typographical issues, but you test them.

• If you have enough time, you may also consider the translation of (part of) the existing documentation.

Of course, the support for languages get out of date each time that new features are added to T E X MACS . For this reason, we also maintain a file miss-english-yourlanguage .dic with all missing translation for your language, once that it has been added. Please do not hesitate to send inclomplete versions of english-yourlanguage .dic or miss-englishyourlanguage.dic; someone else may be willing to complete them.

C.5. Writing data converters

If you are familiar with T E X, L A T E X, Html, Xml, Sgml, Mathml, Pdf, Rtf, or any other frequently used data format, please consider contributing to writing good converters for one or more of these formats. In Help→Source code→Data format you will find details about the T E X MACS data format and in Help→Source code→Data conversion we give some suggestions which might be helpful for these projects.

C.6. Porting T E X MACS to other platforms

Currently, T E X MACS is supported on most major Unix/X-Window platforms and a Windows port should be ready soon. Nevertheless, your help is appreciated in order to keep the existing ports working. Some remaining challenges for porting T E X MACS are:

• A native port for MacOS-X.

C.6 Porting T E X MACS to other platforms

• Ports to PDAs, first of all those which run Linux. It should be noticed that, with the current support for Freetype, T E X MACS no longer depends on T E X/L A T E X for its fonts. We expect it to be possible to obtain a reasonable ports for T E X MACS on PDAs with 32Mb and at least 100MHz clock-speed. Of course, one also needs to customize the menus and/or icon bars, but this should not be hard.

T E X MACS ports to PDAs would be particularly interesting in combination with the available plug-ins for doing scientific computations.

C.7. Interfacing T E X MACS with other systems

It is quite easy to write interfaces between T E X MACS and computer algebra systems or other scientific programs with structured output. Please consider writing interfaces between T E X MACS and your favorite system(s). T E X MACS has already been interfaced with several other free systems, like Giac, Macaulay 2, Maxima, GNU Octave, Pari, Qcl, gTybalt, Yacas. Detailed documentation on how to add new interfaces is available in the Help→Interfacing menu.

C.8. T E X MACS over the network and over the web

It should be quite easy to write a plug-in for T E X MACS for doing instant messenging or live-conferencing. We are very interested in people who would like to help with this. The same techniques might be used for collaborative authoring and educational purposes.

Besides live conferencing, we are also interested by people who are willing to program better integration of T E X MACS with the web. As a first step, this would require an internal C++ plug-in based on Wget or Curl for accessing web-pages, which supports cookies, security, etc. At a second stage, these features should be exploited by the Html converters. At the last stage, one might develop more general web-based services.

C.9. Become a T E X MACS developer

Apart from the kind of contributions which have been described in more detail above, there are many more issues where your help would be appreciated. Please take a look at our plans for the future for more details. Of course, you should feel free to come up with your own ideas and share them with us on the texmacs-dev@gnu.org mailing list! int main () { display-startup-banner while (true) { read-input display-output } return 0; } By default, T E X MACS just send a '\n'-terminated string to the application as the input. Consequently, the code for read-input is given by char buffer[100]; cin.getline (buffer, 100, '\n');

The output part is more complicated, since T E X MACS needs to have a secure way for knowing whether the output has finished. This is accomplished by encapsulating each piece of output (in our case both the display banner and the interactive output) inside a block of the form The DATA_ESCAPE is used for producing the DATA_BEGIN and DATA_END characters in the message using the rewriting rules

DATA_ESCAPE DATA_BEGIN DATA_BEGIN DATA_ESCAPE DATA_END DATA_END DATA_ESCAPE DATA_ESCAPE DATA_ESCAPE

The format specifies the format of the message. For instance, in our example, the code of display-startup-banner is given by cout << DATA_BEGIN << "verbatim:"; cout << "Hi there!"; cout << DATA_END; cout.flush ();

Similarly, the code of display-output is given by input/Makefile input/packages/session/input.ts input/progs/init-input.scm input/progs/input-input.scm input/src/input.cpp

The Scheme configuration code in init-input.scm is given by (plugin-configure input (:require (url-exists-in-path? "input.bin")) (:initialize (input-initialize)) (:launch "input.bin") (:session "Input"))

Here input-initialize is an initialization routine which adds the new input conversion rules in a lazy way:

In other words, the module input-input.scm will only be loaded when we explicitly request to make a conversion. The conversion rules in input-input.scm are given by (plugin-input-converters input (frac input-input-frac) (special input-input-special) ("<vee>" "||") ("<wedge>" "&&"))

This will cause ∨ and ∧ to be rewritten as || and && respectively. Fractions a b are rewritten as ((a):(b)) using the routine

In the additional style file input.ts we also defined some additional markup special:

Here root corresponds to a substring before the cursor for which completions could be found. The strings completion-1 until completion-n are the list of completions as they might be inserted at the current cursor position. If no completions could be found, then you may also return the empty string.

Remark D.4. In principle, the tab-completion mechanism should still work in mathematical input mode. In that case, the input-string will correspond to the serialization of the T E X MACS input.

Remark D.5. The way T E X MACS sends commands to your application can be customized in a similar way as for the input: we provide a :commander configuration option for this, which works in a similar way as the :serializer option.

The complete plug-in.

A very rudimentary example of how the tab-completion mechanism works is given by the complete plug-in, which consists of the following files: