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Lions, Perthame, Tadmor conjectured in 1994 an optimal smoothing effect for entropy solutions of nonlinear scalar conservations laws ([19]). In this short paper we will restrict our attention to the simpler one-dimensional case. First, supercritical geometric optics lead to sequences of C ∞ solutions uniformly bounded in the Sobolev space conjectured. Second we give continuous solutions which belong exactly to the suitable Sobolev space. In order to do so we give two new definitions of nonlinear flux and we introduce fractional BV spaces.

Introduction and nonlinear flux definitions

We focus on oscillating smooth solutions for one-dimensional scalar conservations laws:

∂u ∂t + ∂f (u) ∂x = 0, u(0, x) = u 0 (x), t > 0, x ∈ R. (1) 
The aim of this paper is to build solutions related to the maximal regularity or the uniform Sobolev bounds conjectured in [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] for entropy solutions. In the one-dimensional case, piecewise smooth solutions with the maximal regularity are obtained in [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF] for power-law fluxes. We seek supercritical geometric optics expansions and some special oscillating solutions. Our constructions are valid for all C ∞ flux and show that one cannot expect a better smoothing effect.

The more complex multidimensional case is dealt with in [START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF][START_REF] Castelli | Oscillating solutions and bounds for the maximal smoothing effect for multidimensional scalar conservation laws[END_REF]. For recent other approaches we refer the reader to [START_REF] Dafermos | Regularity and large time behavior of solutions of a conservation law without convexity[END_REF][START_REF] Cheverry | Regularizing effects for multidimensional scalar conservation laws[END_REF][START_REF] De Lellis | Structure of entropy solutions for multidimensional scalar conservation laws[END_REF][START_REF] Crippa | Regularizing effect of nonlinearity in multidimensional scalar conservation laws[END_REF][START_REF] Jabin | Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws[END_REF][START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]. Recall that the first famous BV smoothing effect for uniformly convex flux was given by the Oleinik one-sided Lipschitz condition in the 1950s (see for instance the books [START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics[END_REF][START_REF] Lax | Hyperbolic partial differential equations[END_REF]). For solutions with bounded entropy production, the smoothing effect is weaker than for entropy solutions ( [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF][START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]).

Let us give various definitions of nonlinear flux from [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF][START_REF] Berthelin | Averaging lemmas with a force term in the transport equation[END_REF][START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF][START_REF] Bourdarias | BV s spaces and applications to scalar conservation laws[END_REF]. Throughout the paper, K denotes a compact real interval.

Definition 1 [Lions-Perthame-Tadmor nonlinear flux, [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]] f ∈ C 1 (K, R) is said to be a nonlinear flux on K with degeneracy α if there exists a constant C > 0 such that for all δ > 0, sup

τ 2 +ξ 2 =1 (measure{v ∈ K, |τ + ξ f ′ (v)| < δ}) ≤ Cδ α . (2) 
In [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF], the authors proved a smoothing effect for entropy solutions in some Sobolev space. They obtained uniform Sobolev bounds with respect to L ∞ bounds of initial data. Moreover, they conjectured a better smoothing effect :

u 0 ∈ L ∞ (R) ⇒ u(t, .) ∈ W s,1 loc (R x
), for all s < α and for all t > 0 (3)

where the parameter α is defined in Definition 1. They proved a weaker smoothing effect which was improved in [START_REF] Tadmor | Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs[END_REF]. The conjecture [START_REF] Castelli | Lois de conservations scalaires: étude de solutions particulières en dimension 1 d'espace, effet régularisant[END_REF] is still an open problem.

In [START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF] was given another definition related to the derivatives of the flux. It generalizes a notion of nonlinear flux arising in geometric optics ( [START_REF] Chen | Validity of Nonlinear Geometric Optics for Entropy Solutions of Multidimensional Scalar Conservation Laws[END_REF]). The next one-dimensional definition of smooth nonlinear flux is simpler than in the multidimensional case ( [START_REF] Berthelin | Averaging lemmas with a force term in the transport equation[END_REF][START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF]).

Definition 2 [Smooth nonlinear flux, [START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF]

] f ∈ C ∞ (K, R) is said to be a nonlinear flux on K with degeneracy d if d = max u∈K min k ≥ 1, d 1+k f du 1+k (u) = 0 < +∞. ( 4 
)
For the Burgers equation or for uniformly convex flux, the degeneracy is d = 1. That is the minimal possible value. For the cubic flux f (u) = u 3 on K = [-1, 1], the degeneracy is d = 2. The cubic flux is "less" nonlinear than the quadratic flux. Notice that, with this definition, a linear flux is not nonlinear: d = +∞ with the natural convention min(∅) = +∞.

This definition is equivalent to Definition 1 for C ∞ flux with α = 1 d ( [START_REF] Berthelin | Averaging lemmas with a force term in the transport equation[END_REF][START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF]). Therefore the Lions-Perthame-Tadmor parameter α is for smooth flux the inverse of an integer.

The conjectured smoothing effect (3) is proved for the first time in fractional BV spaces for the class of nonlinear (degenerate) convex fluxes ( [START_REF] Bourdarias | BV s spaces and applications to scalar conservation laws[END_REF]).

Definition 3 [Nonlinear degenerate convex flux, [START_REF] Castelli | Lois de conservations scalaires: étude de solutions particulières en dimension 1 d'espace, effet régularisant[END_REF][START_REF] Bourdarias | BV s spaces and applications to scalar conservation laws[END_REF]] Let f belong to C 1 (I, R) where I is an interval of R. We say that the degeneracy of f on I is at least p if the continuous derivative a(u) = f ′ (u) satisfies:

0 < inf I×I |a(u) -a(v)| |u -v| p (5) 
The lowest real number p, if there exists, is called the degeneracy of f on I. If there is no p such that (5) is satisfied, we set p = +∞. Let f ∈ C 2 (I). We say that a real number

y ∈ I is a degeneracy point of f on I if f ′′ (y) = 0 (i.e. y is a critical point of a). For instance, if f is the power-law flux on [-1, 1]: f (u) = |u| 1+α where α > 0, then the degeneracy is p = max(1, α), ([3, 2]).
Remark 1 Definition 3 implies the convexity (or the concavity) of the flux f . Indeed, by definition there exists

C > 0 such that |f ′ (u) -f ′ (v)| ≥ C|u -v| p . Hence the difference f ′ (u) -f ′ (v) never vanishes for u = v.
Since the flux is continuous, it has got a constant sign for u > v, which implies the monotonicity of f ′ and then the convexity (or the concavity) of the flux.

Remark 2 Definition 3 is less general than Definition 1. Nevertheless, if f satisfies [START_REF] Chen | Validity of Nonlinear Geometric Optics for Entropy Solutions of Multidimensional Scalar Conservation Laws[END_REF] then it also satisfies ( 2) with α = 1 p , and also [START_REF] Castelli | Oscillating solutions and bounds for the maximal smoothing effect for multidimensional scalar conservation laws[END_REF] with

d = p when f is smooth.
The paper is organized as follows. The sequence given in Section 2 is exactly uniformly bounded in the Sobolev space conjectured in [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]. Furthermore, this sequence is unbounded in all smoother Sobolev spaces. In Section 3, we build solutions with the suitable regularity (3).

Supercritical geometric optics 4

We give a sequence of high frequency waves with small amplitude exactly uniformly bounded in the Sobolev space conjectured in [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]. The construction uses a WKB expansion ( [START_REF] Chen | Validity of Nonlinear Geometric Optics for Entropy Solutions of Multidimensional Scalar Conservation Laws[END_REF][START_REF] Rauch | Hyperbolic Partial Differential Equations and Geometric Optics[END_REF]).

Theorem 4 Let f ∈ C ∞ (K, R) be a nonlinear flux with degeneracy d defined by [START_REF] Castelli | Oscillating solutions and bounds for the maximal smoothing effect for multidimensional scalar conservation laws[END_REF]. There exists a constant state u ∈ K such that for any smooth periodic function U 0 satisfying for all 0 < ε ≤ 1, for all x ∈ R, u ε 0 (x) = u + εU 0 x ε d ∈ K, the following properties hold: 1. there exists a positive time T such that the entropy solution u ε of equation ( 1) with

u 0 = u ε 0 is smooth on [0, T ]×R for all 0 < ε ≤ 1 , 2. the sequence (u ε ) is uniformly bounded in W s,1 loc ([0, T ] × R) for s = α = 1 d and unbounded for s > α when U ′ 0 = 0 a.e.
The key point is to construct a sequence of very high frequency waves near the state u where the maximum in ( 4) is reached. Next we compute the optimal Sobolev bounds uniformly with respect to ε on the WKB expansion:

u ε (t, x) = u + ε U t, ϕ(t, x) ε d + ε r ε (t, x).
To estimate the remainder in Sobolev norms, we build a smooth sequence of solutions. It is quite surprising to have such smooth sequence on uniform time strip [0, T ]. Indeed, it is a sequence of solutions with no entropy production, without shock. But for any higher frequency, the life span T ε of u ε as a continuous solution goes towards 0 and oscillations are canceled ( [START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF]). Thus the construction is optimal.

Remark 3 The uniform life span of the smooth sequence

(u ε ) is at least T ∼ 1 sup θ d U 0 d θ ,
as one can see in [START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF]. So we can build such smooth sequence for any large time T and any non constant initial periodic profile U 0 small enough in C 1 . But we cannot take T = +∞ since shocks always occur when U 0 is not constant. [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF].

In this case, u = 0 and the sequence is simply u ε (t, x) = εU t, x ε p , the exact entropy solution of (1) and U(t, θ) is the entropy solution of

∂ t U + ∂ θ |U| 1+p = 0, U(0, θ) = U 0 (θ).
Proof: We give a sketch of the proof (see [START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF] for more details).

• Existence of u: the map u → min{k ≥ 1, f (1+k) (u) = 0} is upper semi-continuous, so it achieves its maximum on the compact K.

• WKB expansion ( [START_REF] Diperna | The validity of nonlinear geometric optics for weak solutions of conservation laws[END_REF][START_REF] Junca | A two-scale convergence result for a nonlinear conservation law in one space variable[END_REF][START_REF] Chen | Validity of Nonlinear Geometric Optics for Entropy Solutions of Multidimensional Scalar Conservation Laws[END_REF][START_REF] Junca | High frequency waves and the maximal smoothing effect for nonlinear scalar conservation laws[END_REF]): we plug the ansatz

u ε (t, x) = u + εU ε t, ϕ(t, x) ε d
into [START_REF] Berthelin | Averaging lemmas with a force term in the transport equation[END_REF]. Notice that the exact profile U ε depends on ε.

Set λ = f ′ (u) and b = f (1+d) (u) (1 + d)! = 0. After simplification,
the Taylor expansion of the flux f (u

+ εU ε ) = f (u) + ε λ U ε + ε 1+d b U 1+d ε -ε 2+d R ε (U ε )
gives an equation for the exact profile U ε and the phase ϕ:

∂U ε ∂t +b ∂U 1+d ε ∂θ = ε ∂R ε (U ε ) ∂θ , U ε (0, θ) = U 0 (θ), ϕ(t, x) = x-λt. (6) 
The profile, which does not depend on ε, is

∂U ∂t + b ∂U 1+d ∂θ = 0, U(0, θ) = U 0 (θ). (7) 
• Existence of smooth solutions for a time T > 0 independent of ε: it is a consequence of the method of characteristics. Indeed, the characteristics of equation ( 6) are a small perturbation of characteristics of equation [START_REF] Cheverry | Regularizing effects for multidimensional scalar conservation laws[END_REF].

• Approximation in C 1 ([0, T ]×R): it comes again from the method of characteristics since εR ε → 0. Notice that the expansion is valid in L 1 loc after shock waves ( [START_REF] Chen | Validity of Nonlinear Geometric Optics for Entropy Solutions of Multidimensional Scalar Conservation Laws[END_REF]). But it is not enough to estimate the Sobolev norms.

• Sobolev estimates: roughly speaking, the order of growth of the

s fractional derivative d s dx s U 0 x ε d is ε -sd .
For the profile U, this estimate is propagated along the characteristics on [0, T ]. We have the same estimate for U ε since U ε is near U in C 1 . Then we get the Sobolev bounds for u ε .

Oscillating solutions

In this section we give exact continuous solutions with the Sobolev regularity conjectured in [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]. Indeed, we choose a suitable initial data such that the regularity is not spoiled by the nonlinearity of the flux for a positive time T . Furthermore, the conjectured smoothing effect is proved for the first time in fractional BV spaces ( [START_REF] Bourdarias | BV s spaces and applications to scalar conservation laws[END_REF]) for the degenerate convex class of nonlinear flux given by Definition 3. The next theorem shows the optimality of this smoothing effect. The optimality was also given in [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF] in Besov spaces framework. Let us introduce the BV s spaces.

Definition 5 (Fractional BV spaces)

Let I be a non empty interval of R. A partition σ of the interval I is a finite ordered subset:

σ = {x 0 , x 1 , • • • , x n } ⊂ I, x 0 < x 1 < • • • < x n .
We denote by S(I) the set of all partitions of I. Let s belong to ]0, 1] and p = 1 s ≥ 1. The s-total variation of a real function u on I is

T V s u{I} = sup σ∈S(I) n k=1 |u(x k ) -u(x k-1 )| p .
BV s (I) is the space of real functions u such that T V s u{I} < +∞.

BV s spaces are introduced in [START_REF] Bourdarias | BV s spaces and applications to scalar conservation laws[END_REF] for applications to conservation laws. These spaces measure the regularity of regulated functions: BV = BV 1 ⊂ BV s ⊂ L ∞ . Indeed, BV s (K) is very close to the Sobolev space W s,1/s (K) ( [START_REF] Bourdarias | BV s spaces and applications to scalar conservation laws[END_REF]):

• BV s (K) ⊂ W s-η,1/s (K) for all 0 < η < s . • BV s (K) = W s,1/s (K)
We now give continuous functions which have the BV s regularity.

Proposition 1 (A continuous BV s function [START_REF] Castelli | Lois de conservations scalaires: étude de solutions particulières en dimension 1 d'espace, effet régularisant[END_REF]) Let 0 < s < 1, 0 < η < 1-s and let g = g s,η be the real function defined on [0, 1] by g(0) = 0 and for all x ∈]0, 1] :

g(x) = x b cos π x c , where b = s + s 2 η and c = s η .
The function g belongs to BV s ([0, 1])∩C 0 ([0, 1]) but not to BV s+η ([0, 1]).

Notice that such example do not provide a function which belongs to BV s but not to η>0 BV s+η . Proof: The extrema of g are achieved

on x k = k -1/c . Let p = 1 s > 1 , q ≤ p and V q = +∞ k=1 |g(x k+1 ) -g(x k )| q .
Since qb/c = q(s + η), the asymptotic behavior |g(x k+1 )g(x k )| q ∼ 2 q k -qb/c when k → +∞ yields V q = +∞ when q = 1/(s + η) and V p < +∞. First this implies g / ∈ BV s+η . Second, for such oscillating function with diminishing amplitudes, we choose the optimal infinite partition to compute the s-total variation (see Proposition 2.3. p. 6 in [START_REF] Bourdarias | BV s spaces and applications to scalar conservation laws[END_REF]). Then g belongs to BV s .

We are now able to find oscillating initial data with the critical Sobolev exponent propagated by the nonlinear conservation law [START_REF] Berthelin | Averaging lemmas with a force term in the transport equation[END_REF]. 

Theorem 6 Assume f ∈ C ∞ (K, R) be
u(t, •) ∈ BV s (R, R) and u(t, •) / ∈ BV s+η (R, R).
The idea follows the K-S Cheng construction ( [START_REF] Cheng | The space BV is not enough for hyperbolic conservation laws[END_REF]) with the function g given in Proposition 1.

Proof: Let u ∈ K a point where the maximum of degeneracy of f is achieved. We also suppose that u ∈

• K (the proof of Theorem 6 is quite similar if u ∈ ∂K).

We define the initial condition u 0 by :

           u 0 (x) = u if x < 0 u 0 (x) = u + δg(x) if 0 ≤ x ≤ 1 u 0 (x) = u -δ if 1 < x ,
where δ > 0 is chosen such that for all x ∈ [0, 1], u + δg(x) ∈ K. Notice that for all x ∈ [0, 1], -1 ≤ g(x) ≤ 1 and g(1) = -1.

Then, following the method of characteristics, we define the function u(t, x) by : ]). Let be t > 0 and for all y, θ t (y) = y + ta(u + δg(y)).

           u(t, x) = 0 if x < 0 u(t, x) = u + δg(y) if x = y + ta(u + δg(y)), 0 ≤ y ≤ 1 u(t, x) = u -δ if 1 + ta(u -δ) < x . u 0 ∈ BV s ([0 , 1]) and u 0 / ∈ BV s+η ([0 , 1 
Considering the change of variable y = xa(u)t, we can assume without loss of generality that f ′ (u) = a(u) = 0. Since f ∈ C ∞ (K, R), we derive from a Taylor expansion that

a(u) = 1 d! a (d) (u)(u -u) d + u u (u -s) d a (1+d) (s)ds . Defining I n (y) = 1 d! 1 0 (1 -r) d a (1+d) (u + r δ g(y))dr, J n (y) = 1 d! 1 0 r(1 -r) d a (2+d) (u + r δ g(y))dr,
we get then : We can take δ > 0 small enough such that T δ > T . Thus for all t ∈]0, T ], θ t is an homeomorphism between [0, 1] and [0, 1 + ta(uδ)]. Then u(t, x) is a continuous solution of equation ( 1) on [0, T ] × R. Furthermore, since u 0 ∈ BV s (I) and u 0 / ∈ BV s+η (I), where I = [0, 1], we deduce that for all t ∈]0, T ], u(t, •) ∈ BV s (J) and u(t, •) / ∈ BV s+η (J), where J = θ t (I) = [0, 1 + ta(uδ)]. Finally, as u(t, •) is constant outside J, we have proved that u(t, •) ∈ BV s (R) and u(t, •) / ∈ BV s+η (R).

θ t (y) = y + tδ d g(y) d 1 d! a (d) (u) + δg(y)I n (y) .
Remark 5 As in Remark 4, Theorem 6 is restricted for critical exponent s such that 1 s ∈ N. To obtain all exponent s ∈]0, 1], following [START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF], we can consider a power-law flux with p = 1 s : f (u) = |u| 1+p . Our construction is quite similar as in the proof of Theorem 6 with u = 0 and δ > 0 small enough.

Remark 4

 4 For C ∞ flux, the parameter α in Definition 1 is always the inverse of an integer. To get supercritical geometric optics expansions for all α ∈]0, 1] and not only α ∈ 1 n , n ∈ N * , we shall consider power-law flux f (u) = |u| 1+p , where p = 1 α ∈ [1, +∞[, as in

  nonlinear in the sense of Definition 2. We denote by d its degeneracy and s = 1 d . For any η > 0 and any time T > 0 there exists a solution u ∈ C 0 ([0, T ] × R, R) such that for all t ∈ [0 , T ]

b cos π y c d- 1 b y b- 1 y c d- 1 b |y| c cos π y c + πc sin π y c .

 111c Note that g, I n , J n are bounded on [0, 1]. For y = 0, since b d = 1 + c, we have |g(y)| d y = O (y c ) at 0. Thus θ t is differentiable at 0 and dθ t dy (0) = 1. For y = 0, we havedθ t dy (y) = 1 + tδ d h n (y),whereh n (y) = g(y) d-1 g ′ (y) 1 (d -1)! a (d) (u) + (d + 1)δg(y)I n (y) + δ 2 g(y) 2 J n (y) .For y = 0, since b d = 1 + c, we haveg(y) d-1 g ′ (y) = y cos π y c + πcy b-c-1 sin π y c , g(y) d-1 g ′ (y) ≤ cos π Thus g(y) d-1 g ′ (y) is bounded on [0, 1].As h n is bounded on [0, 1], there exists T δ > 0 such that for all y ∈ [0, 1] and for all t ∈]0, T ], dθ t dy (y) > 0. Notice that lim δ→0 T δ = +∞.