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DIVISION OF HOLOMORPHIC FUNCTIONS AND GROWTH
CONDITIONS

WILLIAM ALEXANDRE AND EMMANUEL MAZZILLI

ABSTRACT. Let D be a strictly convex domain of C™, f; and f2 be two holomorphic
functions defined on a neighborhood of D and set X; = {2, fi(z) = 0}, 1 = 1,2. Suppose
that X;NbD is transverse for [ = 1 and [ = 2, and that X; N X3 is a complete intersection.
We give necessary conditions when n > 2 and sufficient conditions when n = 2 under
which a function g can be written as g = g1 f1+g2 f2 with g1 and g2 in LY(D), g € [1, 4+00),
or g1 and g2 in BMO(D). In order to prove the sufficient condition, we explicitly write
down the functions g1 and g2 using integral representation formulas and new residue
currents.

1. INTRODUCTION

In this article, we are interested in ideals of holomorphic functions and corona type
problems. More precisely, if D is a domain of C™ and fi, ..., fr are k holomorphic functions
defined in a neighborhood of D, we are looking for condition(s), as close as possible to
being necessary and sufficient, under which a function g, holomorphic on D, can be written
as

(1) g = figi+ ...+ frok,

with g1, ..., gx holomorphic on D and satisfying growth conditions at the boundary of D.
This kind of problem has been widely studied by many authors under different assump-

tions.

When D is strictly pseudoconvex and when fi,..., fr are holomorphic and bounded
functions on D, which satisfy |f|> = |fi]? + ... + |fx]? > §% > 0, for a given holomorphic
and bounded function g, finding functions gi,...,gr bounded on D is a question known

as the Corona Problem. When D is the unit ball of C, the Corona Problem was solved in
1962 by Carleson in [8]. This question is still open for n > 1, even for two generators fi
and fo, and even when D is the unit ball of C™.

For p € [1,+0c0), we denote by HP(D) the Hardy space of D. When n > 1, k = 2 and
|f| > ¢ > 0, Amar proved in [2] that for any g € HP(D), (1) can be solved with g; and g9 in
HP(D). Andersson and Carlsson in [4] generalized this result to any strictly pseudoconvex
domain in C™ and to any k£ > 2 and also obtained the BM O-result already announced by
Varopoulos in [21]. In [6], they studied the dependence of the g;’s on the lower bound ¢ of
|f| and they explicitly obtained a constant cs such that for all 4, ||g:[| z»(py < c5ll9|| 5r(D)-
Of course ¢s goes to infinity when ¢ goes to 0. In [3], when |f| does not have a positive
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lower bound, Amar and Bruna formulated a sufficient condition in term of the admissible
maximum function of | f|2 |log | f||**¢, & > 0, under which the g;’s belong to HP(D).

The corona problem was also studied in the case of the Bergman space AP(D), the space
of holomorphic functions which belong to LP(D), and in the case of the Zygmund space
A, (D) by Krantz and Li in [12], and in the case of Hardy-Sobolev spaces by Fabrega and
Ortega in [13].

In the above papers, the first step of the proof in the case of two generators f; and fs,
is to find two smooth functions on D, ¢1 and o, such that

(2) orfi+eafo = 1
and then to solve the equation
J1 992 — f2 01

3) 0 = SRR LR

Then setting g1 = g1 + ¢ f2 and g2 = gp2 — @ f1, (1) holds and, provided ¢ belongs to the
appropriate space, g1 and go will belong to HP(D), AP(D),... So the problem is reduced
to solve the Bezout equation (2) and then to solve the d-equation (3) with an appropriate
regularity.

In [5], Andersson and Carlsson used an alternative technique. They constructed a
division formula g = f1T1(g9) +. ..+ fxTk(g) where for all 4, T; is a well chosen Berndtsson-
Andersson integral operator, and, still under the assumption |f| > § > 0, they proved that
T;(g) belongs to HP(D) (resp. BMO(D)) when g belongs to HP(D) (resp. BMO(D)).
The same kind of technics was also used in [7] by Bonneau, Cumenge and Zériahi who
studied the equation (1) in Lipschitz spaces and in the space By/(D) = {g, ll9lB,,(p) =

sup,ep (|9(2)|d(2,bD)M) < oo}. In this later work, the generators fi, ..., fy may have
common zeroes but df; A ... A dfy can not vanish on bD N{z, fi(z) =...= fr(z) =0}.

The case of generators having common zeroes has also been investigated by Skoda in [20]
for weighted L2-spaces. Using and adapting the L?-techniques developed by Hérmander,
for D pseudoconvex in C”, v a plurisubharmonic weight on D, f1,..., fr holomorphic in
D, q = inf(n,k), « > 1 and g holomorphic in D such that fD m'ﬁ%eﬂp < o0, Skoda
showed that there exist gl, ..., gk € O(D) such that (1) holds and such that for all i,

In \}gﬁaq <2, ‘f|2aq+2e ~%. Moreover the result also holds when k is infinite and
there is no restrlctlon on dfy,...,0fr. However, if one takes g = f1 for example, g does

not satisfy the assumption of Skoda’s theorem in general.

In this article we restrict ourself to a strictly convex domain D of C™ and we consider
the case of two generators fi and fs, holomorphic in a neighborhood of D. We denote by
X, the set X7 = {z, fi(z) =0}, and by X5 the set Xo = {z, fa(z) = 0}. We assume that
the intersections X1 NbD and X, N bD are transverse in the sense of tangent cones and
that X1 N X5 is a complete intersection. Let us recall that an analytic subset A of pure
co-dimension m in C™ is said to be a complete intersection if there are m holomorphic
functions hq, ..., hy, such that A =N",{z, hi(z) = 0}; and that the intersection X; N D,
l=1orl =2, is said to be transverse if for every p € X;NbD, the complex tangent space
to bD at p and the tangent cone to X; at p span T,,C".

Our goal here is to find assumptions on g, holomorphic in D, as close as possible to being



necessary and sufficient, under which we can write g as ¢ = g1 f1 + g2 f2 with ¢g; and g9
holomorphic and belonging to BMO(D) or L4(D), q € [1,400).

Let us write D as D = {z € C", p(z) < 0} where p is a smooth strictly convex function
defined on C™ such that the gradient of p does not vanish in a neighborhood U of bD. We
denote by D,, r € R, the set D, = {z € C", p(z) < r}, by n¢ the outer unit normal to
bD, ) at a point ¢ € U and by v; a smooth unitary complex vector field tangent at ¢ to
bD ). As a first result, we show:

Theorem 1.1. Let D be a strictly convex domain of C?, fi and fa be two holomorphic
functions defined on a neighborhood of D and set X; = {z, fi(z) =0}, | = 1,2. Suppose
that X;NbD is transverse forl =1 and | = 2, and that X1 N Xy is a complete intersection.
Then there exist two integers ki, ke > 1 depending only on fi and fo such that if g is any
holomorphic function on D which belongs to the ideal generated by fi1 and fo and for which
there exist two C™ smooth functions g1 and g such that

(i) 9= g1.f1 + g2f2 on D,

(i3) there exists N € N such that |p|V§1 and |p\N§2 vanish to order ka on bD,

i11) there exists q € |1,+00] such that forl = % p at+5 belongs to L1(D) for
One > 0v¢ B

all non-negative integers o and B with a + ﬁ < k:l,

then there exist two holomorphic functions g1, ga on D which belong to LY(D) if ¢ < +00
and to BMO(D) if ¢ = 400, such that g1 f1 + gafo =g on D.

The number k; and ko are almost equal to the maximum of the multiplicities of the
singularity of X; and Xs. The functions g; and go will be obtained via integral operators
acting on g; and go. These operators are a combination of a Berndtsson-Andersson kernel
and of two (2,2)-currents T and T such that fi7) + foT» = 1. So instead of first solving
the Bezout equation (2) in the sense of smooth functions, we solve it in the sense of
currents and then, instead of solving a J-equation, we “holomorphy” the smooth solutions
g1 and g9 of the equation g = g1 f1 + gof2 with integral operators using 77 and T5. As
we will see in Section 4, these operators can be constructed starting from any currents 7}
and Tg such that flf’l + ng » = 1. However, not all such currents will give operators such
that g1 and g2 belongs to LY(D) or BMO(D); as we will see in Section 3, they have to
be constructed taking into account the interplay between X; and Xs. Moreover, if §; and
g2 are already holomorphic and satisfy the assumptions (i) — (ii7) of Theorem 1.1, then
g1 = g1 and g2 = go.

Observe that in Theorem 1.1, we do not make any assumption on f; or fs except that
the intersection X1 NbD and Xy N bD are transverse in the sense of tangent cones, and
that X1 N X5 is a complete intersection. This later assumption can be removed provided
we add a fourth assumption on g; and go. If we moreover assume that

ot 8 -
(iv) 8?7*:8?5 =0on XoN D and 887:% = 0 on X1 N D for all non negative integers «
¢

andﬁw1th0<a+/3§k’1,

then Theorem 1.1 also holds whenever X; N X5 is not complete. However, it then becomes
very difficult to find §; and go which satisfy this fourth assumption, except if X1 N Xy is
actually complete.



Indeed, the main difficulty in order to be able to apply Theorem 1.1 is to find the two
functions g; and go satisfying (i)-(4i). The canonical choice when |f| > ¢ > 0 is to set
g1 = gfilfI7% and go = gfo|lf|72 If |f| > 6 > 0 and if g belongs to LI(D), then §
and gy will satisfy (i)-(ii1i) and we can then apply Theorem 1.1. However, if |f| does not
admit a positive lower bound, this will not be necessarily the case. For example, when
D={2€C p(z) = |21 — 12+ |zl =1 < 0}, fi(2) = 22, fol2) = 20— 2} amd g = fi, we
can obviously find g; and go which satisfy the assumption of Theorem 1.1 but if we make
the canonical choices for §; and go, they do not fulfill (iii) for ¢ = oo because g%| p\% is
not bounded near 0.

Therefore the question of the existence of §; and go may itself become a problem that
we have to solve. Using first Koranyi balls, we will reduce this global question to a local
one and then, using divided differences, we will give numerical conditions under which
there indeed exist functions satisfying the hypothesis of Theorem 1.1. We will also prove
that these conditions are necessary in order to solve Equation (1) with the g;’s belonging
to LY(D), q € [1,400], even in C™. This leads us to an effective way of construction of the
solutions of (1) belonging to L4(D) or BMO(D).

The Koranyi balls in C? are defined as follows. We call the coordinates system centered
at ¢ of basis n¢,v¢ the Koranyi coordinates at (. We denote by (2],235) the coordinates
of a point z in the Koranyi coordinates at (. The Koranyi ball centered in ¢ of radius r
is the set Pp.(¢) := {C + Anec + pve, [N <7, |p] < r%} We observe that, by convexity,
Parlp()|(€) is included in D if « is small enough.

The following theorem enables us to go from a local division formula in L*° to a global
division formula in BMO.

Theorem 1.2. Let D be a strictly convex domain of C?, fi and fa be two holomorphic

functions defined on a neighborhood of D and set X; = {z, fi(z) =0}, I = 1,2. Suppose

that X1 NbD and Xo NbD are transverse, and that X1 N Xo is a complete intersection.

Let g be a function holomorphic on D and assume that there exists k > 0 such that for

all z € D, there exist two functions g1 and go, depending on z, C*°-smooth on Py, (2),

such that

(a) g=g1f1 + g2f2 on Pyjpz)(2);

(b) for all non negative integers o, B, @ and B3, there exist ¢ > 0, not depending on z,
02| < c\p(z)|_°‘_§ forl=1andl=2.

210 025P 07T O

Then there exist two smooth functions g1 and go which satisfy the assumptions (i)-(iii) of

such that SUDp, | /() 8

Theorem 1.1 for ¢ = +o0.

An analogous theorem holds true in the Li-case (see Theorem 6.1). We observe that if,
for all 2 € D, there exist two functions g; and ga, holomorphic and bounded on Py )| (2)
by a constant ¢ which does not depend on z, and such that g = g1 f1 + gaf2 on Poyp(2)(2),
then Cauchy’s inequalities implies that §; and gy satisfy the assumption of Theorem 1.2
on Pyp(z)(2) for all z. Therefore Theorem 1.2 implies that the global solvability of (1) in
the BM O space of D is nearly equivalent to its uniform local solvability. In order to prove
Theorem 1.2, we will cover D with Koranyi balls and using a suitable partition of unity,



we will glue together the g; and §o which we got on each ball. We point out that when
we glue together the local g;’s, except if X1 N X5 is a complete intersection, in general the
“fourth” assumption (iv) of Theorem 1.1 is not satisfied. This is why we chose to present
Theorem 1.1 as we did.

When looking for necessary conditions in order to solve Equation (1) with ¢g; and g9
bounded, we first observe that g is trivially bounded by max(||g1 ||z, ||g2||z=)(|f1| + | f2])-
Therefore, in order for g to be written as g = g1 f1 + g2f2 with g1 and g2 bounded, it

is necessary that be bounded. However this condition alone does not suffice in

lg]
[fil+] o]
general. Consider for example the ball D := {z € C2, p(z) = |21 — 1|2 + |22]?> — 1 < 0},
q
f1(2) = 23, f2(z) = 22 — 2{ and g(z) = 2{ 29 where ¢ > 3 is an odd integer. Then g(z) =

_9 _9
2221 * [1(2) — 222, % f2(2), so g belongs to the ideal generated by fi; and fa, and % is

bounded on D by %; in particular, the classical choice g = % and go = %
gives two functions g; and go which are smooth and bounded on D. However, (1) can
not be solved with g; and g bounded on D. In order to see this, a good tool is divided
differences.

On the one hand, if g = g1 f1 + g2fo2, then g1 = ¢ - fl_1 on Xo\ Xi.

On the other hand, for all z € D, all unit vector v tangent to bD_, . at z, all complex
numbers \; and A2 with p(z + A\v) < p(z) and p(z + Av) < p(z), Montel [19] asserts

that the modulus of the divided difference 91(z+’\1§1):/g\12(2+’\2v) behaves like ‘%ivl

point z + pv where p is an element of the segment [A1, A2]. Cauchy’s inequalities then

at some

imply that, up to a uniform multiplicative constant, gl(z+/\1:3:§12(z+)‘2v) is bounded by
g1 2=y lo(2)] 2.

So when we compute the divided differences of g; at points z + Ajv and z + A\sv which
belong to X9 \ X3, whatever g1 and g2 may be, we actually compute the divided dif-
ference of g - f{'. And if g; is bounded, this divided difference times | p(z)|% must be
bounded by some uniform constant. But in our example, this is not the case because
for small ¢ > 0, setting z = (,0), v = (0,1), A\ = €2 and Ay = —e3, we have that
(g'ffl)(ZJ”\l;l):()gffl)(Z+/\2v) |,0(z)|% — 3" which is unbounded when & goes to zero.

In C", we will prove that the divided differences of any order of ¢g- f; ! and ¢ - fo !
must satisfy some boundedness properties when (1) is solvable with ¢; and g2 in LI(D),
q € [1,4+0o0] (see Theorems 6.3 and 6.5 for precise statements). Conversely, in C2, if those

boundedness properties are satisfied, by polynomial interpolation and on any Koranyi
balls, we construct two functions g; and g which satisfy the assumptions of Theorem 1.2.
It must be mentioned that the error term we will get during the interpolation process will
be very difficult to handle. Although the interpolation procedure is a holomorphic one, we
will not get two holomorphic functions §; and §s because we will have to split the error
term in a appropriate way in two parts, which will lead to C'**°~smooth but not holomorphic
functions. Then it will follow from Theorem 1.1 that there exist two functions ¢g; and go
holomorphic on D, belonging to BMO(D) such that g = g1 f1 + g2f2. An analogue result
for holomorphic functions in LY(D), q € [1,400), will be also proved. These two results
are precisely stated in Theorem 6.4 and 6.6.



The article is organized as follows. In Section 2, we recall some tools needed for the
construction and the estimation of the division formula. In Section 3, we construct the
currents which enable us to construct our division formula in Section 4. In Section 5 we
establish Theorem 1.1 and finally, in Section 6, we prove the theorems related to local
division in the L* and L9 case.

2. NOTATIONS AND TOOLS

2.1. Koranyi balls. The Koranyi balls centered at a point z in D have properties linked
with distance from z to the boundary of D in a direction v. They were generalized in
the case of convex domains of finite type by McNeal in [17] and [18]. A strictly convex
domain being in particular a convex domain of finite 2, we will adopt the formalism of
convex domain of finite type.

For z € C", v a unit vector in C", and € > 0, the distance from z to bD,(;)4. in the
direction v is defined by

T(z,v,e) =sup{T >0, p(z+ Av) —p(z) <eforall \ € C, |\ < 7}.

Thus 7(z,v,¢) is the maximal radius r > 0 such that the disc A, , (r) = {z+ v, [N\ <7}
is influded in D,.)4e; if v is a tangent vector to bD, (. at z, then 7(z,v,¢€) is comparable
to €2 and 7(z,7,€) is comparable to .

Before we recall the properties of the Koranyi balls we will need, we adopt the following
notation. We write A < B if there exists some constant ¢ > 0 such that A < ¢B. Each
time we will mention on which parameters ¢ depends. We will write A < Bif A < B
and B < A both holds. The following propositions are part of well known properties
of Koranyi balls and McNeal polydiscs. The interested reader can find a proof of each
statements in [17] in the case of convex domains of finite type, keeping in mind that a
strictly convex domain is a convex domain of type 2.

Proposition 2.1. There exists a neighborhood U of bD and positive real numbers k and
c1 such that
(i) for all ¢ € U N D, Payp(c)|(C) is included in D.
(11) for alle >0, all {,z € U, P-(¢) N P:(2) # O implies P:(z) C Pee(C).
(iii) for all e > 0 sufficiently small, all z € U, all { € Pe(z) we have |p(z) — p(¢)| < c1e.
(iv) for alle >0, all unit vectorsv € C", allz € U and all { € P:(2), 7(2,v,e) = 7((,v,€)
uniformly with respect to €, z and C.

For U given by Proposition 2.1 and z and ¢ belonging to U, we set 0(z,() = inf{e >
0,¢ € P-(z)}. Proposition 2.1 implies that ¢ is a pseudo-distance in the following sense:

Proposition 2.2. For U and ¢ given by Proposition 2.1 and for all z, { and £ belonging
to U we have

Clla(g,z) < 8(2,¢) < a1d(¢, 2)

and

5('27 C) <c (5(27 f) + 5(57 C))



2.2. Berndtsson-Andersson reproducing kernel in C?. Berndtsson-Andersson’s ker-
nel will be one of our most important ingredients in the construction of the functions g;
and gg of Theorem 1.1. We now recall its definition for D a strictly convex domain of
C% We set hi((,2) = =3 52(C), ha(C,2) = =352(0), h =3,y o hidG; and h = Lh. For
a (1,0)-form B(C,2) = 32,1 5 Bi(¢, 2)d¢; we set (B((,2),¢ — 2) = D215 Bi(C, 2) (G — ).
Then we define the Berndtsson-Andersson reproducing kernel by setting for an arbitrary
positive integer N, n=1,2 and all {,z € D:

N+n
PN(¢, 2) = COn (1 - <f~l(C,12),C — Z>> <8h> ,

where C,, € C is a suitable constant. We also set PV"((,2) = 0 for all z € D and all
¢ ¢ D. Then the following theorem holds true (see [9]):

Theorem 2.3. For all g € O(D) N C*(D) we have
o) = [ aOPVc.2).

In order to find an upper bound for this kernel, we will need lower bound for 1 +
(h(¢,z),¢ — z). This classical bound in the field is given by the following proposition. We
include its proof for the reader convenience.

Proposition 2.4. The following inequality holds uniformly for all { and z in D
1p(C) + (h(¢, 2),¢ = 2)| 2 6(C, 2) + |p(O)] + [p(2)]

Proof: We write z as z = ( + An¢ + pve where ¢ is the unit outer normal and where v¢
belongs to TéCpr(O. With this notation, 6(¢,2) = |A| + |u?, ReA = Re (h((,2),( — 2)
and Im A < Im (h((, 2),( — 2).
Since p is convex, there exists ¢ positive and small such that for all z and ¢ in D

p(2) = p(C) = 2Re (9p(C) - (2 = €)) + ¢ — 2
@ = 4Re (((, 2),¢ — ) + ¢ — 2%
If Re X < 0, we get from (4)

|p(<) + <h(<7 Z)vg - Z)

> —p(C¢) —Re (h((, 2),¢ — 2) + [Im (h(¢, 2), ¢ — 2)|
Z —p(2) = p(¢) +el¢ — 2> + ||
2 0(¢, 2) + [p(Q)] + |p(2)].

If ReA > 0, (4) now yields

!p( )+ (h(¢,2),¢ — 2)]
—p(¢) = 2Re (h(¢, 2), ¢ — 2) + Re (h((, 2), € — 2) + [Im (R(C, 2), ¢ — 2)
=p(2) = p(Q) + el — 2 + |
2 0(¢,2) + [p(Q) +|p(2)]. O

We will also need an upper bound for h and thus for h. In order to get this bound,
for a fixed z € D, we write h in the Koranyi coordinates at z. We denote by ({7, (5)
the Koranyi coordinates of ( at z. We set hf = —%884’} (¢) and hy = —%g—é(() so that

\/ZVZ




h(¢,2) = > i—12hi (¢, 2)d¢;. The following Proposition is then a direct consequence of
the smoothness of p.

Proposition 2.5. For all ¢ € P-(z) we have uniformly with respect to z, ( and €
A N 1
(i) 1hi(G2) S 1, [h3(C, 2)| S €2,
(ii) | S5¢. )], |56 2)| S 1 for kil e {1,2),
o¢, 9

3. CONSTRUCTION OF THE CURRENTS

If f1 and f2 are two holomorphic functions near the origin in C™, Mazzilli constructed in
[16] two currents T and S such that fiT = 1, fo.S = 0T and 1.5 = 0 on a sufficiently small
neighborhood U of 0. He also proved that if T" and S are any currents satisfying these
three hypothesis, then any function g holomorphic on U can be written as g = f1g91 + fago
on U if and only if g0S = 0. Moreover, g; and g can be explicitly written down using 7'
and S.

Here, when f; and f; are holomorphic on a domain D, we first want to obtain a
decomposition g = g1 f1 + gofo on the whole domain D and then secondly we want to
obtain growth estimates on g; and go. As a first approach, we could try to globalize
the currents 7' and S of [16] in order to have a global decomposition. However, such an
approach would fail to give the growth estimates we want.

In [16], f1 plays a leading role and 7' is constructed independently of fa, using only fi.
Then S is constructed using f; and fs. If we assume for example that f; vanishes at a
point (y near bD, because T is constructed independently of fo, it seems difficult to prove
that g1 obtained using T is bounded except if we require that g vanishes at (p too; but
considering g = fo, we easily see that in general this condition is not necessary when one
wants to write g as g = g1 f1 + g2 fo with g1 and go bounded for example. So the currents
in [16] probably do not give a good decomposition.

Actually, it appears that the role of fo must be emphasized in the construction of the
currents near a boundary point (y such that f1(¢p) = 0 and f2({y) # 0, or more generally
when f5 is in some sense greater than f; and conversely. Following this idea, we construct
two currents 77 and 15 such that f177 + fo7»> = 1 on D. These currents are defined locally
and using a suitable partition of unity we glue together the local currents and get a global
current. We now define these local currents.

Let €9 be a small positive real number to be chosen later and let {y be a point in D.
We distinguish three cases.

First case: If (p belongs to D_.,, i.e. if (p is far from the boundary, we do not need
to be careful. Using Weierstrass’ preparation theorem when (y belongs to X, we write
f1 = uo,1FPo,1 where ug 1 is a non vanishing holomorphic function in a neighborhood Uy C
D_s of (o and Py(¢) = ZO - {ZO v 1a012(g“ )+ .. ZO 1)(C1) %1 holomorphic on U
for all k. If {y does not belong to Xy, we set Py = 1, 1071 =0, up,1 = f1 and we still have
f1 = uo,1Po,;1 with w1 which does not vanish on some neighborhood Uy of (.



For a smooth (2,2)-form ¢ compactly supported in Uy we set

1 Py1(¢) 81
<TO,1790> - co ” fl(g) 8220’1

(To2,) = 0,

where ¢ is a suitable constant (see [16]). Integrating by parts we get f17o1 + foTo2 =1
on U.

Second case: If (p belongs to bD \ (X1 N X2), i.e. if {p is “far” from X; N Xo, without
restriction we assume that fi(({y) # 0. Let Uy be a neighborhood of {y such that f; does
not vanish in Uy. As in the first case when fi({p) # 0, we set Po1 =1, ip1 =0, uo,1 = f1
and for any smooth (2,2)-form ¢ compactly supported in D NUy we put

1 [ Ra(Q) o™y
T = — : .
< 0,1790> co Juo fl(g) 8?;0’1 (C)?
(To2,9) = 0.

where as previously ¢ is a suitable constant. Again, we have f17p 1+ f2Tp2 =1 onUyND.

Third case: If {y belongs to X1 N X N bD, the situation is more intricate. As in [1],
we cover a neighborhood Uy of (o by a family of polydiscs Py, ,)(2jk), J € N and
ke {1,...,n;} such that:

(i) For all j € N, and all k € {1,...,n;}, zj belongs to bD_

positive real constant.

(ii) For all j € N, all k,l € {1,...,n;}, k # 1, we have 6(z;, 2j;) > ck(1l — ck)leg.

(iii) For all j € N, all 2z € bD_(1_¢y)i,, there exists k € {1,...,n;} such that d(2, zjx) <
ck(1l — ck)lep,

(iv) D NUp is included in U;;OS Uy, Prlp(z.) (2 k)

(v) there exists M € N such that for 2 € D\ D_;, Pyu|p(z)(2) intersect at most M
Koranyi balls Py (2, ) (2).k)-

1—cr)ie, Where ¢ is small

Such a family of polydiscs will be called a k-covering.

We define on each polydisc Pn|p(zj,k)|(zj,k) two currents Téﬁ’k) and To(’jék) such that

flTé,jl’k) + ngé’jék) = 1 as follows. We denote by A¢(e) the disc of center £ and radius
e and by ((54,(5 o) the coordinates of (p in the Koranyi basis at ;4. In [1] were proved
the next two propositions:

Proposition 3.1. If k > 0 is small enough and if P4R‘p(2j’k)‘(zj,k) N Xy # 0 then |5 4] >
4k|p(zj,k)] -

We assume k so small that Proposition 3.1 holds for both X7 and X5 with the same x.
When [(g | > 4k[p(zj k)| then X; can be parametrized as follows (see [1]):

Proposition 3.2. If [(5 ] > 4k|p(2j)|, for | = 1 and | = 2, there exists p; functions

alo{k), .. >0‘l(§;f) holomorphic on Ag(4k|p(2;1)|), there exists > 0, depending neither on j

nor on k, and there exists ulo’k) holomorphic on the ball of center o and radius r, bounded
and bounded away from 0, such that:



k)
(i) aalT’} is bounded on Ao(4k|p(zjk)|) uniformly with respect to j and k,
.. ik % k) [ %

(id) for all ¢ € Panjy(z, ) (230, Q) = uf (O T (G — i ().

Now we define Té?l’k) and Téfz’k) with the following settings.

If G5 1] < 4k[p(2jx) then for I =1 or | = 2, Pyyjy(z, | (2j6) N X = 0, which means that
zjk is “far” from X; and Xs. In this case we set for [ =1 and [ = 2:

Il(j’k) = 0,
il(j7k) = 0,
PO = 1.

If |5 1| > 4r[p(2jk)], then we may have Pyyp(z, | (2jk) N Xy # 0 for [ =1 or [ = 2. In that
case we set for [ =1 and [ = 2:

ik . « " k), % 15} 1
I = i, 35 € C, |5 < 26lp(z)] and o} ()] < Grlo(zia))?},
z'l(j’k) = #Il(j’k), the cardinal of Il(j’k),

K * i,k *
PO =TT (6 -alP@).
i1

In both case we set

Fe JGk)
" AQlpGi) T | 1| f(Qlp(zip) T
u1(J )= Ce Pﬁlp(zj',k)l(zjv’f)’ (j,kj) > 3 (j,kj) ’
P(0) Py (¢)
i{3°F) i(3K)
Gk) 21 2(Qlp(zip) 72 | - [AQlp(zik) "2
UQJ T Ce 7)”|P(Zj,k)|(zjvk)’ g (ij) > (j,k])
Py(C) P (¢)
so that 'P,Q‘p(zj’k)‘(zjyk) = Ul(j’k) UUQ(j’k).

These open sets are designed in order to quantify where f; is “bigger” than fo and con-
versely. The idea is the following.
. ik i k 1
If ¢ belongs to Il(j ) then ¢y — al(i. )(Cf)| S (2|2 for all ¢ € Pyjp(z; ) (256)- Thus
1
each zero of fi in Pyp(z, ,)|(25%) brings in some sense a factor |p(z;x)|2 in fi(¢). In the
definition of Z/{l(j ’k), we take into account the zeros of fi; and fs which are in the polydisc
k) Gk

Prlp(z;.)|(2,6) with the term [p(2;1)| 7 and lp(zjk)| 3~ . This means in particular that
all the zeros in the polydisc are treated in the same way, we don’t care if they are close

from each others, from the boundary of the polydisc or not. The zeros which are outside

Si(Q)
P

the polydisc are taken into account by , which will also measure how far they are

from the polydisc.
Therefore, Lll(] k) is the open set where fi is bigger than fs for an order such that the zeros

which are outside of the polydisc are taken into account with the term P{;l’g)(C) and the
l

10



(3:k)
zeros which are inside with the term |p(z; )| 2

)

For [ = 1,2 and for a smooth (2,2)-form ¢ compactly supported in Z/{l(j’k we set

G.F) Ssk)
70k oy [ BT e
o= [ i

Integrating il(j k) _times by parts, we get flTé];k) = cl(j k) on Z/ll(j *) Where cgj k) i an integer

bounded by il(j’k)! (see [16]).

Now we glue together the currents Té];k) in order to define the current Ty, | = 1,
2, such that f1701 + foZp2 = 1 on D NUy. Let (f(j,k) jEN be a partition of unity
ke{

1,..., nj
subordinated to the covering (Py|y(z, ,)(2jk)) jen  of Up. Without restriction, we
’ ked{1,..., nj}
atB+a+By .
assume that |—2 el (0| < %M Let also x be a smooth function on
SRUICL SIS (20| FT 720

C?\ {0} such that x(z1,22) = 1if |21] > 2|22| and x(21,22) = 0 if |21] < 3|22| and let us
define

o) e
GR o A7 LOlp(z)l "2
1) G
(k) o F1Qlp(zi0) 72 f2(Qlp(zj)| 2
XZJ (C) = Xj,k(g) e Pl(j,k’]) (C) ’ P2(jak]) (C)

For [ =1 and [ = 2, the support of Xl(j *) s included in Z/{l(j k) 5o we can put

1 k) ik
= 2 c(J}k)Xl(] 15"

and we have f17p 1 + foTp2 =1 on Uy N D.

Now for all (5 € bD U D_, we have constructed a neighborhood Uy of ¢y and two
currents Tp 1 and T2 such that fi7o1 + folo2 = 1 on Uy N D. If g9 > 0 is sufficiently
small, we can cover D by finitely many open sets Uy, ...,U,. Let x1,...,xn be a partition
of unity subordinated to this family of open sets and T71,...,T,1 and T12,...,T,2 be
the corresponding currents defined on Uy, ... ,U,. We glue together this current and we
set . "

T = ZXjTj,l and Th = ZXJ'T]',2a
Jj=1 Jj=1
so that fiT1 + foT> = 1 on D. Moreover 17 and T are currents supported in D thus they
have a finite order ky and we can apply T} and T5 to functions of class C*2 with support
in D. This gives ko from Theorem 1.1.

11



4. THE DIVISION FORMULA

In this part, given any two currents 77 and 75 of order ko such that fiT7 + fols = 1,
assuming that ¢ is a holomorphic function on D which belongs to the ideal generated
by f1 and f2, and which can be written as ¢ = g1 f1 + gofe, where g; and go are two
C*>-smooth functions on D such that |p|Y g and |p|"gs vanish to order ks on bD for some
N e N sufficiently big, we write g as ¢ = g1f1 + ¢g2f2 with g; and g2 holomorphic on D.
We point out that the formula we get is valid for any 77 and 75 of order ko such that
N1+ foTy = 1.

Under our assumptions, for £k = 1 and k = 2 and all fixed z € D, §PV*(., z) and
GoPN*(-, 2) can be extended by zero outside D and are of class C*2 on C2. So we can
apply T1 and Ty to §1 PVE(-, 2) and goPVF(., 2).

For [ = 1,2, we denote by b = b;1d(1 + b 2dC2 a (1,0)-form such that fj(z) — fi(¢) =
> i=1201i(C, 2) (2 — (). For the estimates, we will take by;(¢, 2) fl 8fl (C+t(z—())dt,
but this is not necessary to get a division formula.

In order to construct the formula, we will need the following lemma which was proved
n [15], Lemma 3.1:

Lemma 4.1. Let Q = )", Q;d¢; be a (1,0) form of C", let Hy, ..., Hy be p (1,0)-forms
in C" and let Wh,...,Wy_1 be p—1 (0,1)-forms in C". Then the following equality holds

p—1
2((Q,z = ())(9Q)" P A Hy A /\ Wi A Hy,
k=1
1 _ p—1
- mquv 2= 0Q) T A /\ Wi N H,
k=1
1 X p—1
-
+ W;Hz,z—o(a@ PR, AW A k/z\ Wi A Hy.
k£l

We now establish the division formula. From Theorem 2.3, we have for all z € D:

o) = [ dOPVc.2)
and since g = g1 f1 + Gofo
9o(z) = h2) / 31(OPN2(C,2) + fal2) / 3(O)PV2(C, 2)
D D

(5) +/ 91(0) (f1(¢) = f1(2)) PM2(C, 2) +/ 32(C) (f2(¢) = fa(2)) PN2((, 2).
D D
Now from Lemma 4.1, there exists ¢y 2 such that

(fl(C) - fl(z)) PN72(<> Z) = 6]\/21)1((,2) /\EPNJ(C> Z)

and since by assumption §; P! vanishes on bD, Stokes’ Theorem yields

(6) /D 31O (1O — A=) PY2(C2) = ons /D B1(C) A ba(C.2) A PV, 2).

12



We now use the fact that fi77 + foI5 = 1 in order to rewrite this former integral:
[ 300 nbi(¢.) A PYIC)

= (AT + f2T,051 Abi(-,2) A PYVY(-, 2))

= (AT1,091 Abi(,2) A PN 2)) + fo(2) (T2, 891 A b, 2) A PN 2))
(7) +(To, (f2 — fa(2)) Ogr Abi(-,2) A PV, 2)).
Again from Lemma 4.1, there exists ¢y,1 such that

(f2(C) = f2(2)) b1(¢: 2) ABGu A PY(C, 2) = (f1(C) = f1(2)) b2(C, 2) A DG A PG 2)
= enab1(¢,2) Aba(C,2) A Dy AgPN’O(C,z).
So
(T2, (f2 = f2(2)) g1 A b1 (-, 2) A PN, 2))
= —fi(2)(T, 051 Aba(-,2) A PYY( 2)) + (Ta, f18G1 Aba(e, 2) A PYI(, 2))

(8) +én1 (To, DGt Abi(+,2) Aba(-, 2) AOPNO(- 2))

We plug together (6), (7) and (8) and their analogue for [}, g2(¢) (f2(¢) — f2(2)) PN2(¢, 2)
in (5) and we get

9(z) = fl(z)/Dgl(C)PN’Q(QZ) — N2 f1(2)(T2, 891 Abo(-,2) A PYV(-, 2))
+5N,2f2(2)<T2,5§1 A bl(', Z) A PN’I(', Z)>
+/f2(2) /Dﬁz(C)PN’Z(Cy 2) = énafo(2)(T1, 82 A bi (-, 2) A PY(-, 2))

+énafi(2)(T1, 052 Aba(-, 2) A PNV, 2))
9) +en2(T1, frOG1 Abi(,2) A PN 2)) + Ena (T, 1051 A ba(-, 2) A PYV(-, 2))
(10) +én2(Ty, f20G2 A ba(-, 2) A PYVY( 2)) + Ena(Th, f20G2 Abi(-, 2) A PNV, 2))
+éN26N1{031 ATy — dga A T1,b1 (-, 2) Aba(-, 2) ANOPNO(- 2))

Now since dg = f10G1 + f2072 = 0, the line (9) and (10) vanish. Therefore in order to get
our division formula, it suffices to prove that 9(9g; A Ta — 0Ga A T1) = 0.

When X;NX> is not a complete intersection and when assumption (7v) in the introduction
is satisfied by §; and o, one can prove that 0g; A 0T = 0 and 9§z A 0T = 0.

When X; N X5 is a complete intersection, we prove that for any (y € D there exists a
neighborhood Uy of (p such that for all (2,1)-form ¢, smooth and supported in Uy, we
have <5§1 NTy — 5@2 VAN T1,5<p> =0.

Let {p be a point in D. By assumption on g, there exists a neighborhood Uy of {y and
two holomorphic functions vy; and 72 such that g = v1 f1 + v2f2 on Uy. We now use the
following lemma whose proof is postponed to the end of this section:

Lemma 4.2. Let fi and fy be two holomorphic functions defined in a neighborhood of 0
in C?, X1 = {2, fi(z) = 0} and X2 = {2, fa(z) = 0}. We assume that X1 N X5 is a
complete intersection and that 0 belongs to X1 N Xa. Let v1 and pa be two C°°-smooth

13



functions such that fip1 = fopa.
Then, % and % are C*°-smooth in a neighborhood of 0.

Lemma 4.2 implies that the function ¢ = “‘71f;271 = Wf;lgz is smooth on a perhaps smaller

neighborhood of (j still denoted by Uy. Thus
(091 NTo = 0ga AT, 0p) = (91 — 1) ATa+ (2 — G2) ATh, D)
= ((f2v) N2+ 0(f11)) AT, D)
= (foTo+ /11,00 A Dp)
= O A Dy
Up

and since ¢ is supported in Uy we have fuo O N Op = — fuo d(pdp) = 0 and so
<5§1 NTy — 5@2 A\ T1,5g0> =0.

Now we set

61(2) = /D 1 (OPY(C, %)
+EN,2 (<T1,5§2 A\ bg(-, Z) A\ PN’l(-, Z)> — <T2,5§1 A\ b2(~, Z) A\ PN’l(-, Z)>)
4a(z) = /D (O PV, 2)

+5N72 (<T2,5§1 A\ bl(‘, Z) A PN’I(', Z)> — <T1,5§2 A\ bl(-, Z) A\ PN’I(', Z)>)
and we have
g=q1f1+ g2/

with g1 and go holomorphic on D. We notice that if g; and go are already holomorphic
functions then g1 = §; and go = go.

Proof of Lemma 4.2: Maybe after a unitary change of coordinates if needed, using Weier-
strass’ preparation Theorem, we can assume that for [ = 1,2, the function f; is given by
filz,w) = 2k + agl)(w)z’l‘zﬁ1 +...+ agl) (w) where agl), e ,al(cll) are holomorphic near 0 and
vanish at 0. Moreover, since the intersection XN X5 is transverse, P, and P, are relatively
prime. Thus there exists two polynomials a; and ag with holomorphic coefficients in w
and a function S of w not identically zero such that

aq (Za w)fl(za U)) + aQ(Z7 ’lU)fQ(Z, w) = B(U))
Multiplying this equality by ¢1 we get

fa(arp2 + aopr) = Ber.

We now prove that 8 divides the function ¥ := ajp2 + as1.

If B(0) # 0, there is nothing to do. Otherwise, since 3 is not identically zero, there exists
k € N such that B(w) = wFy(w) where v(0) # 0.

For all 7 € N we have

¢ 9p1

(1) falzsw) 55z w) = Blw) 4 (2 w)

14



and for w = 0 and all z we thus get (z 0) =0.

By induction we then deduce from (11) that lawj (2,0)=0foralli e {0,...,k—1} and
all j € N. For any integer n > k we therefore can write for all z and all w
¢427u0 _ i—k-—j GFHA 1—k=—j an+1¢
= Y w0 3wt [
<i+j<n i+j=n+1

i>k

Now, it is easy to check by induction that the function w +— Wtj is of class C7~1 for all

( )

positive integer j and all non negative integer ¢. This implies that ¥ is of clagss C"™ for

all positive integer n and therefore fcl = % is of class C*°. O

5. PROOF OF THE MAIN RESULT

In order to prove Theorem 1.1, for any k and [ in {1,2} and any ¢ € [1,+00], we have
to prove that if A is a smooth function such that, for all non-negative integers o and 3,

‘%‘ \p\o‘+2 belongs to L4(D), then the function

2+ (T}, 0h A b(+, 2) A PN’l(‘, z))

belongs to LY(D) if ¢ < oo and to BMO(D) if ¢ = +o0.

As usually, since the modulus of the denominator in P™! is greater than |p(z)| +
|p(¢)| + (2, ), the difficulties occurs when we integrate for ¢ near z and when z is near
bD. Moreover, by construction of 77 and 15, the main difficulty is when, in addition, z is
near a point (g which belongs to 6D N X7 N X2 and we only consider that case.

We assume that z belongs to the neighborhood Uy of a point (o € bD N X1 N X5 and we
use the same notations as in Section 3 for the construction of the currents. Moreover, we
assume that the Koranyi basis at (g is the canonical basis of C? and that (j is the origin
of C2.

P(J k) 8a+6f . P(j,k')
We will need an upper bound of f oo Cl in order to estimate —L 7 b, and the
derivatives of X(J ) We set Q(j k) (J;lk) and we begin with the following lemma:

Lemma 5.1. For all j € N, allk € {1,...,n;}, all @ and § in N, I = 1,2, and all  in
P2"5|P(Zj,k)|(zjvk)’ we have uniformly with respect to j, k,l, and ¢

L0 Gk
‘Q?”Wo sezeacg ()

Proof: We denote by ((g4,(j2) the coordinates of (o in the Koranyi coordinates at z; .

4B
Se(zie)| 2.

The definition of Pl(j k) forces us to distinguish three cases:

First case: I |¢5 1| > 4k[p(z; k)], let a(] k) ,i=1,...,p;, be the family of parametrization
given by Proposition 3.2. In this case, we actually seek an upper bound for

[T (¢-ef"@h) |

" xo 9 %3
HZ¢I(J k) (( Oéu (C )) SRS i1

1 aa+ﬁ
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and it suffices to prove for all i ¢ I l(j *) and all a and B that

1 8a+/g
G ol o) dcgeacy & el (G) < lo(zi)l .
2 lz 1

By deﬁmtlon of I, we have |7 (¢7)] > (3wlp(zjx)])? for all ¢ € Ag(2x]p(z;)])
so |¢3 — all (Cl)\ 2 |p(z; k)\é and (12) holds true for « =0 and 8 = 1.

(4,k)

0
According to Proposition 3.2, O(.;C* is uniformly bounded on Ag(4x|p(2;k)|). Cauchy’s
0%« (J k)
inequalities then yields ‘ ac*a (Cl)‘ < Jp(zjx) 7. Since |¢5 — ozl(jzk Mz |p(zj7k)|%,
(12) holds true for a > 0 and § = 0. Since the other cases are trivial, we are done in this
case.

(12)

When |(51] < 4k|p(2jk)], we do not have a parametrization of X; but according to
proposition 3.1, 734,€|p(zj’k)‘(zj,k) N X; is empty, which means that any ¢ € PQK‘p(ijk)l(Zj’k)
is far from X;. We then have to distinguish two cases, depending on what “far” means.
Before, we notice that, since Py, W (Zik) N X =0, Il(]’k) is also empty and Pl(j’k) =1.

1
Second case: I [(5,1| < 4r|p(zjr)] and [(5o| < (4r[p(2;k)])2, then 5(zjk, Co) T [p(2)k)]

and thus for all ¢ € Poyjp(z; ,)(25.k)s 6(C,C0) S [p(2)k)]- In particular, all ¢ belonging to

Panlo(z; 1) (j,k) 1s almost at the same (pseudo-)distance from z;; as from X;.

For all € > 0 and all ¢ € P({p), it is then easy to see that |fi({)] < €%, Therefore,
Cauchy’s inequalities give

P

lp(2jk)] 2

(Vg

‘Wﬁ(o -

a¢ra¢”

for all ¢ € Poyp(z; )| (2jk). Moreover, since |5 | < 4r[p(2jx)|, on the one hand f; = Ql(j’k).
On the other hand it follows from Proposition 3.1 that Py (2, .)(2jk) N X1 = (). This

. n atB ik
yields [fi(Q)] Z [p(zjx)] 2 for all ¢ € Pogp(z; ) (2)k), thus ‘ T k)m 6<?aa<*a (Ql(j )(C))' <

o3

2.

p(j.k)
Third case: If [(5 1| < 4k|p(2j%)] and (G| > (4/@]/)(2]-,;6)])%, then all ¢ € Pz, ) (25,6)

is far from (§ and Ql(] k) = fi. We will see that |f;(¢)| is comparable to [(j,[F* for all
C € Paujp(z;)| (Zik)-

op 0
We set a(zjk) = gb(20), b(zjk) = 55 (2jk) and

1 a(z; b(z;
P( ]k) 2 : ( ( ],k) ( ]JC) ) )
Va0 +1b(zj) P \ —b(zix) alzjk)

Then we have (* = P(z;1)(¢ — zjx) and moreover |a(2; )| ~ 1 and b(2;x) tends to 0 when
z; 1 goes to (o, hence, b(z; 1) is arbitrary small provided Uy is sufficiently small.
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Therefore, if Uy is sufficiently small, for all ¢ € Py p(zj,k)|(2j,k)v

1
G| > a(zji)||Coal — [0(z56) <011 — 16(256)II1CT] — lalz k)]
Gl 2 e (Gl — Gl ~ eI~ o))
2 1ozl
We also trivially have [(2| < |(5 | and so [¢2| = [(§2|- On the other hand
1 * * * *
Gl < B (laCzi)I(165 21+ 1671 + 1b(25) (166 2| + 1¢51))

V0a(zie)2 + [b(z))
% 1

6l p(zj) | 4 [0(z5,6) (160 2| + (2]p(258)1)2)

< (ol
where ¢ depends neither on z;; nor on ¢ and is arbitrarily small provided Uy is small
enough.
Now let « € C be such that f;({;,a) = 0. Since the intersection X; N bD is transverse,
there exists a positive constant C' depending neither on ¢, nor on «, nor on j and nor on
k such that |a < C|¢.
Therefore if Uy is small enough, |a| < 3|¢a|. This yields, for all ¢ € Parlo(z;0)(Zi.k)s

PSS IT le-e

a/ fi(¢1,a)=0
< IGal.

Cauchy’s inequalities then give for all ¢ € Poyp(z; ) (2,k)

IN

HotB fi

B
e (O] S Gl lo(0) 775,
oG 0¢” |

©)

and since QZ(J k) fi, we are done in this case and the lemma is shown. o

Lemma 5.1 gives us an upper bound for the derivatives of Xl(j k),

Corollary 5.2. For all j € N, all k € {1,...,n;}, all o and B in N, | = 1,2 and all
(e 73,.;|p(zj’k)|(zj7k), we have uniformly with respect to j, k,l and ¢

8(X+5X(j7k) B
e (9] N /1 C729|
9¢; 9C,
+6
Proof: Since by construction M(C)‘ < |p(zj7k,)’—a—§, we only have to consider
1 2

go+B (3, ) (7, k)
(5 S it )

The derivative 5 23 X (21,29) is bounded up to a uniform multiplicative constant by m
when 1|z;| < ]21\ < 3\22] and is zero otherwise.

gt BxI gr+s (Q(j,k)>
8@‘13@6 Q(J k) 82*762*6 l
where the sum of the 4’s equals « and the sum of the d’s equals 5. Lemma 5.1 then gives

Therefore, we can estimate by a sum of products of

the wanted estimates. O
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Corollary 5.3. For any smooth function h, we can write
(3,k)
o' k) N\F ) x j e l *
7 (B A PG 2)) = oM 2t + e (€ 2)ag
oG5

with ¢1J’k’l) and wéj’k’l) two (0,2)-forms supported in Z/ll(j’k) satisfying uniformly with respect

to j,k,z and € € Ul(j’k):

FERD)

. L 3 i i
0] s et (G ) O

(Jk)_ ’P(Zk)’ NN
72 7,
(’P(Zj,k)’ + |p(2)| + 5(Zj,k,z)> h(C),

and, for V. a differential operators of order 1 acting on z,

I R I O

(] ke,l) Ui 1p(2jk) N
V()| % pzwza( ) )
V6] S Tetean) M%MMHMI+5%m

(J k.l) w0 3 |p(2) k) N
V)| S el —( L )
| ©2)] 5 Il rEnETE o
7 o ) ontlip n+1 8n+1h Q

uhere () = max, ., om (| ZREHOWOIT] |2t @lo@lE))

Proof: Propositions 2.4 and 2.5 imply that 8C—*n PN 2) = Zp =12 1/1(” N)(C, z)d¢, /\d?;

p(<)] N eieion
Vi “’”5<w@w+m@ﬂ+aa@>'“0 |

From proposition 2.1, if £ is small enough, we have for all ¢ € Pyy(; ,)((2)k): Hp(zip)| <
|p(¢)| and thus, provided  is small enough:

p(O] + (¢, 2)

where

1 1
> §|P(Zj,k)| + aé(z, Zjk) — 0(2jk, C)
2 ezl +0(z, 2 k)

7n,N lo(z;.5)] Ny —i-im
and so |y (¢, 2)| S (Ip(zj,k)|+\p(JZ)k\+5(zj,k,Z)) Ip(zjp)| 7 a 2. This inequality and Corol-
lary 5.2 now yield the two first estimates. The two others can be shown in the same way.
o
. pu) .
In order to estimate lTbm, we need the following lemma:
Lemma 5.4. For all j € N, all k € {1,...,n;}, all & and f in N, | = 1,2 and all

(e 732,§|p(zj,k)‘(zj,k) we have uniformly with respect to j, k,l and ¢

aa—i—,@ il(jﬂk)
a¢r0¢”

_a_§ )

IT & o) || < ozl =

(5.k)
er’
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Proof: For i € Il(j’k), there exists 27 € Ag(2k|p(2;x)|) such that |al‘7 k)(zf)| < %m|p(z]k)|%

(4,%)
Since EC* is uniformly bounded on Ag(4x[p(zjk)|), for all ¢ € Pyg|p(z; (%)), We have
e
[ om |G — Ozl g (Cl) |p(zjx)| 2 . Cauchy’s inequalities then give the results. O
l

As a direct corollary of Lemma 5.1 and 5.4 we get

Corollary 5.5. For all j € N, all k € {1,...,n;}, all @ and B in N, | = 1,2 and all
s 7)2n|p(zj,k)\(2j7k) we have uniformly with respect to j, k,l and ¢

Pl(ik)(o 9°tP _ | il(];k)—a—i
fi(©) 8(;6*(%56@) S lp(zk)] .

(4:k)
In the following corollary, we give estimates for [,m € {1,2} of PlTbm, which do not

depend on m thanks to the covering Zx[l(j’k), Ugj’k) of Pﬁ‘p(zm)‘(zjyk).

(4,k)
Corollary 5.6. Forl m € {1,2}, we can write szl by, = (]klm)dc* Jklm)dCQ with
(pgj’k’l’m) and (p(J ol satisfying for all ¢ € L{l(]’k)
(3.F) atl
j kool a1 10(¢,2) |72
2| 5 > el TS
0<a+pF<max(p1,p2) PLek
k) at’l
kL, 01 ]6(¢2) [T
o5 ¢ 5 > el
0<a+p<max(p1,p2) PRZjk
and for all differential operators V, of order 1 acting on z,
(5. atl
LR i 5 10(¢,2) |72
N (0] I > el T RIS
0<a+p<max(p1,p2) PREik
(5. att
kool i s |0(C,2) |72
2 Rl (P S > el TS
0<a-+A<max(p1,p2) PGk
uniformly with respect to (,z,j and k.
Proof: Without restriction we assume [ = 1 and for m = 1,2, we write b,,((,2) =

b1 (G, 2)dCT + b, 5(C, 2)dCs where b,y = o 32(C+ (2 = ¢))dt. So
by (€, 2)

1 8a+ﬁ+1fm
- D ¢ 0Cs°

0<a+pB<max(p1,p2)

(O = G (25 = )P o (|2 — ¢t
and Corollary 5.5 yields for all ¢ € Pﬁ|p(zj?k)|(zj7k):
o P ' 2)| S 2 p A%<
A e S o)

0<a+pB<max(p1,p2)
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)

uniformly with respect to z,(,7 and k. The proof of the inequality for @) b12(¢, 2)

. P () it (3:k)
is exactly the same. The one for | =z b2.1((, z)| uses the definition of U™ .
. (k) (5,k) 1(05k) (k)
On Z/ﬁ(m)a we have Pljjl S % lp(25 k)] 27— and again Corollary 5.5 yields
e b21(G2)| S | 021G ) | (2 ?
G I AR L
(4.k) at+l
0 4 10(¢, 2 2
N > lp(zip)l "2 ! p((z.i
0<at+f<max(p1,ps) Pk
P (Q)

uniformly with respect to z,(,j and k. Again, the inequality for can be

Fi(0) 52,2(47 Z)

obtained in the same way. O

Corollary 5.3 and 5.6 imply for some N’ arbitrarily large, provided N is large enough,

and for all ¢ € 77,i|p(zj,,€)|(zj7k) that
P(]vk) 8il(j7k> 1 I
PO o)A — (xl”’k)(()ah(() AP, Z))
fi(€) "
< lo(z)? ( e >N/ HO)
= 7, lp(zjk)| + |p(2)| + 6(2jk, 2)
and for V, a differential of order 1
W ail(j’k> : _
vo [ a2 (" (©an(c) A P 2)
fi(©) ac"

L 23 "
< ()| p(zip)] (Ip(Zj,k)| + |p(;)| + 5(Zj,kaz)) ")

ntl
=,

7 - ) an+1h an+1h noq
where h(¢) =max, o, <'agn+l<<>|p<<> Lot (Olp()I? D.Weconclude

as in the proof of Theorem 1.1 of [1] that Theorem 1.1 holds true.

6. LOCAL DIVISION

6.1. Local holomorphic division. In this subsection we will prove Theorem 1.2 and his
analogue in the LY case, the following theorem.

Theorem 6.1. When n = 2, let g be a holomorphic function defined on D. Assume that
X1 N Xs is a complete intersection and that there exist k > 0, a real number ¢ > 1 and

a locally finite covering (Pﬁm(cj)‘((j)) s of D such that for all j € I, there exist two
€

function f]y) and géj), C°°-smooth on 73,1|p(<].)|((j), which satisfy
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(a) 9= fr+ 39 fo on Pripc;)(G)s

@(
(b) Yjer Jp L{ﬂ( )\p(CJ)|“+2’ dV(z) < oo forl =1 and | = 2 and all
integers o and [;

wlo(c;)1(C) | acF*a
(c) for 1l =1 and | = 2, for all non negatives integers o, @, 3 and 3, there exist N € N
3a+a+6+5§l(j>
a¢roacsPacT e
Then there exist two smooth functions g1 and ga which satisfy (i)-(iii) of Theorem 1.1 with
q.

and ¢ > 0 such that for all j, |p(¢;)|N supp <e.

wlo(¢)1(63)

Proof: 1t suffices to glue together all the g(] ) and Q(j ) using a suitable partition of unity.

Let (xj)jen be a partition of unity subordinated to ( <lp(¢)] (@)) such that for all j

and all ¢ € Pypc;)((¢j), we have 6&+H+B+B,Xj — C)‘ < —— 1 _ uniformly with

P — 9
0210025077 025" ‘p( )‘a+a+T’”5

respect to (; and (. We set g1 = Zj nggj) and go = Z ngg ) and thus we get the two
functions defined on D which satisfy (i), (i) and (%ii) by construction. O

The proof of Theorem 1.2 is exactly the same so we omit it.

6.2. Divided differences and division. In order to apply Theorem 1.2 and 6.1, we will
use divided differences and find numerical conditions on g which ensure the existence of
local smooth division formula in L*> and in LY. We define the divided differences using
the following settings.
We set
Agll)} ={AeC, |A <7(z,v,3k|p(2)]) and z + lv € Xo\ X3}

Thus the points z + Av, A € Agl),, are the points of Xo \ X; which belong to the disc
Ay (1(2,v,3k]p(2)])), so they all belong to D as soon as k < 3. We analogously define

Agl), ={AeC, |\ < 7(2,v,3k|p(2)|) and z + \v € X7 \ Xo}.

For a function A defined on a subset & of C™, z € C™, v a unit vector of C" and A € C
such that z + Av belongs to U, we set h, [\ = h(z + \v).

If for i, ..., px pairewise distinct h, o, [p1, ..., px] is defined, for Ay,..., A1 € C pair-
wise distinct such that z + A\;v belongs to U for all i, we set

hawlMy s Al — haw[A2s o) Akt ]
A1 — Akt1 '

Now, for z € Xo\ X1 (resp. z € X1\ Xo) let us define g(?(2) = ]?2((2)) (resp. g (z) = Jf’l((zz))).

For ! =1 or [ = 2, the quantity ggll [A1,..., A\x] make sense for all A\1,..., A\ € AQ}J pairwise
distinct.
We first prove a lemma we will need in this section.

hz,v[)\la ceey )\k+1] =

Lemma 6.2. Let o and B be two functions defined on a subset U of C. Then, for all
21, ..., 2n pasrwise distinct points of U we have

n

(a-B)[z1,- -, 2n) :Za[zl,...,zk] Blzr, -y 20

k=1
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Proof: We prove the lemma by induction on n, the case n = 1 being trivial. We assume

the lemma proved for n points, n > 1. Let z1,..., 2,41 be n+ 1 points of Y. Then
(a-B)lz1,- s 2n1]
_ (- B)z1,23, -y 2nt1] — (- B)[z2,- .., Znt1]
Z1 — %9
1 n+1
= (Z (X[Zl, R3y .- ,Zk],@[Zk, s 7Zn+1] + (X[Zl]ﬂ[zg, s 7zn+1])
TR\ 5
1 n+1
i o——. Za[zg, oo 28l B2k - - - 2]
k=2
wl alz1,23, ... 28] — @22, ... 2k
=2 Bleks- - 2] +
Z1 — %9
k=3
alz1] — 04[22]6[227 o]+ oz[zl]mzl’ 23y .y Znt1] — Blz2y - oy Znt] .D
21 — 22 21 — 22

6.2.1. The L*° — BMO-case. In this subsection, we establish the necessary conditions in
C" and the sufficient conditions in C? for a function g to be written as g = g1.f1 + g2 fo,
with g1 and go smooth functions satisfying the hypothesis of Theorem 1.1.

For [ =1 and [ = 2 let us define the numbers

D(g) = sup (J9h, - Al (2, o)) )

where the supremum is taken over all z € D, all v € C" with |v| = 1, all £ € N* and
A, ..., A\ € Ag,)v pairwise distinct.
We have the following necessary conditions in C", n > 2.

Theorem 6.3. In C", n > 2, let g1, g2 be two bounded holomorphic functions on D and
set g = g1/1+ gafe. Then

S max({|g1llze(py, 192/l L= (D))

g
max(|f1, | f2])

Le(D)
and forl=1,2:
(g 5 sup |91
bAz o (7(2,0,4k]p(2)]))
Proof: The first point is trivial and we only prove the second one for | = 1. Let Ay,..., A\x be

k pairwise distinct elements of A,E}), For all ¢ we have g,‘}i [Ai] = g1(2+ A\iv) because fa(z+

Aiv) = 0. Therefore, gt)[Ar, ..., Al = (91), [A1s- .., Al Since [19] g8[Ar, ..., \| =

L _q1(zHAv) gy s
24 f\)\|:‘r(z,v,4n|p(z)|) Hi_g:l()\_Ai)d)\, it follows that

9O M S Tz [p(z)) TR sup l91]- ©
bA (T (2,0,4k|p(2)]))

Now we prove that these conditions are sufficient in C? in order to get a BMO division.

Theorem 6.4. In C?, let g be a holomorphic function on D which belongs to the ideal of
O(D) generated by f1 and fo and such that
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(i) e(9) = $UP-cp mat R ST <

(ii) cg)(g) and ¢ (g9) are finite.
There exist two holomorphic functions g1 and ga which beblong to BMO(D) and such that
Gafi+g2f2=9.

Proof: Tt suffices to construct, for all z near bD, two smooth functions §; and g on
Prp(z)|(2) which satisfy (a) and (b) of Theorem 1.2.

Let (o be a point in bD. If f1({p) # 0 then f; does not vanish on a neighborhood Uy of
Co- Then we can define §; = %, g2 = 0 which obviously satisfy (a) and (b) for all z € D
close to (p. We proceed analogously if f2(p) # 0.

If (o belongs to X1 N Xo N bD, since the intersection X; N X5 is complete, without
restriction we can choose a neighborhood Uy of {y such that X; N XoNUy = {¢o}. Then we
fix some point z in Uy and we construct gi and ga on Py, (2) which satisfy (a) and (b)
of Theorem 1.2. We denote by p; and ps the multiplicity of (y as singularity of fi; and fo
respectively. We also denote by (C(’)"l, C§’2) the coordinates of (j in the Koranyi coordinates
at z.

If [¢54] < 4k|p(z)], then for | = 1 and | = 2 we set [; = 0, iy = 0, P(¢() = 1 and
Qu(¢) = filQ).

Otherwise, we use the parametrization a4, 7 € {1,...,p1}, of X7 and ag, 7 € {1,...,p2},
of Xy given by Proposition 3.2. We denote by I; the set

N

Iy = {1,321 € Ao (2k]p(2)[) such that |ay;(21)] < (5klp(2)])2 ],

i = #1, Pi(C) = [T;er, (¢G5 — cua(¢})) and Qu(¢) = £

Our first goal is to find hy and hs in C>(Pyp(2)|(2)) such that g = hiP, + hoPy on
Prip(2)| (z) and which moreover satisfy good estimates. The function g belong to the ideal
of O(Pay|p(z)|(#)) generated by fi and fo and so there exist hy and hg holomorphic in
Pu|p(z)|(#) such that g = Pihy + Pyhy. Moreover, we observe that necessarily ﬁg(() =

ha(¢) = % for all ¢ such that Pi(¢) = 0 and P(¢) # 0, but we also notice that hs
may not satisfy good estimates like uniform boundedness for example. Thus, we already
know Bg(( ) for such ¢ and by interpolation, we will reconstruct a “good” hs in the whole
polydisc Py,(2)|(2). We point out that we do not directly divide by f1 and fs because if we

do so, we are not able to handle the error term we get during the interpolation procedure.

If iy = 0 we set hy = 0. Otherwise, without restriction we assume that Iy = {1,...,41}

and for k < iy and ¢} such that Py(z + (i1, + a1,(¢f)v.) # 0, we introduce

* g * *
(13) W= (5) e ans(@)

2 Z"I’Ciknz;vz

and

A in ) k—1

ha(¢) = D () TT(G = ana(ch)).

k=1 i=1

We define h; analogously. Since X1 N XoNUy = {Co}, hq and hy are defined on Piar|p(z)|(2)-
Moreover, hy(CF, -) is the polynomial which interpolates ho(CF, -) at the points a11(¢F)s -,
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a1, (¢F). Therefore, we get from [19]

A~

(14) ha(¢) = h2(¢) + P1(¢)er(C)
with
(15) aQ) = 5 1LY e

27 Jie|=(nip)d PLCHE) - (E—¢3)
We have an analogous expression for h; and we point out that (14), (15) and theirs
analogue for g; also holds if i1 = 0 or is = 0.

This yields

(16) 9(¢) = PiOm(C) + Pa(O)ha(C) + Pr(¢)Pa(C)e(C)

where

e() = e(¢)+e2(Q)
1 9(¢i5 )

= — de.
2im Jig|=(nlp(=)* PLCT,E) - Pa((T,€) - (€= ¢3) :

If we were trying to divide by f; and fs directly, in the error term above, we wouldn’t get
g but h1P; 4+ ho P> that we can not handle.
Of course, he will be a part of the function ho we are looking for. We first look for an

upper bound for hos using our assumption on the divided differences of g(z) = %.

Fact 1: hy satisfies for all ¢ € Pag|p(z)|(2), uniformly with respect to z and ¢

(17) ha(O) S e@9)  sup[Qa(e + e+ €us)]
€1=(4xp(2)])2
Indeed: We have by Lemma 6.2

B (@)
<P€2>z+qnz,vz [CYLl(CT)v T ’al’k(gf)]

(09@2) . (@) ean(éi)]

03 e o 001G, a1 (D] (@) et [5G, 1 k(G-

I

1

J
From Montel’s theorem [19] on divided differences in C and from Cauchy’s inequalities,
since 7(z,v,, 4k|p(2)|) = (4/@|p(z)|)%, it follows that

ik *
[(Q2) ¢ (1,3 (CD)s s k(D] S 1p(2)] 2 sup | @a(z + Cims + €v2)].
€1=(4xlp(2)]) 2

With the assumption e (g9) < oo, this gives for all (f € Ag(2k|p(2)]):

(18) B S @D@lp)|' T sup |Qale+ ¢ne + Ev2)]
e 1
[€|=(4x|p(2)]) 2
and so (17) holds true.

24



Of course we have the analogous estimate for hi. Now we have to handle the error term
n (16). Since there is a factor P; P in front of e in (16), we can put Pe either with hy in
}~11 or we can put Pje with flg in ilg. But in order to have a good upper bound for Bl and
hs, we have to cut it in two pieces in a suitable way. This will be done analogously to the

2

construction of the currents. Let

1] £(0lo(2) %

U = {Cepmp(zn(z)’

Pi(0) 31 P(Q)
2 2| 2K
Uy = {Ce%p(z)l(z% 3 fZ(gj)DLKEé))’ ~ fl(il'f()é))| }

Let also x be a smooth function on C? \ {0} such that x(z1,22) = 1 if |z1| > 2|2| and

’Ll 12
X(z1,22) = 01f |21 < §lzal. Weset xa(€) = x <f1“231”<%)7 ’ fz“é”éi”), () = 1-x(0)

and at last we define

mQ) = mh(Q+xi(OPA)e(0),
ha(¢) = ha(Q) + x2(O)Pr(Oe(()-
And we now look for an upper bound for P;(¢)e(¢) on U;.
Fact 2: For all ¢ belonging to P4,i|p(z)‘(z), we have uniformly with respect to ¢ and z

(19) [PL(Oe(O] < e(9) (I/)(Z)!il;2 sup  |Qi|+ sup )\Qg\)

Parp()|(2) Parp(z)| (2

Proof: For [ = 1 and | = 2, for all i € I; and for all (§ € Ag(4k|p(z)|) we have, from
Proposition 3.2, |ay;(¢7)] < (BH‘p(Z)D% provided k is small enough. Hence |F(¢)| <

~

]p(z)\%l for all { € Pyy|p(2)|(2), and with assumption (i), we get for all ¢ € Pyyp(2)(2)
19O < (@) (1 (O] + £2(O)])

S el9) (1p)# QU] + 9(2)] % 1Q2(C)1)
This yields for all ¢ € Pyy(2) (2)

e(¢)] S elg) <p<z>r’? sup  |Qi|+1p(=)]"F  sup \@ﬂ)

Parlp()|(2) Parp(z)| (2
from which (19) follows.

Therefore we have the identity g = P hy + Pohs and upper bounds for hy using (17) and
(19), the corresponding one for hy being also true of course. But our final goal is to write
g as g = gif1 + g2f2. So we put gy = % and go = % so that g = g1 f1 + G2 f2. Moreover,

from (17) and (19), and since x2 has support in Uy, it follows for ¢ € Py,(.(2)
. 1 1
(20) 1301 < (29 +e(9) 57 s Qo +cl9) 57 suwp Qi
QQ(C) 'P4,{‘p(z)|(2) Ql(g) 774,{‘p(z)|(z)

Therefore, in order to prove that go is bounded, we will have to prove that 85 28 is bounded

for ¢ € Pyjp(z)|(2) and & € Pyy|p(z)(2). This is the aim of the following Fact 3.
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Fact 3: For I =1 and | = 2, ( € Pyy|p(»)|(2) and § € Py p(z)|(2), we have uniformly with
respect to z, ¢ and &:

(21)

Ql(§)| <1
Q) |~
The proof of fact 3 is analogous to the proof of Lemma 5.1. Without any restriction we
assume [ = 2.

First case: 1 (54| > 4k ,0( )|, then we have the parametrization of X5 and it suffices

€5 4 (€])
Ga| S L

If |ao(€5)] > \p(z)ﬁ, since from Proposition 3.2 6%2*2 is bounded, |ao;(¢F)| > 3|p(2)|

X « §5—o3 (&)
and [az(()| = glaza(€7)], 50 | g=34e | S

If |ag,i(&7)| < ]p(z)\%, then &5 — a3,(&7)] < |p(z)]% and since by definition of I,

a2, (¢)] > Sklp(2)|2 for all ¢f € Ao(2k|p(2)]), we have |GG — a2:(CF)| 2 Klp(2)[2 for

Cﬁk*a;,i(CT) ~ 1 holds true.

Second case: If |(51] < 4k|p(2)] and [|(5,| < (4&‘,0(2)”%, then §(&,¢0) S 0(€,2) +
0(2,¢0) < |p(z)| and as in the proof of Lemma 5.1, |Q2(&)| = |f2(&)| < |p(z)\p72 From
proposition 3.1, Py pz)(2) N X2 = 0 so [f2(¢)] 2 \p(C)|p72 and again we are done in this
case.

Third case: If |(54| < 4k[p(2)| and |(55| > (4/{|p(z)|)%, then as in the third case of the
proof of Lemma 5.1, f2(£) and f2(() are comparable to |(§,[P2. Again we are done in this
case and Fact 3 is proved.

to prove for i ¢ I that

N

1 is satisfied.

all ¢ € Poyp(2)(2) and so the inequality

From (20) and (21), we get that gs is uniformly bounded. However, assumption (b) of
Theorem 1.2 is a little stronger and we need that the derivatives QoI P gy

— of go do
8¢ a¢sPac agg”

not explode faster than ]p(z)\aJrg is Pyjp(z)(2) for all o, B, @ and B.
Actually, inequality (17) and Cauchy’s inequalities implies that, for all ¢ € Py () (2),

oatBj, —a=28 (2) % .
‘W(C)‘ S p(z)| 7 2exd (9) S |Q2(z + (Tnz + €v;)|. With Lemma 5.1

and (21), we get | 7222 (B2 )| < lo(=) 52 (g).

Ao
Applying the same process with (19) to eP;, we get
(90‘+66P1 B i1—ig
a5 Q)| S le(2)[ 7 2e(g) | [p(2)[ sup  |@Qi]+ sup Qo] |-
9CF0¢; Par|p(=)|(2) Par|p(=)| (%)
Again Lemma 5.1 and (21) yield M < epl) < o C_M .
g (21) y P (©) (25t )| < lp(2)] c(g)

Therefore, go satisfies (b) of Theorem 1.2 and of course, §; also does. O

6.3. The Li-case. The assumption, under which a function g holomorphic on D can be
written as g = g1 f1+9g2f2 with g1 and g2 being holomorphic on D and belonging to LI(D),
uses a k-covering (73,,4 p(zj)|(zj)> . in addition to the divided differences.

je

By transversality of X; and 0D, and of X5 and bD, for all j there exists w; in the
complex tangent plane to bD ) such that 7}, the orthogonal projection on the hyperplane
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orthogonal to w; passing through z;, is a covering of X; and X». We denote by wj,...,w
an orthonormal basis of C" such that w} = 7., and w;, = w; and we set P.(z;) = {2/

3 %

1
Zj+zjwi + ... 42wy, |2 <eand |z <ez, k=2,...,n—1}. We put

l k— 1 q
Aoy Z i S el T o [ ()

Porlpten)(Z) Aq,ageh x
A;#N for i#l

where dV,,_; is the Lebesgue measure in C*~! and ¢() = %, Il=1orl=

Now we prove the following necessary conditions

Theorem 6.5. Let g1 and g2 belonging to L1(D), q € [1,+o0[, be two holomorphic func-
tions on D and set g = g1 f1 + g2f2. Then

S max(||g1lze(py, 192l La(py)-

. g
() sty belongs to L4(D) and || sz oo,

(ii) For I = 1 orl = 2 and any k-covering (Pﬁ‘p(zjﬂ(zj))j, we have cé?{ﬁ(zj)j(g) S
||ngqu D
Proof: The point (i) is trivial and we only prove (ii). As in the proof of Theorem 6.3, for
all j e N, all 2/ € P"p( )‘(zj) and all r € [%H|p(zj)]%,4/<a]p(z])] 2], we have
O Don] = [ SR g
' 20m Jixi=r T (A = M)

After integration for r € [(7/2&\,0(,2]')\)%, (4/@]p(zj)\)%], Jensen’s inequality yields

q 1—k
oo [ S Dot T [

INI<(4rlp(z)]) 2

lg1 (2" + Aw)|9dVi (N).

Now we integrate the former inequality for 2’ € Pﬁl (2 )I( zj) and get

q k—1
/ o M) T V) 5 [ l9u(2)| 7V (2),
Z/E’P;‘p(zj)l(zj) Z€P4,§|p(z.)‘(zj)
Since (Pﬁ‘p(zj)‘ (zj)>j€N is a k-covering, we deduce from this inequality that ct(l,) ’(Zj)jeN(g) <

Hng%q(D)- U

Theorem 6.6. Let g be a holomorphic function on D belonging to the ideal generated by
f1 and fa, such that cgl ()3 (g) is finite and such that m belongs to LY(D).
Then there exist two holomorphic functions g1 and g2 which belong to LY(D) and such that

g=q1f1+ g2fo.

Proof: We aim to apply Theorem 6.1. For all j in N, in order to construct on Py p(z;)] (z5)
two functions §§j ) and géj ) which satisfy the assumption of Theorem 6.1, we proceed as
in the proof of Theorem 6.4. The main difficulty occurs, as in the proof of Theorem 6.4,
when we are near a point (y which belongs to X; N Xo NbD. We denote by ((6‘71, C&Q)
the coordinates of (o in the Koranyi coordinates at z;. If [(5,] < 4k|p(2j,)|, we set
il,j = Z'27j = 0, Il,j = Igyj = (2)7 Pl,j = P2,j = 1 Qlj = f1 and QQJ = f2. Otherwise,

we use the parametrization agjﬂ?, 1€ {1,...,p1)} of X and agjz, i€ {1,...,pgj)} of
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Xy given by Proposition 2.2 and for [ = 1 and [ = 2, we still denote by I;; the set
I; = {5,325 € Ao(2xlp(2)]) such that [af?) (=) < 3xlo(z))2}, iy = #1, PLi(C) =
[licr,, (G — 07 (¢)) and Qi = -, We define A and A as hy and hy in the proof of
(J) () )

}
as we defined e; and ez in the proof of Theorem 6.4, here we integrate over {(3§ /f|p(zj)|)% <
6] < (4xlp(z;))3} and set

e (2)

Theorem 6.4. Instead of defining ey’ and es’ by integrals over the set {|{| = (4k|p(2;)

zﬂ(z_\@) KIp(e;)]  {Elo(z) 2 <lel<nlotz)) 3y Pri(el, )P (1, ) (25 =€)

We therefore have for all j and all z € Pyp(-,)(2)):

9(2) = I (2)Prj(2) + 15 (2) P (2) + Puj(2) Po(2)e 2).
We split Pyp(-,)(2j) in two parts as in Theorem 6.4 and set

AQIpE)E | 1] £l F }

v (§).

>

u(]) = {CEP,“)(ZJ)(Z]‘)? Pl,j(C) 3 PQ(C)

‘ 2 N s
u2(j) = {CEPRP(Z])(Zj)73 f2(<2;;2_§| > fl(Cgijy }

We still denote by x a smooth function on C? \ {0} such that x(z1, 22) = 1if [z1] > 2|2

. 12]
and y(z1,22) = 0 if [ea] < 3]zl and we set xP(¢) = x [ HQUCN " 2ObEIF )
P (¢) Py (¢)
(¢ =1-x7(¢) and
G 1/ :
i) = o (W e+ PP (),
Q7 (2)
~(5) _ 1 7 (j) i) )
@ = o (@ + P ().
Qs (2)

Therefore g = ])fl + g(])fg on Pyy(z;) (25) and in order to apply Theorem 6.1, the
assumptions (b) and (c) are left to be shown.
As in the proof of fact 1, it follows from Lemma 6.2 and (21) that

’LQJ

Qz,j Z ()| 7

uniformly with respect to z € 732,.@‘ p(zj)‘(zj) and j € N and therefore

1
(22) > /
Parlo(z;)1(2)

= )1 Q2,5(2)

gzj—&—zlnz Uz [a171(z>1k), B OéLk(ZT)]

I (0
() 5 ().

~ q,R, z]

B(J')(Z)
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In particular Q%]ﬁgj )is an holomorphic function with L?%-norm on Py p(z;)] (2;) lower than

( ((]2,1 (Zj)(g))%. Thus Cauchy’s inequalities imply, for all o, 8 € N and all z € P,qp(zj”(zj),
that

60&"‘5 1 ~¢s l 1 ,ﬁ,afﬁ

1 9% J

Since m belongs to LI(D), g itself belongs to L4(D) and so
. i1,5+i2 4
/ D@V () S o) [ l9(2)/ AV ().
Parlo(z;)1(2) Parlo(=;)1(2)

In particular, for all @ and 8 and all z € Pﬁ‘p(zj)‘(zj), we have
8(X+ﬁe(])

92549 * 0 z
%1 0%

The inequalities (23) and (24) imply that the hypothesis (c¢) of Theorem 6.1 is satisfied by

f]g ) for some large N, the same is also true for ij ),
Now, for z belonging to L{Q(]), we get from (21):

(24)

PPV ()| 1 9(¢7.€)| (e
QW (z) |~ 1D rlpnt <iei<@niotnt max([f1(G O 1f2(¢F €
and so
P (2)e@(z) [

v s [

Panlp(z;)1(%)

< l9(¢t, )]

AR} |f2<<;:s>|>> Vo).

/Z/{ZHIPMp(zj)(Zj) Qéj) (Z)

Since (Pgjp(z;)(2j))jen is a k-covering, this yields:
q

P (2)el)(2) g q
95 SO O v H .
2 jz@;l/uﬁpwujn(%) ng)(Z) ) max(| f1|, | f2) || La(p)

9o+ —a- b - ~(5)
Moreover, for all a, 8 € N, W(z) < p(z)] 2, (22) and (25) imply that (g5);en
1 2

satisfy the assumption (b) of Theorem 6.1 that we can therefore apply. ©
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