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DIVISION OF HOLOMORPHIC FUNCTIONS AND GROWTH

CONDITIONS

WILLIAM ALEXANDRE AND EMMANUEL MAZZILLI

Abstract. Let D be a strictly convex domain of Cn, f1 and f2 be two holomorphic

functions defined on a neighborhood of D and set Xl = {z, fl(z) = 0}, l = 1, 2. Suppose

that Xl∩bD is transverse for l = 1 and l = 2, and that X1∩X2 is a complete intersection.

We give necessary conditions when n ≥ 2 and sufficient conditions when n = 2 under

which a function g can be written as g = g1f1+g2f2 with g1 and g2 in Lq(D), q ∈ [1,+∞),

or g1 and g2 in BMO(D). In order to prove the sufficient condition, we explicitly write

down the functions g1 and g2 using integral representation formulas and new residue

currents.

1. Introduction

In this article, we are interested in ideals of holomorphic functions and corona type

problems. More precisely, if D is a domain of Cn and f1, . . . , fk are k holomorphic functions

defined in a neighborhood of D, we are looking for condition(s), as close as possible to

being necessary and sufficient, under which a function g, holomorphic on D, can be written

as

g = f1g1 + . . .+ fkgk,(1)

with g1, . . . , gk holomorphic on D and satisfying growth conditions at the boundary of D.

This kind of problem has been widely studied by many authors under different assump-

tions.

When D is strictly pseudoconvex and when f1, . . . , fk are holomorphic and bounded

functions on D, which satisfy |f |2 = |f1|2 + . . . + |fk|2 ≥ δ2 > 0, for a given holomorphic

and bounded function g, finding functions g1, . . . , gk bounded on D is a question known

as the Corona Problem. When D is the unit ball of C, the Corona Problem was solved in

1962 by Carleson in [8]. This question is still open for n > 1, even for two generators f1

and f2, and even when D is the unit ball of Cn.

For p ∈ [1,+∞), we denote by Hp(D) the Hardy space of D. When n > 1, k = 2 and

|f | ≥ δ > 0, Amar proved in [2] that for any g ∈ Hp(D), (1) can be solved with g1 and g2 in

Hp(D). Andersson and Carlsson in [4] generalized this result to any strictly pseudoconvex

domain in Cn and to any k ≥ 2 and also obtained the BMO-result already announced by

Varopoulos in [21]. In [6], they studied the dependence of the gi’s on the lower bound δ of

|f | and they explicitly obtained a constant cδ such that for all i, ‖gi‖Hp(D) ≤ cδ‖g‖Hp(D).

Of course cδ goes to infinity when δ goes to 0. In [3], when |f | does not have a positive
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lower bound, Amar and Bruna formulated a sufficient condition in term of the admissible

maximum function of |f |2 |log |f ||2+ε, ε > 0, under which the gi’s belong to Hp(D).

The corona problem was also studied in the case of the Bergman space Ap(D), the space

of holomorphic functions which belong to Lp(D), and in the case of the Zygmund space

Λγ(D) by Krantz and Li in [12], and in the case of Hardy-Sobolev spaces by Fàbrega and

Ortega in [13].

In the above papers, the first step of the proof in the case of two generators f1 and f2,

is to find two smooth functions on D, ϕ1 and ϕ2, such that

ϕ1f1 + ϕ2f2 = 1;(2)

and then to solve the equation

∂ϕ = g
f1 ∂ϕ2 − f2 ∂ϕ1

|f1|2 + |f2|2
.(3)

Then setting g1 = gϕ1 +ϕf2 and g2 = gϕ2−ϕf1, (1) holds and, provided ϕ belongs to the

appropriate space, g1 and g2 will belong to Hp(D), Ap(D), . . . So the problem is reduced

to solve the Bezout equation (2) and then to solve the ∂-equation (3) with an appropriate

regularity.

In [5], Andersson and Carlsson used an alternative technique. They constructed a

division formula g = f1T1(g)+ . . .+fkTk(g) where for all i, Ti is a well chosen Berndtsson-

Andersson integral operator, and, still under the assumption |f | ≥ δ > 0, they proved that

Ti(g) belongs to Hp(D) (resp. BMO(D)) when g belongs to Hp(D) (resp. BMO(D)).

The same kind of technics was also used in [7] by Bonneau, Cumenge and Zériahi who

studied the equation (1) in Lipschitz spaces and in the space BM (D) = {g, ‖g‖BM (D) =

supz∈D
(
|g(z)|d(z, bD)M

)
< ∞}. In this later work, the generators f1, . . . , fk may have

common zeroes but ∂f1 ∧ . . . ∧ ∂fk can not vanish on bD ∩ {z, f1(z) = . . . = fk(z) = 0}.
The case of generators having common zeroes has also been investigated by Skoda in [20]

for weighted L2-spaces. Using and adapting the L2-techniques developed by Hörmander,

for D pseudoconvex in Cn, ψ a plurisubharmonic weight on D, f1, . . . , fk holomorphic in

D, q = inf(n, k), α > 1 and g holomorphic in D such that
∫
D

|g|2
|f |2αq+2 e

−ψ < ∞, Skoda

showed that there exist g1, . . . , gk ∈ O(D) such that (1) holds and such that for all i,∫
D
|gi|2
|f |2αq e

−ψ ≤ α
α−1

∫
D

|g|2
|f |2αq+2 e

−ψ. Moreover the result also holds when k is infinite and

there is no restriction on ∂f1, . . . , ∂fk. However, if one takes g = f1 for example, g does

not satisfy the assumption of Skoda’s theorem in general.

In this article we restrict ourself to a strictly convex domain D of Cn and we consider

the case of two generators f1 and f2, holomorphic in a neighborhood of D. We denote by

X1 the set X1 = {z, f1(z) = 0}, and by X2 the set X2 = {z, f2(z) = 0}. We assume that

the intersections X1 ∩ bD and X2 ∩ bD are transverse in the sense of tangent cones and

that X1 ∩X2 is a complete intersection. Let us recall that an analytic subset A of pure

co-dimension m in Cn is said to be a complete intersection if there are m holomorphic

functions h1, . . . , hm such that A = ∩mi=1{z, hi(z) = 0}; and that the intersection Xl ∩D,

l = 1 or l = 2, is said to be transverse if for every p ∈ Xl ∩ bD, the complex tangent space

to bD at p and the tangent cone to Xl at p span TpCn.

Our goal here is to find assumptions on g, holomorphic in D, as close as possible to being
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necessary and sufficient, under which we can write g as g = g1f1 + g2f2 with g1 and g2

holomorphic and belonging to BMO(D) or Lq(D), q ∈ [1,+∞).

Let us write D as D = {z ∈ Cn, ρ(z) < 0} where ρ is a smooth strictly convex function

defined on Cn such that the gradient of ρ does not vanish in a neighborhood U of bD. We

denote by Dr, r ∈ R, the set Dr = {z ∈ Cn, ρ(z) < r}, by ηζ the outer unit normal to

bDρ(ζ) at a point ζ ∈ U and by vζ a smooth unitary complex vector field tangent at ζ to

bDρ(ζ). As a first result, we show:

Theorem 1.1. Let D be a strictly convex domain of C2, f1 and f2 be two holomorphic

functions defined on a neighborhood of D and set Xl = {z, fl(z) = 0}, l = 1, 2. Suppose

that Xl∩bD is transverse for l = 1 and l = 2, and that X1∩X2 is a complete intersection.

Then there exist two integers k1, k2 ≥ 1 depending only on f1 and f2 such that if g is any

holomorphic function on D which belongs to the ideal generated by f1 and f2 and for which

there exist two C∞ smooth functions g̃1 and g̃2 such that

(i) g = g̃1f1 + g̃2f2 on D,

(ii) there exists N ∈ N such that |ρ|N g̃1 and |ρ|N g̃2 vanish to order k2 on bD,

(iii) there exists q ∈ [1,+∞] such that for l = 1, 2,
∣∣∣ ∂α+β g̃l
∂ηζ

α∂vζ
β

∣∣∣ |ρ|α+β
2 belongs to Lq(D) for

all non-negative integers α and β with α+ β ≤ k1,

then there exist two holomorphic functions g1, g2 on D which belong to Lq(D) if q < +∞
and to BMO(D) if q = +∞, such that g1f1 + g2f2 = g on D.

The number k1 and k2 are almost equal to the maximum of the multiplicities of the

singularity of X1 and X2. The functions g1 and g2 will be obtained via integral operators

acting on g̃1 and g̃2. These operators are a combination of a Berndtsson-Andersson kernel

and of two (2,2)-currents T1 and T2 such that f1T1 + f2T2 = 1. So instead of first solving

the Bezout equation (2) in the sense of smooth functions, we solve it in the sense of

currents and then, instead of solving a ∂-equation, we “holomorphy” the smooth solutions

g̃1 and g̃2 of the equation g = g̃1f1 + g̃2f2 with integral operators using T1 and T2. As

we will see in Section 4, these operators can be constructed starting from any currents T̃1

and T̃2 such that f1T̃1 + f2T̃2 = 1. However, not all such currents will give operators such

that g1 and g2 belongs to Lq(D) or BMO(D); as we will see in Section 3, they have to

be constructed taking into account the interplay between X1 and X2. Moreover, if g̃1 and

g̃2 are already holomorphic and satisfy the assumptions (i) − (iii) of Theorem 1.1, then

g1 = g̃1 and g2 = g̃2.

Observe that in Theorem 1.1, we do not make any assumption on f1 or f2 except that

the intersection X1 ∩ bD and X2 ∩ bD are transverse in the sense of tangent cones, and

that X1 ∩X2 is a complete intersection. This later assumption can be removed provided

we add a fourth assumption on g̃1 and g̃2. If we moreover assume that

(iv) ∂α+β g̃1

∂ηζ
α∂vζ

β = 0 on X2 ∩D and ∂α+β g̃2

∂ηζ
α∂vζ

β = 0 on X1 ∩D for all non negative integers α

and β with 0 < α+ β ≤ k1,

then Theorem 1.1 also holds whenever X1∩X2 is not complete. However, it then becomes

very difficult to find g̃1 and g̃2 which satisfy this fourth assumption, except if X1 ∩X2 is

actually complete.
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Indeed, the main difficulty in order to be able to apply Theorem 1.1 is to find the two

functions g̃1 and g̃2 satisfying (i)-(iii). The canonical choice when |f | ≥ δ > 0 is to set

g̃1 = gf1|f |−2 and g̃2 = gf2|f |−2. If |f | ≥ δ > 0 and if g belongs to Lq(D), then g̃1

and g̃2 will satisfy (i)-(iii) and we can then apply Theorem 1.1. However, if |f | does not

admit a positive lower bound, this will not be necessarily the case. For example, when

D = {z ∈ C2, ρ(z) = |z1 − 1|2 + |z2|2 − 1 < 0}, f1(z) = z2, f2(z) = z2 − z2
1 and g = f1, we

can obviously find g̃1 and g̃2 which satisfy the assumption of Theorem 1.1 but if we make

the canonical choices for g̃1 and g̃2, they do not fulfill (iii) for q = ∞ because ∂g̃1

∂z2
|ρ|

1
2 is

not bounded near 0.

Therefore the question of the existence of g̃1 and g̃2 may itself become a problem that

we have to solve. Using first Koranyi balls, we will reduce this global question to a local

one and then, using divided differences, we will give numerical conditions under which

there indeed exist functions satisfying the hypothesis of Theorem 1.1. We will also prove

that these conditions are necessary in order to solve Equation (1) with the gi’s belonging

to Lq(D), q ∈ [1,+∞], even in Cn. This leads us to an effective way of construction of the

solutions of (1) belonging to Lq(D) or BMO(D).

The Koranyi balls in C2 are defined as follows. We call the coordinates system centered

at ζ of basis ηζ , vζ the Koranyi coordinates at ζ. We denote by (z∗1 , z
∗
2) the coordinates

of a point z in the Koranyi coordinates at ζ. The Koranyi ball centered in ζ of radius r

is the set Pr(ζ) := {ζ + ληζ + µvζ , |λ| < r, |µ| < r
1
2 }. We observe that, by convexity,

Pακ|ρ(ζ)|(ζ) is included in D if α is small enough.

The following theorem enables us to go from a local division formula in L∞ to a global

division formula in BMO.

Theorem 1.2. Let D be a strictly convex domain of C2, f1 and f2 be two holomorphic

functions defined on a neighborhood of D and set Xl = {z, fl(z) = 0}, l = 1, 2. Suppose

that X1 ∩ bD and X2 ∩ bD are transverse, and that X1 ∩X2 is a complete intersection.

Let g be a function holomorphic on D and assume that there exists κ > 0 such that for

all z ∈ D, there exist two functions ĝ1 and ĝ2, depending on z, C∞-smooth on Pκ|ρ(z)|(z),

such that

(a) g = ĝ1f1 + ĝ2f2 on Pκ|ρ(z)|(z);

(b) for all non negative integers α, β, α and β, there exist c > 0, not depending on z,

such that supPκ|ρ(z)|(z)

∣∣∣∣ ∂α+α+β+β ĝl

∂z∗1
α∂z∗2

β∂z∗1
α
∂ζ∗2

β

∣∣∣∣ ≤ c|ρ(z)|−α−
β
2 for l = 1 and l = 2.

Then there exist two smooth functions g̃1 and g̃2 which satisfy the assumptions (i)-(iii) of

Theorem 1.1 for q = +∞.

An analogous theorem holds true in the Lq-case (see Theorem 6.1). We observe that if,

for all z ∈ D, there exist two functions ĝ1 and ĝ2, holomorphic and bounded on P2κ|ρ(z)|(z)

by a constant c which does not depend on z, and such that g = ĝ1f1 + ĝ2f2 on P2κ|ρ(z)|(z),

then Cauchy’s inequalities implies that ĝ1 and ĝ2 satisfy the assumption of Theorem 1.2

on Pκ|ρ(z)|(z) for all z. Therefore Theorem 1.2 implies that the global solvability of (1) in

the BMO space of D is nearly equivalent to its uniform local solvability. In order to prove

Theorem 1.2, we will cover D with Koranyi balls and using a suitable partition of unity,
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we will glue together the ĝ1 and ĝ2 which we got on each ball. We point out that when

we glue together the local ĝ1’s, except if X1 ∩X2 is a complete intersection, in general the

“fourth” assumption (iv) of Theorem 1.1 is not satisfied. This is why we chose to present

Theorem 1.1 as we did.

When looking for necessary conditions in order to solve Equation (1) with g1 and g2

bounded, we first observe that g is trivially bounded by max(‖g1‖L∞ , ‖g2‖L∞)(|f1|+ |f2|).
Therefore, in order for g to be written as g = g1f1 + g2f2 with g1 and g2 bounded, it

is necessary that |g|
|f1|+|f2| be bounded. However this condition alone does not suffice in

general. Consider for example the ball D := {z ∈ C2, ρ(z) = |z1 − 1|2 + |z2|2 − 1 < 0},
f1(z) = z2

2 , f2(z) = z2
2 − z

q
1 and g(z) = z

q
2
1 z2 where q ≥ 3 is an odd integer. Then g(z) =

z2z
− q

2
1 f1(z)− z2z

− q
2

1 f2(z), so g belongs to the ideal generated by f1 and f2, and |g|
|f1|+|f2| is

bounded on D by 3
2 ; in particular, the classical choice g̃1 = gf1

|f1|2+|f2|2 and g̃2 = gf2

|f1|2+|f2|2
gives two functions g̃1 and g̃2 which are smooth and bounded on D. However, (1) can

not be solved with g1 and g2 bounded on D. In order to see this, a good tool is divided

differences.

On the one hand, if g = g1f1 + g2f2, then g1 = g · f−1
1 on X2 \X1.

On the other hand, for all z ∈ D, all unit vector v tangent to bD−ρ(z) at z, all complex

numbers λ1 and λ2 with ρ(z + λ1v) < ρ(z) and ρ(z + λ2v) < ρ(z), Montel [19] asserts

that the modulus of the divided difference g1(z+λ1v)−g1(z+λ2v)
λ1−λ2

behaves like
∣∣∣∂g1

∂v

∣∣∣ at some

point z + µv where µ is an element of the segment [λ1, λ2]. Cauchy’s inequalities then

imply that, up to a uniform multiplicative constant, g1(z+λ1v)−g1(z+λ2v)
λ1−λ2

is bounded by

‖g1‖L∞(D)|ρ(z)|−
1
2 .

So when we compute the divided differences of g1 at points z + λ1v and z + λ2v which

belong to X2 \ X1, whatever g1 and g2 may be, we actually compute the divided dif-

ference of g · f−1
1 . And if g1 is bounded, this divided difference times |ρ(z)|

1
2 must be

bounded by some uniform constant. But in our example, this is not the case because

for small ε > 0, setting z = (ε, 0), v = (0, 1), λ1 = ε
q
2 and λ2 = −ε

q
2 , we have that

(g·f−1
1 )(z+λ1v)−(g·f−1

1 )(z+λ2v)
λ1−λ2

|ρ(z)|
1
2 = ε

1−q
2 which is unbounded when ε goes to zero.

In Cn, we will prove that the divided differences of any order of g · f1
−1 and g · f2

−1

must satisfy some boundedness properties when (1) is solvable with g1 and g2 in Lq(D),

q ∈ [1,+∞] (see Theorems 6.3 and 6.5 for precise statements). Conversely, in C2, if those

boundedness properties are satisfied, by polynomial interpolation and on any Koranyi

balls, we construct two functions g̃1 and g̃2 which satisfy the assumptions of Theorem 1.2.

It must be mentioned that the error term we will get during the interpolation process will

be very difficult to handle. Although the interpolation procedure is a holomorphic one, we

will not get two holomorphic functions g̃1 and g̃2 because we will have to split the error

term in a appropriate way in two parts, which will lead to C∞-smooth but not holomorphic

functions. Then it will follow from Theorem 1.1 that there exist two functions g1 and g2

holomorphic on D, belonging to BMO(D) such that g = g1f1 + g2f2. An analogue result

for holomorphic functions in Lq(D), q ∈ [1,+∞), will be also proved. These two results

are precisely stated in Theorem 6.4 and 6.6.

5



The article is organized as follows. In Section 2, we recall some tools needed for the

construction and the estimation of the division formula. In Section 3, we construct the

currents which enable us to construct our division formula in Section 4. In Section 5 we

establish Theorem 1.1 and finally, in Section 6, we prove the theorems related to local

division in the L∞ and Lq case.

2. Notations and tools

2.1. Koranyi balls. The Koranyi balls centered at a point z in D have properties linked

with distance from z to the boundary of D in a direction v. They were generalized in

the case of convex domains of finite type by McNeal in [17] and [18]. A strictly convex

domain being in particular a convex domain of finite 2, we will adopt the formalism of

convex domain of finite type.

For z ∈ Cn, v a unit vector in Cn, and ε > 0, the distance from z to bDρ(z)+ε in the

direction v is defined by

τ(z, v, ε) = sup{τ > 0, ρ(z + λv)− ρ(z) < ε for all λ ∈ C, |λ| < τ}.

Thus τ(z, v, ε) is the maximal radius r > 0 such that the disc ∆z,v (r) = {z+λv, |λ| < r}
is included in Dρ(z)+ε; if v is a tangent vector to bDρ(z) at z, then τ(z, v, ε) is comparable

to ε
1
2 and τ(z, ηz, ε) is comparable to ε.

Before we recall the properties of the Koranyi balls we will need, we adopt the following

notation. We write A . B if there exists some constant c > 0 such that A ≤ cB. Each

time we will mention on which parameters c depends. We will write A h B if A . B

and B . A both holds. The following propositions are part of well known properties

of Koranyi balls and McNeal polydiscs. The interested reader can find a proof of each

statements in [17] in the case of convex domains of finite type, keeping in mind that a

strictly convex domain is a convex domain of type 2.

Proposition 2.1. There exists a neighborhood U of bD and positive real numbers κ and

c1 such that

(i) for all ζ ∈ U ∩D, P4κ|ρ(ζ)|(ζ) is included in D.

(ii) for all ε > 0, all ζ, z ∈ U , Pε(ζ) ∩ Pε(z) 6= ∅ implies Pε(z) ⊂ Pc1ε(ζ).

(iii) for all ε > 0 sufficiently small, all z ∈ U , all ζ ∈ Pε(z) we have |ρ(z)− ρ(ζ)| ≤ c1ε.

(iv) for all ε > 0, all unit vectors v ∈ Cn, all z ∈ U and all ζ ∈ Pε(z), τ(z, v, ε) h τ(ζ, v, ε)

uniformly with respect to ε, z and ζ.

For U given by Proposition 2.1 and z and ζ belonging to U , we set δ(z, ζ) = inf{ε >
0, ζ ∈ Pε(z)}. Proposition 2.1 implies that δ is a pseudo-distance in the following sense:

Proposition 2.2. For U and c1 given by Proposition 2.1 and for all z, ζ and ξ belonging

to U we have
1

c1
δ(ζ, z) ≤ δ(z, ζ) ≤ c1δ(ζ, z)

and

δ(z, ζ) ≤ c1(δ(z, ξ) + δ(ξ, ζ))

6



2.2. Berndtsson-Andersson reproducing kernel in C2. Berndtsson-Andersson’s ker-

nel will be one of our most important ingredients in the construction of the functions g1

and g2 of Theorem 1.1. We now recall its definition for D a strictly convex domain of

C2. We set h1(ζ, z) = −1
2
∂ρ
∂ζ1

(ζ), h2(ζ, z) = −1
2
∂ρ
∂ζ2

(ζ), h =
∑

i=1,2 hidζi and h̃ = 1
ρh. For

a (1, 0)-form β(ζ, z) =
∑

i=1,2 βi(ζ, z)dζi we set 〈β(ζ, z), ζ − z〉 =
∑

i=1,2 βi(ζ, z)(ζi − zi).
Then we define the Berndtsson-Andersson reproducing kernel by setting for an arbitrary

positive integer N , n = 1, 2 and all ζ, z ∈ D:

PN,n(ζ, z) = CN,n

(
1

1 + 〈h̃(ζ, z), ζ − z〉

)N+n (
∂h̃
)n
,

where CN,n ∈ C is a suitable constant. We also set PN,n(ζ, z) = 0 for all z ∈ D and all

ζ /∈ D. Then the following theorem holds true (see [9]):

Theorem 2.3. For all g ∈ O(D) ∩ C∞(D) we have

g(z) =

∫
D
g(ζ)PN,2(ζ, z).

In order to find an upper bound for this kernel, we will need lower bound for 1 +

〈h̃(ζ, z), ζ − z〉. This classical bound in the field is given by the following proposition. We

include its proof for the reader convenience.

Proposition 2.4. The following inequality holds uniformly for all ζ and z in D

|ρ(ζ) + 〈h(ζ, z), ζ − z〉| & δ(ζ, z) + |ρ(ζ)|+ |ρ(z)|

Proof: We write z as z = ζ + ληζ + µvζ where ηζ is the unit outer normal and where vζ
belongs to TC

ζ bDρ(ζ). With this notation, δ(ζ, z) h |λ| + |µ|2, Reλ h Re 〈h(ζ, z), ζ − z〉
and Imλ h Im 〈h(ζ, z), ζ − z〉.
Since ρ is convex, there exists c positive and small such that for all z and ζ in D

ρ(z)− ρ(ζ) ≥ 2Re (∂ρ(ζ) · (z − ζ)) + c|ζ − z|2

= 4Re 〈h(ζ, z), ζ − z〉+ c|ζ − z|2.(4)

If Reλ < 0, we get from (4)

|ρ(ζ) + 〈h(ζ, z), ζ − z〉| ≥ −ρ(ζ)− Re 〈h(ζ, z), ζ − z〉+ |Im 〈h(ζ, z), ζ − z〉|

& −ρ(z)− ρ(ζ) + c|ζ − z|2 + |λ|
& δ(ζ, z) + |ρ(ζ)|+ |ρ(z)|.

If Reλ > 0, (4) now yields

|ρ(ζ) + 〈h(ζ, z), ζ − z〉|
& −ρ(ζ)− 2Re 〈h(ζ, z), ζ − z〉+ Re 〈h(ζ, z), ζ − z〉+ |Im 〈h(ζ, z), ζ − z〉|

& −ρ(z)− ρ(ζ) + c|ζ − z|2 + |λ|
& δ(ζ, z) + |ρ(ζ)|+ |ρ(z)|.

We will also need an upper bound for h̃ and thus for h. In order to get this bound,

for a fixed z ∈ D, we write h in the Koranyi coordinates at z. We denote by (ζ∗1 , ζ
∗
2 )

the Koranyi coordinates of ζ at z. We set h∗1 = −1
2
∂ρ
∂ζ∗1

(ζ) and h∗2 = −1
2
∂ρ
∂ζ∗2

(ζ) so that
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h(ζ, z) =
∑

i=1,2 h
∗
i (ζ, z)dζ

∗
i . The following Proposition is then a direct consequence of

the smoothness of ρ.

Proposition 2.5. For all ζ ∈ Pε(z) we have uniformly with respect to z, ζ and ε

(i) |h∗1(ζ, z)| . 1, |h∗2(ζ, z)| . ε
1
2 ,

(ii)
∣∣∣∂h∗k
∂ζ
∗
l

(ζ, z)
∣∣∣, ∣∣∣∂h∗k∂ζ∗l

(ζ, z)
∣∣∣ . 1 for k, l ∈ {1, 2}.

3. Construction of the currents

If f1 and f2 are two holomorphic functions near the origin in Cn, Mazzilli constructed in

[16] two currents T and S such that f1T = 1, f2S = ∂T and f1S = 0 on a sufficiently small

neighborhood U of 0. He also proved that if T and S are any currents satisfying these

three hypothesis, then any function g holomorphic on U can be written as g = f1g1 + f2g2

on U if and only if g∂S = 0. Moreover, g1 and g2 can be explicitly written down using T

and S.

Here, when f1 and f2 are holomorphic on a domain D, we first want to obtain a

decomposition g = g1f1 + g2f2 on the whole domain D and then secondly we want to

obtain growth estimates on g1 and g2. As a first approach, we could try to globalize

the currents T and S of [16] in order to have a global decomposition. However, such an

approach would fail to give the growth estimates we want.

In [16], f1 plays a leading role and T is constructed independently of f2, using only f1.

Then S is constructed using f1 and f2. If we assume for example that f1 vanishes at a

point ζ0 near bD, because T is constructed independently of f2, it seems difficult to prove

that g1 obtained using T is bounded except if we require that g vanishes at ζ0 too; but

considering g = f2, we easily see that in general this condition is not necessary when one

wants to write g as g = g1f1 + g2f2 with g1 and g2 bounded for example. So the currents

in [16] probably do not give a good decomposition.

Actually, it appears that the role of f2 must be emphasized in the construction of the

currents near a boundary point ζ0 such that f1(ζ0) = 0 and f2(ζ0) 6= 0, or more generally

when f2 is in some sense greater than f1 and conversely. Following this idea, we construct

two currents T1 and T2 such that f1T1 +f2T2 = 1 on D. These currents are defined locally

and using a suitable partition of unity we glue together the local currents and get a global

current. We now define these local currents.

Let ε0 be a small positive real number to be chosen later and let ζ0 be a point in D.

We distinguish three cases.

First case: If ζ0 belongs to D−ε0 , i.e. if ζ0 is far from the boundary, we do not need

to be careful. Using Weierstrass’ preparation theorem when ζ0 belongs to X1, we write

f1 = u0,1P0,1 where u0,1 is a non vanishing holomorphic function in a neighborhood U0 ⊂
D− ε0

2
of ζ0 and P0,1(ζ) = ζ

i0,1
2 + ζ

i0,1−1
2 a

(1)
0,1(ζ1) + . . . + a

(i0,1)
0,1 (ζ1), a

(k)
0,1 holomorphic on U0

for all k. If ζ0 does not belong to X1, we set P0,1 = 1, i0,1 = 0, u0,1 = f1 and we still have

f1 = u0,1P0,1 with u0,1 which does not vanish on some neighborhood U0 of ζ0.
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For a smooth (2, 2)-form ϕ compactly supported in U0 we set

〈T0,1, ϕ〉 =
1

c0

∫
U0

P0,1(ζ)

f1(ζ)

∂i0,1ϕ

∂ζ
i0,1
2

(ζ),

〈T0,2, ϕ〉 = 0,

where c0 is a suitable constant (see [16]). Integrating by parts we get f1T0,1 + f2T0,2 = 1

on U0.

Second case: If ζ0 belongs to bD \ (X1 ∩X2), i.e. if ζ0 is “far” from X1 ∩X2, without

restriction we assume that f1(ζ0) 6= 0. Let U0 be a neighborhood of ζ0 such that f1 does

not vanish in U0. As in the first case when f1(ζ0) 6= 0, we set P0,1 = 1, i0,1 = 0, u0,1 = f1

and for any smooth (2, 2)-form ϕ compactly supported in D ∩ U0 we put

〈T0,1, ϕ〉 =
1

c0

∫
U0

P0,1(ζ)

f1(ζ)

∂i0,1ϕ

∂ζ
i0,1
2

(ζ),

〈T0,2, ϕ〉 = 0.

where as previously c0 is a suitable constant. Again, we have f1T0,1 +f2T0,2 = 1 on U0∩D.

Third case: If ζ0 belongs to X1 ∩ X2 ∩ bD, the situation is more intricate. As in [1],

we cover a neighborhood U0 of ζ0 by a family of polydiscs Pκ|ρ(zj,k)|(zj,k), j ∈ N and

k ∈ {1, . . . , nj} such that:

(i) For all j ∈ N, and all k ∈ {1, . . . , nj}, zj,k belongs to bD−(1−cκ)jε0 where c is small

positive real constant.

(ii) For all j ∈ N, all k, l ∈ {1, . . . , nj}, k 6= l, we have δ(zj,k, zj,l) ≥ cκ(1− cκ)jε0.

(iii) For all j ∈ N, all z ∈ bD−(1−cκ)jε0 , there exists k ∈ {1, . . . , nj} such that δ(z, zj,k) <

cκ(1− cκ)jε0,

(iv) D ∩ U0 is included in ∪+∞
j=0 ∪

nj
k=1 Pκ|ρ(zj,k)|(zj,k),

(v) there exists M ∈ N such that for z ∈ D \ D−ε0 , P4κ|ρ(z)|(z) intersect at most M

Koranyi balls P4κ|ρ(zj,k)| (zj,k).

Such a family of polydiscs will be called a κ-covering.

We define on each polydisc Pκ|ρ(zj,k)|(zj,k) two currents T
(j,k)
0,1 and T

(j,k)
0,2 such that

f1T
(j,k)
0,1 + f2T

(j,k)
0,2 = 1 as follows. We denote by ∆ξ(ε) the disc of center ξ and radius

ε and by (ζ∗0,1, ζ
∗
0,2) the coordinates of ζ0 in the Koranyi basis at zj,k. In [1] were proved

the next two propositions:

Proposition 3.1. If κ > 0 is small enough and if P4κ|ρ(zj,k)|(zj,k) ∩Xl 6= ∅ then |ζ∗0,1| ≥
4κ|ρ(zj,k)|.

We assume κ so small that Proposition 3.1 holds for both X1 and X2 with the same κ.

When |ζ∗0,1| ≥ 4κ|ρ(zj,k)| then Xl can be parametrized as follows (see [1]):

Proposition 3.2. If |ζ∗0,1| ≥ 4κ|ρ(zj,k)|, for l = 1 and l = 2, there exists pl functions

α
(j,k)
l,1 , . . . , α

(j,k)
l,pl

holomorphic on ∆0(4κ|ρ(zj,k)|), there exists r > 0, depending neither on j

nor on k, and there exists u
(j,k)
l holomorphic on the ball of center ζ0 and radius r, bounded

and bounded away from 0, such that:
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(i)
∂α

(j,k)
l,i

∂ζ∗1
is bounded on ∆0(4κ|ρ(zj,k)|) uniformly with respect to j and k,

(ii) for all ζ ∈ P4κ|ρ(zj,k)|(zj,k), fl(ζ) = u
(j,k)
l (ζ)

∏pl
i=1(ζ∗2 − α

(j,k)
l,i (ζ∗1 )).

Now we define T
(j,k)
0,1 and T

(j,k)
0,2 with the following settings.

If |ζ∗0,1| < 4κ|ρ(zj,k)|, then for l = 1 or l = 2, P4κ|ρ(zj,k|(zj,k) ∩Xl = ∅, which means that

zj,k is “far” from X1 and X2. In this case we set for l = 1 and l = 2:

I
(j,k)
l := ∅,

i
(j,k)
l := 0,

P
(j,k)
l (ζ) := 1.

If |ζ∗0,1| ≥ 4κ|ρ(zj,k)|, then we may have P4κ|ρ(zj,k|(zj,k)∩Xl 6= ∅ for l = 1 or l = 2. In that

case we set for l = 1 and l = 2:

I
(j,k)
l := {i, ∃z∗1 ∈ C, |z∗1 | < 2κ|ρ(zj,k)| and |α(j,k)

l,i (z∗1)| < (
5

2
κ|ρ(zj,k)|)

1
2 },

i
(j,k)
l := #I

(j,k)
l , the cardinal of I

(j,k)
l ,

P
(j,k)
l (ζ) :=

∏
i∈I(j,k)

l

(
ζ∗2 − α

(j,k)
i,l (ζ∗1 )

)
.

In both case we set

U (j,k)
1 :=

ζ ∈ Pκ|ρ(zj,k)|(zj,k),

∣∣∣∣∣∣∣
f1(ζ)|ρ(zj,k)|

i
(j,k)
1

2

P
(j,k)
1 (ζ)

∣∣∣∣∣∣∣ >
1

3

∣∣∣∣∣∣∣
f2(ζ)|ρ(zj,k)|

i
(j,k)
2

2

P
(j,k)
2 (ζ)

∣∣∣∣∣∣∣
 ,

U (j,k)
2 :=

ζ ∈ Pκ|ρ(zj,k)|(zj,k),
2

3

∣∣∣∣∣∣∣
f2(ζ)|ρ(zj,k)|

i
(j,k)
2

2

P
(j,k)
2 (ζ)

∣∣∣∣∣∣∣ >
∣∣∣∣∣∣∣
f1(ζ)|ρ(zj,k)|

i
(j,k)
1

2

P
(j,k)
1 (ζ)

∣∣∣∣∣∣∣
 ,

so that Pκ|ρ(zj,k)|(zj,k) = U (j,k)
1 ∪ U (j,k)

2 .

These open sets are designed in order to quantify where f1 is “bigger” than f2 and con-

versely. The idea is the following.

If i belongs to I
(j,k)
l then |ζ∗2 − α

(j,k)
l,i (ζ∗1 )| . |ρ(zj,k)|

1
2 for all ζ ∈ Pκ|ρ(zj,k)|(zj,k). Thus

each zero of fl in Pκ|ρ(zj,k)|(zj,k) brings in some sense a factor |ρ(zj,k)|
1
2 in fl(ζ). In the

definition of U (j,k)
l , we take into account the zeros of f1 and f2 which are in the polydisc

Pκ|ρ(zj,k)|(zj,k) with the term |ρ(zj,k)|
i
(j,k)
1

2 and |ρ(zj,k)|
i
(j,k)
2

2 . This means in particular that

all the zeros in the polydisc are treated in the same way, we don’t care if they are close

from each others, from the boundary of the polydisc or not. The zeros which are outside

the polydisc are taken into account by fl(ζ)

P
(j,k)
l (ζ)

, which will also measure how far they are

from the polydisc.

Therefore, U (j,k)
1 is the open set where f1 is bigger than f2 for an order such that the zeros

which are outside of the polydisc are taken into account with the term fl(ζ)

P
(j,k)
l (ζ)

and the
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zeros which are inside with the term |ρ(zj,k)|
i
(j,k)
l

2 .

For l = 1, 2 and for a smooth (2, 2)-form ϕ compactly supported in U (j,k)
l we set

〈T (j,k)
0,l , ϕ〉 :=

∫
C2

P
(j,k)
l (ζ)

fl(ζ)

∂i
(j,k)
l ϕ

∂ζ∗2
i
(j,k)
l

(ζ).

Integrating i
(j,k)
l -times by parts, we get flT

(j,k)
0,l = c

(j,k)
l on U (j,k)

l where c
(j,k)
l is an integer

bounded by i
(j,k)
l ! (see [16]).

Now we glue together the currents T
(j,k)
0,l in order to define the current T0,l, l = 1,

2, such that f1T0,1 + f2T0,2 = 1 on D ∩ U0. Let (χ̃j,k) j∈N
k∈{1,...,nj}

be a partition of unity

subordinated to the covering (Pκ|ρ(zj,k)|(zj,k)) j∈N
k∈{1,...,nj}

of U0. Without restriction, we

assume that

∣∣∣∣ ∂α+β+α+β χ̃j,k

∂ζ∗1
α∂ζ∗2

β∂ζ∗1
α
∂ζ∗2

β
(ζ)

∣∣∣∣ . 1

|ρ(zj,k)|α+α+
β+β

2

. Let also χ be a smooth function on

C2 \ {0} such that χ(z1, z2) = 1 if |z1| > 2
3 |z2| and χ(z1, z2) = 0 if |z1| < 1

3 |z2| and let us

define

χ
(j,k)
1 (ζ) = χ̃j,k(ζ) · χ

f1(ζ)|ρ(zj,k)|
i
(j,k)
1

2

P
(j,k)
1 (ζ)

,
f2(ζ)|ρ(zj,k)|

i
(j,k)
2

2

P
(j,k)
2 (ζ)

 ,

χ
(j,k)
2 (ζ) = χ̃j,k(ζ) ·

1− χ

f1(ζ)|ρ(zj,k)|
i
(j,k)
1

2

P
(j,k)
1 (ζ)

,
f2(ζ)|ρ(zj,k)|

i
(j,k)
2

2

P
(j,k)
2 (ζ)


 .

For l = 1 and l = 2, the support of χ
(j,k)
l is included in U (j,k)

l so we can put

T0,l =
∑
j∈N

k∈{1,...,nj}

1

c
(j,k)
l

χ
(j,k)
l T

(j,k)
0,l

and we have f1T0,1 + f2T0,2 = 1 on U0 ∩D.

Now for all ζ0 ∈ bD ∪ D−ε0 we have constructed a neighborhood U0 of ζ0 and two

currents T0,1 and T0,2 such that f1T0,1 + f2T0,2 = 1 on U0 ∩ D. If ε0 > 0 is sufficiently

small, we can cover D by finitely many open sets U1, . . . ,Un. Let χ1, . . . , χn be a partition

of unity subordinated to this family of open sets and T1,1, . . . , Tn,1 and T1,2, . . . , Tn,2 be

the corresponding currents defined on U1, . . . ,Un. We glue together this current and we

set

T1 =

n∑
j=1

χjTj,1 and T2 =

n∑
j=1

χjTj,2,

so that f1T1 + f2T2 = 1 on D. Moreover T1 and T2 are currents supported in D thus they

have a finite order k2 and we can apply T1 and T2 to functions of class Ck2 with support

in D. This gives k2 from Theorem 1.1.
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4. The division formula

In this part, given any two currents T1 and T2 of order k2 such that f1T1 + f2T2 = 1,

assuming that g is a holomorphic function on D which belongs to the ideal generated

by f1 and f2, and which can be written as g = g̃1f1 + g̃2f2, where g̃1 and g̃2 are two

C∞-smooth functions on D such that |ρ|N g̃1 and |ρ|N g̃2 vanish to order k2 on bD for some

N ∈ N sufficiently big, we write g as g = g1f1 + g2f2 with g1 and g2 holomorphic on D.

We point out that the formula we get is valid for any T1 and T2 of order k2 such that

f1T1 + f2T2 = 1.

Under our assumptions, for k = 1 and k = 2 and all fixed z ∈ D, g̃1P
N,k(·, z) and

g̃2P
N,k(·, z) can be extended by zero outside D and are of class Ck2 on C2. So we can

apply T1 and T2 to g̃1P
N,k(·, z) and g̃2P

N,k(·, z).
For l = 1, 2, we denote by bl = bl,1dζ1 + bl,2dζ2 a (1, 0)-form such that fl(z) − fl(ζ) =∑
i=1,2 bl,i(ζ, z)(zi − ζi). For the estimates, we will take bl,i(ζ, z) =

∫ 1
0
∂fl
∂ζi

(ζ + t(z − ζ))dt,

but this is not necessary to get a division formula.

In order to construct the formula, we will need the following lemma which was proved

in [15], Lemma 3.1:

Lemma 4.1. Let Q =
∑n

i=1Qidζi be a (1, 0) form of Cn, let H1, . . . ,Hp be p (1, 0)-forms

in Cn and let W1, . . . ,Wp−1 be p− 1 (0, 1)-forms in Cn. Then the following equality holds

∂(〈Q, z − ζ〉)(∂Q)n−p ∧Hp ∧
p−1∧
k=1

Wk ∧Hk

=
1

n− p+ 1
〈Hp, z − ζ〉(∂Q)n−p+1 ∧

p−1∧
k=1

Wk ∧Hk

+
1

n− p+ 1

p−1∑
l=1

〈Hl, z − ζ〉(∂Q)n−p+1Hp ∧Wl ∧
p−1∧
k=1
k 6=l

Wk ∧Hk.

We now establish the division formula. From Theorem 2.3, we have for all z ∈ D:

g(z) =

∫
D
g(ζ)PN,2(ζ, z)

and since g = g̃1f1 + g̃2f2

g(z) = f1(z)

∫
D
g̃1(ζ)PN,2(ζ, z) + f2(z)

∫
D
g̃2(ζ)PN,2(ζ, z)

+

∫
D
g̃1(ζ) (f1(ζ)− f1(z))PN,2(ζ, z) +

∫
D
g̃2(ζ) (f2(ζ)− f2(z))PN,2(ζ, z).(5)

Now from Lemma 4.1, there exists c̃N,2 such that

(f1(ζ)− f1(z))PN,2(ζ, z) = c̃N,2b1(ζ, z) ∧ ∂PN,1(ζ, z)

and since by assumption g̃1P
N,1 vanishes on bD, Stokes’ Theorem yields∫

D
g̃1(ζ) (f1(ζ)− f1(z))PN,2(ζ, z) = c̃N,2

∫
D
∂g̃1(ζ) ∧ b1(ζ, z) ∧ PN,1(ζ, z).(6)
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We now use the fact that f1T1 + f2T2 = 1 in order to rewrite this former integral:∫
D
∂g̃1(ζ) ∧ b1(ζ, z) ∧ PN,1(ζ, z)

= 〈f1T1 + f2T2, ∂g̃1 ∧ b1(·, z) ∧ PN,1(·, z)〉
= 〈f1T1, ∂g̃1 ∧ b1(·, z) ∧ PN,1(·, z)〉+ f2(z)〈T2, ∂g̃1 ∧ b1(·, z) ∧ PN,1(·, z)〉

+〈T2, (f2 − f2(z)) ∂g̃1 ∧ b1(·, z) ∧ PN,1(·, z)〉.(7)

Again from Lemma 4.1, there exists c̃N,1 such that

(f2(ζ)− f2(z)) b1(ζ, z) ∧ ∂g̃1 ∧ PN,1(ζ, z)− (f1(ζ)− f1(z)) b2(ζ, z) ∧ ∂g̃1 ∧ PN,1(ζ, z)

= c̃N,1b1(ζ, z) ∧ b2(ζ, z) ∧ ∂g̃1 ∧ ∂PN,0(ζ, z).

So

〈T2, (f2 − f2(z)) ∂g̃1 ∧ b1(·, z) ∧ PN,1(·, z)〉
= −f1(z)〈T2, ∂g̃1 ∧ b2(·, z) ∧ PN,1(·, z)〉+ 〈T2, f1∂g̃1 ∧ b2(·, z) ∧ PN,1(·, z)〉

+c̃N,1〈T2, ∂g̃1 ∧ b1(·, z) ∧ b2(·, z) ∧ ∂PN,0(·, z)〉(8)

We plug together (6), (7) and (8) and their analogue for
∫
D g2(ζ) (f2(ζ)− f2(z))PN,2(ζ, z)

in (5) and we get

g(z) = f1(z)

∫
D
g̃1(ζ)PN,2(ζ, z)− c̃N,2f1(z)〈T2, ∂g̃1 ∧ b2(·, z) ∧ PN,1(·, z)〉

+c̃N,2f2(z)〈T2, ∂g̃1 ∧ b1(·, z) ∧ PN,1(·, z)〉

+f2(z)

∫
D
g̃2(ζ)PN,2(ζ, z)− c̃N,2f2(z)〈T1, ∂g̃2 ∧ b1(·, z) ∧ PN,1(·, z)〉

+c̃N,2f1(z)〈T1, ∂g̃2 ∧ b2(·, z) ∧ PN,1(·, z)〉
+c̃N,2〈T1, f1∂g̃1 ∧ b1(·, z) ∧ PN,1(·, z)〉+ c̃N,2〈T2, f1∂g̃1 ∧ b2(·, z) ∧ PN,1(·, z)〉(9)

+c̃N,2〈T2, f2∂g̃2 ∧ b2(·, z) ∧ PN,1(·, z)〉+ c̃N,2〈T1, f2∂g̃2 ∧ b1(·, z) ∧ PN,1(·, z)〉(10)

+c̃N,2c̃N,1〈∂g̃1 ∧ T2 − ∂g̃2 ∧ T1, b1(·, z) ∧ b2(·, z) ∧ ∂PN,0(·, z)〉

Now since ∂g = f1∂g̃1 + f2∂g̃2 = 0, the line (9) and (10) vanish. Therefore in order to get

our division formula, it suffices to prove that ∂(∂g̃1 ∧ T2 − ∂g̃2 ∧ T1) = 0.

When X1∩X2 is not a complete intersection and when assumption (iv) in the introduction

is satisfied by g̃1 and g̃2, one can prove that ∂g̃1 ∧ ∂T2 = 0 and ∂g̃2 ∧ ∂T1 = 0.

When X1 ∩ X2 is a complete intersection, we prove that for any ζ0 ∈ D there exists a

neighborhood U0 of ζ0 such that for all (2, 1)-form ϕ, smooth and supported in U0, we

have 〈∂g̃1 ∧ T2 − ∂g̃2 ∧ T1, ∂ϕ〉 = 0.

Let ζ0 be a point in D. By assumption on g, there exists a neighborhood U0 of ζ0 and

two holomorphic functions γ1 and γ2 such that g = γ1f1 + γ2f2 on U0. We now use the

following lemma whose proof is postponed to the end of this section:

Lemma 4.2. Let f1 and f2 be two holomorphic functions defined in a neighborhood of 0

in C2, X1 = {z, f1(z) = 0} and X2 = {z, f2(z) = 0}. We assume that X1 ∩ X2 is a

complete intersection and that 0 belongs to X1 ∩ X2. Let ϕ1 and ϕ2 be two C∞-smooth
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functions such that f1ϕ1 = f2ϕ2.

Then, ϕ1

f2
and ϕ2

f1
are C∞-smooth in a neighborhood of 0.

Lemma 4.2 implies that the function ψ = g̃1−γ1

f2
= γ2−g̃2

f1
is smooth on a perhaps smaller

neighborhood of ζ0 still denoted by U0. Thus

〈∂g̃1 ∧ T2 − ∂g̃2 ∧ T1, ∂ϕ〉 = 〈∂(g̃1 − γ1) ∧ T2 + ∂(γ2 − g̃2) ∧ T1, ∂ϕ〉
= 〈∂(f2ψ) ∧ T2 + ∂(f1ψ) ∧ T1, ∂ϕ〉
= 〈f2T2 + f1T1, ∂ψ ∧ ∂ϕ〉

=

∫
U0

∂ψ ∧ ∂ϕ

and since ϕ is supported in U0 we have
∫
U0
∂ψ ∧ ∂ϕ = −

∫
U0
d(ϕ∂ψ) = 0 and so

〈∂g̃1 ∧ T2 − ∂g̃2 ∧ T1, ∂ϕ〉 = 0.

Now we set

g1(z) =

∫
D
g̃1(ζ)PN,2(ζ, z)

+c̃N,2
(
〈T1, ∂g̃2 ∧ b2(·, z) ∧ PN,1(·, z)〉 − 〈T2, ∂g̃1 ∧ b2(·, z) ∧ PN,1(·, z)〉

)
g2(z) =

∫
D
g̃2(ζ)PN,2(ζ, z)

+c̃N,2
(
〈T2, ∂g̃1 ∧ b1(·, z) ∧ PN,1(·, z)〉 − 〈T1, ∂g̃2 ∧ b1(·, z) ∧ PN,1(·, z)〉

)
and we have

g = g1f1 + g2f2

with g1 and g2 holomorphic on D. We notice that if g̃1 and g̃2 are already holomorphic

functions then g1 = g̃1 and g2 = g̃2.

Proof of Lemma 4.2: Maybe after a unitary change of coordinates if needed, using Weier-

strass’ preparation Theorem, we can assume that for l = 1, 2, the function fl is given by

fl(z, w) = zkl + a
(l)
1 (w)zkl−1 + . . .+ a

(l)
kl

(w) where a
(l)
1 , . . . , a

(l)
kl

are holomorphic near 0 and

vanish at 0. Moreover, since the intersection X1∩X2 is transverse, P1 and P2 are relatively

prime. Thus there exists two polynomials α1 and α2 with holomorphic coefficients in w

and a function β of w not identically zero such that

α1(z, w)f1(z, w) + α2(z, w)f2(z, w) = β(w).

Multiplying this equality by ϕ1 we get

f2(α1ϕ2 + α2ϕ1) = βϕ1.

We now prove that β divides the function ψ := α1ϕ2 + α2ϕ1.

If β(0) 6= 0, there is nothing to do. Otherwise, since β is not identically zero, there exists

k ∈ N such that β(w) = wkγ(w) where γ(0) 6= 0.

For all j ∈ N we have

f2(z, w)
∂jψ

∂wj
(z, w) = β(w)

∂ϕ1

∂wj
(z, w)(11)
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and for w = 0 and all z we thus get ∂jψ
∂wj

(z, 0) = 0.

By induction we then deduce from (11) that ∂i+jψ
∂wi∂wj

(z, 0) = 0 for all i ∈ {0, . . . , k− 1} and

all j ∈ N. For any integer n ≥ k we therefore can write for all z and all w

ψ(z, w)

wk
=

∑
k≤i+j≤n
i≥k

wi−kwj
∂i+jψ

∂wi∂wj
(z, 0) +

∑
i+j=n+1

wi−kwj
∫ 1

0

∂n+1ψ

∂wi∂wj
(z, tw)dt.

Now, it is easy to check by induction that the function w 7→ wi+j

wi
is of class Cj−1 for all

positive integer j and all non negative integer i. This implies that ψ(z,w)
wk

is of class Cn for

all positive integer n and therefore ϕ1

f2
= ψ

β is of class C∞.

5. Proof of the main result

In order to prove Theorem 1.1, for any k and l in {1, 2} and any q ∈ [1,+∞], we have

to prove that if h is a smooth function such that, for all non-negative integers α and β,∣∣∣ ∂α+βh
∂ηζ

α∂vζ
β

∣∣∣ |ρ|α+β
2 belongs to Lq(D), then the function

z 7→ 〈Tl, ∂h ∧ bk(·, z) ∧ PN,1(·, z)〉

belongs to Lq(D) if q <∞ and to BMO(D) if q = +∞.

As usually, since the modulus of the denominator in PN,1 is greater than |ρ(z)| +

|ρ(ζ)| + δ(z, ζ), the difficulties occurs when we integrate for ζ near z and when z is near

bD. Moreover, by construction of T1 and T2, the main difficulty is when, in addition, z is

near a point ζ0 which belongs to bD ∩X1 ∩X2 and we only consider that case.

We assume that z belongs to the neighborhood U0 of a point ζ0 ∈ bD∩X1 ∩X2 and we

use the same notations as in Section 3 for the construction of the currents. Moreover, we

assume that the Koranyi basis at ζ0 is the canonical basis of C2 and that ζ0 is the origin

of C2.

We will need an upper bound of
P

(j,k)
l
fl

∂α+βfl
∂ζ∗1

α∂ζ∗2
β in order to estimate

P
(j,k)
l
fl

bm and the

derivatives of χ
(j,k)
l . We set Q

(j,k)
l = fl

P
(j,k)
l

and we begin with the following lemma:

Lemma 5.1. For all j ∈ N, all k ∈ {1, . . . , nj}, all α and β in N, l = 1, 2, and all ζ in

P2κ|ρ(zj,k)|(zj,k), we have uniformly with respect to j, k, l, and ζ∣∣∣∣∣ 1

Q
(j,k)
l (ζ)

∂α+β

∂ζ∗1
α∂ζ∗2

β

(
Q

(j,k)
l (ζ)

)∣∣∣∣∣ . |ρ(zj,k)|−α−
β
2 .

Proof: We denote by (ζ∗0,1, ζ
∗
0,2) the coordinates of ζ0 in the Koranyi coordinates at zj,k.

The definition of P
(j,k)
l forces us to distinguish three cases:

First case: If |ζ∗0,1| > 4κ|ρ(zj,k)|, let α
(j,k)
l,i , i = 1, . . . , pl, be the family of parametrization

given by Proposition 3.2. In this case, we actually seek an upper bound for

1∏
i/∈I(j,k)

l

(
ζ∗2 − α

(j,k)
l,i (ζ∗1 )

) ∂α+β

∂ζ∗1
α∂ζ∗2

β

 ∏
i/∈I(j,k)

l

(
ζ∗2 − α

(j,k)
l,i (ζ∗1 )

) ,

15



and it suffices to prove for all i /∈ I(j,k)
l and all α and β that∣∣∣∣∣∣ 1

ζ∗2 − α
(j,k)
l,i (ζ∗1 )

∂α+β

∂ζ∗1
α∂ζ∗2

β
(ζ∗2 − α

(j,k)
l,i (ζ∗1 ))

∣∣∣∣∣∣ . |ρ(zj,k)|−α−
β
2 .(12)

By definition of I
(j,k)
l , we have |α(j,k)

l,i (ζ∗1 )| ≥ (5
2κ|ρ(zj,k)|)

1
2 for all ζ∗1 ∈ ∆0(2κ|ρ(zj,k)|)

so |ζ∗2 − α
(j,k)
l,i (ζ∗1 )| & |ρ(zj,k)|

1
2 and (12) holds true for α = 0 and β = 1.

According to Proposition 3.2,
∂α

(j,k)
l,i

∂ζ∗ is uniformly bounded on ∆0(4κ|ρ(zj,k)|). Cauchy’s

inequalities then yields

∣∣∣∣∂αα(j,k)
l,i

∂ζ∗1
α (ζ∗1 )

∣∣∣∣ . |ρ(zj,k)|1−α. Since |ζ∗2 − α
(j,k)
l,i (ζ∗1 )| & |ρ(zj,k)|

1
2 ,

(12) holds true for α > 0 and β = 0. Since the other cases are trivial, we are done in this

case.

When |ζ∗0,1| < 4κ|ρ(zj,k)|, we do not have a parametrization of Xl but according to

proposition 3.1, P4κ|ρ(zj,k)|(zj,k) ∩Xl is empty, which means that any ζ ∈ P2κ|ρ(zj,k)|(zj,k)

is far from Xl. We then have to distinguish two cases, depending on what “far” means.

Before, we notice that, since P4κ|ρ(zj,k)|(zj,k) ∩Xl = ∅, I(j,k)
l is also empty and P

(j,k)
l = 1.

Second case: If |ζ∗0,1| < 4κ|ρ(zj,k)| and |ζ∗0,2| < (4κ|ρ(zj,k)|)
1
2 , then δ(zj,k, ζ0) . |ρ(zj,k)|

and thus for all ζ ∈ P2κ|ρ(zj,k)|(zj,k), δ(ζ̃, ζ0) . |ρ(zj,k)|. In particular, all ζ belonging to

P2κ|ρ(zj,k)|(zj,k) is almost at the same (pseudo-)distance from zj,k as from Xl.

For all ε > 0 and all ζ ∈ Pε(ζ0), it is then easy to see that |fl(ζ)| . ε
pl
2 . Therefore,

Cauchy’s inequalities give ∣∣∣∣∣ ∂α+βfl

∂ζ∗1
α∂ζ∗2

β
(ζ)

∣∣∣∣∣ . |ρ(zj,k)|
pl
2
−α−β

2

for all ζ ∈ P2κ|ρ(zj,k)|(zj,k). Moreover, since |ζ∗0,1| < 4κ|ρ(zj,k)|, on the one hand fl = Q
(j,k)
l .

On the other hand it follows from Proposition 3.1 that P4κ|ρ(zj,k)|(zj,k) ∩ Xl = ∅. This

yields |fl(ζ)| & |ρ(zj,k)|
pl
2 for all ζ ∈ P2κ|ρ(zj,k)|(zj,k), thus

∣∣∣∣ 1

Q
(j,k)
l (ζ)

∂α+β

∂ζ∗1
α∂ζ∗2

β

(
Q

(j,k)
l (ζ)

)∣∣∣∣ .
|ρ(zj,k)|−α−

β
2 .

Third case: If |ζ∗0,1| < 4κ|ρ(zj,k)| and |ζ∗0,2| ≥ (4κ|ρ(zj,k)|)
1
2 , then all ζ ∈ P3κ|ρ(zj,k)|(zj,k)

is far from ζ∗0 and Q
(j,k)
l = fl. We will see that |fl(ζ)| is comparable to |ζ∗0,2|pl for all

ζ ∈ P3κ|ρ(zj,k)|(zj,k).

We set a(zj,k) = ∂ρ
∂ζ1

(zj,k), b(zj,k) = ∂ρ
∂ζ2

(zj,k) and

P (zj,k) =
1√

|a(zj,k)|2 + |b(zj,k)|2

(
a(zj,k) b(zj,k)

−b(zj,k) a(zj,k)

)
.

Then we have ζ∗ = P (zj,k)(ζ−zj,k) and moreover |a(zj,k)| h 1 and b(zj,k) tends to 0 when

zj,k goes to ζ0, hence, b(zj,k) is arbitrary small provided U0 is sufficiently small.
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Therefore, if U0 is sufficiently small, for all ζ ∈ P3κ|ρ(zj,k)|(zj,k),

|ζ2| ≥
1√

|a(zj,k)|2 + |b(zj,k)|2
(|a(zj,k)||ζ∗0,2| − |b(zj,k)||ζ∗0,1| − |b(zj,k)||ζ∗1 | − |a(zj,k)||ζ∗2 |)

& |ζ∗0,2|.

We also trivially have |ζ2| . |ζ∗0,2| and so |ζ2| h |ζ∗0,2|. On the other hand

|ζ1| ≤
1√

|a(zj,k)|2 + |b(zj,k)|2
(
|a(zj,k)|(|ζ∗0,1|+ |ζ∗1 |) + |b(zj,k)|(|ζ∗0,2|+ |ζ∗2 |)

)
≤ 6κ|ρ(zj,k)|+ |b(zj,k)|(|ζ∗0,2|+ (2κ|ρ(zj,k)|)

1
2 )

≤ c|ζ∗0,2|

where c depends neither on zj,k nor on ζ and is arbitrarily small provided U0 is small

enough.

Now let α ∈ C be such that fl(ζ1, α) = 0. Since the intersection Xl ∩ bD is transverse,

there exists a positive constant C depending neither on ζ, nor on α, nor on j and nor on

k such that |α| ≤ C|ζ1|.
Therefore if U0 is small enough, |α| ≤ 1

2 |ζ2|. This yields, for all ζ ∈ P3κ|ρ(zj,k)|(zj,k),

|fl(ζ)| h
∏

α/fl(ζ1,α)=0

|ζ2 − α|

h |ζ∗0,2|pl .

Cauchy’s inequalities then give for all ζ ∈ P2κ|ρ(zj,k)|(zj,k)∣∣∣∣∣ ∂α+βfl

∂ζ∗1
α∂ζ∗2

β
(ζ)

∣∣∣∣∣ . |ζ∗0,2|pl |ρ(zj,k)|−α−
β
2 ,

and since Q
(j,k)
l = fl, we are done in this case and the lemma is shown.

Lemma 5.1 gives us an upper bound for the derivatives of χ
(j,k)
l :

Corollary 5.2. For all j ∈ N, all k ∈ {1, . . . , nj}, all α and β in N, l = 1, 2 and all

ζ ∈ Pκ|ρ(zj,k)|(zj,k), we have uniformly with respect to j, k, l and ζ∣∣∣∣∣∂α+βχ
(j,k)
l

∂ζ
∗
1
α
∂ζ
∗
2
β

(ζ)

∣∣∣∣∣ . |ρ(zj,k)|−α−
β
2 .

Proof: Since by construction

∣∣∣∣ ∂α+β χ̃j,k

∂ζ
∗
1
α
∂ζ
∗
2
β (ζ)

∣∣∣∣ . |ρ(zj,k)|−α−
β
2 , we only have to consider

∂α+β

∂ζ∗1
α∂ζ∗2

βχ

(
f1(ζ)

P
(j,k)
1 (ζ)

|ρ(zj,k)|i
(j,k)
1 , f2(ζ)

P
(j,k)
2 (ζ)

|ρ(zj,k)|i
(j,k)
2

)
.

The derivative ∂γ+δχ
∂zγ1 ∂z

δ
2
(z1, z2) is bounded up to a uniform multiplicative constant by 1

|z1|γ |z2|δ

when 1
3 |z2| < |z1| < 2

3 |z2| and is zero otherwise.

Therefore, we can estimate

∣∣∣∣∂α+βχ
(j,k)
l

∂ζ∗1
α
∂ζ∗2

β

∣∣∣∣ by a sum of products of

∣∣∣∣ 1

Q
(j,k)
l

∂γ̃+δ̃

∂ζ
∗
1
γ̃
∂ζ
∗
2
δ̃

(
Q

(j,k)
l

)∣∣∣∣
where the sum of the γ̃’s equals α and the sum of the δ̃’s equals β. Lemma 5.1 then gives

the wanted estimates.
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Corollary 5.3. For any smooth function h, we can write

∂i
(j,k)
l

∂ζ∗2
i
(j,k)
l

(
χ

(j,k)
l (ζ)∂h(ζ) ∧ PN,1(ζ, z)

)
= ψ

(j,k,l)
1 (ζ, z)dζ∗1 + ψ

(j,k,l)
2 (ζ, z)dζ∗2

with ψ
(j,k,l)
1 and ψ

(j,k,l)
2 two (0,2)-forms supported in U (j,k)

l satisfying uniformly with respect

to j, k, z and ζ ∈ U (j,k)
l :∣∣∣ψ(j,k,l)

1 (ζ, z)
∣∣∣ . |ρ(zj,k)|−

i
(j,k)
l

2
− 5

2

(
|ρ(zj,k)|

|ρ(zj,k)|+ |ρ(z)|+ δ(zj,k, z)

)N
h̃(ζ),

∣∣∣ψ(j,k,l)
2 (ζ, z)

∣∣∣ . |ρ(zj,k)|−
i
(j,k)
l

2
−2

(
|ρ(zj,k)|

|ρ(zj,k)|+ |ρ(z)|+ δ(zj,k, z)

)N
h̃(ζ),

and, for ∇z a differential operators of order 1 acting on z,∣∣∣∇zψ(j,k,l)
1 (ζ, z)

∣∣∣ . |ρ(zj,k)|−
i
(j,k)
l

2
− 7

2

(
|ρ(zj,k)|

|ρ(zj,k)|+ |ρ(z)|+ δ(zj,k, z)

)N
h̃(ζ),

∣∣∣∇zψ(j,k,l)
2 (ζ, z)

∣∣∣ . |ρ(zj,k)|−
i
(j,k)
l

2
−3

(
|ρ(zj,k)|

|ρ(zj,k)|+ |ρ(z)|+ δ(zj,k, z)

)N
h̃(ζ),

where h̃(ζ) = max
n∈{0,...,i(j,k)

l }

(∣∣∣∣ ∂n+1h

∂ζ∗2
n+1 (ζ)|ρ(ζ)|

n+1
2

∣∣∣∣ , ∣∣∣ ∂n+1h
∂ζ∗1∂ζ

∗
2
n (ζ)|ρ(ζ)|

n
2

+1
∣∣∣).

Proof: Propositions 2.4 and 2.5 imply that ∂n

∂ζ∗2
nPN,1(ζ, z) =

∑
p,q=1,2 ψ̃

(n,N)
p,q (ζ, z)dζ∗p ∧dζ∗q

where

|ψ̃n,Np,q (ζ, z)| .
(

|ρ(ζ)|
|ρ(ζ)|+ |ρ(z)|+ δ(ζ, z)

)N
|ρ(ζ)|−

1
p
− 1
q
−n

2 .

From proposition 2.1, if κ is small enough, we have for all ζ ∈ Pκ|ρ(zj,k)|(zj,k),
1
2 |ρ(zj,k)| ≤

|ρ(ζ)| and thus, provided κ is small enough:

|ρ(ζ)|+ δ(ζ, z) ≥ 1

2
|ρ(zj,k)|+

1

c1
δ(z, zj,k)− δ(zj,k, ζ)

& |ρ(zj,k)|+ δ(z, zj,k)

and so |ψ̃n,Np,q (ζ, z)| .
(

|ρ(zj,k)|
|ρ(zj,k)|+|ρ(z)|+δ(zj,k,z)

)N
|ρ(zj,k)|−

1
p
− 1
q
−n

2 . This inequality and Corol-

lary 5.2 now yield the two first estimates. The two others can be shown in the same way.

In order to estimate
P

(j,k)
l
fl

bm, we need the following lemma:

Lemma 5.4. For all j ∈ N, all k ∈ {1, . . . , nj}, all α and β in N, l = 1, 2 and all

ζ ∈ P2κ|ρ(zj,k)|(zj,k) we have uniformly with respect to j, k, l and ζ∣∣∣∣∣∣∣
∂α+β

∂ζ∗1
α∂ζ∗2

β

 ∏
i∈I(j,k)

l

(ζ∗2 − α
(j,k)
l,i (ζ∗1 ))


∣∣∣∣∣∣∣ . |ρ(zj,k)|

i
(j,k)
l

2
−α−β

2 .
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Proof: For i ∈ I(j,k)
l , there exists z∗1 ∈ ∆0(2κ|ρ(zj,k)|) such that |α(j,k)

l,i (z∗1)| < 5
2κ|ρ(zj,k)|

1
2 .

Since

∣∣∣∣∂α(j,k)
l,i

∂ζ∗1

∣∣∣∣ is uniformly bounded on ∆0(4κ|ρ(zj,k)|), for all ζ ∈ P4κ|ρ(zj,k)|(zj,k), we have

∏
i∈I(j,k)

l

∣∣∣ζ∗2 − α(j,k)
l,i (ζ∗1 )

∣∣∣ . |ρ(zj,k)|
i
(j,k)
l

2 . Cauchy’s inequalities then give the results.

As a direct corollary of Lemma 5.1 and 5.4 we get

Corollary 5.5. For all j ∈ N, all k ∈ {1, . . . , nj}, all α and β in N, l = 1, 2 and all

ζ ∈ P2κ|ρ(zj,k)|(zj,k) we have uniformly with respect to j, k, l and ζ∣∣∣∣∣P
(j,k)
l (ζ)

fl(ζ)

∂α+βfl

∂ζ∗1
α∂ζ∗2

β
(ζ)

∣∣∣∣∣ . |ρ(zj,k)|
i
(j,k)
l

2
−α−β

2 .

In the following corollary, we give estimates for l,m ∈ {1, 2} of
P

(j,k)
l
fl

bm, which do not

depend on m thanks to the covering U (j,k)
1 , U (j,k)

2 of Pκ|ρ(zj,k)|(zj,k).

Corollary 5.6. For l,m ∈ {1, 2}, we can write
P

(j,k)
l
fl

bm = ϕ
(j,k,l,m)
1 dζ∗1 +ϕ

(j,k,l,m)
2 dζ∗2 with

ϕ
(j,k,l,m)
1 and ϕ

(j,k,l,m)
2 satisfying for all ζ ∈ U (j,k)

l∣∣∣ϕ(j,k,l,m)
1 (ζ, z)

∣∣∣ .
∑

0≤α+β≤max(p1,p2)

|ρ(zj,k)|
i
(j,k)
l

2
−1

∣∣∣∣δ(ζ, z)ρ(zj,k)

∣∣∣∣α+β
2

,

∣∣∣ϕ(j,k,l,m)
2 (ζ, z)

∣∣∣ .
∑

0≤α+β≤max(p1,p2)

|ρ(zj,k)|
i
(j,k)
l

2
− 1

2

∣∣∣∣δ(ζ, z)ρ(zj,k)

∣∣∣∣α+β
2

,

and for all differential operators ∇z of order 1 acting on z,∣∣∣∇zϕ(j,k,l,m)
1 (ζ, z)

∣∣∣ .
∑

0≤α+β≤max(p1,p2)

|ρ(zj,k)|
i
(j,k)
l

2
−2

∣∣∣∣δ(ζ, z)ρ(zj,k)

∣∣∣∣α+β
2

,

∣∣∣∇zϕ(j,k,l,m)
2 (ζ, z)

∣∣∣ .
∑

0≤α+β≤max(p1,p2)

|ρ(zj,k)|
i
(j,k)
l

2
− 3

2

∣∣∣∣δ(ζ, z)ρ(zj,k)

∣∣∣∣α+β
2

,

uniformly with respect to ζ, z, j and k.

Proof: Without restriction we assume l = 1 and for m = 1, 2, we write bm(ζ, z) =

b∗m,1(ζ, z)dζ∗1 + b∗m,2(ζ, z)dζ∗2 where b∗m,n =
∫ 1

0
∂fm
∂ζ∗n

(ζ + t(z − ζ))dt. So

b∗m,n(ζ, z)

=
∑

0≤α+β≤max(p1,p2)

1

α+ β + 1

∂α+β+1fm

∂ζ∗n∂ζ
∗
1
α∂ζ∗2

β
(ζ)(z∗1 − ζ∗1 )α(z∗2 − ζ∗2 )β+o

(
|z − ζ|max(p1,p2)

)
and Corollary 5.5 yields for all ζ ∈ Pκ|ρ(zj,k)|(zj,k):∣∣∣∣∣∣P

(j,k)
1 (ζ)

f1(ζ)
b1,1(ζ, z)

∣∣∣∣∣∣ .
∑

0≤α+β≤max(p1,p2)

|ρ(zj,k)|
i
(j,k)
1

2
−1

∣∣∣∣δ(ζ, z)ρ(zj,k)

∣∣∣∣α+β
2
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uniformly with respect to z, ζ, j and k. The proof of the inequality for

∣∣∣∣P (j,k)
1 (ζ)
f1(ζ) b1,2(ζ, z)

∣∣∣∣
is exactly the same. The one for

∣∣∣∣P (j,k)
1 (ζ)
f1(ζ) b2,1(ζ, z)

∣∣∣∣ uses the definition of U (j,k)
1 .

On U (j,k)
1 , we have

∣∣∣∣P (j,k)
1
f1

∣∣∣∣ . ∣∣∣∣P (j,k)
2
f2

∣∣∣∣ |ρ(zj,k)|
i
(j,k)
1 −i(j,k)

2
2 and again Corollary 5.5 yields∣∣∣∣∣∣P

(j,k)
1 (ζ)

f1(ζ)
b2,1(ζ, z)

∣∣∣∣∣∣ .

∣∣∣∣∣P (j,k)
2 (ζ)

f2(ζ)
b2,1(ζ, z)

∣∣∣∣∣ |ρ(zj,k)|
i
(j,k)
1 −i(j,k)

2
2

.
∑

0≤α+β≤max(p1,p2)

|ρ(zj,k)|
i
(j,k)
1

2
−1

∣∣∣∣δ(ζ, z)ρ(zj,k)

∣∣∣∣α+β
2

uniformly with respect to z, ζ, j and k. Again, the inequality for

∣∣∣∣P (j,k)
1 (ζ)
f1(ζ) b2,2(ζ, z)

∣∣∣∣ can be

obtained in the same way.

Corollary 5.3 and 5.6 imply for some N ′ arbitrarily large, provided N is large enough,

and for all ζ ∈ Pκ|ρ(zj,k)|(zj,k) that∣∣∣∣∣∣P
(j,k)
l (ζ)

fl(ζ)
bm(ζ, z) ∧ ∂i

(j,k)
l

∂ζ∗2
i
(j,k)
l

(
χ

(j,k)
l (ζ)∂h(ζ) ∧ PN,1(ζ, z)

)∣∣∣∣∣∣
≤ |ρ(zj,k)|−3

(
|ρ(zj,k)|

|ρ(zj,k)|+ |ρ(z)|+ δ(zj,k, z)

)N ′
h̃(ζ)

and for ∇z a differential of order 1∣∣∣∣∣∣∇z
P (j,k)

l (ζ)

fl(ζ)
bm(ζ, z) ∧ ∂i

(j,k)
l

∂ζ∗2
i
(j,k)
l

(
χ

(j,k)
l (ζ)∂h(ζ) ∧ PN,1(ζ, z)

)∣∣∣∣∣∣
≤ |ρ(z)|−1|ρ(zj,k)|−3

(
|ρ(zj,k)|

|ρ(zj,k)|+ |ρ(z)|+ δ(zj,k, z)

)N ′
h̃(ζ)

where h̃(ζ) = max
n∈{0,...,i(j,k)

l }

(∣∣∣∣ ∂n+1h

∂ζ∗2
n+1 (ζ)|ρ(ζ)|

n+1
2

∣∣∣∣ , ∣∣∣ ∂n+1h
∂ζ∗1∂ζ

∗
2
n (ζ)|ρ(ζ)|

n
2

+1
∣∣∣). We conclude

as in the proof of Theorem 1.1 of [1] that Theorem 1.1 holds true.

6. Local division

6.1. Local holomorphic division. In this subsection we will prove Theorem 1.2 and his

analogue in the Lq case, the following theorem.

Theorem 6.1. When n = 2, let g be a holomorphic function defined on D. Assume that

X1 ∩ X2 is a complete intersection and that there exist κ > 0, a real number q ≥ 1 and

a locally finite covering
(
Pκ|ρ(ζj)|(ζj)

)
j∈I

of D such that for all j ∈ I, there exist two

function ĝ
(j)
1 and ĝ

(j)
2 , C∞-smooth on Pκ|ρ(ζj)|(ζj), which satisfy

20



(a) g = ĝ
(j)
1 f1 + ĝ

(j)
2 f2 on Pκ|ρ(ζj)|(ζj);

(b)
∑

j∈I
∫
Pκ|ρ(ζj)|(ζj)

∣∣∣∣ ∂α+β ĝ
(j)
l

∂ζ∗1
α
∂ζ∗2

β (z)|ρ(ζj)|α+β
2

∣∣∣∣q dV (z) < ∞ for l = 1 and l = 2 and all

integers α and β;

(c) for l = 1 and l = 2, for all non negatives integers α, α, β and β, there exist N ∈ N

and c > 0 such that for all j, |ρ(ζj)|N supPκ|ρ(ζj)|(ζj)

∣∣∣∣ ∂α+α+β+β ĝ
(j)
l

∂ζ∗1
α∂ζ∗2

β∂ζ∗1
α
∂ζ∗2

β

∣∣∣∣ ≤ c.
Then there exist two smooth functions g̃1 and g̃2 which satisfy (i)-(iii) of Theorem 1.1 with

q.

Proof: It suffices to glue together all the ĝ
(j)
1 and ĝ

(j)
2 using a suitable partition of unity.

Let (χj)j∈N be a partition of unity subordinated to
(
Pκ|ρ(ζj)|(ζj)

)
j∈N

such that for all j

and all ζ ∈ Pκ|ρ(ζj)|(ζj), we have

∣∣∣∣ ∂α+α+β+βχj

∂z∗1
α∂z∗2

β∂z∗1
α
∂z∗2

β
(ζ)

∣∣∣∣ . 1

|ρ(ζj)|α+α+
β+β

2

, uniformly with

respect to ζj and ζ. We set g̃1 =
∑

j χj ĝ
(j)
1 and g̃2 =

∑
j χj ĝ

(j)
2 and thus we get the two

functions defined on D which satisfy (i), (ii) and (iii) by construction.

The proof of Theorem 1.2 is exactly the same so we omit it.

6.2. Divided differences and division. In order to apply Theorem 1.2 and 6.1, we will

use divided differences and find numerical conditions on g which ensure the existence of

local smooth division formula in L∞ and in Lq. We define the divided differences using

the following settings.

We set

Λ(1)
z,v = {λ ∈ C, |λ| < τ(z, v, 3κ|ρ(z)|) and z + λv ∈ X2 \X1}

Thus the points z + λv, λ ∈ Λ
(1)
z,v, are the points of X2 \ X1 which belong to the disc

∆z,v (τ(z, v, 3κ|ρ(z)|)), so they all belong to D as soon as κ < 1
3 . We analogously define

Λ(2)
z,v = {λ ∈ C, |λ| < τ(z, v, 3κ|ρ(z)|) and z + λv ∈ X1 \X2}.

For a function h defined on a subset U of Cn, z ∈ Cn, v a unit vector of Cn and λ ∈ C
such that z + λv belongs to U , we set hz,v[λ] = h(z + λv).

If for µ1, . . . , µk pairewise distinct hz,v[µ1, . . . , µk] is defined, for λ1, . . . , λk+1 ∈ C pair-

wise distinct such that z + λiv belongs to U for all i, we set

hz,v[λ1, . . . , λk+1] :=
hz,v[λ1, . . . , λk]− hz,v[λ2, . . . , λk+1]

λ1 − λk+1
.

Now, for z ∈ X2\X1 (resp. z ∈ X1\X2) let us define g(2)(z) = g(z)
f2(z) (resp. g(1)(z) = g(z)

f1(z)).

For l = 1 or l = 2, the quantity g
(l)
z,v[λ1, . . . , λk] make sense for all λ1, . . . , λk ∈ Λ

(l)
z,v pairwise

distinct.

We first prove a lemma we will need in this section.

Lemma 6.2. Let α and β be two functions defined on a subset U of C. Then, for all

z1, . . . , zn pairwise distinct points of U we have

(α · β)[z1, . . . , zn] =
n∑
k=1

α[z1, . . . , zk] · β[zk, · · · , zn].
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Proof: We prove the lemma by induction on n, the case n = 1 being trivial. We assume

the lemma proved for n points, n ≥ 1. Let z1, . . . , zn+1 be n+ 1 points of U . Then

(α · β)[z1, . . . , zn+1]

=
(α · β)[z1, z3, . . . , zn+1]− (α · β)[z2, . . . , zn+1]

z1 − z2

=
1

z1 − z2

(
n+1∑
k=3

α[z1, z3, . . . , zk]β[zk, . . . , zn+1] + α[z1]β[z3, . . . , zn+1]

)

− 1

z1 − z2

n+1∑
k=2

α[z2, . . . , zk]β[zk, . . . , zn+1]

=
n+1∑
k=3

α[z1, z3, . . . , zk]− α[z2, . . . , zk]

z1 − z2
β[zk, . . . , zn+1] +

α[z1]− α[z2]

z1 − z2
β[z2, . . . , zn+1] + α[z1]

β[z1, z3, . . . , zn+1]− β[z2, . . . , zn+1]

z1 − z2
.

6.2.1. The L∞ −BMO-case. In this subsection, we establish the necessary conditions in

Cn and the sufficient conditions in C2 for a function g to be written as g = g1f1 + g2f2,

with g1 and g2 smooth functions satisfying the hypothesis of Theorem 1.1.

For l = 1 and l = 2 let us define the numbers

c(l)
∞(g) = sup

(
|g(l)
z,v[λ1, . . . , λk]|τ(z, v, |ρ(z)|)k−1

)
where the supremum is taken over all z ∈ D, all v ∈ Cn with |v| = 1, all k ∈ N∗ and

λ1, . . . , λk ∈ Λ
(l)
z,v pairwise distinct.

We have the following necessary conditions in Cn, n ≥ 2.

Theorem 6.3. In Cn, n ≥ 2, let g1, g2 be two bounded holomorphic functions on D and

set g = g1f1 + g2f2. Then∥∥∥∥ g

max(|f1|, |f2|)

∥∥∥∥
L∞(D)

. max(‖g1‖L∞(D), ‖g2‖L∞(D))

and for l = 1, 2:

c(l)
∞(g) . sup

b∆z,v(τ(z,v,4κ|ρ(z)|))
|gl|.

Proof: The first point is trivial and we only prove the second one for l = 1. Let λ1, . . . , λk be

k pairwise distinct elements of Λ
(1)
z,v. For all i we have g

(1)
z,v [λi] = g1(z+λiv) because f2(z+

λiv) = 0. Therefore, g
(1)
z,v [λ1, . . . , λk] = (g1)z,v[λ1, . . . , λk]. Since [19] g

(1)
z,v [λ1, . . . , λk]| =

1
2iπ

∫
|λ|=τ(z,v,4κ|ρ(z)|)

g1(z+λv)∏k
i=1(λ−λi)

dλ, it follows that

|g(1)
z,v [λ1, . . . , λk]| . τ(z, v, |ρ(z)|)−k+1 sup

b∆z,v(τ(z,v,4κ|ρ(z)|))
|g1|.

Now we prove that these conditions are sufficient in C2 in order to get a BMO division.

Theorem 6.4. In C2, let g be a holomorphic function on D which belongs to the ideal of

O(D) generated by f1 and f2 and such that
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(i) c(g) = supz∈D
|g(z)|

max(|f1(z)|,|f2(z)|) <∞,

(ii) c
(1)
∞ (g) and c

(2)
∞ (g) are finite.

There exist two holomorphic functions g1 and g2 which beblong to BMO(D) and such that

g1f1 + g2f2 = g.

Proof: It suffices to construct, for all z near bD, two smooth functions ĝ1 and ĝ2 on

Pκ|ρ(z)|(z) which satisfy (a) and (b) of Theorem 1.2.

Let ζ0 be a point in bD. If f1(ζ0) 6= 0 then f1 does not vanish on a neighborhood U0 of

ζ0. Then we can define ĝ1 = g
f1

, ĝ2 = 0 which obviously satisfy (a) and (b) for all z ∈ D
close to ζ0. We proceed analogously if f2(ζ0) 6= 0.

If ζ0 belongs to X1 ∩ X2 ∩ bD, since the intersection X1 ∩ X2 is complete, without

restriction we can choose a neighborhood U0 of ζ0 such that X1∩X2∩U0 = {ζ0}. Then we

fix some point z in U0 and we construct ĝ1 and ĝ2 on Pκ|ρ(z)|(z) which satisfy (a) and (b)

of Theorem 1.2. We denote by p1 and p2 the multiplicity of ζ0 as singularity of f1 and f2

respectively. We also denote by (ζ∗0,1, ζ
∗
0,2) the coordinates of ζ0 in the Koranyi coordinates

at z.

If |ζ∗0,1| < 4κ|ρ(z)|, then for l = 1 and l = 2 we set Il = ∅, il = 0, Pl(ζ) = 1 and

Ql(ζ) = fl(ζ).

Otherwise, we use the parametrization α1,i, i ∈ {1, . . . , p1}, of X1 and α2,i, i ∈ {1, . . . , p2},
of X2 given by Proposition 3.2. We denote by Il the set

Il = {i,∃z∗1 ∈ ∆0(2κ|ρ(z)|) such that |αl,i(z∗1)| ≤ (
5

2
κ|ρ(z)|)

1
2 },

il = #Il, Pl(ζ) =
∏
i∈Il(ζ

∗
2 − αl,i(ζ∗1 )) and Ql(ζ) = fl

Pl
.

Our first goal is to find h̃1 and h̃2 in C∞(Pκ|ρ(z)|(z)) such that g = h̃1P1 + h̃2P2 on

Pκ|ρ(z)|(z) and which moreover satisfy good estimates. The function g belong to the ideal

of O(P4κ|ρ(z)|(z)) generated by f1 and f2 and so there exist h1 and h2 holomorphic in

P4κ|ρ(z)|(z) such that g = P1h1 + P2h2. Moreover, we observe that necessarily h̃2(ζ) =

h2(ζ) = g(ζ)
P2(ζ) for all ζ such that P1(ζ) = 0 and P2(ζ) 6= 0, but we also notice that h2

may not satisfy good estimates like uniform boundedness for example. Thus, we already

know h̃2(ζ) for such ζ and by interpolation, we will reconstruct a “good” h̃2 in the whole

polydisc Pκ|ρ(z)|(z). We point out that we do not directly divide by f1 and f2 because if we

do so, we are not able to handle the error term we get during the interpolation procedure.

If i1 = 0 we set ĥ2 = 0. Otherwise, without restriction we assume that I1 = {1, . . . , i1}
and for k ≤ i1 and ζ∗1 such that P2(z + ζ∗1ηz + α1,i(ζ

∗
1 )vz) 6= 0, we introduce

h
(2)
1,...,k(ζ

∗
1 ) :=

(
g

P2

)
z+ζ∗1ηz ,vz

[α1,1(ζ∗1 ), . . . , α1,k(ζ
∗
1 )].(13)

and

ĥ2(ζ) =

i2∑
k=1

h
(2)
1,...,k(ζ

∗
1 )

k−1∏
i=1

(ζ∗2 − α1,i(ζ
∗
1 )).

We define ĥ1 analogously. Since X1∩X2∩U0 = {ζ0}, ĥ1 and ĥ2 are defined on P4κ|ρ(z)|(z).

Moreover, ĥ2(ζ∗1 , ·) is the polynomial which interpolates h2(ζ∗1 , ·) at the points α1,1(ζ∗1 ), . . . ,
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α1,i1(ζ∗1 ). Therefore, we get from [19]

h2(ζ) = ĥ2(ζ) + P1(ζ)e1(ζ)(14)

with

e1(ζ) =
1

2iπ

∫
|ξ|=(4κ|ρ(z)|)

1
2

h2(ζ∗1 , ξ)

P1(ζ∗1 , ξ) · (ξ − ζ∗2 )
dξ.(15)

We have an analogous expression for h1 and we point out that (14), (15) and theirs

analogue for g1 also holds if i1 = 0 or i2 = 0.

This yields

g(ζ) = P1(ζ)ĥ1(ζ) + P2(ζ)ĥ2(ζ) + P1(ζ)P2(ζ)e(ζ)(16)

where

e(ζ) = e1(ζ) + e2(ζ)

=
1

2iπ

∫
|ξ|=(4κ|ρ(z)|)

1
2

g(ζ∗1 , ξ)

P1(ζ∗1 , ξ) · P2(ζ∗1 , ξ) · (ξ − ζ∗2 )
dξ.

If we were trying to divide by f1 and f2 directly, in the error term above, we wouldn’t get

g but h1P1 + h2P2 that we can not handle.

Of course, ĥ2 will be a part of the function h̃2 we are looking for. We first look for an

upper bound for ĥ2 using our assumption on the divided differences of g(2) = g
f2

.

Fact 1: ĥ2 satisfies for all ζ ∈ P2κ|ρ(z)|(z), uniformly with respect to z and ζ

|ĥ2(ζ)| . c(2)
∞ (g) sup

|ξ|=(4κ|ρ(z)|)
1
2

|Q2(z + ζ∗1ηz + ξvz)|(17)

Indeed: We have by Lemma 6.2

h
(2)
1,...,k(ζ

∗
1 )

=

(
g

P2

)
z+ζ∗1ηz ,vz

[α1,1(ζ∗1 ), . . . , α1,k(ζ
∗
1 )]

=
(
g(2)Q2

)
z+ζ∗1ηz ,vz

[α1,1(ζ∗1 ), . . . , α1,k(ζ
∗
1 )]

=
k∑
j=1

g
(2)
z+ζ∗1ηz ,vz

[α1,1(ζ∗1 ), . . . , α1,j(ζ
∗
1 )] (Q2)z+ζ∗1ηz ,vz

[α1,j(ζ
∗
1 ), . . . , α1,k(ζ

∗
1 )].

From Montel’s theorem [19] on divided differences in C and from Cauchy’s inequalities,

since τ(z, vz, 4κ|ρ(z)|) h (4κ|ρ(z)|)
1
2 , it follows that

| (Q2)z+ζ∗1ηz ,vz
[α1,j(ζ

∗
1 ), . . . , α1,k(ζ

∗
1 )]| . |ρ(z)|

j−k
2 sup

|ξ|=(4κ|ρ(z)|)
1
2

|Q2(z + ζ∗1ηz + ξvz)|.

With the assumption c
(2)
∞ (g) <∞, this gives for all ζ∗1 ∈ ∆0(2κ|ρ(z)|):

|h(2)
1,...,k(ζ

∗
1 )| . c(2)

∞ (g)|ρ(z)|
1−k

2 sup

|ξ|=(4κ|ρ(z)|)
1
2

|Q2(z + ζ∗1ηz + ξvz)|(18)

and so (17) holds true.
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Of course we have the analogous estimate for ĥ1. Now we have to handle the error term

in (16). Since there is a factor P1P2 in front of e in (16), we can put P2e either with ĥ1 in

h̃1 or we can put P1e with ĥ2 in h̃2. But in order to have a good upper bound for h̃1 and

h̃2, we have to cut it in two pieces in a suitable way. This will be done analogously to the

construction of the currents. Let

U1 :=

{
ζ ∈ Pκ|ρ(z)|(z),

∣∣∣∣∣f1(ζ)|ρ(z)|
i1
2

P1(ζ)

∣∣∣∣∣ > 1

3

∣∣∣∣∣f2(ζ)|ρ(z)|
i2
2

P2(ζ)

∣∣∣∣∣
}
,

U2 :=

{
ζ ∈ Pκ|ρ(z)|(z),

2

3

∣∣∣∣∣f2(ζ)|ρ(z)|
i2
2

P2(ζ)

∣∣∣∣∣ >
∣∣∣∣∣f1(ζ)|ρ(z)|

i1
2

P1(ζ)

∣∣∣∣∣
}
.

Let also χ be a smooth function on C2 \ {0} such that χ(z1, z2) = 1 if |z1| > 2
3 |z2| and

χ(z1, z2) = 0 if |z1| < 1
3 |z2|. We set χ1(ζ) = χ

(
f1(ζ)|ρ(z)|

i1
2

P1(ζ) , f2(ζ)|ρ(z)|
i2
2

P2(ζ)

)
, χ2(ζ) = 1−χ1(ζ)

and at last we define

h̃1(ζ) = ĥ1(ζ) + χ1(ζ)P2(ζ)e(ζ),

h̃2(ζ) = ĥ2(ζ) + χ2(ζ)P1(ζ)e(ζ).

And we now look for an upper bound for P1(ζ)e(ζ) on U1.

Fact 2: For all ζ belonging to P4κ|ρ(z)|(z), we have uniformly with respect to ζ and z

|P1(ζ)e(ζ)| . c(g)

(
|ρ(z)|

i1−i2
2 sup
P4κ|ρ(z)|(z)

|Q1|+ sup
P4κ|ρ(z)|(z)

|Q2|

)
.(19)

Proof: For l = 1 and l = 2, for all i ∈ Il and for all ζ∗1 ∈ ∆0(4κ|ρ(z)|) we have, from

Proposition 3.2, |αl,i(ζ∗1 )| ≤ (3κ|ρ(z)|)
1
2 provided κ is small enough. Hence |Pl(ζ)| .

|ρ(z)|
il
2 for all ζ ∈ P4κ|ρ(z)|(z), and with assumption (i), we get for all ζ ∈ P4κ|ρ(z)|(z)

|g(ζ)| ≤ c(g)(|f1(ζ)|+ |f2(ζ)|)

. c(g)
(
|ρ(z)|

i1
2 |Q1(ζ)|+ |ρ(z)|

i2
2 |Q2(ζ)|

)
.

This yields for all ζ ∈ Pκ|ρ(z)|(z)

|e(ζ)| . c(g)

(
|ρ(z)|−

i2
2 sup
P4κ|ρ(z)|(z)

|Q1|+ |ρ(z)|−
i1
2 sup
P4κ|ρ(z)|(z)

|Q2|

)
from which (19) follows.

Therefore we have the identity g = P1h̃1 +P2h̃2 and upper bounds for h̃2 using (17) and

(19), the corresponding one for h̃1 being also true of course. But our final goal is to write

g as g = ĝ1f1 + ĝ2f2. So we put ĝ1 = h̃1
Q1

and ĝ2 = h̃2
Q2

so that g = ĝ1f1 + ĝ2f2. Moreover,

from (17) and (19), and since χ2 has support in U2, it follows for ζ ∈ Pκ|ρ(z)|(z)

|ĝ2(ζ)| ≤ (c(2)
∞ (g) + c(g))

1

Q2(ζ)
sup

P4κ|ρ(z)|(z)
|Q2|+ c(g)

1

Q1(ζ)
sup

P4κ|ρ(z)|(z)
|Q1|.(20)

Therefore, in order to prove that g̃2 is bounded, we will have to prove that Ql(ξ)
Ql(ζ)

is bounded

for ζ ∈ Pκ|ρ(z)|(z) and ξ ∈ P4κ|ρ(z)|(z). This is the aim of the following Fact 3.
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Fact 3: For l = 1 and l = 2, ζ ∈ P2κ|ρ(z)|(z) and ξ ∈ P4κ|ρ(z)|(z), we have uniformly with

respect to z, ζ and ξ: ∣∣∣∣Ql(ξ)Ql(ζ)

∣∣∣∣ . 1.(21)

The proof of fact 3 is analogous to the proof of Lemma 5.1. Without any restriction we

assume l = 2.

First case: If |ζ∗0,1| > 4κ|ρ(z)|, then we have the parametrization of X2 and it suffices

to prove for i /∈ I2 that
∣∣∣ ξ∗2−α∗2,i(ξ∗1)

ζ∗2−α∗2,i(ζ∗1 )

∣∣∣ . 1.

If |α2,i(ξ
∗
1)| ≥ |ρ(z)|

1
2 , since from Proposition 3.2

∂α2,i

∂ζ∗1
is bounded, |α2,i(ζ

∗
1 )| ≥ 1

2 |ρ(z)|
1
2

and |α2,i(ζ
∗
1 )| ≥ 1

2 |α2,i(ξ
∗
1)|, so

∣∣∣ ξ∗2−α∗2,i(ξ∗1)

ζ∗2−α∗2,i(ζ∗1 )

∣∣∣ . 1 is satisfied.

If |α2, i(ξ
∗
1)| ≤ |ρ(z)|

1
2 , then |ξ∗2 − α∗2,i(ξ

∗
1)| . |ρ(z)|

1
2 and since by definition of I2,

|α2,i(ζ
∗
1 )| ≥ 5

2κ|ρ(z)|
1
2 for all ζ∗1 ∈ ∆0(2κ|ρ(z)|), we have |ζ∗2 − α2,i(ζ

∗
1 )| & κ|ρ(z)|

1
2 for

all ζ ∈ P2κ|ρ(z)|(z) and so the inequality
∣∣∣ ξ∗2−α∗2,i(ξ∗1)

ζ∗2−α∗2,i(ζ∗1 )

∣∣∣ . 1 holds true.

Second case: If |ζ∗0,1| < 4κ|ρ(z)| and |ζ∗0,2| < (4κ|ρ(z)|)
1
2 , then δ(ξ, ζ0) . δ(ξ, z) +

δ(z, ζ0) . |ρ(z)| and as in the proof of Lemma 5.1, |Q2(ξ)| = |f2(ξ)| . |ρ(z)|
p2
2 . From

proposition 3.1, P4κ|ρ(z)|(z) ∩X2 = ∅ so |f2(ζ)| & |ρ(ζ)|
p2
2 and again we are done in this

case.

Third case: If |ζ∗0,1| < 4κ|ρ(z)| and |ζ∗0,2| ≥ (4κ|ρ(z)|)
1
2 , then as in the third case of the

proof of Lemma 5.1, f2(ξ) and f2(ζ) are comparable to |ζ∗0,2|p2 . Again we are done in this

case and Fact 3 is proved.

From (20) and (21), we get that ĝ2 is uniformly bounded. However, assumption (b) of

Theorem 1.2 is a little stronger and we need that the derivatives ∂α+β+α+β ĝ2

∂ζ∗1
α∂ζ∗2

β∂ζ∗1
α
∂ζ∗2

β
of ĝ2 do

not explode faster than |ρ(z)|α+β
2 is Pκ|ρ(z)|(z) for all α, β, α and β.

Actually, inequality (17) and Cauchy’s inequalities implies that, for all ζ ∈ Pκ|ρ(z)|(z),∣∣∣ ∂α+β ĥ2

∂ζ∗1
α∂ζ∗2

β (ζ)
∣∣∣ . |ρ(z)|−α−

β
2 c

(2)
∞ (g) sup

|ξ|=(4κ|ρ(z)|)
1
2
|Q2(z + ζ∗1ηz + ξvz)|. With Lemma 5.1

and (21), we get
∣∣∣ ∂α+β

∂ζ∗1
α∂ζ∗2

β

(
ĥ2
Q2

)∣∣∣ . |ρ(z)|−α−
β
2 c

(2)
∞ (g).

Applying the same process with (19) to eP1, we get∣∣∣∣∣ ∂α+βeP1

∂ζ∗1
α∂ζ∗2

β
(ζ)

∣∣∣∣∣ . |ρ(z)|−α−
β
2 c(g)

(
|ρ(z)|

i1−i2
2 sup
P4κ|ρ(z)|(z)

|Q1|+ sup
P4κ|ρ(z)|(z)

|Q2|

)
.

Again Lemma 5.1 and (21) yield

∣∣∣∣ ∂α+β+α+β

∂ζ∗1
α∂ζ∗2

β∂ζ
α
∂ζ
β

(ζ)
(
χ2

eP1
Q2

)∣∣∣∣ . |ρ(z)|−α−ζ−
β+β

2 c(g).

Therefore, ĝ2 satisfies (b) of Theorem 1.2 and of course, ĝ1 also does.

6.3. The Lq-case. The assumption, under which a function g holomorphic on D can be

written as g = g1f1 +g2f2 with g1 and g2 being holomorphic on D and belonging to Lq(D),

uses a κ-covering
(
Pκ|ρ(zj)|(zj)

)
j∈N

in addition to the divided differences.

By transversality of X1 and bD, and of X2 and bD, for all j there exists wj in the

complex tangent plane to bDρ(zj) such that πj , the orthogonal projection on the hyperplane
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orthogonal to wj passing through zj , is a covering of X1 and X2. We denote by w∗1, . . . , w
∗
n

an orthonormal basis of Cn such that w∗1 = ηzj and w∗n = wj and we set P ′ε(zj) = {z′ =

zj + z∗1w
∗
1 + . . .+ z∗n−1w

∗
n−1, |z∗1 | < ε and |z∗k| < ε

1
2 , k = 2, . . . , n− 1}. We put

c
(l)
q,κ,(zj)j∈N

(g) =

∞∑
j=0

∫
z′∈P ′

2κ|ρ(zj)|(zj)

∑
λ1,...,λk∈Λz′,w∗n
λi 6=λl for i 6=l

|ρ(zj)|q
k−1

2
+1
∣∣∣g(l)
z′,w∗n

[λ1, . . . , λk]
∣∣∣q dVn−1(z′)

where dVn−1 is the Lebesgue measure in Cn−1 and g(l) = g
fl

, l = 1 or l = 2.

Now we prove the following necessary conditions

Theorem 6.5. Let g1 and g2 belonging to Lq(D), q ∈ [1,+∞[, be two holomorphic func-

tions on D and set g = g1f1 + g2f2. Then

(i) g
max(|f1|,|f2|) belongs to Lq(D) and

∥∥∥ g
max(|f1|,|f2|)

∥∥∥
Lq(D)

. max(‖g1‖Lq(D), ‖g2‖Lq(D)).

(ii) For l = 1 or l = 2 and any κ-covering
(
Pκ|ρ(zj)|(zj)

)
j
, we have c

(l)
q,κ,(zj)j

(g) .

‖gl‖qLq(D),

Proof: The point (i) is trivial and we only prove (ii). As in the proof of Theorem 6.3, for

all j ∈ N, all z′ ∈ P ′κ|ρ(zj)|(zj) and all r ∈ [7
2κ|ρ(zj)|

1
2 , 4κ|ρ(zj)|

1
2 ], we have

g
(l)
z′,w∗n

[λ1, . . . , λk] =
1

2iπ

∫
|λ|=r

gl(z
′ + λw∗n)∏k

i=1(λ− λi)
dλ.

After integration for r ∈ [(7/2κ|ρ(zj)|)
1
2 , (4κ|ρ(zj)|)

1
2 ], Jensen’s inequality yields∣∣∣g(l)

z′,w∗n
[λ1, . . . , λk]

∣∣∣q . |ρ(zj)|
1−k

2
q−1

∫
|λ|≤(4κ|ρ(zj)|)

1
2

|gl(z′ + λw∗n)|qdV1(λ).

Now we integrate the former inequality for z′ ∈ P ′κ|ρ(zj)|(zj) and get∫
z′∈P ′

κ|ρ(zj)|(zj)

∣∣∣g(l)
z′,w∗n

[λ1, . . . , λk]
∣∣∣q |ρ(zj)|

k−1
2
q+1dVn−1(z) .

∫
z∈P4κ|ρ(zj)|(zj)

|gl(z)|qdVn(z).

Since
(
Pκ|ρ(zj)|(zj)

)
j∈N

is a κ-covering, we deduce from this inequality that c
(l)
q,κ,(zj)j∈N

(g) .

‖gl‖qLq(D).

Theorem 6.6. Let g be a holomorphic function on D belonging to the ideal generated by

f1 and f2, such that c
(l)
q,κ,(zj)j

(g) is finite and such that g
max(|f1|,|f2|) belongs to Lq(D).

Then there exist two holomorphic functions g1 and g2 which belong to Lq(D) and such that

g = g1f1 + g2f2.

Proof: We aim to apply Theorem 6.1. For all j in N, in order to construct on Pκ|ρ(zj)|(zj)

two functions g̃
(j)
1 and g̃

(j)
2 which satisfy the assumption of Theorem 6.1, we proceed as

in the proof of Theorem 6.4. The main difficulty occurs, as in the proof of Theorem 6.4,

when we are near a point ζ0 which belongs to X1 ∩ X2 ∩ bD. We denote by (ζ∗0,1, ζ
∗
0,2)

the coordinates of ζ0 in the Koranyi coordinates at zj . If |ζ∗0,1| < 4κ|ρ(zj0)|, we set

i1,j = i2,j = 0, I1,j = I2,j = ∅, P1,j = P2,j = 1, Q1,j = f1 and Q2,j = f2. Otherwise,

we use the parametrization α
(j)
1,i , i ∈ {1, . . . , p

(j)
1 } of X1 and α

(j)
2,i , i ∈ {1, . . . , p

(j)
2 } of
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X2 given by Proposition 2.2 and for l = 1 and l = 2, we still denote by Il,j the set

Il,j = {i,∃z∗1 ∈ ∆0(2κ|ρ(zj)|) such that |α(j)
l,i (z∗1)| ≤ 5

2κ|ρ(zj)|)
1
2 }, il,j = #Il,j , Pl,j(ζ) =∏

i∈Il,j (ζ
∗
2 − α

(j)
l,i (ζ∗1 )) and Ql,j = fl

Pl,j
. We define ĥ

(j)
1 and ĥ

(j)
2 as ĥ1 and ĥ2 in the proof of

Theorem 6.4. Instead of defining e
(j)
1 and e

(j)
2 by integrals over the set {|ξ| = (4κ|ρ(zj)|)

1
2 }

as we defined e1 and e2 in the proof of Theorem 6.4, here we integrate over {(7
2κ|ρ(zj)|)

1
2 ≤

|ξ| ≤ (4κ|ρ(zj)|)
1
2 } and set

e(j)(z)

=
1

2π(2−
√

7
2)
√
κ|ρ(zj)|

∫
{( 7

2
κ|ρ(zj)|)

1
2≤|ξ|≤(4κ|ρ(zj)|)

1
2 }

g(z∗1 , ξ)

P1,j(z∗1 , ξ)P2,j(z∗1 , ξ)(z
∗
2 − ξ)

dV (ξ).

We therefore have for all j and all z ∈ Pκ|ρ(zj)|(zj):

g(z) = h̃
(j)
1 (z)P1,j(z) + h̃

(j)
2 (z)P2,j(z) + P1,j(z)P2,j(z)e

(j)(z).

We split Pκ|ρ(zj)|(zj) in two parts as in Theorem 6.4 and set

U (j)
1 :=

ζ ∈ Pκ|ρ(zj)|(zj),

∣∣∣∣∣∣f1(ζ)|ρ(zj)|
i1,j

2

P1,j(ζ)

∣∣∣∣∣∣ > 1

3

∣∣∣∣∣∣f2(ζ)|ρ(zj)|
i2,j

2

P2(ζ)

∣∣∣∣∣∣
 ,

U (j)
2 :=

ζ ∈ Pκ|ρ(zj)|(zj),
2

3

∣∣∣∣∣∣f2(ζ)|ρ(zj)|
i2,j

2

P2,j(ζ)

∣∣∣∣∣∣ >
∣∣∣∣∣∣f1(ζ)|ρ(zj)|

i1,j
2

P1,j(ζ)

∣∣∣∣∣∣
 .

We still denote by χ a smooth function on C2 \ {0} such that χ(z1, z2) = 1 if |z1| > 2
3 |z2|

and χ(z1, z2) = 0 if |z1| < 1
3 |z2|; and we set χ

(j)
1 (ζ) = χ

(
f1(ζ)|ρ(zj)|

i1,j
2

P
(j)
1 (ζ)

,
f2(ζ)|ρ(zj)|

i2,j
2

P
(j)
2 (ζ)

)
,

χ
(j)
2 (ζ) = 1− χ(j)

1 (ζ) and

g̃
(j)
1 (z) =

1

Q
(j)
1 (z)

(
ĥ

(j)
1 (z) + χ

(j)
1 (z)P2,j(z)e

(j)(z)
)
,

g̃
(j)
2 (z) =

1

Q
(j)
2 (z)

(
ĥ

(j)
2 (z) + χ

(j)
2 (z)P1,j(z)e

(j)(z)
)
.

Therefore g = g̃
(j)
1 f1 + g̃

(j)
2 f2 on Pκ|ρ(zj)|(zj) and in order to apply Theorem 6.1, the

assumptions (b) and (c) are left to be shown.

As in the proof of fact 1, it follows from Lemma 6.2 and (21) that∣∣∣∣ 1

Q2,j(z)
ĥ

(j)
2 (z)

∣∣∣∣ . i2,j∑
k=1

|ρ(zj)|
k−1

2

∣∣∣g(2)
zj+z∗1ηzj ,vzj

[α1,1(z∗1), . . . , α1,k(z
∗
1)]
∣∣∣

uniformly with respect to z ∈ P2κ|ρ(zj)|(zj) and j ∈ N and therefore∑
j∈N

∫
P2κ|ρ(zj)|(zj)

∣∣∣∣ 1

Q2,j(z)
ĥ

(j)
2 (z)

∣∣∣∣q dV (z) . c
(l)
q,κ,(zj)

(g).(22)
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In particular 1
Q2,j

ĥ
(j)
2 is an holomorphic function with Lq-norm on P2κ|ρ(zj)|(zj) lower than

(c
(2)
q,κ,(zj)

(g))
1
q . Thus Cauchy’s inequalities imply, for all α, β ∈ N and all z ∈ Pκ|ρ(zj)|(zj),

that ∣∣∣∣ ∂α+β

∂z∗1
α∂z∗2

β

(
1

Q2,j
ĥ

(j)
2 (z)

)∣∣∣∣ . (c
(l)
q,κ,(zj)

(g))
1
q |ρ(zj)|−

3
q
−α−β

2 .(23)

Since g
max(|f1|,|f2|) belongs to Lq(D), g itself belongs to Lq(D) and so∫

P2κ|ρ(zj)|(zj)
|e(j)(z)|qdV (z) . |ρ(zj)|−q

i1,j+i2,j
2

∫
P4κ|ρ(zj)|(zj)

|g(z)|qdV (z).

In particular, for all α and β and all z ∈ Pκ|ρ(zj)|(zj), we have∣∣∣∣∣ ∂α+βe(j)

∂z∗1
α∂z∗2

β
(z)

∣∣∣∣∣ . |ρ(zj)|−
3
q
−
i1,j+i2,j

2
−α−β

2 .(24)

The inequalities (23) and (24) imply that the hypothesis (c) of Theorem 6.1 is satisfied by

g̃
(j)
2 for some large N , the same is also true for g̃

(j)
1 .

Now, for z belonging to U (j)
2 , we get from (21):∣∣∣∣∣P (j)

1 (z)e(j)(z)

Q
(j)
2 (z)

∣∣∣∣∣ . 1

|ρ(zj)|

∫
( 7

2
κ|ρ(zj)|)

1
2≤|ξ|≤(4κ|ρ(zj)|)

1
2

|g(ζ∗1 , ξ)|
max(|f1(ζ∗1 , ξ)|, |f2(ζ∗1 , ξ)|)

dV (ξ)

and so∫
U2∩Pκ|ρ(zj)|(zj)

∣∣∣∣∣P (j)
1 (z)e(j)(z)

Q
(j)
2 (z)

∣∣∣∣∣
q

dV (z) .
∫
P4κ|ρ(zj)|(zj)

(
|g(ζ∗1 , ξ)|

max(|f1(ζ∗1 , ξ)|, |f2(ζ∗1 , ξ)|)

)q
dV (ξ).

Since (Pκ|ρ(zj)|(zj))j∈N is a κ-covering, this yields:∑
j∈N

∫
U2∩Pκ|ρ(zj)|(zj)

∣∣∣∣∣P (j)
1 (z)e(j)(z)

Q
(j)
2 (z)

∣∣∣∣∣
q

dV (z) .

∥∥∥∥ g

max(|f1|, |f2|)

∥∥∥∥q
Lq(D)

.(25)

Moreover, for all α, β ∈ N,

∣∣∣∣ ∂α+βχ
(j)
2

∂ζ∗1
α
∂ζ∗2

β (z)

∣∣∣∣ . |ρ(zj)|−α−
β
2 , (22) and (25) imply that (g̃

(j)
2 )j∈N

satisfy the assumption (b) of Theorem 6.1 that we can therefore apply.
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Université Lille 1, F59 655 Villeneuve d’Ascq Cedex, France.

E-mail address: emmanuel.mazzilli@math.univ-lille1.fr

30


