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Frequency-Dependent Peak-Over-Threshold

algorithm for fault detection in the spectral

domain

Aurélien Hazan and Kurosh Madani

LISSI- Université Paris-Est Créteil
IUT de Sénart-Fontainebleau, 77567 Lieusaint - France

Abstract. An original novelty detection algorithm in the Fourier domain,
using extreme value theory (EVT) is considered in this article.

Periodograms may be considered as frequency-dependent random vari-
ables, and this can be taken into account when designing statistical tests.
Frequency-Dependent Peak-Over-Threshold (FDPOT) puts special em-
phasis on the frequency dependence of extreme value statistics, thanks
to Vector Generalized Additive Models (VGAM) estimation.

An application is discussed in the field of mechanical vibrations. It is
first shown that performance increases compared to POT detection. Then
FDPOT is compared to state-of-the-art algorithms such as KPCA.

1 Introduction

The problem of novelty detection is addressed in this article, in the particu-
lar case when feature vectors are spectra, or more precisely periodograms that
may be obtained from time-dependent signals. There is no typical fault: even
though high peaks deserve attention, other unexpected signatures should also
be considered.

Novelty Detection has been extensively discussed recently in the Machine
Learning [1, 2] and data mining litterature [3] partly because, most of the time,
the learning dataset does not contain fault data.

Extreme Value Theory has provided useful insights to novelty detection in
a probabilistic framework: a model of “normality” is first learnt from available
no-fault and multivariate data, before detection. Several succesful applications
were discussed in engineering [4] and medicine [5].

Authors’ contributions to novelty detection in the spectral domain using
EVT, motivated by condition monitoring of rotating machine were exposed in
[6, 7], notably Bayesian Wavelet Modelling (BWAV) and Peak-Over-Threshold
(POT) novelty detection.

In this article we discuss major improvements on POT: the statistical basis
and the resulting algorithm are detailed in 2, while experimental results are
examined in 3.



2 FDPOT novelty detection: statistical basis and algo-

rithm

In this article, feature vectors will be periodograms computed from univariate
noisy time-series which typical length will range between 103 and 104, without
any usual smoothing pre-processing steps.

Let us first briefly recall the definition of I(ωj), the periodogram at Fourier
frequency ωj = 2πj

T
, j ∈ [0, T − 1] associated with some discrete-time signal

X0, . . . , XT−1:

I(ωj) =
1

2πT
|
T−1
∑

t=0

Xte
−iωjt|2 (1)

Consistent with standard hypotheses in novelty detection, we consider the
learning set to be free from abnormal periodograms. Some will be present how-
ever in the test dataset, in order to compute false positive and false negative
rates. No model is assumed for the periodograms themselves, neither in normal
nor abnormal mode. However, the excesses of the periodograms over a given
frequency-dependent threshold will be modelled as explained in 2.1.

2.1 POT novelty detection

In [4] and related works the authors show that, given some abnormality score X,
fitting some distribution for X is less robust than fitting the density of max(X)
in order to detect faults. In [6, 7] we have adapted this idea to periodograms as
follows.

Let X be a random variable related to the behavior of a system we wish
to monitor. Among many issues, Extreme Value Theory addresses the problem
of modelling the probability P (X − t | X > t), namely the excess of X over
t, assuming that X > t. Under mild conditions on the pdf of X, if t is large
enough then P (X | X > t) can be approximated by the Generalized Pareto

distribution (GPD) [8, 5.3.1] F (x) = 1 −
(

1 + γx
σ

)− 1

γ

, where γ is the shape

and σ the scale, and both need to be estimated from measurements. The fault
detection algorithm may then be written:

1. select a subset of the learning dataset, made of N log-periodograms of
length F . For each frequency f we compute the max of the log-periodograms
across the subset. A real vector m is obtained, the mask.

2. spot excesses over the mask in the rest of the learning dataset. Only excess
values Y = Xf −mf | X > mf are recorded, regardless of the frequency
for which they occur. They consitute a sample of scalar excesses {Yi}i≤I ,
and serve as inputs to the parameter estimation of the GPD.

3. set a detection threshold t according to standard probabilistic consider-
ations and define a decision rule: any excess Y over the threshold t is
considered as a fault.



For new uncategorized data, the last two steps of the procedure are repeated:
excesses Y over the mask are first computed, then compared to t.

2.2 Critical assessment of POT’s performance

To assess the performance of POT, the ROC curve was computed in [7] and
compared to similar curves obtained with similar algorithms such as KPCA (an
extension of PCA that performs dimension reduction using kernels, adapted to
novelty detection by Hoffman).

In spite of the good results yielded, it immediately appears from the algo-
rithm’s description in 2.1 that excesses Yi corresponding to all frequencies are
gathered together in order to increase the learning set size, and improve statis-
tical significancy.

Doing so, we lose the frequency dependence, that may carry valuable in-
formation, as examplified by Fig. 1, where circles represent excesses Yi over a
frequency-dependent threshold, with respect to their corresponding frequency.
It is clear, in spite of the frequency dependent thresholding described in steps 1
and 2 of section 2.1, that a frequency dependence remains in the samples.

0 1000 2000 3000 4000

0
1

2
3

4
5

6

frequency

e
x
c
e

s
s

Fig. 1: Excesses (o) over the frequency-dependent threshold of POT. The black
horizontal line is a constant detection threshold for a GPD fitted against the
excesses, at the level α = 5%. The red curve is a frequency-dependent detection
threshold at the same level α, obtained thanks to a VGAM fit of a GPD with
constant shape γ and frequency-dependent scale σ(f).

This loss has consequences concerning the performance of the novelty detec-
tion algorithm. Indeed, assume that a Generalized Pareto distribution is fitted
against the excesses Yi represented in Fig. 1. Now, let us set a constant Type-I
error rate α = 5%, and compute the associated excess threshold, plotted as a red
horizontal plain line in Fig. 1. It seems obvious that excesses with frequency in-
dex close to the peak around 1800 will generate more false alarms than excesses
with frequency close to index 3000. The consequence is a higher false positive
rate (FPR), and can also be a lower true positive rate (TPR).

Several approaches may be devised to take this dependency into account,
such that binning the frequencies and fitting independent Generalized Pareto



for each bin. We describe a more efficient approach in 2.3.

2.3 FDPOT novelty detection

Suppose we can fit the GPD function in a frequency-dependent way. Then for
each frequency f , we can design a specific statistical test that takes into account
the frequency-dependent shape γ(f) and scale σ(f) of the distribution. We
would then expect the FPR to be lower than for POT.

As we shall see below, one can compute such estimates {σ(f), γ(f)}f∈F

where F is the set of frequencies of interest. The training steps of a Frequency-
Dependent Peak-Over-Threshold (FDPOT) novelty detection algorithm are thus:

1. Define a vector-valued mask m in a way similar to Algorithm POT.

2. Compute excesses over the mask in the learning dataset. Excess values
yi = xi −mi | xi > mi are recorded with their associated frequency fi.

3. Fit a frequency-dependent GPD, and get {σ(f), γ(f)}f∈F .

The detection algorithm itself would then be, for each new vector-valued
periodogram:

1. Compute the excesses over the mask and the corresponding frequency
{(yi, fi)}i∈I .

2. For each i in I, find the corresponding (σ(fi), γ(fi)) and compute the
probability pi = Pσ(fi),γ(fi)(yi), where P is the GPD function.

3. Compute some function g of the pi, e.g. their average and get the abnor-
mality score s = g(p1, . . .).

s is finally used to decide whether or not a detection occurs according to
some policy (the ROC curve can be computed directly without specifying this
policy).

Let us now evoke the choice of the estimator for dependent variables (σ(fi), γ(fi)).
This issue is discussed at length in [9, §6.4] and [8, §7], where entry points to the
specialized litterature are given, both parametric and non-parametric. Since the
spectra we study in this article do not fit simple parametric models, we prefer
non-parametric approaches. More specifically, we use the Vector Generalized
Additive Model (VGAM) approach, intially developped by Yee for categorical
data and later extended to extreme value statistics [10].

3 Experimental results

The IMS bearing dataset [11] is a publicly available1 set of vibration signals.
Four bearings are installed on a shaft that rotates at a constant speed of 2000
rpm. Progressive degradations are recorded over a month from 8 accelerometers

1 http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/



as the designed life time of the bearings is exceeded. In this section, univariate
vectors of length T = 8092 will be used.

First a baseline taken at the 90% percentile for each independent frequency
is computed. The excesses over this baseline are first fitted to a frequency-
independent GPD as illustrated in Fig. 2(a), where a rather satisfactory fit is
obtained. This would justify the fitting of a frequency-independent GPD as in
POT novelty detection, but as we show below, the FPR and FNR are in that
case far from optimal.

We then fit2 a VGAM model with fixed shape parameter γ and frequency-
dependent scale σ(f). This is advised by Yee for numerical stability reasons.
Indeed when γ and σ both depend on f , the numerical optimization fails to
converge. Setting a Type-I error level α = 5%, we then obtain the variable
threshold curve of Fig. 1. It is clear from the latter that false alarm rate in
regions with excess peaks will be attenuated. Conversely, the true positive rate
will increase in regions where the variable threshold lies below the constant
threshold red line at the same level α.

Finally we compute the Receiver Operator Characteristic (ROC) of the FD-
POT detector, and the Area Under Curve (AUC) of ROC, as displayed in Fig.
2(b). Table 1 summarizes AUC results for POT, FDPOT and KPCA-based
detectors. While the results lack cross-validation at the moment, it appears
clearly that FDPOT improves on POT performance. Fine tuning and accurate
comparison of KPCA and FDPOT are left to further developments.

Detector POT FDPOT KPCA
AUC 0.88 0.97 0.93

Table 1: AUC comparison.
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Fig. 2: Frequency-independent GPD fit of excesses (a) and ROC curve of novelty
detector (b).

2 Implementation is mainly done in Python an R. We used Numpy, Scipy, the package
rpy2 http://rpy.sourceforge.net/, scikit-learn http://scikit-learn.org/. and R packages
EVD and VGAM.



4 Conclusions and perspectives

In this article a new novelty detection algorithm is proposed, based on Ex-
treme Value Theory, in the spectral domain. This algorithms makes the most of
vector-valued non-parametric estimation, namely VGAM, applied to peak-over-
threshold statistics in the dependent case.

We show with a real labelled dataset that FDPOT improves on POT, and
has performance superior to state-of-the art algorithms such as KPCA. However,
FDPOT relies on numerical optimization, which is both time-consuming and
likely to fail. Furthermore, FDPOT is more sensitive -by construction- to peaks
than to very low values.

In future works we first plan to compute theoretical ROC curves, to cross
validate the ROC curves and AUC and extend comparisons to other real-world
databases, for example the special case of very low error rate.

We also plan to investigate the role of the averaging scheme in FDPOT,
to take into account the influence of another dependent variable, namely the
regime which is very important in rotating machine industrial applications. The
numerical difficulties that arise when both σ and γ depend on f will be exam-
ined. Finally, we will look for theoretical arguments to explain the ranking of
algorithms’ performance.
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