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SURE Guided Gaussian Mixture Image Denoising

Yi-Qing Wang' and Jean-Michel Morelf

Abstract. The Gaussian mixture is a patch prior that has enjoyed tremendous success in image processing.
In this work, by using Gaussian factor modeling, its dedicated Expectation Maximization (EM)
inference as well as a statistical filter selection and algorithm stopping rule, we develop SURE
(Stein’s Unbiased Risk Estimator) guided Piecewise Linear Estimation (S-PLE), a patch-based prior
learning algorithm capable of delivering state-of-the-art performance at image denoising. In light
of this algorithm’s features and its results, we also seek to address the number of components to
be included when setting up a Gaussian mixture for image patch modeling. By juxtaposing both
options, we show that a simple learned prior can perform as well if not better than a much richer
yet fixed prior.

Key words. Gaussian factor mixture, EM algorithm, image denoising, tensor structure, Stein’s unbiased risk
estimator (SURE)

AMS subject classifications. 68U10, 62H25, 62H30, 94A08

1. Introduction. A novel patch-based image denoising algorithm, SURE guided Piecewise
Linear Estimation (S-PLE), is introduced in this paper3. Its underpinning assumption is
a classical one: all patches found in an image are generated independently according to a
Gaussian Mixture Model (GMM) whereby each component model is roughly responsible for a
patch subset characterized by a particular observable feature. Though certainly objectionable
on several grounds, the assumption of independence among samples and the use of Gaussian
distributions prove extremely popular and are adopted in a wide range of modeling practice,
mainly because of the resulting algorithmic tractability and performance.

Before delving into a review of related research and competing algorithms, let us recall
that in GMM, an image patch P of size k X k is postulated to be distributed over R+ according
to

K-1

k=0

for some integer K, positive scalars (wg)o<k<rx—1 with ZkK:_Ol wy, = 1, vectors (py,)o<k<i—1,
and positive semidefinite matrices (2j)o<r<rx—1 representing the number of Gaussian compo-
nents in the mixture, their prior probabilities, expectations, and covariance matrices.

Notational convention: deterministic parameters required to be estimated for model
building are written in bold. And those supposedly random quantities and absolute constants
are in normal font.

2CMLA, ENS Cachan, 94230 Cachan, France (yqwang9@gmail.com, morel@cmla.ens-cachan.fr). This work
was supported in part by the Centre National d’Etudes Spatiales (CNES, MISS Project), the European Research
Council (Advanced Grant Twelve Labours), the Office of Naval Research (under Grant N00014-97-1-0839) and
the Direction Générale de ’Armement (DGA).

3Supporting software and an online demo is available at http://www.ipol.im/pub/pre/52/.
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The commonly adopted observation model for image restoration is
P=9M(P+N)

which describes the process whereby a patch P undergoes degradation by additive Gaussian
noise and linear distortion (for instance, a mask). Under the aforementioned signal generating
mechanism, it can be further specialized to

K-1 K-1
P=mM(3 lykP+N)= ) MP+ N,
k=0 k=0

with sp, the patch model selector, a random variable distributed according to (wg)o<k<rx—1
and independent of N. In the context of image denoising, 9t is reduced to the identity and
will be removed henceforth.

One can devise a single linear filter to minimize the mean square error (MSE), namely the
12 distance between the patch P and its estimate on average (in the probability space defined
by P and N). Like the very design of Wiener filter, this can be done with

(L.,b,) = argmin E[|LP + b — P|)3] (1.1)
L.b

where (L., b,) determines the filter (Appendix A). However, it is generally ill-advised to apply
a global linear filter in image processing because of the great variation routinely exhibited by
image patches and a fixed linear filter’s inability to capture local information. Mathematically
speaking, the optimal linear filter’s problem formulation imposes too stringent a constraint
upon the function space in which to look for the best approximation to the conditional ex-
pectation E[P|P], which, due to the Gaussian mixture prior, actually has a closed form (see
Appendix B)

K-1
E[P|P] = > P(sp = k|P)E[P|sp = k, P] (1.2)
k=0

and turns out to be a patch-dependent combination of K fixed linear filters.

Therefore, the key to a good patch-based denoising algorithm, irrespective of modeling
assumptions, is a non-linear filter able to adapt its behavior from one patch to another. A
review of the progress made in this field over the last few decades was presented by [3], in
which Buades, Coll and Morel, inspired in part by the pioneering work [10] of Efros and Leung
in texture synthesis, also proposed an effective denoising paradigm named Non-Local Means
(NLM) that exploits information redundancy in natural images. Kervrann and Boulanger
[14], [15] improved NLM by enabling adaptive smoothing window size selection for similar
patch detection. And through similar patch grouping and collaborative filtering, BM3D [6]
further enhanced NLM and catapulted it to one of the best-performing denoising methods
that define the current state-of-the-art.

Another promising direction of research was initiated in [1], [11] where Elad and Aharon
proposed to use a greedy orthogonal matching pursuit algorithm based on the notion that
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image patches can be sparsely represented with an over-complete dictionary. In [5], Chat-
terjee and Milanfar, building on their steering kernel regression framework [27], presented a
patch orientation based dictionary learning algorithm which gave rise to the K-LLD denoising
algorithm. Yu, Sapiro and Mallat [32] recognized the orientation as the most prominent patch
feature and designed a so-called MAP-EM (Maximum A Posteriori Expectation Maximiza-
tion) algorithm named PLE along a similar vein, but intended as a generic image recovery
related inverse problem solver. In a recent development, Zoran and Weiss [33], rather than
pursue the best dictionary directly, introduced a new optimisation scheme which continued
the effort started as early as in 1992 by Rudin, Osher and Fatemi [24] of seeking an adequate
description of image priors. Instead of constructing priors for images as a whole as did their
predecessors, they focused on a prior for image patches in the form of a Gaussian mixture and
obtained impressive results.

In this paper, motivated in part by the mentioned work [5], [32], [33], we present S-
PLE which, unlike those methods spawned by the NLM paradigm, groups image patches
by assessing patch-to-model rather than patch-to-patch distance. As will be clear from our
discussion in Section 3, the ability of patches to choose among filters and adapt their own
forms and sizes to image content and noise level is of critical importance to both visual
quality and accuracy of the restoration. S-PLE addresses the issue by using SURE [26]
as a decision aid which enables the desired adaptive filtering and results in a state-of-the-
art performance in terms of MSE, thereby representing a substantial improvement over the
existing algorithms such as K-LLD and PLE in the same category. In addition, thanks to
SURE, we show how to track S-PLE’s real-time performance with a simple device. Finally,
although the Gaussian mixture is widely recognized as an effective tool for probability density
approximation, opinions differ as to the number of components a mixture should have for
high-dimensional data modeling in the patch space. In light of the results produced by S-
PLE, we show that a good adaptive prior made up of a small number of Gaussian components
can do just as well, if not better than a much richer yet fixed prior.

The rest of the paper is organized as follows: Section 2 gives a summary of PLE [32] and
points out its major shortcomings with respect to S-PLE. A detailed account of S-PLE is
then provided in Section 3. Section 4 presents the new algorithm outline and a comparative
study. Section 5 addresses the number of components to be included in a Gaussian mixture
for image patch modeling. The last section is devoted to deriving the two-stage EM algorithm
for Gaussian factor mixture inference as well as other stated results.

2. PLE. In this section, PLE is summarized to highlight its difference with S-PLE. In [32],
the authors start with K — 1 directional models derived from synthetic samples and one
additional Gaussian model using DCT as its basis. For each patch from an image to restore,
PLE then produces K estimates under these model assumptions and retains the one that
maximizes the conditional probability to have both the observation and its estimate. Finally,
the parameters of all these models are updated with the obtained estimates. The last two
steps, referred to as estimation and maximization in the paper, are then repeated several times
before the algorithm terminates.

4The implemented PLE for our comparative study leaves out both component substitution and basis or-
thogonalization because they can cause numerical instability as it is difficult to tell whether a set of vectors
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Algorithm 1 Initialization of PLE
Parameter: Number of Gaussian models K, patch dimension s X k.
for k=0to K —2do
Create and sample synthetic images
1. Create a binary image B of size 100 x 100 taking value in {0,255} with two sets
of pixels {(r,u) : B(r,u) = 0} and {(r,u) : B(r,u) = 255} separated by a straight line
which passes through the center of the image with its normal inclined at %7&
2. Blur B with Gaussian kernels of different standard deviations (04)1<p<4 With o, =

20 for all b.

3. Sample a large number of x X k patches from these blurred images to form the
patch set Py.
Compute the statistics

1. Estimate the model mean and covariance:
1 1
== > P Sp=n > (P ) (P— )"
P2, P,

2. Set the k-th directional basis Vj using the spectral decomposition 3 = VkAkaT.
3. Set p, = 0. Replace the first leading eigenvector in Vi by a normalized DC
component and apply Gram-Schmitt to orthogonalize the remaining vectors.*
end for
Add DCT (with its component frequencies arranged in ascending order) to this setup as its
(K — 1)-th model basis. Set the (K — 1)-th model mean to zero.
Take a sequence of k2 positive numbers of exponential decay (a working example: m €
[0, k% — 1] N Z + 220-57095m) and make them the eigenvalues of all K Gaussian models.

Comments on the algorithm.

(a) PLE is not GMM-based for it involves no concept of model priors. Put in another way,
if there is to be a mixture in PLE, all its components must have equal mixing weights
all the time: although not explicitly stated, Laplace’s principle of insufficient reason is
invoked while it is not required.

(b) Its directional basis initialization literally cries out for factor loading matrix reduction as
explained in the next section while it is not taken into account. Its DCT basis is supposed
to handle both textural and flat patches, which leads to artifacts in recovered images.

(¢) No criterion is guaranteed to converge in any sense, making it difficult to decide when
to stop the algorithm. Likewise, the way the parameters are estimated is questionable:
because of the preceding filtering, the estimators produced in the maximization step are
likely to be biased, which could have been avoided by using noisy patches directly rather
than their estimates.

(d) The algorithm is rigid and cannot alter its behavior in response to noise level. And there
is too much latitude in tuning parameters such as the model eigenvalues, which often
undermines the algorithm’s numerical stability and performance.

are collinear with the computer’s limited precision. With DC components removed from the directional bases,
PLE could discriminate better.
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Algorithm 2 PLE
Input: A noisy gray image U, its noise standard deviation o and the initial setup ©.
Parameter: Number of PLE iterations S. B
Read in Og. Extract all k x k patches from U to have (P;)1<i<n.
fort=1to0 S do

Estimation:
1.  Maximize the conditional density given the observation and the model:

\V/(Z, k)? f)z(k) = argglaxp(P\Pi, ”‘k,t—lv Ekzt_l)

= argglaxp(P, pz |U’k,t713 Ek,tfl)

- (IIP = BiP? Tsa-1
:arglrgmn( 02 + (P — ) Zk,tq(P_Nk))-

2. Select the model that best fits the i-th observation and its conditional estimate:

k; = argmax p( P‘th 1) 2kt 1)
0<k<K-1
' ]3(’6) o E 2 R - N
= argmin (w —+ (R(k) — [Lk)TEk 1_1(Pl(k) — Hk) + ln det Ekﬂg,l)
0<k<K-1 g ’

which leads to the estimated patch ]31 = ]31»(]”) and its assignment to the k;-th model.
Maximization: Denote Qj the set of estimated patches attributed to the k-th model.

for k=0to K —1do
Estimate the model mean and covariance:

P Y= — (P — (P — +el
Hyp = ‘Qypgg: k.t Q ZQ: ) ( Hkt)

where € is a small positive number to ensure the definiteness of 3y, ;.

end for
end for
Assign equal weights to all restored patches and recover the image.

(e) Certain choices made in the initialization step are hard to interpret. For example, the
vanishing model means and the rectification of the first leading eigenvector in all direc-
tional bases. Perhaps they are there to prevent computational singularities resulting from
the potentially ill-chosen parameters such as the model eigenvalues.

3. SURE Guided PLE Denoising Algorithm.

3.1. Gaussian Factor Mixture. The covariance matrix for patches of a particular orien-
tation 6, modeled under the Gaussian assumption, ought not to be of full rank. Indeed, if it
were, all its eigenvectors, viewed as individual patches, would be oriented in either 8 or m— 6.
As a result, none of their linear combinations can produce a patch with an orientation equal
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o 5 — 0, which contradicts the very definition of full rank.

However, instead of just #, when building a model, one usually lets it account for a slightly
wider range of orientations, i.e. (6 — A,0 + A) with a small scalar A > 0. Thus, the above
reasoning need not apply. There is still reason to believe though that a reduced set of vectors
suffices to represent patches of a narrow range of orientations. Therefore instead of a full-
fledged Gaussian distribution, an equally flexible and yet more appropriate candidate in this
case is a Gaussian factor model (GFM)

PgZF@C‘FM@

where patch variability can be restricted by limiting the number of columns [ contained in the
factor loading matrix Fy € R X! With o deterministic and ¢ following the Gaussian law
N(0,1;), Py remains Gaussian. Moreover, the factor trimming results in a more regularized
model behavior which can help resist over-fitting.

In addition to a number of mono-oriented models, two more non-oriented components for
textural and flat patches respectively should be set up to complete the mixture.

To sum up, the i-th noisy patch is assumed by S-PLE to follow:

K—1
Py = (Frci + py, + oni)lg—k
k=0

where

Fj € RF ¥l 3 deterministic matrix containing [; factors used by the k-th model;

c; € Rl: a Gaussian coefficient distributed as N(0, I 1e)

Iy € R*": a deterministic vector representing the k-th model mean;

o € R, : the standard deviation of some zero-mean additive Gaussian noise;

n; € ]R””2: a Gaussian vector following N(0, I,.2) independent of ¢;;

s; € {0,--- , K—1}: a discrete random variable that selects a model for the i-th patch.
When it comes to learning the hidden parameters of a mixture from an observed dataset,

the renowned Expectation Maximization [7] is arguably the algorithm of choice. A variant

dedicated to the GFM mixture inference has been developed by Tipping and Bishop [28] of

which a detailed account can be found in Appendix C.

S Tt W=

3.2. GFM Mixture Initialization. For EM to succeed at its task, a good starting point is
key in that the algorithm can be trapped at local maxima and consequently fail to reach global
maxima. Synthetic image sampling suggested in [32], though interesting, does not allow the
construction of an appropriate prior for lack of information to estimate the mixing weights.
A more reasonable solution is to draw samples directly from natural images with the help of
the so-called “tensor structure” orientation detector [12]: given a square patch P, the discrete
gradient VP(r,u) is computed at all pixel sites in its domain Dom(P). Then the patch’s
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orientation v, is found by

vy = argmin Z IVP(r,u) — (v, VP(r, u))vH2
l[vll=1 (r,u)eDom(P)

= argmin Z IV P(r, u)H2 — (v, VP(r, u)>2
l[oll=1 (r,u)eDom(P)

= argmax vT( Z VP(r,u)(VP(r, u))T)v
llv]|=1 (ryu)eDom(P)

where (-,-) denotes the scalar product between two 2 x 1 column vectors valued in R?, The
problem is easily solved by computing the first leading eigenvector of the positive semidefinite
matrix enclosed in the parentheses, denoted henceforth by Mp. Because of the equality

> VPOl =tr(Mp) = A + N,
(r,u)eDom(P)

it seems natural to declare P oriented if the criterion

Z(r,u)eDom(P) HVP(Tv u) - <U*7 VP(Tv u)>v*|]2 _ As
Z(r,u)eDom(P) HVP(Tv U)H2 As + Ap

is small, where A\, and A (A > s > 0) are two eigenvalues of Mp. Thus a threshold topijent = 5
is tuned according to our subjective view so that a patch satisfying A\; 1Ay > torient is likely
to be seen as oriented. Its orientation . can then be set to i(arctan 2-) with v, = (., ye) T
and ¥ (a) = alg>0 + (7 + a)lg<p, the latter of which ensures the positivity of ..

To distinguish between two categories of non-oriented patches, one applies the following
rule

)\b Z tﬂat and )\5_1)\17 < torient

as an empirical definition of multi-oriented (or textural) patches (tgat = 10*). The remaining
set of patches satisfying

Ap < tgat and )\5_1)\17 < torient

are seen as essentially flat.

The previous definitions split the first quadrant (Ag, Ap) € Ri into three regions, among
which the one characterized by )\5_1)\1, > torient Will be further divided into K — 2 sub-areas by
angle quantification to form a K-zone partition. The way to achieve this is to assign a patch

P to the k-th mono-oriented model if and only if it satisfies

k E+1

A (PYX(P) = foriens and 0(P) € [, 7o)

where the notations A\s(P), \y(P) and 6, (P) are meant to emphasize their dependences on P.5
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Algorithm 3 GMM initialization of S-PLE
Input: Z noiseless natural gray images.
Parameter: Number of mixture components K, patch dimension s X k.
For all 0 < k < K — 1, set N, the number of samples obtained for the k-th model, to 0.
Collect samples:
while ming<z<x—1 N < 5000 do
Randomly picks one among Z images and sample a x X k patch P from it.
Calculate the eigenvalues (Ap, As) of X2, e pom(py VP (1, u) (VP(r, u))T together with its
eigenvector v associated with A, (\y > A) where VP(r, u) represents the discrete gradient
of P at (r,u).
if )\b/)\s < torient then
if A\ < tgat then
Assign P to the flat model: Ng_1 < Ng_1 + 1.
else
Assign P to the multi-oriented model: Ng_5 < Ng_o + 1.
end if
else
Determine the orientation 6 = ¢ (arctan £) with v = (z,y)” and ¥(a) = als>o + (7 +
a)1a<0
Assign P to the k-th mono-oriented model if 6 € [
end if
end while
Compute the statistics:
for k=0to K —1do
Estimate the model prior: wy =

[k(— ) Nj. < N + 1.

Ny,
Do NG
Estimate the model mean and covariance: denote Py the set of patches attributed to the
k-th model

uw 3 (P — ) (P — )" .
k= |7Dk| P; k= |7D | P;k k)( k)

Estimate the factor loading matrix: denote [, the number of factors required by the k-
th model. The spectral decomposition X = VAVT with V = [¢1, -+, ¢e2] and A =
diag(Ai, -+, Ag2) gives

Fy = | (>\1 - 2)1/2% o (N = 0%) P ]

Z A

m=l,+1

where o2

end for
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Figure 3.1. FExamples of the eigenvectors and eigenvalues obtained by sampling 493 gray images from The
Berkeley Segmentation Dataset with K = 20: a patch view of the eigenvectors of the (a) 0-th (mono-oriented),
(¢) 18-th (multi-oriented), (e) 19-th (flat) cluster and their eigenvalues displayed in the logarithmic scale: the
(b) 0-th, (d) 18-th and (f) 19-th cluster.
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We set K = 20 and collected for each model a minimum of 5000 8 x 8 patches by randomly
sampling 493 gray natural images from The Berkeley Segmentation Dataset. Shown in Fig.3.1
are three resulting covariance matrices. Several observations are in order:

(a) first, leading eigenvectors in the oriented models preserve their model feature orientation
and suggest that low frequency patterns tend to appear more often in natural scenes’;

(b) second, due to the imprecise nature of orientation definition and measurement, the ob-
tained oriented models’ eigenvalues do not go to zero as projected by GFM. However,
their still rapid decline in value does not deviate far from what is expected of the model
either. Hence it seems reasonable to keep the first few (e.g. 32) factors and reject the
rest;

(c¢) third, contrary to what is observed in the mono-oriented models, the multi-oriented
model’s eigenvectors bear striking resemblance to those of the flat model. Rather, it
is the behavior of the associated eigenvalues that allows us to tell them apart, a hardly
surprising fact considering the way we defined and collected them. To prevent over-fitting,
the first leading eigenvector was made the sole factor representing the flat model, a con-
venient practice only possible because of the adoption of the GFM framework;

(d) finally, although the multi-oriented model’s eigenvectors do not form DCT, the two bases
do look alike, thereby lending support to the choice made in [32]. As a reflection of the
richness of textural content, the number of components in the multi-oriented model was
set to 63: a DCT-like isotropic basis is thus broken up into two to handle two radically
different patch categories.

The spectral decomposition 3 = VAVT can be applied to retrieve the desired factors

F=[A"¢,- A

where ¢, (resp. Ap,) is the m-th column of the unitary matrix V' (resp. m-th diagonal entry
of the diagonal matrix A). However, since ultimately a GFM mixture will be used to fit the
observation, it can be argued that we do the same at this stage. We thus look for an element
in ¢ = {FF! + 0%, F ¢ R“zXl,a € R, } that achieves the highest empirical likelihood for
the i.i.d. samples:

N exp (= 3(P = )" (FTF + 017 (P, — )
(F.,0.) = argmax 1ogH
FeR Xl ocR,  iop \/@m)s* det(FTF + 021)

N

N 1

= argmin — {1ogdet(FTF + %)+ — Ztr((FTF + )P, — p)(P; — ,u)T)}
FeRr*%l gcR N i=1

= argmin logdet(FTF + o2I) + tr((FTF + 0'2[)*12)

FcRr? xloeR

which is equivalent to minimizing the Kullback-Leibler divergence between two multivariate
Caussian distributions N (u, X) and N (u, FTF + o*I) (see Appendix D). The problem has

5The patch space is now endowed with a coarse o-algebra entirely induced by the tensor structure.
STf it exists, the true probability on the patch space endowed with the Kolmogorov o-algebra assigns a
predominant weight to low frequency patches, in view of their much bigger variance.

10
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been dealt with and lead to probabilistic PCA, a probabilistic interpretation of Principal
Component Analysis [28], [29], [23]. Tts solution turns out to be quite intuitive

F.=[(\—0)Y ¢, (N — D)2 ]

I
2 _
o =2 Z Am,
m=Il+1

with the factor loading matrix F', unique up to a rotation in the /-dimensional space, which
is of no concern to us because the Gaussian measure N (0, I;) is rotation-invariant. Note that
a restriction on the number of factors in F is required for regularization purpose: with more
factors allowed entry, ¢ gets closer to the set of all covariance matrices of dimension k2 x x?
and the optimisation will eventually lose its relevance because its solution will no longer be
unique in the sense just stated.

In addition to individual model configurations, the patch sampling revealed yet another
valuable piece of information regarding the initial mixture structure, namely (wg)o<r<r—1,
the prior probability of having a randomly selected patch belonging to a particular model. It
was estimated by

Ng
YIN;

with IV}, the total number of patches collected for the k-th model satisfying ming<p<rx—1 Ni =
5000. As shown in Fig.3.2(c), the mixing weights can be configured in such a way that
non-oriented patches are much more likely to appear than their mono-oriented counterparts.
Moreover, within the non-oriented category, the essentially flat patches were made to have
a slightly higher probability to show up. This setup conveys our prior belief on the patch
composition of a typical natural image and is not image specific: the mixture prior so produced
was used in all our experiments.

Wy =

3.3. Patch Classification with EM. Here we present a concrete example in the hope of
better illustrating EM’s effectiveness at classifying noisy patches. To this end, we took a color
image dice from the IPOL (Image Processing On Line) website and added to its color channels
some simulated i.i.d. zero-mean Gaussian noise with standard deviation equal to 10.

To three color components (ur,ug,up), we applied the next luminance-chrominance
transformation intended to increase the first transformed channel’s signal-to-noise (SNR) ra-
tio:

. UR tuG t+uB

uyp = 3
- UR —UB
Uy = —————
V2
- UR — 2ug + uB
us = .

V6

To be consistent with the origin (gray images) of the collected statistics, the denominator in
the first transformation was set to 3 instead of noise normalizing /3 because these components
11
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are believed to be highly correlated. Since a commonly used RGB to gray conversion does not
assign equal weight to individual channels (see for instance Matlab’s routine rgb2gray), one
should perhaps have sampled color images accordingly in the first place. But this reasoning
implies the necessity to set up four different initial mixtures, one for gray images and the other
three for color images which should also depend on the luminance-chrominance transformation
chosen by the algorithm. Here we did not make the distinction just to keep the matter simple.

20 models, each containing 32 factors except for the two non-oriented ones, were read in to
help set up the initial prior. With noise standard deviation set to 10/v/3, we ran EM on ;. At
the end of each iteration, there was for every observed noisy patch P a set of newly calculated
posterior probabilities {P(sp = k | P), 0 < k < 19}, which allowed us to determine the most
suitable model for P simply by comparing its likelihoods under different model assumptions:

k* = argmax P(sp = k | P) = argmaxP(P | sp = k)P(sp = k).
0<k<19 0<k<19

It should be clear by now that updating the mixing weights at the same time as the model
parameters is not only required to keep the overall likelihood increasing as the algorithm
iterates on, it also helps reduce the misclassification risk and artifacts: for instance, in an
image with predominant presence of flat patches, a patch should be assigned to a mono-
oriented model only if there is a compelling enough indication to justify the action.

A patch-to-model mapping, henceforth referred to as the patch map, can be formed by
associating to each patch its most probable model. In the present example, the patch map
(Fig.3.2) shows that by the time the first EM iteration ended, pretty much as expected, an
overwhelming majority (87.4%) of patches identified with the flat model, thereby preparing
the ground for the denoising algorithm’s next stage: adaptive filtering.

3.4. SURE-Aided Adaptive Filtering. As pointed out in the introduction, it is crucial
for a filter to adapt its behavior to the patch it deals with. Since the ultimate denoising is
routinely performed by Wiener or shrinkage filters [9], [8] and that they necessitate a projection
operation which consists of expressing an observed patch as a linear combination of the vectors
contained in a prefixed basis, the filter’s adaptability is translated into its ability to produce
vectors that allow sparse coding for any given patch. If this condition proves too difficult to
satisfy, it would be desirable if that effort could be directed at the patch categories which tend
to appear frequently and are relatively easy to characterize.

Our EM-enabled patch orientation based paradigm suits this purpose well. Because of the
created patch map as well as the evolving mixture parameters, EM, as we have seen, turns
out to be a convenient tool at building and selecting the best basis among 20 alternatives for
patch representation and thus denoising. For example, if a noisy patch P is found to be best
described by the k-th model

P=Fic+p,+oN

a reasonable basis for its representation will be the one formed by the eigenvectors of Fi F g

Our strategy is to retain a noisy image and keep on updating the GFM mixture as well as

the ensuing adaptive filters for individual patches. Consequently the blurring is less an issue

than in [5]. On the other hand, although the constantly increasing overall likelihood is an
12



SIAM J. IMAGING SCIENCES (© xxxx Society for Industrial and Applied Mathematics XI
Vol. xx, pp. x X

e

uﬂ.
e
i

Figure 3.2. (a) original image (b) noisy image (o = 10) (¢) initial model priors (d) updated model priors
after the first EM iteration on the first transformed channel (e) pizel-wise arithmetic mean of the noisy image’s
three color channels (f) patch map formed after the first EM iteration. Each color represents a model and white
color highlights the patches classified as essentially flat.
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attractive property of the EM algorithm, it does not guarantee monotone convergence of the
estimates, except in some special cases [13]. As a matter of fact, notwithstanding the observed
tendency for a higher overall likelihood to go with a lower MSE, no causal relationship between
the two can be established empirically. Zoran and Weiss [33] attempted to reconcile these two
concerns by tying them together to form a single cost function. And we will address the
problem with the help of SURE [26] by evaluating a statistic indicative of the adaptive filter’s
real-time performance. Let us state a specialized version of Stein’s theorem in anticipation of
its application in this context.

Definition 3.1.Let P be the sum of a fized vector P € R* and a Gaussian random vector
oN € R* with N distributed as N(0,1,.2) and o a scalar. Let f be a filter of one of the
following three forms:

1. linear: f(P) = Zfil (P — p,b) + p
2. soft shrinkage: f(P) = 711 cjyfoﬁ(uﬁ — 1, b)) + p with vfoﬁ(w) = sgn(w)(jw| — t)
3. hard shrinkage: f(P) = ’il cyPemd (P — 11, b)) + p with yPord(w) = Wljy|>t
where 1, (cj)1<j<u2, (bj)1<j<n2, and t denote the filter-specific mean, filtering coefficients, ba-
sis, and threshold. And their weak derivatives are defined to be

2

1. linear: V - f(P) = > i1 ¢
. ) 52 )
2. soft shrinkage: V - f(P) = 3521 ¢jljt 400) (|(P — 11, 05)|)
3. hard shrinkage: V- f(P) = Y25, ¢; (1t qo0) (| (P = 1, 05)|) + tE[(6: — 5-¢) (P — 1, b)) | P])
where 6, (+) represents a Dirac centered on x € R. )
Theorem 3.2. Under the assumptions in Definition 3.1, SURFE given the observation P

~ ~ ~ 0'2 ~
SUREY(P) := [P~ f(P)> ~ o> + 25V - f(P)

is unbiased

E[SURE(P) | P] =[P~ /(P)|* | P].

SURE is valuable because it is a function of only the observable P. However, in case of f
being a hard shrinkage operator, the expectation evaluating the Gaussian density difference
at t and —t

E[(8; — 6_4)((P — p,bj)) | P]

is a function of the unknown P. To circumvent the issue, one only needs to replace the
expectation with an approximatively unbiased estimator

1 -
% (l[t—s,t—I—e] - 1[—t—e,—t+e]> ((P - K bj>)

for a small enough ¢ > 0.

If the filtering coefficients (c;j);<;<,2 also depend on P, like those in (1.2), SURE’s ex-
pression generally becomes rather unwieldy. In this case, we treat them as constants as an
expedient approximation.
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3.4.1. Performance Measurement of Adaptive Filters. A useful statistic, the SURF
empirical mean, can be constructed to measure how effective filters are at denoising. Note
that in a conventional filtering scheme, neighboring patches are allowed to overlap one another
to help reduce artifacts in restored images. Hence our i.i.d. assumption does not apply (though
it does not prevent us from using EM for inference). However, given their restricted supports,
it is plausible that patches in a natural image, seen as a two-dimensional stochastic process,
satisfy the wide-sense stationarity [2], a weaker condition required to prove the next corollary.

Corollary 3.3. Under the assumptions of Theorem 3.2 and some mild stationary conditions
on image patches (P;)1<i<n (Appendiz E), the SURE empirical mean

1 X1, - _ 202 _
—ZSUREf( D)= > (SIB = FP)IP = o+ =5V - £(P)
=1 =1

is an unbiased estimator of the expected patch MSE k—2E[||P — f(P)||?] and it converges

lim —ZSUREf( i) = =E[llP — £(P)|]

N—oco N

almost surely and in 2.

Proof. Sketch of the ideas. Contrary to some other scientific and engineering fields,
samples in image processing are usually in abundant supply and the said estimator can be of
quite small variance in spite of the terms in the sum being correlated

1 N 1., =~ ~ 20‘2 ~
w2 (el P SR =+ 55V - £(P)

~E[3 i (1B = 1B = ? + 250 - ()]

=E[§i P = £(B)I] (3.1)
i=1
LE[IP - f(P))) (3:2)

where the approximation holds with high probability as a consequence of image patches being
stationary together with some additional condition on their covariance structure (Appendix
E). Equality (3.1) holds because for all i, we have

[QHP FB)? - +—V F(P)] = [QHP FB)I7]

regardless of the prior distribution of P; thanks to the conditional unbiasedness of SURE and
Fubini’s theorem. Finally, equality (3.2) stems from (||P; — f(P;)||?)1<i<n sharing the same
expectation, one of the defining conditions of the assumed stationarity. [ |
Due to its dependence on f, the estimator can be seen as a performance measurement
of the adaptive filter. Thus one can terminate S-PLE when this estimator goes up in value
15



SIAM J. IMAGING SCIENCES (© xxxx Society for Industrial and Applied Mathematics XI
Vol. xx, pp. x X

because it signals that the algorithm takes a turn to the worse in terms of the produced filtering
bases. More importantly, this device provides us with a criterion for switching among filters.
In our context, we can let both Wiener (1.2) and shrinkage filters [9], [8] process the noisy
patches and then decide the optimal filter for each mixture component by comparing their
respective model-wide SURE empirical mean. Our experiments confirmed that with the hard
shrinkage and Wiener filter to choose from, the restored image improves in MSE. Nonetheless,
it should be emphasized that this rule is not well founded if applied on a patch-by-patch basis
because SURE, after all, is a random variable.

3.4.2. Asymptotic Upper Bound on MSE. Perhaps more interestingly, a link can be
established between the SURE empirical mean and the MSE of the recovered image. To carry
out the analysis, we are in need of the next convention:

Convention: the coordinates of a patch are those of the pixel located at its up-left cor-
ner. A non-overlapping filtering scheme including (p,q) means a partition of Z? consist-
ing of patches of dimension xk X k whose coordinates form the set {(x,y), (z — p) mod Kk =
0 and (y — ¢) mod xk = 0}.

It is easy to see that there are in total x? distinct filtering schemes. Assume that all
of them are used for denoising a large noisy image U of dimension My x Ny which results
in (ﬁi)1<i<,€2. For simplicity, pixels near the image boundary are left untreated because the
patches _co_ntaining them do not lie completely in the image. Corollary 3.3 implies that for all
i the restored image MSE M ' N;'|U — Uj||2 (U denotes the original image) will be close to
k2R[||P — f(P)|?] as those bordering pixels do not count if both Ny and Mj; are big enough.
Jensen’s inequality leads to

2 2

1 1 o~ 1 Y~ 1 .
5T U< ——— ST - U ~ SE[P - £(P)]2).

A similar asymptotic reasoning shows that M ' Ny t{|x~2 ;’il U; — U||? is close to the MSE
of the restored image if a conventional sliding window is used because the majority of pixels
in k2 Z’;ﬁl U; are denoised exactly 2 times.

Hence we have one more reason to monitor the SURE empirical mean and let S-PLE run
as long as it continues to decrease in value. Although in theory this approach cannot ensure
a strict decline of the true MSE, it turned out to be quite reliable in our experiments (Fig.

3.3).

3.4.3. Self-adjusting Flat Patches. The patch size is of importance in the present algo-
rithm. On the one hand, smaller patches lead to a faster algorithm because computational
cost of matrix operations usually grows polynomially fast as the patch size increases. Smaller
patches also tend to produce less artifacts in the restored image for they introduce less blur.
On the other hand, a patch still needs to be large enough to maintain sufficient information
for orientation discrimination, though not too big or its content will then become so rich that
the orientation ceases to be an adequate concept to characterize the majority of them. Thus,
for relatively low noise levels, we settle for a patch size 8 x 8.

Yet, for noisier images, it is necessary to increase the patch size in order to denoise more
aggressively, especially in slow varying areas depicting, for example, sky or building facades.
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Figure 3.3. (a) o = 20: the MSE of the restored traffic and their corresponding SURE empirical mean
at each S-PLE iteration (b) o = 20: the MSE of the restored valldemossa and their SURE empirical mean
at each S-PLE iteration. These two statistics are indeed quite close. The observed deviation from the expected
asymptotic behavior could be due to the calculated SURE being biased because of the explained approximation
used in dealing with non-linear Wiener filtering coefficients.

It is hard to overstate the importance of an algorithm’s effectiveness at reducing noise in these
regions because of the sheer proportion of pixels composing them in natural images.

To help understand the sub-optimality caused by a fixed patch size, consider a slow varying
one-dimensional real-valued and time-indexed signal 2, corrupted by some additive white noise
n,. For simplicity, let us assume that both the signal and the noise are defined on the integer
lattice. If the sliding windows of length m are applied to recover the signal, its estimated value
at time ¢ is

R 1 t m—1 Trps + Nris 1 m—1
Bo=— Y S T N (@ o+ Tuss) (3.3)
m T=t—m+1 s=0 m m s=1-m

where p. is a probability kernel whose support consists of 2m — 1 elements. Now a simple
argument from spectral analysis sheds light on the benefit brought about by an adaptive
patch size: when noise level is low, although a bigger patch size is conducive to a higher rate
of noise reduction, this gain is not significant enough to counterbalance the loss in signal.
However, as noise increases in strength, a small patch size tends to keep more and more noise
which ultimately leads to a poor MSE.

To attain a good denoising quality, the basic idea is to seek similar patches so as to
enable sparse coding and avoid creating blur. Both block matching and more elaborate 3D
collaborative filtering first espoused by NLM [3] and BM3D [6] respectively embody this
principle. NLM initially, however, had a somewhat arbitrarily fixed size of smoothing window
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for all pixels, which prevented NLM from reaching its full potential. Kervrann and Boulanger
[14], [15] removed this artificial restriction with a statistical rule for deciding locally optimal
window size to minimize MSE.

But in our setting, because of the entirely patch-based framework, it is more natural to
view the same problem as that of a patch, rather than window, size selection. Unlike some
of the aforementioned algorithms which pay little attention to the meaning of similarity in
statistical terms by discounting correlation of noise in overlapping patches, when denoising
a patch P, we focus on its non-overlapping neighboring patches which do not intersect with
P. One such patch @ is deemed similar to P only if the following two conditions hold
simultaneously:

1. both patches belong to the same flat region;

2. the hypothesis that the true states of P and ) are the same shall be upheld statisti-
cally;
The first condition can be easily checked thanks to the patch map and the connected com-
ponent labelling algorithm [25] while the second one simply boils down to a chi-square test:

under the null hypothesis, the squared sum of the pixels in P9 should follow a chi-square

V20
distribution with k2 = 64 degrees, whose law is denoted by P in what follows.

Once these supposedly flat and similar patches are identified, they are merged to form a
new patch. The fact that they do not overlap amounts to little more than an expansion of
the patch P itself. By taking the arithmetic mean of noisy pixels contained in it, one can get
a new estimate for the expanded patch. The chi-square test threshold t = 65 is thus set to
verify

2
Ptest(% <t) =05
which takes into account the possibly overly simplified null hypothesis and ensures a high
likelihood for retaining at least one additional patch to help denoise P.

It ought to be mentioned that when noise is strong, EM can mistake weak borders for noise
and cause some patch orientation not properly recognized, which usually happens in the areas
of subtle and gradual color transition (Fig.3.4). It is the chi-square test that provides a remedy
by favoring the locality of patch blending and thus enhances the algorithm’s robustness.

Nonetheless, this adjustment can be problematic when noise level is low. It should be kept
in mind that the patch expansion is only justified if it represents a better balance between
noise removal and signal preservation. Once again, SURE is the decision aid which we can fall
back on: we identify the pixels which only belong to flat patches and put them into a vector
p. Regardless of whether flat patches expand or not, these pixels are restored by simple linear
operations similar to those in equation (3.3). The patch size increase can thus be validated or
invalidated by comparing the SURE estimates resulting from these two filters operating on p.

This device enabling automatic patch size selection in relatively flat areas of an image im-
proves dramatically the visual quality as well as the overall MSE of restored images especially
when noise is strong.

Finally, we mention that in S-PLE, EM is merely a means to categorize patches and the
patch map is heavily relied upon because it hints at the best filter for denoising individual
patches. This explains why S-PLE performs less well vis-a-vis other state-of-the-art algorithms
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Figure 3.4. The first two images are dice corrupted by Gaussian noise with (a) o = 10 and (b) o = 30
respectively. EM iterated twice on the first transformed channel as explained in Fig.3.2 to produce the patch
map for (¢) o = 10 and (d) o = 30. Notice that the oriented edge on the top side of the dice failed to be
recognized at o = 30.
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Algorithm 4 Flat Patch Expansion

Input: Patch map M, noise level o and noisy patches (P;)1<i<n-
Parameters: Patch dimension k X k, search window size tv and similarity threshold t.
Run a connected component labeling algorithm on the patch map to locate flat areas.
Identify the pixels which only belong to flat patches and put them into a column vector
p € R,
for i=1to N do
if P, belongs to the flat model then

Find, within the search window centered on P;, non-overlapping similar patches sitting

in the same flat area as ]5Z

Merge them with P, to have the expanded noisy patch Pf.

Estimate all pixels in ISf by their arithmetic average which results in JBiE.
Record in a ny x ny matrix §¢ the filter used in the previous step so that F{p and ]31‘e
coincide on those pixels they share.
end if
end for R
Assign all the filtered patches P¢ the same weight and restore noisy flat patches. Find the
coefficients o; to have §¢ = ), ;§; and p¢ = §° where p¢ denotes the restored pixels on
the same sites as those in p.
Calculate the resulting SURE &°.
Repeat the same steps without expanding flat patches and denote the SURE estimate &.
if 6° < G then
Take the estimates with patch expansion.
else

Take the estimates without patch expansion.
end if
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in presence of strong noise (o = 40 for example) because its patch classification becomes less
reliable.

4. Algorithm Outline and A Comparative Study. To reduce execution time at denoising
a color image, instead of asking the computationally intensive EM algorithm to run on three
transformed channels, the first transformed channel, supposedly with the highest SNR, should
be given priority so that EM only operates on this channel and can iterate more rounds than
otherwise. The other two channels are then restored using the same patch map and filters
resulting from these iterations. This expedient solution is backed by the obervation that more
iterations on the first transformed channel generally bring about better results in terms of
MSE.

It is also observed that, at times, some component’s mixing weight gets close to zero after
several EM iterations due to its under-representation in sample patches. To accelerate the
algorithm and potentially achieve a better data fit, one can choose to eliminate those models
that seem to account for nothing but a tiny fraction of patches. In so doing, however, the
monotone convergence of the overall data likelihood might no longer be guaranteed. But
some experimental data showed that the model culling does not affect in a significant way the
denoising algorithm’s performance.

Table 4.1 compares S-PLE [30] with several other acclaimed algorithms whose implemen-
tations [16], [18], [17], [4], [31], [22] are available on the IPOL website. Since noise is random,
what we really wish to compare is the mean RMSEs various algorithms can achieve given
the same noiseless image. But as an algorithm operating on a big image usually produces
a quite stable RMSE (whose empirical standard deviation rarely exceeds 0.05), we thus feed
independently generated noisy images to each algorithm just once before compiling the results.

(d)

Figure 4.1. gray images used in algorithm comparison (a) computer (704 x 469) (b) dice (704 x 469) (c)
flowers (704 x 469) (d) girl (704 x 469) (e) traffic (704 x 469) (f) valldemossa (769 x 338)
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Algorithm 5 S-PLE
Input: A noisy gray image U.
Parameter: Number of EM iteration S, noise level o.
Read in the GMM setup ©g and set the initial SURE empirical mean to ¢y = (o + 1)? to reflect its
interpretation as an asymptotic MSE upper bound. Extract all 8 x 8 patches from U to form the
noisy patch set P and compute their posterior probabilities VP € P, Y0 < k < 19, Pg,(sp = k | P).

for t=1to S do
Update model priors:

1 -
VO < k<19, wy,= Bl > Po, (sp=k|P).
Pep

Update model means:

V0 <k <19, By = ZPEP @t,l(sp |~ )
215673 ]P)thl(sP =k | P)

Update factor loadings:
VO <k<19, Fi,= 2,’;_11@7%1(M,;l_lF;gt_liz,t_le,t,l +o%n,)7 L.

with [, = 32 for all k except for the last two: l1g = 63 and l19 = 1 where

ZPEP(P - I"’k,t)(p - Nk,t)TP@pq(SP =k | P)

YO<k<19, Mys1=Fiy Fr4+0°l, and &, = _
§ ZPEP ]P)@t—l(sp =k | P)

For all k, apply the spectral decomposition to FkﬂgF{,t to have its [ orthonormal leading
eigenvectors.
Create the patch map with the updated parameter set ©;:

M : P € P argmaxPe,(sp = k | P).
0<k<19

For all k, denoise the patches assigned to the k-th model with both Wiener and the hard
shrinkage filter and pick the better filtered patches according to their achieved model-wide
SURE empirical mean.
Record the SURE empirical mean &;.
Try patch expansion in flat areas.
if & > ¢, then
Break (Or continue iterating to see if the SURE empirical mean will eventually go
below &;_1).
end if
end for
Assign equal weights to all restored patches and recover the image.
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Table 4.1
Algorithm Comparison’

=2 SPLE DCT *GSM KSVD NLM EPLL °ZS-PLE BM3D NLBayes
computer 2.40 1.65 1.64 1.55 1.64 1.57 1.54 1.52 1.85
dice 0.96 0.91 0.92 0.96 0.97 0.89 0.86 0.84 1.31
flowers 1.25 1.08 1.09 1.09 1.29 1.09 1.02 1.04 1.44
girl 1.24 1.13 1.12 1.14 1.17 1.09 1.09 1.05 1.50
traffic 2.82 1.73 1.77 1.65 1.72 1.64 1.67 1.62 1.97
valldemossa 3.65 1.75 1.79 1.73 1.76 1.69 1.78 1.68 2.12
average 2.05 1.37 1.38 1.35 1.42 1.32 1.32 1.29 1.69
o=5 PLE DCT GSM KSVD NLM EPLL S-PLE BM3D NLBayes
computer 4.25 3.40 3.28 3.08 3.19 3.05 2.97 2.94 2.95
dice 1.45 1.44 1.51 1.89 1.70 1.32 1.29 1.27 1.72
flowers 2.16 1.97 1.97 2.11 2.42 1.87 1.79 1.81 2.18
girl 1.92 1.85 1.89 2.11 2.01 1.74 1.69 1.69 1.93
traffic 4.84 3.76 3.69 3.49 3.70 3.38 3.38 3.40 3.63
valldemossa 6.48 4.04 3.98 3.90 4.15 3.75 3.81 3.77 3.85
average 3.51 2.74 2.72 2.76 2.86 2.51 2.48 2.48 2.71
o=10 PLE DCT GSM KSVD NLM EPLL S-PLE BM3D NLBayes
computer 6.12 5.66 5.36 5.14 5.16 4.89 4.77 4.65 4.51
dice 2.08 2.08 2.24 3.42 2.80 1.90 1.80 1.82 2.15
flowers 3.26 3.14 3.19 3.70 4.01 2.92 2.85 2.86 3.07
girl 2.65 2.61 2.82 3.60 3.21 2.44 2.35 2.35 2.56
traffic 7.18 6.51 6.21 5.99 6.05 5.61 5.68 5.67 5.57
valldemossa 9.24 7.45 7.04 6.94 7.02 6.58 6.65 6.66 6.51
average 5.08 4.57 4.47 4.79 4.70 4.05 4.00 4.00 4.06

o =20 PLE DCT GSM KSVD NLM EPLL S-PLE BM3D NLBayes
computer 8.86 8.82 8.37 8.56 7.90 7.54 7.41 7.18 7.07
dice 3.20 3.05 3.19 6.74 3.55 2.95 2.66 2.67 2.76
flowers 4.97 4.88 5.02 6.60 5.66 4.57 4.55 4.48 4.67
girl 3.84 3.65 4.33 6.55 4.18 3.55 3.35 3.28 3.40
traffic 10.37 10.08 9.82 9.71 9.40 8.70 8.80 8.83 8.74
valldemossa  13.26 12.26 11.55 11.47 11.19 10.60 10.73 10.77 10.53
average 7.41 7.12 7.04 8.27 6.98 6.31 6.25 6.20 6.19

o =30 PLE DCT GSM KSVD NLM EPLL S-PLE BM3D NLBayes
computer 10.97 11.13 10.83 10.22 10.43 9.51 9.39 9.09 9.12
dice 4.43 3.88 4.18 6.09 4.87 3.94 3.37 3.44 3.35
flowers 6.44 6.37 6.15 6.95 7.45 6.00 5.92 5.80 5.89
girl 4.85 4.46 4.64 6.24 5.45 4.51 4.11 4.04 4.10
traffic 12.23 12.38 12.35 11.58 12.11 10.85 11.08 10.97 10.99
valldemossa  15.80 15.32 14.74 14.20 14.37 13.33 13.58 13.64 13.43
average 9.12 8.92 8.81 9.21 9.11 8.02 7.90 7.83 7.81

o =40 PLE DCT GSM KSVD NLM EPLL S-PLE BM3D NLBayes
computer 12.61 12.92 12.85 12.20 12.41 11.13 11.24 10.72 10.85
dice 5.85 4.64 4.96 7.91 5.20 4.80 4.49 4.14 3.95
flowers 7.68 7.59 7.32 8.55 8.96 7.12 7.14 6.94 6.98
girl 6.07 5.23 6.01 7.86 5.84 5.30 5.17 4.67 4.60
traffic 13.87 14.17 14.70 13.61 14.24 12.53 12.86 12.70 12.90
valldemossa 17.71 17.48 17.22 16.52 16.90 15.57 15.83 15.73 15.62
average 10.63 10.33 10.51 11.10 10.59 9.40 9.45 9.15 9.15

1 the algorithms are ordered to reflect their global performance. In bold is the lowest RMSE in each row.
2 S-PLE was allowed to iterate 50 times.

3 noise standard deviation

4 BLS-GSM [21]

5 PLE, with no observable convergence available, iterated four times
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(e) (f)

Figure 4.2. (a) original image (b) noisy image o =20 (¢) EPLL RMSE = 3.55 (d) S-PLE RMSE = 3.35
(e) BM3D RMSE = 3.28 (f) NLBayes RMSE = 3.40

5. How About A Richer Prior?. In view of the comparison table, it is clear that S-PLE
presents a huge improvement over the original PLE and achieves a level of denoising perfor-
mance worthy of being counted as another state-of-the-art algorithm. These best algorithms’
unmistakable convergence towards a similar end result in RMSE is striking indeed, a phe-
nomenon which has already been taken note of and spurred an interesting discussion [20], [19]
of whether the academic endeavour in this field of research has effectively come to an end. In
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Figure 4.3. (a) original image (b) noisy image o = 20 (¢) EPLL RMSE = 10.60 (d) S-PLE RMSE = 10.73
(e) BM3D RMSE = 10.77 (f) NLBayes RMSE = 10.53

addition, it is also surprising to see that S-PLE, in possession of only 20 models, is capable of
yielding competitive result vis-a-vis its counterparts which make use of at least 10 times more
Gaussian models, produced either locally (NLM and its variants) or by extensive preliminary
sampling (EPLL). In our opinion, this significant model number reduction is made possible as
a result of the initial models’ representativeness as well as the algorithm’s ability to adjust and
reuse them in the process of overall likelihood maximization. To stave off potential confusion,
let it be clear that, compared with S-PLE, EPLL has a fundamentally different and more
appealing data fidelity term which allows direct likelihood evaluation of individual patches as
they appear in a restored image. Yet, the question we attempt to answer is whether local
image learning can make up for a possibly less suitable prior.
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o ¢
0 %0

Figure 5.1. Local learning is a remedy against improper initial prior: (a) clean image (b) noisy image
(0 =50) (¢) EPLL restored RMSE = 8.15 (d) S-PLE restored RMSE = 5.16 (20 iterations). As EPLL draws
its prior from natural images, its restoration suffers from artifacts, an issue S-PLE shares at the beginning but
largely manages to address thanks to learning.

We ran S-PLE with all models except for the flat one replaced by those used in EPLL [33].
No factor trimming was performed for these 200 Gaussian components who jointly accounted
for an initial prior probability equal to 0.6 with their relative importance kept as they are in
EPLL, leaving the flat model responsible for the rest forty percent of patches. Conversely we
also let EPLL operate using our 20 initial models. The results effectively support our claim
that unless the Gaussian mixture prior is kept fixed, 20 well-chosen components appear to be
sufficient for the denoising purpose.
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Table 5.1
EPLL’s denoising performance under two different priors’

oc=2 computer dice flowers girl traffic valldemossa
EPLL>g 1.83 1.72 1.74 1.73 1.86 1.90
EPLL2og 1.57 0.89 1.09 1.09 1.64 1.69
S-PLESS 1.54 0.86 1.02 1.09 1.67 1.78
oc=5 computer dice flowers girl traffic valldemossa
EPLL>g 3.65 3.00 3.10 3.08 3.87 4.15
EPLL2go 3.05 1.32 1.87 1.74 3.38 3.75
S-PLE3) 2.97 1.29 1.79 1.69  3.38 3.81
o=10 computer dice flowers girl traffic valldemossa
EPLL>g 5.62 3.89 4.22 4.03 6.22 7.09
EPLL2oo 4.89 1.90 2.92 2.44 5.61 6.58
S-PLE3] 4.77 1.80 2.85 2.35 5.68 6.65

o =20 computer dice flowers girl traffic valldemossa
EPLL>g 8.19 4.71 5.60 4.97 9.30 11.19
EPLL2go 7.54 2.95 4.57 3.55 8.70 10.60
S-PLE3) 7.41 2.66 4.55 3.35  8.80 10.73

o =30 computer dice flowers girl traffic valldemossa
EPLL>g 10.07 5.33 6.77 5.65 11.36 13.93
EPLL>go 9.51 3.94 6.00 4.51 10.85 13.33
S-PLE3] 9.39 3.37 5.92 4.11  11.08 13.58

o =40 computer dice flowers girl traffic valldemossa
EPLL>g 11.61 5.96 7.71 6.22 13.00 16.10
EPLL2oo 11.13 4.80 7.12 5.30 12.53 15.57
S-PLE3) 11.24 4.49 7.14 5.17  12.86 15.83

1 EPLLyy and EPLLogg refer to EPLL run with a Gaussian mixture composed of
20 and 200 components respectively. S-PLES% 50 iterations of S-PLE with 20
components. Algorithms are ordered to reflect their global performance. Marked
in bold is the lowest RMSE in each column.
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Table 5.2
S-PLE’s denoising performance under two different priors®

oc=2 computer dice flowers girl traffic valldemossa
S-PLEL} 1.58 0.88 1.04 1.12 1.69 1.80
S-PLEzg1 1.57 0.87 1.03 1.09 1.64 1.69
S-PLEj, 1.54 0.86 1.02 1.09 1.67 1.78
oc=>5 computer dice flowers girl traffic valldemossa
S-PLE 3.03 1.31 1.82 1.73 3.43 3.85
S—PLE%g1 2.99 1.31 1.85 1.74 3.38 3.78
S-PLEgg 2.97 1.29 1.79 1.69 3.38 3.81

o =10 computer dice flowers girl traffic valldemossa
S-PLE%O 4.85 1.82 2.90 2.38 5.75 6.71
S—PLE2§1 4.78 1.87 2.94 2.46 5.64 6.63
S-PLEj, 4.77 1.80 2.85 2.35 5.68 6.65

o =20 computer dice flowers girl traffic valldemossa
S-PLEL 7.51 2.66 4.65 3.36 8.93 10.83
S-PLE%%1 7.39 2.79 4.75 3.57 8.82 10.72
S-PLE;, 7.41 2.66 4.55 3.35 8.80 10.73

o =30 computer dice flowers girl traffic valldemossa
S-PLE 9.52 3.57 6.06 4.28 11.22 13.72
S—PLE%g1 9.47 3.62 6.17 4.38 11.07 13.58
S-PLEgg 9.39 3.37 5.92 4.11 11.08 13.58

o =40 computer dice flowers girl traffic valldemossa
S-PLE%O 11.28 4.49 7.74 5.17 13.02 15.92
S-PLEgg1 11.13 4.35 7.48 5.07 12.82 15.80
S-PLEj, 11.24 4.49 7.14 5.17 12.86 15.83

L' S-PLE¢ refers to S-PLE run t iterations with a Gaussian mixture composed of ¢
components. Algorithms are ordered to reflect their global performance. Marked
in bold is the lowest RMSE in each column.
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Appendix A. Optimal Global Linear Filter for GMM.
To solve the optimization problem (1.1)

E[|LP + b — P|3] (A1)
K—-1
=E[|| > 1ip=k(LP+ LN +b - P)|3]
k=0
K—
Z k(I = D+ B]3 + (0 LLT + (L — DS(L — 1)), (A.2)

we proceed in two steps: first, if the optimal L, is found, b, can be determined by minimizing
the quadratic function (A.2)

d K21 K-1
7 wil|(Lw = Dpg + bl = 0= by = —(Lu = 1) Y wppsye
k=0 k=0

Second, by substituting (L., b,) for (L,b) in the expectation (A.1), we find

K-1 K-1 K-1

> wel (L = D) (e — Y wipsa)|I5 + tr(azL*L*T + (Lo — DY wpEy) (L — I)T)
k=0 =0 k=0

=tr(c*L.LT + (L. — )C(L. — I)")

where C' denotes the blended covariance matrix

K-1 K—-1 K-1
C = Z wi (X + Q) with Q= wip;)( wz,uz
k=0 =0 i=0

It follows
L.=C(C+o%*)7!
which is the conventional signal-to-noise (SNR) interpretation of Wiener filtering. To conclude,
the best linear estimator of a noisy patch P is

P=L,P+b,=L,(P— Z Wi g) + Z Wi s -

It is only optimal among the linear filters under the assumption made on the joint distri-
bution of signal and noise, hence the introduction of a host of non-linear denoising schemes.

Appendix B. Conditional Expectation E[P|P].
Let us state the result in the form of a theorem
Theorem B.1.Using the paper’s notations and hypotheses, we have

K-1
E[P|P] = Y P(sp = k|P)E[P|sp =k, P].
k=0
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Proof. First observe that the expression on the right hand side of the equation, seen as a
random variable, is measurable with respect to the o-algebra generated by P. Thus, we only
2
need to verify that the next equality holds for every element A in the Borelian set B(R"")

K-1
E[P1pcal =E[ > P(sp = k|P)E[P|sp =k, P]1p. ]
k=0
which is true because
K-1 K-1
Y E[Ply—klpeal = D E[E[P|sp, Plls,—rlpc 4]
k=0 k=0
K-1 B
= Y E[E[P|sp =k, P|ls,—klpc 4]
k=0
K—-1 5 5
= Y E[E[P|sp =k, PIP(sp = k|P)1p_,].
k=0

The k-indexed functions
fe:P—E[Plsp=FkP], ke ZN[0,K — 1]

amount to little more than a linear filter because the condition sp = k effectively restricts P
as well as P to behave like an ordinary Gaussian vector, and they read

VkeZN[0,K — 1], fr(P) = Fi(o®I + F{Fy) " FL(P — ) + py.

Appendix C. Two-Stage EM Algorithm for Gaussian Factor Mixture.

With the parameter set and the noisy patches denoted by © := {o, (Wi, py, Fr)o<k<r—1}
and X := (P;)1<i<n respectively, we would like to find the maximum-likelihood estimator
(MLE)

©* = argmax pe(X)
©

which is by itself a hard problem due to the potentially complicated form of the func-
tion © — pe(X). Expectation-Maximization (EM) completes X with the latent dataset
Y := (sp,)i<i<n, interpreted as the labels recording the generating model of each patch, and
introduces an auxiliary function

Qe,(0) = Eg,[logpe(X,Y)|X ]

with ©; representing the estimate of © at step ¢t. This conditional expectation is easy to
compute thanks to the discreteness of the patch model selector sp. And we are interested in
30
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the scenario where the completed dataset (X,Y") is made up of i.i.d. samples (]SZ, SP,)1<i<N

Eo,[logpe(X,Y)|X ] =) Ee,[logpe(P;, sp)|X |

M= HMz

= E@t[logp@(]%,sﬂ)\pi ] (C.1)
=1
N K-1
:Z Z E@t logpe)(Plak) sp; k’P]
i=1 k=0
N K-1 ~ ~
=Y logpe(P; k)Pe,(sp, =k | P;) (C.2)
1=1 k=0
N K-1 _ ~
=>_ > logpe(Plsp, = k)Pe,(sp, = k| P) (C.3)
i=1 k=0
N K-1
+>°) logPe(sp, = k)Pe,(sp, = k | P). (C.4)
i=1 k=0

Remarks:

(a) all the equalities hold almost everywhere (a.e.);

(b) equality (C.1) follows from the i.i.d. assumption;

(¢) equality (C.2) holds because the random variable log pe(P;, k) is measurable with respect
to the o-algebra generated by P; (or equivalently, the function log pe (-, k) is Borelian).
Maximizing Qg,(-) yields a new set of parameters serving as the next iteration’s input:

O¢4+1. To carry out the maximization, note that the i.i.d. assumption means that w; =

Po(sp, = k) only depends on k and ©. Optimizing the second term (C.4) boils down to

wp 13X Z logwkZ]P’@t = k| D)
K—1
bject t =1 i >0
subject to kzz%)wk ' oeiin w2

and the strong duality holds (Slater condition): the solution to its dual problem is

N D
P =k| P Z
Zk:o Ez 1]P>@t (SP k | l ) i=1
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Now turn to the first term (C.3) and seek its maximum

N K-1 . .

Z Z logp@(Pi | Sp; = k)PGt(SPi =k | PZ)

i=1 k=0

N KoL s (Piom)TE (Pipy) 3
=2 log - Po,(sp, =k | Fi)

i=1 k=0 (2m)"" det(Xg)

1 L Ty —1/7 K2 3
=3 > ((H — k) 3y (P — py) + log(2m)™ + log det Ek)Pet(SP,- =k|F)
i=1 k=0

where
VO<k<K-1, % :=F,F +0%]..

After some trivial simplification, we get a regularization problem
K-1
min tr(3.'38,,) + logdet 3
(B Fr)o<k<k-—1,0 kz:;) ( (B k) & k)
subject to Xy, = FuFL + 0?12, 0< k<K -1
N (p — p _ . \T _ P,
St = i=1 (P H]@)(Pz B P@t(fpi k| Pz)7 0<k<K-1
Zi:l Pet(SPi =k ‘ PZ)

o c R+.
Differentiate with respect to p,.:
_ 22];1 Zz]\il P@t(SPi =k | pl)(uk - pl)
Zg\il ]P@t(SPi =k ’ F)

By assuming that o is strictly positive, we have
YLy PiPe,(sp, = k | B)
Zij\il P@t(SPi =k|F)
Substitute (C.5) into 3 ; to have the new covariance 5]27# To update (Fj)1<k<x and o, we

keep the updates ;.1 and introduce some latent random coefficients (c;)1<i<n in order to
perform one cycle of EM, now with respect to (F'i)o<k<rx—1 and o2

N K-1
> > Ee,[logpe(Pi,ci | sp, = k)|P;, sp, = k|Pe,(sp, = k | P)
=1 k=0
N K—1 67“151'7ch21';2“]¢¢+1“27Hc;“z ) )
:Z E@t[log |Pi,8pl. = k‘]P@t(Spi =k | P@)
i=1 k=0 (27)l (2na2)r?
N K-1 D 2
1 ~ 1P — Frci — pg piq | ~
=~ 52 D Po,(sn =k | P)(Be, [ el By s, = K
i=1 k=0

+ k% logo? + (kK +1)log 27?).
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The conditional distribution of the random coefficient ¢; given P; and sp, = k is needed
to compute the expectation. One way to approach the problem is to recall the best linear
estimator for predicting ¢; from P; under the k-th model:

¢i = Lia(Pi = pyp1) + may
with
L Lyt = Fckr,t(FkiF;}F,t + U%Irﬁ)_ (FktFkt + UtIl) 1Fkt = Mk Fkta
2. my a Gaussian vector distributed as N (0, o Mk t) and independent of P.
It follows
Eo, [0 2| P, — Fre; — pypal® + lleil*| P

|(Ie2 — FiLgs) (P — Pres)|? + aitr(FiM, [ FT) B
= p L Lt (B — ey )P+ oitr (M)

_ 1P — prill? — 2(P, — Nk,t+1)TFkLk,t(pi — py 1) + 0 (FLF Q)

g2

+ 7 (Qi )
where we denote

Qigt = Lis(P — .Uk,t+1)(pi - l‘k,t+1)TLg,t + U?Mk_,tl

to further simplify the notation.
Now differentiate with respect to F'

0 - _
o (= 267 (FiLiu (P — 1) (B = o 00)”) + tr (FLFQi 1))
OF

= —2(P; — py 1) (P =ty 1) LEy + 2F 6 gy

and set the whole derivative to zero:

N
Z Po,(sp, =k | PZ)((Pz - Hk7t+1)(Pi - ll'k,t—l—l)TLg,t - Fszkt) =0.

It follows
EZ,tL;‘f,t — Fy (Lk,tf};tht + o7 M, t) =0
and
Fipi1 =5 Fry(M, [ FL, 5 Fry + 071) !
Apply the same procedure to derive an estimate for o2 if it is to be updated:

S S Pe,(sp, =k | P) (||(1 2 — Frup1 L) (P — ) 1? + a’ftr(Fk,tHMkftlFf’tH))
K2 2112 P@t P*k|P)
5:701 tr(iz,t - 2Z,tFk My F£t+1) E P@)r( sp, =k | P)
k2N

2 —
0111 =
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because

N ~ ~

> Po,(sp, =k | B)|[(Lz — Frps1Lia) (P — g0

i=1

~ N ~
:tr(Em(IHz - Fk,t+1Lk,t - L%,th,t—f—l + Lckr,tF;}F,thleJJrlLkJ)) ZP@(SPZ' =k | R)
i=1

and

tr(Fh 1 Frpo(Lia 2y L, + 07 M) = tr(Fp 2y L) = tr(Sg  FrieaLig)-

Appendix D. Information Theoretic Interpretation of Probabilistic PCA.

Let X be a n-dimensional Gaussian vector distributed as N (u, ). Given a set of co-
variance matrices € = {FFT + o2, F € R"* o0 € R}, one seeks the element in € that
minimizes the Kullback-Leibler divergence between the two probabilities

X
(Fy,0.) = argmin E{log puz—()} (D.1)
FeRm*l geR Pu,FFT 4021 (X)
Note that the expectation in (D.1) is defined under the probability induced by X, a choice
intended to simplify the calculation:
r X
argmin [E|log puz—()}
FeRnxl geR, - pu,FFTJrUzI(X)

= argmax E_logpu7FFT+o-2I(X)j|
FeRnxloeRy

o1 1
= argmax E|— —logdet(FFT +oI) — —(X — )" (FFT + o*1)7 (X — u)]
FeRnxloeRy 2 2

= argmin logdet(FFT + o2I) +tr [(FFT + o) TE[(X — p) (X — M)T]}
FeR"X! geRy

= argmin logdet(FFT+a2[)+tr[(FFT+U2)f1E].
FGR"X1,06R+

Appendix E. Stationarity and Convergence.
Let us denote 9y := Z N [1, N] in what follows.
Theorem E.1.Let (X¢s)(4,5)cz2 be a real-valued process with its mean and covariance defined

by
v(t,s), (t/a SI) € Z2a E[Xt,s] = H, COU[Xt,Sa Xt’,S'] = Rx(t — t/a $— SI)
where p is a constant and Rx(-,-) satisfies

Z |Rx(t,s)] < 4o0.
(t,s)€Z?
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Then the average N2 E(t,s)em?\, Xi,s converges both almost surely and in L2 to u as N goes
to infinity.
Proof. With the random variable N2 2o, )en?, X s denoted by Ay, we have

ElAy —plPl = NT'E[l Y Xs—wIPl=N"* > Rx(t—t,s—s).
(t,5)EMN3, (t,5)EMN3,
(t',s)em?,

Lesbesgue’s dominated convergence theorem then implies

A}i_r)rlooN*2 22 Rx(t—t,s—45)= Z 2RX(75,8)
,8)EN t,8)EZL
(S,s?)eemj\é\, e

and the convergence in L2
lim E[|Ay —ul’] =0
N—oo
follows from

E[|Ay —ulPf < N72 37 |Rx(t,s)]. (E.1)
(t,5)€Z2
In addition, Markov’s inequality implies
ve>0, Bl Ay — pull?) = PB(| Ay — 4l = <)
which, combined with (E.1), leads to
Ve>0, N72 Y |Rx(t,s)] > CP(|Ay — p| > ¢)
(t,s)€Z?

and thus

+oo
Ve > 0, Z P(|Ay — ] > ¢) < +o0.
N=1

The almost sure convergence follows from the Borel-Cantelli lemma. B
The condition

Z |Rx(t,s)] < 400

(t,5)ez?

requires Rx(-,-) to decay at a certain rate so that instances of Xy, from two sites far from
each other do not behave in sync. In view of the proof, this condition can be weakened to

da € [0,1), limsup N™¢ Z |Rx(t,s)] < 4oc.
N—oo 2
(t,s)ems,
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As an application, assume for convenience an infinitely large image in which the overlap-
ping patches (P(p’q))(pg)ep form a stationary process valued in R**. Thus the noisy patches

(P(p’q))(nq)ezz, seen as a process, are stationary too because the set of stationary processes

is closed under addition. The same property can then be extended to g(P(p7Q), ﬁ(p,q)) where
g: R x R — R is square integrable under the probability induced by the random couple
(PP PPy For example, ||PP9 — f(PP9)|? if we take f to mean any of the filters
mentioned in theorem 3.2. Its integrability can be easily checked

E(|[PPD — f(PPD)|*] < E[(|PPD + | FINPP)] < SENPP)] + | FIENIPP]14)

where the first inequality follows from the triangular inequality and the second results from
Jensen’s inequality (||f|| denotes the bounded operator’s norm). Now we can define

V(p,q), W', d) €Z%, Ry(p—p',q—d) = cov[|| PPV — f(PLD))2 | P@d) — f(pFL)))2),

Assume further that Rf(-,-) belongs to L'(Z?) under the counting measure, which is not
unreasonable given the restricted support of image patches. Theorem E.1 then implies that
the empirical average of ||PP® — f(P®9))|? converges in two senses simultaneously to its
mean as sample size grows to infinity.
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