N

N
N

HAL

open science

ORYA: A Strategy Oriented Deployment Framework

Pierre-Yves Cunin, Vincent Lestideau, Noélle Merle

» To cite this version:

Pierre-Yves Cunin, Vincent Lestideau, Noélle Merle. ORYA: A Strategy Oriented Deployment Frame-
work. 3rd International Working Conference of Component Deployment, 2005, Grenoble, France.

pp.177-180, 10.1007/11590712_14 . hal-00785265

HAL Id: hal-00785265
https://hal.science/hal-00785265
Submitted on 5 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00785265
https://hal.archives-ouvertes.fr

ORYA: A strategy oriented deployment framework

Pierre-Yves Cunin!, Vincent Lestideau', Noélle Merle!

! Adéle team, LSR — IMAG
220 Rue de la Chimie, Domaine Universitaire — BP 53, 38041 Grenoble Cedex 9, France
{Pierre-Yves.Cunin, Vincent.Lestideau, Noelle.Merle}@imag.fr
http://www-adele.imag.fr/

Abstract. The current trend consists in deploying, on each machine, a specific
version of an application, according to the choices of the enterprise and users,
with constraints verified by the target site. To support automated deployment,
we propose a model-based deployment framework named ORY A which allows
to define and execute deployment strategies. This paper presents and illustrates
the concept of deployment strategy supported by the framework.

1 Introduction

Various approaches exist to deploy an application on a set of target machines. One
possibility is to create a deployment plan and then to execute it. To produce
automatically this plan, we define models which describe units to deploy, target
machines and enterprise structure [1]. The application model defines the deployment
unit (a version of an application) with properties, constraints and dependencies. The
site model describes the hardware and software configuration of a target machine with
properties. The enterprise model collects machines into groups and subgroups.

A property describes a feature of a unit or a machine. A constraint, associated to a
deployment unit, expresses a property the target must have. A strategy, attached to an
enterprise entity (group, machine), expresses a constraint imposed by the enterprise.
Section 2 presents fundamental aspects of our strategy-based approach.Section 3
presents a use case. Section 4 concludes with future works and objectives.

2 Deployment strategies

Large scale deployment is a complex action that cannot be done by hand. Often the
deployers use in-house defined deployment strategies to ensure the right quality level
of operation (security, homogeneity, standards, ...). In some approaches strategies are
included (hard coded) within the deployment tools [2]. Therefore a deployer cannot
define new ones, better adapted to his needs. Our objective is to help deployers
expressing advanced deployment strategies and to provide a framework for piloting
strategy-based deployments. An outcome will be a new version of our deployment
environment ORYA [3, 4, 5] based also on the GDF experiment [6].



2.1 Approach and algorithm principle

We assume that the strategies are expressed only on sites and groups. Strategies
belong to the enterprise and therefore are attached to the entities of the enterprise
structure. Each strategy is applied to the current set of deployable units.

A strategy is a 3-uple <LogicalExpression, Activity, Choice> The Activity specifies
one phase of the deployment. In this paper we consider only the Initial Deployment
phase. During the Activity, the LogicalExpression is evaluated for all the current
deployable units, i.e. the current application structure (AS). This gives two sub-sets:
the “frue set” and the “false set”. Then the Choice, its associated actions, is applied to
these two sets depending on the semantics of the strategy. The result is an 4S made of
the remaining deployable units.

There exist many strategies, for example: enforce the same version on a set of
machines, allow replacement of a version by a newer one, favor the deployment of a
unit having some characteristic (e.g. choose a unit written in Java instead of the same
in C++), deploy the dependencies of a unit before the unit itself, deploy a unit on a
group of machines before on another one, roll back during the execution of the plan,
due to a change of the environment (e.g. the needed resources are no more available).

The algorithm is a parsing of the enterprise structure(ES) with propagation of an
AS through the whole structure. On each node, strategies are applied in order to prune
the AS. On a machine node, the constraints of the units are checked.

Strategies can be classified in three main categories: strategies to select units
having specific properties, strategies to define the ordering of the plan and strategies
used during the execution of the plan (mainly to handle errors).

A strategy is defined by its basic behavior and the following features: 1) the scope:
a strategy may be attached to a group or a single machine, 2) the visibility: a strategy
attached to a group may or may not hide - may or may not be overloaded by - any
similar strategy expressed on a sub-node, 3) the propagation: a strategy attached to a
group may impose collecting information about the sub-nodes, 4) the precedence:
several strategies may have to be applied at the same time on the same node.

2.2 Strategies VERSION-RIGHT and VERSION-SCOPE

To illustrate some characteristics, we focus on two strategies .

1. Strategy VERSION-RIGHT is attached to a group or a single machine and can
be applied without additional information (e.g. from sub-nodes, if any). If Choice is
NO, units of the “true set” cannot be deployed on the machine(s of the group) and the
resulting A4S is made of the “false set”. If Choice is ONLY, only units of the “true set”
can be deployed on the machine(s of the group)and the 4S is made of the “true set”.

2. Strategy VERSION-SCOPE. is a complex strategy used to ensure coherence on
versions deployed on all the machines of a group. The semantics of the strategy
depends on Choice: a) if ANY, each machine may have a different version and the
units of the “false set” are discarded. b) if SAME-TRUE, the units of the “false set”
are discarded and one same unit, of the “true set”, should be deployed on all machines
and should be compatible with the configuration of each machine. c) other values are



possible, for example SAME-IF-TRUE means that each machine may have a unit of
the “false set” or the same unit of the “true set”.

The application of the strategy is different for each value of Choice: a) if ANY, the
strategy is immediately applied at the level of the group node and the new A4S is equal
to the “true set”. b) if SAME-TRUE, the “true set” is propagated as AS, through a
recursive parsing of the ES, together with a query about what units of this set can be
deployed . When this information is made available at the level of the group node, the
AS is constructed as the set of the units deployable on every machine. During this
recursive parsing local strategies VERSION-SCOPE or VERSION-RIGHTS on sub-
nodes have to be applied before treating the “propagated” query and set of units

3 Use case

The two representations structures are shown in Fig. 1. The ES represents the target on
which to deploy. The A4S represents possible units, with their characteristics and
dependencies. The deployer wants to deploy the application U on the machines of the
group G. G is composed of two groups G/, composed of machines M/ and M2, and
G2. G2 contains the machine M3 and the group G3, itself composed of machines M4
and M5. The machines have properties specifying operating system (OS), memory
capacity (Mem) and available disk space (Disk). Strategies VS (VERSION-SCOPE
strategy) and VR (VERSION-RIGHTS strategy) are defined, on nodes G and G 1.

Enterprise stravcture with machine’s properties : 'O@ V8= <inplementation = Java, hitiatDeployment, SAME-TRUE>
VR = <Jnterfice = multimedia, Riticd Deployraent, NO=

08 =win2000
Mem =512
Disk=758

Merm =512
Disk=123

Mem = 256
Disk=452

08 = win2000
Mem =356
Digk = 546

05 =win2000

Digle= 280

ArpEcation siructure (set of units) :

Type =dewTool
Implem =java
Interface=tat

Type = dewTool
Iropletn = o+
Interface = graph

Type = dewTool Type = devTool

U3 Implemn = java b [trplern = java
Interface =t Interface = mmed

08 & {winXP, win2000} O e {winXP, wind000} 0% = Linuz 08 & {winXP, win2000}
Merm >= 256 Merm 5= 256 Mern »= 256 Men >=512
Disk >= 104 Disk »=104 Disk >=08 Disle >= 104

Fig. 1. Enterprise structure (ES) and Application structure (AS)

The application U is available in four versions, described by properties: type,
programming language, interface type. Each unit forces constraints : a set of possible
operating system, a minimal memory capacity, a minimal available disk space.



On G, the application of the strategy VS requires information from the sub-nodes.
The “true set” of units {U1, U3, U4} is propagated to G and G2. On G1, the strategy
VR is applied and the set {UI, U3} is propagated to M1 and M2. Then the constraints
are checked and U3 is discarded because it imposes Linux as OS. So the set {UI} for
M1 and M2 is sent back to G through G1. On G2, the set {UlI, U3, U4} is propagated
to M3 and G3. The set {Ul, U4} for M3 is sent back to G through G2. On G3, the set
{UI, U3, U4} is propagated to M4 and M5. The sets {U1} for M4 (U4 is discarded due
to the memory capacity) and {UlI, U4} for M5 are sent back to G through G3 and G2.
Back to G: the strategy VS is finally applied and the A4S is build as the intersection of
the sets of all the machines: {UI}. Therefore, in that example, only this unit could be
installed on all the machines.

4 Future work and objectives

We have defined and prototyped a design and execution framework. A set of basic
strategies has been defined The approach has been validated through real size
experiments [7] with simple strategies.

In the example we have not taken into account the dependencies that may exist for
each unit. Dependency units are units themselves. Trying to apply strategies to
dependencies introduces “meta” strategies, e.g.: should a strategy, applied to a unit, be
also applied to its dependencies ? Should we evaluate the LogicalExpression of a
strategy on (all) the dependencies of a unit ? Should we consider dependencies as
being standard units on which apply the strategy algorithm ? The approach we use is
an MDE (Model Driven Engineering) compatible one based on three interacting
levels: strategy instances, strategy model and strategy metamodel (meta-strategies).

References

1. Merle N., Un méta-modéle pour 1’automatisation du déploiement d’applications logicielles.
DECOR’04. Grenoble, France. Octobre 2004.

2. Ayed D., Taconet C., Sabri N., Bernard G.: CADeComp : plate-forme de déploiement
sensible au contexte des applications a base de composants. 4éme Conférence Frangaise sur
les Systémes d’Exploitation (CFSE’05). Le Croisic, France. 5-8 avril 2005

3. Lestideau V., Belkhatir N., Cunin P.-Y.: Towards automated software component
configuration and deployment. PDTSD’02. Orlando, Florida, USA. July 2002.

4. Lestideau V.: Modéles et environnement pour configurer et déployer des systémes logiciels.
PHD Thesis, Université deSavoie, December 2003,
http://www-adele.imag.fr/Les.Publications/BD/PHD2003Les.html

5. Merle N., Belkhatir N., Open Architecture for Building Large Scale Deployment Systems
The 2004 International Conference on Software Engineering Research and Practice
(SERP'04), Las Vegas, Nevada, USA, June 2004

6. On-demand Service Installation and Activation with OSGi. ObjectWebCon05 : Fourth
Annual ObjectWeb Conference. January 2005,Lyon, France.

7. Centr’Actoll web site : http://www-adele.imag.fr/Les.Groupes/centractoll/index.html



