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Abstract 38 

This paper investigates the uncertainty of hydrological predictions due to rainfall-runoff 39 

model parameters in the context of climate change impact studies. Two sources of 40 

uncertainty were considered: (i) the dependence of the optimal parameter set on the 41 

climate characteristics of the calibration period and (ii) the use of several posterior 42 

parameter sets over a given calibration period. The first source of uncertainty often refers 43 

to the lack of model robustness, while the second one refers to parameter uncertainty 44 

estimation based on Bayesian inference. Two rainfall-runoff models were tested on 89 45 

catchments in northern and central France. The two sources of uncertainty were assessed 46 

in the past observed period and in future climate conditions. The results show that, given 47 

the evaluation approach followed here, the lack of robustness was the major source of 48 

variability in streamflow projections in future climate conditions for the two models 49 

tested. The hydrological projections generated by an ensemble of posterior parameter sets 50 

are close to those associated with the optimal set. Therefore, it seems that greater effort 51 

should be invested in improving the robustness of models for climate change impact 52 

studies, especially by developing more suitable model structures and proposing 53 

calibration procedures that increase their robustness. 54 

 55 

Keywords: Climate change, rainfall-runoff modelling, hydrological model calibration, 56 

uncertainty, robustness. 57 

 58 
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1 INTRODUCTION 59 

1.1 Hydrological projections under climate change and their associated uncertainties 60 

The impacts of climate change on catchment behaviour have been extensively investigated 61 

over the last few decades (see e.g. for Europe Arnell, 1999a, Arnell, 1999b; for Australia 62 

Vaze et al., 2011 and Vaze and Teng, 2011). Quantitatively assessing the uncertainties 63 

associated with hydrological projections is a difficult task, even if qualitatively it is now 64 

recognised that these uncertainties are considerable. They stem from the methods used to 65 

generate climate projections as well as from hydrological modelling. Moreover, the relative 66 

importance of the various uncertainty sources is not easy to assess. Wilby and Harris (2006) 67 

proposed a framework to assess the relative weights of the sources of uncertainty in future 68 

low flows for the River Thames. They consider that uncertainty sources should be ranked in 69 

decreasing order as follows: Global Circulation Models (GCMs) > (empirical) downscaling 70 

method > hydrological model structure > hydrological model parameters > emission scenario. 71 

However, this conclusion was obtained using only two rainfall-runoff models applied to a 72 

single catchment. Wilby (2005) noted that depending on the rainfall-runoff model used (and 73 

possibly the catchment studied), the uncertainties associated with hydrological modelling may 74 

predominate. More recently, Chen et al. (2011) showed on a Canadian catchment that the 75 

choices of GCMs and downscaling techniques are the greatest uncertainty sources in 76 

hydrological projection estimations, followed by emission scenarios and hydrological model 77 

structures, and last hydrological model parameter estimation. On several southeastern 78 

Australian catchments, Teng et al. (2012) also showed that uncertainties stemming from 79 

fifteen GCM outputs are much greater than the uncertainties stemming from five hydrological 80 

models. Focusing on future hydrological trends in the UK, Arnell (2011) showed that 81 

“uncertainty in response between climate model patterns is considerably greater than the 82 

range due to uncertainty in hydrological model parameterization.” These results show that the 83 
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uncertainties generated by the hydrological modelling step, though generally lower than that 84 

generated by the climate modelling step, can be significant in some cases and should not be 85 

ignored in climate change impact studies.  86 

The common sources of uncertainty in hydrological modelling in stationary conditions (in 87 

terms of climate conditions and/or physical characteristics) include errors in model structure, 88 

problems in the calibration procedure, and errors in the data used for calibration. In non-89 

stationary conditions, as in climate change studies, additional uncertainties may come from 90 

parameter instability due to the possible changes in the physical catchment characteristics and 91 

in the dominant processes. In both cases, model structure errors and the identification of 92 

model parameters can generally be considered as the two main sources of uncertainty in the 93 

hydrological modelling step. Several methods exist for studying uncertainties due to model 94 

structure (see e.g. Refsgaard et al., 2006). In climate change impact studies, the errors 95 

stemming from the model structure are usually assessed using several rainfall-runoff models 96 

and quantifying the range of their outputs (Booij, 2005; Wilby, 2005; Wilby and Harris, 2006; 97 

Jiang et al., 2007). The problem of parameter identification has been widely investigated and 98 

many methods to quantify the associated uncertainty have been proposed (see e.g. Matott et 99 

al., 2009, for a review). In a recent study, Bastola et al. (2011) attempted to quantify these two 100 

hydrological uncertainty sources (model structure and parameter sets) in a climate change 101 

context using a multi-model approach combining multiple emission scenarios and GCMs, 102 

four conceptual rainfall-runoff models and two parameter uncertainty evaluation methods 103 

(Generalized Likelihood Uncertainty Estimation and Bayesian Model Averaging). The 104 

authors concluded that “the role of hydrological model uncertainty is remarkably high and 105 

should therefore be routinely considered in impact studies.” Note that the type of hydrological 106 

model used (physically-based or conceptual, lumped or distributed, etc.) may also be 107 

considered as an uncertain choice, in both stationary and non-stationary conditions. It is often 108 
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considered that the physical basis of process descriptions is indispensable to maintain the 109 

predictive power of hydrological models in a changing climate (see e.g. Ludwig et al., 2009). 110 

A few studies have covered this issue by considering both conceptual and physically-based 111 

models (see e.g. Poulin et al., 2011). The RExHySS project (Ducharne et al., 2009; Ducharne 112 

et al., 2011) addressed this issue on the Seine River basin (France) by considering seven 113 

hydrological models, including distributed (predominantly) physically-based models, semi-114 

distributed physically-based models and lumped conceptual models. Interestingly, the results 115 

showed that the conceptualisation of the models was not the main source of variability in 116 

hydrological projections among the model simulations since large differences were found 117 

between models with similar conceptualisations. 118 

1.2 Can model parameter instability be a major source of uncertainty?  119 

Other studies have investigated the dependence of the model parameters on the characteristics 120 

of the record period used for calibration. In climate change impact studies, the record period 121 

used to calibrate the model differs from the projected period. Since rainfall-runoff model 122 

parameters must be calibrated using the available data sets, they will partially account for the 123 

errors contained in these data (see e.g. Yapo et al., 1996; Oudin et al., 2006a) and/or their 124 

specific climate characteristics (see e.g. Gan and Burges, 1990). This is a well-known issue 125 

for conceptual rainfall-runoff models but physically-based models are also affected by this 126 

problem (see e.g. Rosero et al., 2010). Model parameters are the integrators of the data‟s 127 

information content. Different time periods used for calibration may provide quite different 128 

optimum parameter sets, depending on whether the period is dry or wet, for example, thus 129 

providing an estimation of parameter uncertainty with respect to their lack of robustness. Here 130 

Beven (1993) states that “it is easy to show that if the same model is „optimised‟ on two 131 

different periods of record, two different optimum parameter sets will be produced. Extension 132 

to multiple calibration periods, if the data were available, would yield multiple optimum 133 
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parameter sets. The resulting parameter distributions would reflect the uncertainty in the 134 

parameter estimates and the interaction between the individual parameters.” As stressed by 135 

Gan and Burges (1990), this obviously “should be heeded by modelers who use calibrated 136 

conceptual models to explore hydrologic consequences of climate change.” As a consequence, 137 

and without clear guidelines on how the model should be calibrated for climate change impact 138 

studies, most hydrologists calibrate their models with all the available data (e.g. Vaze and 139 

Teng, 2011) or with the longest observed period they consider representative of the current 140 

hydro-climatology conditions (e.g. Poulin et al., 2011), generally considering a priori that “the 141 

longer the calibration period, the more robust the parameter set.” 142 

One way to evaluate the capacity of models to represent the hydrological behaviour of a 143 

catchment in a changing climate is to apply the differential split-sample test, introduced by 144 

Klemeš (1986). In this testing scheme, two contrasted periods are identified in the available 145 

record and the split-sample test is performed using these two periods. If the model is intended 146 

to simulate streamflow under wetter climate conditions, then it should be calibrated on a dry 147 

period selected in the available record and validated on a wet period. Conversely, if it is 148 

intended to simulate flows under drier climatic conditions, the reverse should be done. The 149 

model should demonstrate its ability to perform well in these contrasted conditions. Despite 150 

the simplicity of the test, relatively few authors have followed the differential split-sample test 151 

in the past (see e.g. Jakeman et al., 1993; Refsgaard and Knudsen, 1996; Donnelly-152 

Makowecki and Moore, 1999; Seibert, 2003; Wilby, 2005). More recently, Merz et al. (2011) 153 

applied the test to a large set of 273 catchments in Austria and found that the parameters of 154 

the hydrological model controlling snow and soil moisture processes were significantly 155 

related to the climatic conditions of the calibration period. Consequently, the performance of 156 

the model was particularly affected if the calibration and the validation periods differed 157 

substantially. Vaze et al. (2010) also applied the differential split-sample test to 61 catchments 158 
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in southeast Australia with four conceptual hydrological models. They found that the 159 

performance of these models was relatively dependent on the climatic conditions of the 160 

calibration period. On 216 southeastern Australian catchments, Coron et al. (2012) 161 

highlighted the same lack of robustness of three hydrological models tested in climatic 162 

conditions different from those used for parameter calibration. Vaze et al. (2010) therefore 163 

suggest that it would be wiser to calibrate model parameters on a portion of the record with 164 

conditions similar to those of the future period to simulate. This idea was also put forward by 165 

de Vos et al. (2010), who proposed dynamically re-calibrating model parameters for each 166 

temporal cluster by finding analogous periods in the historical record. Following similar 167 

motivations, Luo et al. (2011) showed that more consistent model predictions on specific 168 

hydrological years are obtained if a selection of calibration periods is performed, and Singh et 169 

al. (2011) used adjusted parameter values depending on the aridity of the catchment 170 

considered for improving model prediction. These methodologies could be applied for 171 

simulating future hydrological conditions, but unfortunately, as stated by Prudhomme and 172 

Davies (2009), long records that include climatic conditions similar to what could be expected 173 

in the future are lacking. This makes it difficult to identify a set of parameters specific to such 174 

future conditions. Note that in some regions, climate changes have occurred in the past and it 175 

is therefore possible to objectively assess the potential of hydrological models to cope with 176 

changing climate. This is the case for Central and Western Africa, affected by a marked 177 

reduction in rainfall and runoff from the year 1970 onwards. Using different models on 178 

different catchments in this region, Niel et al. (2003) and Le Lay et al. (2007) showed no 179 

evidence that non-stationarity in climate would incur model parameter instability.  180 

1.3 Scope of the paper 181 

This paper intends to investigate the uncertainty of hydrological predictions for the future 182 

climate. To this aim, we followed Klemeš‟s differential split-sample test and assessed the 183 
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corresponding variability of the simulated hydrological impacts of projected climate when 184 

considering alternatively (i) the dependence of the optimal parameter set on the calibration 185 

period characteristics and (ii) an ensemble of posterior parameter sets obtained on a given 186 

calibration period. Each source of uncertainty was already studied in the context of changing 187 

climate, but their relative importance has not been assessed so far. Besides, most studies 188 

focusing on the parameter‟s dependency on climate conditions did not assess the 189 

consequences of choosing various calibration strategies on future hydrological projections. 190 

Here we will attempt to assess the long-term effects of these two sources of uncertainty in 191 

future conditions. 192 

 193 

2 DATA AND MODELS 194 

2.1 Catchment set 195 

A set of 89 catchments located in northern and central France was used, namely the Somme 196 

River at Abbeville, 22 sub-catchments of the Loire River basin and 66 sub-catchments of the 197 

Seine River basin (see Figure 1). Catchment area ranges from 32 to 109,930 km², runoff yield 198 

ranges from 0.11 to 0.69 and the aridity index (here defined as the ratio of mean annual 199 

Penman (1948) potential evapotranspiration to mean annual rainfall) ranges from 0.64 to 1.39. 200 

Compared to the Seine basin sub-catchments, the sub-catchments of the Loire River basin add 201 

diversity in terms of physiographic characteristics (with generally larger areas, higher 202 

elevations, and a different geological context), and hydro-climatic characteristics (with 203 

generally higher runoff yields). None of the catchments studied is strongly influenced by 204 

upstream dams. 205 

 206 
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FIGURE 1: Location and distribution of various characteristics of the 89 catchments used. 207 

The boxplots show the 0.10, 0.25, 0.50, 0.75 and 0.90 percentiles (67 is the number of 208 

catchments in the Seine and Somme basins, 22 in the Loire basin). 209 

 210 

2.2 Hydro-meteorological data 211 

The hydrological models tested here require only daily time series of potential 212 

evapotranspiration (PE) and rainfall (P) as input data. We used climate data from the 213 

SAFRAN meteorological reanalysis (Quintana-Segui et al., 2008; Vidal et al., 2010), which 214 

provides daily series of Penman PE and P from 1970 to 2007 at a mesoscale (on an 8 × 8 km 215 

grid). These data were aggregated for each catchment in order to estimate mean areal inputs. 216 

Besides daily streamflow (Q), time series were used to calibrate the models and assess their 217 

performance. 218 

Since it is not within the scope of this paper to discuss the uncertainties related to climate 219 

projections, the outputs of a single general circulation model (GFDL CM2.1) driven by the 220 

A1B emissions scenario (IPCC, 2007) were chosen as climate projections. These outputs were 221 

regionalised using a statistical downscaling method based on weather types (Boé et al., 2006), 222 

producing a database at the same spatial resolution as the SAFRAN database (8 × 8 km). 223 

Three time slices with continuous daily series of PE and P were used in this study: 224 

 1980–2000, referred to as "present time" and noted PT hereafter;  225 

 2045–2065, referred to as "mid-century" and noted MC hereafter; 226 

 2080–2100, referred to as "end-of-century" and noted EC hereafter.  227 

This scenario was tested on the Seine and the Somme basins within the RExHySS project 228 

(Ducharne et al., 2009, Ducharne et al., 2011) and on the Loire River basin within the ICC-229 

Hydroqual project (Moatar et al., 2010). For the Seine and the Somme basins, the downscaled 230 



 10 

projection simulates an increase in mean annual air temperature of 1.8°C by MC and 3.1°C by 231 

EC, a decrease in mean annual precipitation of 5% by MC and 10% by EC (with an increase 232 

of winter precipitation and a decrease of summer precipitation) and an increase in potential 233 

evapotranspiration of 16% by MC and 26% by EC. These predictions are close to the mean 234 

trends estimated with up to 14 climate projections used in the RExHySS and ICC-Hydroqual 235 

projects, making the scenario used in this study an in-between scenario.  236 

2.3 Rainfall-runoff models 237 

Two daily continuous lumped rainfall-runoff models were used to avoid providing model-238 

specific conclusions: 239 

 The GR4J rainfall-runoff model, an efficient and parsimonious (four free parameters) 240 

model described in detail by Perrin et al. (2003); 241 

 The TOPMO model (six free parameters), inspired by TOPMODEL (Beven and 242 

Kirkby, 1979; Michel et al., 2003), already tested on large data sets. This lumped 243 

model is quite different from GR4J but has comparable performance (see e.g. Oudin et 244 

al., 2006b). Here the distribution of the topographic index is parameterised and 245 

optimised, and not calculated from a digital elevation model. This was found to have 246 

only a limited impact on model efficiency, as shown by Franchini et al. (1996) and this 247 

eases the application of the model when it is tested on a large set of catchments. 248 

Note that we did not explicitly investigate the uncertainties stemming from hydrological 249 

model structures. This was analysed e.g. by Seiller et al. (2012) using a multi-model approach 250 

in a climate change perspective. 251 

2.4 Model parameterisation 252 

The optimisation algorithm used to calibrate parameter values is the Differential Evolution 253 

Adaptive Metropolis (DREAM) algorithm (Vrugt et al., 2009). DREAM optimises model 254 
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parameters on a given period and additionally infers the posterior probability distribution of 255 

model parameter values through Markov Chain Monte Carlo (MCMC) sampling.  256 

As an objective function, we used the formal Generalized Likelihood function described by 257 

Schoups and Vrugt (2010), which considers correlated, heteroscedastic, and non-Gaussian 258 

errors (noted GL hereafter). The results in validation are analysed with the Nash and Sutcliffe 259 

(1970) efficiency criterion, which is still widely used in modelling studies. It was computed 260 

on root square transformed flows (noted NSEsq hereafter), which makes it possible to assess 261 

model efficiency for both high and low flows (Oudin et al. 2006b).  262 

 263 

3 METHODOLOGY FOR INVESTIGATING PARAMETER UNCERTAINTY IN A CHANGING 264 

CLIMATE 265 

3.1 General methodology 266 

The building blocks of the method originate from the differential split-sample test 267 

recommended by Klemeš (1986) and the methodology followed by Wilby (2005). The 268 

parameter uncertainty associated with the changing climate is characterised by the variability 269 

of the parameters across calibration sub-periods with varying hydroclimatic characteristics. 270 

The methodology is carried out in three steps (see Figure 2): 271 

 Step 1: identification of test periods. 272 

 Step 2: model parameter calibration and identification of posterior parameter sets. 273 

 Step 3: model validation and simulation, and parameter uncertainty quantification. 274 

These three steps are further detailed hereafter.  275 

 276 

FIGURE 2: Illustration of the three-step methodology used for investigating parameter 277 

uncertainty in a changing climate. 278 
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 279 

Note that a similar methodology was used in the RheinBlick project (Görgen et al., 2010) for 280 

quantifying uncertainties due to the parameters of hydrological models in a climate change 281 

perspective on the Rhine basin. 282 

3.2 Step 1: Identification of climatically contrasted sub-periods 283 

For each catchment, four climatically contrasted 3-year sub-periods were identified in the 284 

available record: a wet sub-period, two dry ones and an intermediate one. The driest sub-285 

period will be used as the validation period (hereafter noted dry validation sub-periods) and 286 

the three others will be used as calibration sub-periods. This choice was made because the 287 

selected climate projection indicates that future conditions will be drier and warmer on the 288 

test basins. The aridity index (here defined as the ratio of mean Penman potential 289 

evapotranspiration to mean precipitation) was used to characterise the climatic specificity of 290 

each sub-period: the wet sub-period corresponds to the three contiguous hydrological years 291 

with the lowest aridity index (here a hydrological year starts on September 1 and ends on 292 

August 31). The choice of this index is rather arbitrary and may influence the results obtained 293 

hereafter. However, since it is solely based on climate characteristics, this makes it possible to 294 

assess the climatic specificity of the chosen sub-periods compared to the projected future 295 

climate. Obviously, it was not possible to use a criterion based on observed streamflows, as 296 

done by Seibert (2003) on observed data, since future flow observations by definition do not 297 

exist.  298 

The choice of the length of the record sub-period to consider is not straightforward since it is 299 

based on a trade-off between two opposite expectations: (i) the longer the sub-periods, the 300 

more robust the set of parameters should be and (ii) the shorter the sub-periods, the more 301 

climatically contrasted sub-periods can be found in the record period. A review of the 302 

literature (see e.g. the review proposed by Perrin et al. (2007)) shows that there is no clear 303 
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consensus on the minimum length of calibration period for rainfall-runoff models, which is 304 

probably attributable to the specificity of the catchments and models used in those studies. 305 

Specifically for the two parsimonious models used in this paper, Anctil et al. (2004) obtained 306 

good GR4J performance with 3- to 5-year calibration periods and Perrin et al. (2007) showed 307 

that the calibration of the GR4J and TOPMO models with the equivalent of only 1 year of 308 

data can provide acceptable performance. Thus, it seems that 3-year periods can yield 309 

acceptable parameter sets. Those relatively short sub-periods allow representing significantly 310 

contrasted climatic conditions. Interestingly, Figure 3 shows that the contrast between the 311 

aridity indexes of the different calibration sub-periods is similar to the contrast between the 312 

aridity indexes of the observed record and future climate projection. However, it should be 313 

noted here that the climate projection simulates systematically drier conditions than the dry 314 

validation sub-periods. This means that whatever the selected calibration sub-period, the 315 

model is applied in extrapolation in future climate conditions. Note that the aridity index does 316 

not reflect seasonal variability of precipitation and potential evapotranspiration: two sub-317 

periods with similar values of the aridity index may be quite different in terms of climate 318 

seasonality. This means that seasonal indexes would be useful to consider as additional 319 

criteria for period selection if seasonal contrasts were under study.  320 

 321 

FIGURE 3: Comparison of Aridity Index (AI) values for the different calibration and 322 

validation sub-periods considered and for the three time slices (PT, MC, EC) for the 89 323 

catchments. 324 

 325 

3.3 Step 2: Model calibrations on the specific periods 326 

For each catchment, the two hydrological models were calibrated using the three climatically 327 

contrasted sub-periods (i.e. the wet, mean and dry sub-periods) and the whole record period 328 
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(except the dry validation sub-periods, which are used for model validation in step 3). A 1-329 

year warm-up period was considered for each simulation.  330 

The DREAM algorithm was used to infer the most likely parameter set and its underlying 331 

posterior probability distribution. We selected for each calibration run (i) the optimal 332 

parameter set defined as the parameter set maximising the GL objective function and (ii) an 333 

ensemble of 2000 posterior parameter sets representing the posterior probability distribution 334 

of parameter sets. For each catchment and each calibration period, we checked that the 335 

DREAM algorithm converged to the stationary distribution representing the model‟s posterior 336 

distribution by analysing the Gelman-Rubin convergence statistics. 337 

Note that additional model calibrations were also performed on the dry validation sub-periods. 338 

The corresponding calibration performance was used as a reference to evaluate the 339 

performance of models validated on these dry validation sub-periods after calibration on other 340 

periods. 341 

3.4 Step 3: Model simulations with different parameter sets 342 

At this stage of the methodology, four optimal parameter sets corresponding to the four 343 

calibration periods and an ensemble of 2000 posterior parameter sets identified throughout the 344 

record period (except the dry validation sub-periods) are available for each catchment.  345 

All these parameter sets were used for each catchment to simulate the streamflow time series 346 

over the dry validation sub-periods (illustrated as grey hydrographs in the first line of the third 347 

step of Figure 2) and on the three time slices (PT, MC and EC) (illustrated as grey envelops 348 

on the flow duration curves plotted in the second line of the third step of Figure 2). Three 349 

typical streamflow characteristics were analysed:  350 

 The 95th flow exceedance percentile of the flow duration curve, Q95 (mm/day), 351 

describing low flows;  352 

 The mean annual streamflow, QMA (mm/y), indicating the overall water availability; 353 
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 The 5th flow percentile, Q05 (mm/day), describing high flows. 354 

For each catchment and each model, the four ensembles of parameter sets were tested first on 355 

the dry validation sub-periods. We analysed the dependence of model performance on the 356 

climatic specificity of the calibration period. Furthermore, the biases between the observed 357 

and the simulated streamflow characteristics were assessed. Second, the variability of the 358 

future streamflow simulations obtained using various calibration conditions was analysed for 359 

each future time slice. To differentiate the impacts stemming from the specificity of the 360 

calibration period from those associated with the “classical" parameter uncertainty approach 361 

based on Bayesian inference on the whole record period, the results are presented step by step 362 

hereafter. 363 

4 RESULTS 364 

4.1 Calibration performance results 365 

In this section, the general calibration performance of the two models are analysed. Figure 4 366 

presents the distributions of the GL function evaluations and the distributions of the Nash-367 

Sutcliffe efficiencies computed on root square transformed flows (NSEsq) obtained by the 368 

GR4J and TOPMO models on the catchment set. The distributions were obtained with (i) the 369 

calibration efficiencies over the whole record without the dry validation sub-periods obtained 370 

with optimal parameter sets, i.e. 89 values for each model (white boxplots, noted OPT) and 371 

(ii) calibration performance over the same record periods obtained with the 2000 posterior 372 

parameter sets identified for each of the 89 catchments, i.e. 178,000 values for each model 373 

(grey boxplots, noted POS). The distributions of the GL objective function values highlight 374 

that optimal parameter sets present similar general calibration efficiency to the calibration 375 

efficiency obtained using the populations of posterior parameter sets. Considering populations 376 

of posterior parameter sets thus adds a limited variability in terms of calibration performance 377 

over the whole record periods (without dry validation sub-periods) for the two models. For 378 
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GR4J, the distributions of the NSEsq efficiencies similarly show that the optimal parameter 379 

identified with the DREAM algorithm and with the GL objective function have similar 380 

general performance as the posterior parameter sets. The performance losses when 381 

considering populations of posterior parameter sets instead of optimal parameter sets are more 382 

significant for TOPMO than for GR4J, with median NSEsq moving from 0.86 with optimal 383 

parameter sets to 0.84 with posterior parameter sets. Calibration performance results for the 384 

other calibration sub-periods (wet, mean and dry 3-year calibration sub-periods) show the 385 

same general tendencies (not shown here). The difference between the two models might stem 386 

from the number of free parameters, higher for TOPMO (six free parameters) than for GR4J 387 

(four free parameters). Thus, the calibrated parameter values of TOPMO may show greater 388 

sensitivity to the choice of the objective function. Finally, note that the general performance 389 

of both models is quite reasonable, with half of the catchments studied presenting calibration 390 

performance obtained with optimal parameter sets on the whole record periods (without the 391 

dry validation sub-periods) greater than 0.85 for the two models. 392 

 393 

FIGURE 4: Distributions of the GL objective function values (top) and of the NSEsq values 394 

(bottom) of the two models illustrating (i) calibration performance over the whole record 395 

periods without the dry validation sub-periods obtained with optimal parameter sets (white 396 

boxplots, noted OPT) and (ii) calibration performance over the whole record periods 397 

obtained with posterior parameter sets (grey boxplots, noted POS). Results are shown for 398 

GR4J (left) and TOPMO (right). The boxplots show the 0.10, 0.25, 0.50, 0.75 and 0.90 399 

percentiles. 400 

 401 
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4.2 Sensitivity to the climate characteristics of the calibration period  402 

In this section, the model outputs are analysed considering different calibration periods. First 403 

the efficiency of the model on the dry validation sub-periods is discussed in terms of NSEsq 404 

and simulation of standard streamflow characteristics. Second, we analyse the resulting spread 405 

of the simulated streamflows for the future time slices. 406 

 Efficiency on dry validation sub-periods: 407 

Figure 5 shows the distributions of the NSEsq values on the catchment set obtained by the 408 

two models in (i) calibration over the dry validation sub-periods and (ii) validation over the 409 

dry validation sub-periods using the other four calibration sub-periods considered (wet, mean, 410 

dry, and whole record periods). Models calibrated over different sub-periods generally 411 

encountered similar difficulties simulating flows on the dry validation sub-periods since the 412 

validation efficiencies are clearly reduced compared to the calibration efficiencies on this sub-413 

period. The differences between the four calibration strategies (over a wet, a mean, a dry sub-414 

period or a long period) are limited but, for both models, using the wettest sub-periods for 415 

calibration appears particularly detrimental to simulating the dry validation sub-periods. GR4J 416 

and TOPMO obtained marginally better validation results using dry and mean conditions for 417 

calibration, respectively. Interestingly, calibrating the models on the whole record period 418 

(except the dry validation sub-periods, resulting in 20 years of record on average) does not 419 

warrant a particularly robust estimation of optimal parameter sets, since the validation 420 

efficiencies are generally similar to those obtained with 3-year calibration periods. This is not 421 

consistent with the wide-spread idea that the longer the calibration period, the more robust the 422 

parameter set. 423 

These results corroborate the previous findings of Vaze et al. (2010), Merz et al. (2011) and 424 

Coron et al. (2012) obtained with different catchments and models, emphasising the lack of 425 
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robustness of conceptual rainfall-runoff models when the climatic settings between calibration 426 

and validation periods are different. 427 

 428 

FIGURE 5: Distributions of the NSEsq values obtained by the two models illustrating (i) 429 

calibration performance over the dry validation sub-periods (black boxplots) and (ii) 430 

validation performance over the dry validation sub-periods using the other four calibration 431 

sub-periods considered (wet, mean, dry, and whole record without the dry validation sub-432 

period illustrated, respectively, with blue, green, red and white boxplots). Results are shown 433 

for GR4J (left) and TOPMO (right). The boxplots show the 0.10, 0.25, 0.50, 0.75 and 0.90 434 

percentiles. 435 

 436 

Figure 6 summarises the results of the models' sensitivity to the climatic specificity of the 437 

calibration period on the observed dry validation sub-periods. This figure is organised as a 438 

table with two columns and three rows: each column represents a hydrological model (left: 439 

GR4J; right: TOPMO) and each row represents a specific characteristic of the simulated flow 440 

series (from top to bottom: Q95, QMA and Q05). For each model and for each streamflow 441 

characteristic, the plot on the left shows the observed versus simulated value for each 442 

catchment, each dot representing the mean of simulated values obtained with the four optimal 443 

parameter sets and each bar representing the range of simulated values when using the four 444 

optimal parameter sets. Ideally, all range bars should be centred on the 1:1 line, meaning that 445 

streamflow simulated by parameter sets originating from different calibration sub-periods are 446 

all equal to the observed streamflow. The boxplots on the right represent the distributions of 447 

the relative errors on the flow characteristic on the dry validation sub-periods over the 89 448 

catchments when considering the four calibration sub-periods. These relative errors were 449 

estimated as the ratio of the difference between simulated and observed flow characteristics to 450 
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the observed flow characteristics. Ideally, all the boxplots should be centred on a null value of 451 

the bias between the observed and the simulated streamflow.  452 

The first main result is that the two rainfall-runoff models present similar overall efficiency in 453 

simulating the flow characteristics on the dry validation sub-periods (graphs on the left). This 454 

efficiency is rather limited since the median absolute bias is greater than 0.1 for both models. 455 

Even for the estimation of mean annual flow (QMA), none of the four calibration strategies 456 

yields a median absolute bias lower than 0.1. The second main result is that the impact of the 457 

climatic specificity of the calibration sub-periods on the modelled flow characteristics is not 458 

straightforward (graphs on the right). For GR4J, it seems that the 3-year dry calibration sub-459 

periods provide the least biased estimations of the three streamflow characteristics of the dry 460 

validation sub-periods. Using wet and mean 3-year calibration sub-periods tends to yield 461 

overestimated flow simulations on the dry validation sub-periods. Conversely, TOPMO tends 462 

to underestimate flows of the dry validation sub-periods. The mean 3-year calibration sub-463 

periods seems to provide less biased estimation of the streamflow characteristics on the dry 464 

validation sub-periods. Finally, using 3-year calibration sub-periods (dry ones for GR4J and 465 

mean ones for TOPMO) yields less biased predictions than when considering the whole 466 

available records for calibration for both hydrological models and for the three streamflow 467 

characteristics studied here, which corroborates the validation performance illustrated in 468 

Figure 5. Note, however, that all calibration periods produce highly biased predictions and 469 

that the differences between the calibration strategies are relatively limited compared to these 470 

biases. 471 

 472 

FIGURE 6: Sensitivity of the simulated flow characteristics (from top to bottom: Q95, QMA 473 

and Q05) on the dry validation sub-periods after calibration on climatically specific periods 474 

(wet, mean, dry, total record) (left column: GR4J; right column: TOPMO). The Q-Q plots 475 
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show the observed versus simulated value for each catchment, each dot representing the mean 476 

of values simulated with the four optimal parameter sets and each bar representing the range 477 

of simulated values when using the four optimal parameter sets. The boxplots on the right 478 

represent the distributions of the relative errors on the flow characteristic on the dry 479 

validation sub-periods over the 89 catchments when considering the four calibration periods. 480 

The boxplots are constructed with the 0.10, 0.25, 0.50, 0.75 and 0.90 percentiles. 481 

 482 

 Impacts on simulated flow evolutions: 483 

Then we assessed the change in future simulated streamflow characteristics when considering 484 

the variability stemming from the climatic specificity of the calibration periods. Figure 7 485 

shows the models‟ outputs on future time slices when using the sets of model parameters 486 

obtained on the four different calibration periods considered so far. The range of streamflow 487 

characteristics simulated for future time slices (mid-century (MC) and end-of-century (EC)) 488 

with the four parameter sets are plotted against those simulated for the present time slice (PT).  489 

In the following, we assume that a model simulates a significant hydrological change on a 490 

catchment if the range bar is completely above or below the 1:1 line, meaning that the change 491 

can be considered beyond the variability generated by the climate specificity of the calibration 492 

periods considered. For example, a decreasing trend of Q05 between PT and MC is assumed 493 

for a particular catchment if a model calibrated over the four different sub-periods simulates 494 

four Q05 values lower in MC than in PT.  495 

Considering the range across centres, the two models suggest a rather similar decreasing trend 496 

for the values of the three streamflow characteristics from PT to EC. This trend is not 497 

observed for the MC time slice. The Q05 streamflow characteristic (high flows) increases for 498 

this time slice, before decreasing more sharply by the end of the century. Some catchments 499 

show particularly large range bars. An analysis of these catchments (not shown here) indicates 500 
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that the calibration performance is particularly poor for at least one calibration sub-period. 501 

This shows that a model with poor performance in current conditions will add substantial 502 

uncertainty to future predictions. 503 

 504 

FIGURE 7: Comparison of the simulations of three streamflow characteristics (from top to 505 

bottom: Q95, QMA and Q05) obtained on the present time slice (PT) and future time slices (MC 506 

and EC) under projected climate conditions with the two hydrological models (left: GR4J; 507 

right: TOPMO). The range bars represent, for each catchment, the range of estimated values 508 

with the four optimal parameter sets corresponding to the four calibration periods. 509 

 510 

The sensitivity of the two models to the climatic specificity of the calibration periods is of the 511 

same magnitude for all three time slices considered, meaning that the sensitivity to the 512 

calibration periods is relatively stable in the future time slices. Figure 8 synthesises the results 513 

of these trends (e.g. a decreasing trend of Q05 between PT and MC is assumed for a particular 514 

catchment when a model calibrated over the four different sub-periods simulates four Q05 515 

values lower in MC than in PT), showing the proportion of catchments where hydrological 516 

trends between present (PT) and future (MC and EC) time slices have been simulated 517 

considering different calibration sub-periods for the two hydrological models. It also 518 

compares the information given by a hydrological model calibrated over a long period (here 519 

the entire available record without the dry validation sub-periods) and the information given 520 

using the four different calibration periods. These results confirm the previously obtained 521 

general trend of a decrease in the three streamflow characteristic values from PT to EC, with a 522 

particular increasing trend for high flows (Q05) from PT to MC. Nevertheless, when 523 

considering the four different calibration periods, a number of catchments show no clear 524 

trends for the MC time slice, which attenuates the general trends highlighted when using the 525 
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whole record periods as the only calibration periods. Last, differences between the two 526 

models can be observed: when considering only the whole record for calibration, GR4J seems 527 

to simulate a more regionally homogeneous decrease in low- to medium-flow characteristics 528 

(Q95 and QMA), since the percentage of catchments with a decrease in flow is larger than for 529 

TOPMO. Considering the four calibration periods, the two models yield more homogeneous 530 

simulations for the catchment set. 531 

 532 

FIGURE 8: Proportions of catchments showing (or not) hydrological trends between present 533 

(PT) and future (MC and EC) time slices considering different calibration sub-periods for the 534 

two hydrological models: white highlights a clear decrease, black highlights a clear increase 535 

and grey highlights no clear trend. 536 

 537 

4.3 Sensitivity to the use of a posterior ensemble of parameter sets 538 

In this section, the model outputs are analysed considering 2000 posterior parameter sets 539 

obtained on the whole record period for each catchment and for each model. First, we discuss 540 

the efficiency of these ensembles of posterior parameter sets on the dry validation sub-periods 541 

in terms of NSEsq and simulation of the three streamflow characteristics (Q95, QMA and Q05). 542 

Second, we analyse the resulting variability of the simulated streamflow characteristics for the 543 

future climate conditions. 544 

 Efficiency on dry validation sub-periods: 545 

Figure 9 shows the distribution of NSEsq values obtained by the two models illustrating (i) 546 

the calibration performance of the optimal parameter sets over the dry validation sub-periods 547 

(i.e. 89 NSEsq values for each model) and (ii) the validation performance over the dry 548 

validation sub-periods using optimal parameter sets (i.e. 89 NSEsq values for each model) and 549 

posterior parameter sets (i.e. 178,000 NSEsq values for each model) identified on the whole 550 
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record periods without the dry validation sub-periods. For GR4J, the validation performance 551 

obtained by posterior parameter sets is very similar to that produced by the individual optimal 552 

parameter sets presented in Figure 5, meaning that for the catchments studied, the DREAM 553 

algorithm produces posterior parameter sets yielding efficiency close to the value obtained by 554 

optimal parameter sets over the dry validation sub-periods. The NSEsq performance 555 

distributions obtained with optimal and posterior parameter sets are not similar for TOPMO: 556 

the optimal parameter sets appear to be less efficient than the posterior parameter sets in terms 557 

of NSEsq validation performance. This means that rather different optima exist when using 558 

the GL function and a likelihood function based on a standard least squares errors scheme 559 

(NSEsq here). Nevertheless, differences between optimal parameter set performance and 560 

posterior parameter set performance are less significant in the validation step than in the 561 

calibration step, as shown in Figure 4. It should be remembered that the NSEsq was not used 562 

as an objective function.  563 

 564 

FIGURE 9: Distribution of NSEsq values obtained by the two models illustrating (i) 565 

calibration performance of the optimal parameter sets over the dry-validation sub-periods 566 

(black “OPT” boxplots) and (ii) validation performance over the dry validation sub-periods 567 

using optimal (white “OPT” boxplots) and posterior (grey “POS” boxplots) parameter sets 568 

identified on the whole record periods without the dry validation sub-periods. Results are 569 

shown for GR4J (left) and TOPMO (right). The boxplots show the 0.10, 0.25, 0.50, 0.75 and 570 

0.90. 571 

 572 

Figure 10 shows the variability of the models‟ outputs on the dry validation sub-periods when 573 

considering the ensembles of posterior parameter sets instead of the single optimal parameter 574 

set. This figure is organised like Figure 6. The dots represent the means of flow characteristics 575 
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on a catchment simulated with the 2000 posterior parameter sets and the bars represent the 576 

range of simulated flow characteristics on a catchment when considering its 2000 posterior 577 

parameter sets. The boxplots synthesise the distributions of the relative errors on the flow 578 

characteristics simulated by the models with the posterior parameter sets identified. 579 

The first major result is that considering posterior parameter sets does not significantly 580 

increase the variability of the simulated flows. The biases between observed flows and flows 581 

simulated by the ensembles of posterior parameter sets (grey boxplots) are close to those 582 

obtained with the ensembles of optimal parameter sets (white boxplots). Moreover, this 583 

variability is very limited compared to the variability observed when considering the four 584 

climate-specific parameter sets (see Figure 6). Here, the hydrological responses associated 585 

with 2000 posterior parameter sets are similar to those associated with optimal parameter sets. 586 

The flow characteristics obtained by TOPMO present generally greater uncertainty than those 587 

obtained by GR4J. These predictive uncertainty values are again probably due to the larger 588 

number of free parameters for TOPMO. Note, however, that the predictive uncertainty for 589 

TOPMO is often consistent with the observed biases for the validation sub-periods since the 590 

estimation range often encompasses the observed flow value.  591 

 592 

FIGURE 10: Sensitivity of the simulated flow characteristics (from top to bottom: Q95, QMA 593 

and Q05) on the dry validation sub-periods using the 2000 posterior parameter sets 594 

determined on the whole record periods without the dry validation sub-periods for the two 595 

hydrological models (left: GR4J; right: TOPMO). The Q-Q plots show the observed versus 596 

simulated value for each catchment, each dot representing the mean of simulated values when 597 

using the 2000 posterior parameter sets and each bar representing the range of simulated 598 

values when using the 2000 posterior parameter sets. The boxplots on the right represent the 599 

distributions of the relative errors on the flow characteristic on the dry validation sub-periods 600 
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over the 89 catchments when considering the 2000 posterior parameter sets. The boxplots are 601 

constructed with the 0.10, 0.25, 0.50, 0.75 and 0.90 percentiles. 602 

 603 

 Impacts on simulated flow evolutions: 604 

Figure 11 synthesises the results on the evolution of flows when considering the posterior 605 

parameter sets obtained throughout the whole record periods. This figure is organised like 606 

Figure 7: for each catchment, a range cross quantifies the variability in the estimation of flow 607 

characteristics for a time slice simulated by the posterior parameter sets obtained on the whole 608 

record periods. The results are very different from those obtained when considering only the 609 

individual optimal parameter sets for each of the four calibration periods (Figure 7). The 610 

variability of simulated flows considering 2000 posterior parameter sets for each catchment is 611 

much lower than the variability considering four climate-specific parameter sets for each 612 

catchment. Nevertheless, the variability in TOPMO outputs considering posterior parameter 613 

sets is higher than GR4J‟s variability.  614 

 615 

FIGURE 11: Comparison of the simulations of three streamflow characteristics (from top to 616 

bottom: Q95, QMA and Q05) obtained on the present time slice (PT) and future time slices (MC 617 

and EC) under projected climate conditions with the two hydrological models (left: GR4J; 618 

right: TOPMO). For each catchment, the range bars represent the range of estimated values 619 

with the 2000 posterior parameter sets obtained over the whole record period. 620 

 621 

Figure 12 illustrates the proportion of catchments showing (or not showing) clear changes 622 

when considering the ensemble simulations obtained with the posterior parameter sets. The 623 

additional consideration of the ensembles of 2000 posterior parameter sets yields a slight 624 

increase in the number of catchments for which no clear trend is observed, particularly 625 
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between the MC and the PT. Nevertheless, the future trends are similar to those observed 626 

without taking into account the ensembles of posterior parameter sets, i.e. when using only the 627 

optimal parameter sets. There is a sharp decrease in all streamflow characteristics by the EC 628 

and a slight but significant increase in the high-flow characteristic for the MC. 629 

 630 

FIGURE 12: Proportion of catchments showing (or not showing) hydrological trends 631 

between present (PT) and future (MC and EC) time slices considering (or not considering) 632 

posterior parameter sets for the two hydrological models: white highlights a clear decrease, 633 

black highlights a clear increase and grey highlights no clear trend. 634 

 635 

5 DISCUSSION AND CONCLUSION 636 

This paper attempted to investigate the uncertainty of hydrological predictions for the future 637 

climate when considering either (i) the dependence of the optimal parameter set on calibration 638 

period specificity or (ii) the use of several posterior parameter sets over a given calibration 639 

period. The first aspect often refers to the robustness of model parameters, while the second 640 

often refers to parameter uncertainty estimation based on Bayesian inference. 641 

The two conceptual hydrological models tested here were sensitive to the use of climatically 642 

contrasted calibration sub-periods. This sensitivity was highlighted by a wide range of 643 

possible simulated streamflows for both the dry observed validation sub-periods and the 644 

future climate time slices. Even if general future changes can be observed when considering 645 

four optimal parameter sets (obtained with the calibration on three sub-periods and the whole 646 

record periods except the dry validation sub-periods) for each catchment, the proportion of 647 

catchments showing clear changes is much lower than when considering a unique parameter 648 

set (obtained by calibration on the whole record periods except the dry validation sub-649 

periods). However, the impact of the calibration period climate specificity on the simulated 650 
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streamflows is not straightforward since for a majority of the catchments studied, using a wet 651 

calibration sub-period for a dry validation sub-period does not systematically generate a larger 652 

bias between observed and simulated flows than when using a dry calibration sub-period. 653 

Moreover, considering long periods for model calibration does not generate more robust 654 

simulation than using 3-year sub-periods, which is not consistent with the common belief that 655 

“the longer the calibration period, the more robust the parameter set”. Since the use of two 656 

different hydrological models did not provide equivalent results, the relation between the 657 

model considered and the impact of the climatic specificity of the calibration period on 658 

calibration and validation performance should be further investigated. 659 

Concerning the “classical” parameter uncertainty assessment followed in this study, it seems 660 

that the prediction bounds obtained from the ensembles of posterior parameter sets are 661 

considerably thinner than what would be expected, especially for the GR4J model. 662 

Nevertheless, it is important to note that these results are dependent to some extent on the 663 

method used (the DREAM algorithm (Vrugt et al., 2009) and the GL objective function 664 

(Schoups and Vrugt, 2010)), the catchments studied and the models considered. It appeared 665 

that DREAM provided posterior parameter sets that were close to the optimal ones in terms of 666 

Nash-Sutcliffe validation efficiency over the dry validation sub-periods. Other methods to 667 

quantify parameter uncertainty could produce posterior parameter sets with greater 668 

differences than the optimal ones and thus yield larger uncertainty bounds. Considering the 669 

ensembles of 2000 posterior parameter sets yields a slight increase in the number of 670 

catchments for which no clear trend is observed, especially for TOPMO. The results obtained 671 

by the two conceptual models were found to be relatively consistent. The main differences 672 

were the larger uncertainty bounds observed for TOPMO. This is probably attributable to the 673 

larger number of degrees of freedom of TOPMO, which has six free parameters, compared to 674 

the four free parameters of GR4J. TOPMO‟s calibrated parameters are thus likely to depend 675 



 28 

more on the choice of the calibration period and the objective function used during the 676 

optimisation process. Still, further research is needed to confirm these hypotheses. 677 

Our results show that, given the evaluation approach followed here, model robustness was the 678 

major source of variability in streamflow projections in future climate conditions. They 679 

corroborate the previous findings of Vaze et al. (2010), Merz et al. (2011) and Coron et al. 680 

(2012) obtained with different catchment sets and models, emphasising the lack of robustness 681 

of conceptual rainfall-runoff models when the climatic context between calibration and 682 

validation periods are different. Note that for these three studies, long-term regional non-683 

stationarities were observed on the catchments studied: southeastern Australian catchments 684 

suffered from long drought periods while Austrian catchments experienced a significant 685 

increase in temperature over the last few decades, generating a shift in the hydrological 686 

regimes, particularly for snow-affected catchments. These situations allow testing the 687 

hydrological models on long as well as significantly different sub-periods in terms of climatic 688 

conditions. Even if these actual non-stationarities were not observed everywhere, it seems 689 

possible to test the sensitivity of models‟ calibration on climatically contrasted sub-periods.  690 

Thus, from these results, it seems difficult to provide general guidelines for calibrating 691 

hydrological models for climate change studies. The robustness issue should be investigated 692 

more thoroughly, by proposing and testing calibration procedures that increase this 693 

robustness. For example, Coron et al. (2012) proposed the Generalized Split Sample Test 694 

procedure, which aims at testing all possible combinations of calibration-validation periods 695 

and thus studying the capability of the tested model to be used in different climatic contexts. 696 

Other tests could be performed, inspired by the methodology defined in this work.  697 

This study also stresses that hydrological models do not efficiently reproduce streamflow 698 

characteristics, even if the NSEsq coefficient estimated after calibration is quite high. The 699 

median bias obtained for mean annual flow was generally greater than 10%. This is a 700 
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considerable limitation for the use of hydrological models to simulate extreme high or low 701 

flows in a changing climate. To cope with this notable failure, one could suggest using multi-702 

objective calibration procedures and/or adapting the objective function to the estimated flow 703 

characteristic.  704 

705 
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 897 

8 FIGURES 898 

 899 
Fig. 1. Location and distribution of various characteristics of the 89 catchments used. The 900 

boxplots show the 0.10, 0.25, 0.50, 0.75 and 0.90 percentiles (67 is the number of catchments 901 

in the Seine and Somme basins, 22 in the Loire basin). 902 

903 
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 904 

Fig. 2. Illustration of the three-step methodology used for investigating parameter uncertainty 905 

in a changing climate. 906 

907 
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 908 

Fig. 3. Comparison of Aridity Index (AI) values for the different calibration and validation 909 

sub-periods considered and for the three time slices (PT, MC, EC) for the 89 catchments. 910 

911 
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 912 

Fig. 4. Distributions of the GL objective function values (top) and of the NSEsq values 913 

(bottom) of the two models illustrating (i) calibration performance over the whole record 914 

periods without the dry validation sub-periods obtained with optimal parameter sets (white 915 

boxplots, noted OPT) and (ii) calibration performance over the whole record periods obtained 916 

with posterior parameter sets (grey boxplots, noted POS). Results are shown for GR4J (left) 917 

and TOPMO (right). The boxplots show the 0.10, 0.25, 0.50, 0.75 and 0.90 percentiles. 918 

919 
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 920 

Fig. 5. Distributions of the NSEsq values obtained by the two models illustrating (i) 921 

calibration performance over the dry validation sub-periods (black boxplots) and (ii) 922 

validation performance over the dry validation sub-periods using the other four calibration 923 

sub-periods considered (wet, mean, dry, and whole record without the dry validation sub-924 

period illustrated, respectively, with blue, green, red and white boxplots). Results are shown 925 

for GR4J (left) and TOPMO (right). The boxplots show the 0.10, 0.25, 0.50, 0.75 and 0.90 926 

percentiles. 927 

928 
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 929 

Fig. 6. Sensitivity of the simulated flow characteristics (from top to bottom: Q95, QMA and 930 

Q05) on the dry validation sub-periods after calibration on climatically specific periods (wet, 931 

mean, dry, total record) (left column: GR4J; right column: TOPMO). The Q-Q plots show the 932 

observed versus simulated value for each catchment, each dot representing the mean of values 933 

simulated with the four optimal parameter sets and each bar representing the range of 934 

simulated values when using the four optimal parameter sets. The boxplots on the right 935 

represent the distributions of the relative errors on the flow characteristic on the dry validation 936 

sub-periods over the 89 catchments when considering the four calibration periods. The 937 

boxplots are constructed with the 0.10, 0.25, 0.50, 0.75 and 0.90 percentiles. 938 

939 
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 940 

Fig. 7. Comparison of the simulations of three streamflow characteristics (from top to bottom: 941 

Q95, QMA and Q05) obtained on the present time slice (PT) and future time slices (MC and 942 

EC) under projected climate conditions with the two hydrological models (left: GR4J; right: 943 

TOPMO). The range bars represent, for each catchment, the range of estimated values with 944 

the four optimal parameter sets corresponding to the four calibration periods. 945 

946 
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 947 

Fig. 8. Proportions of catchments showing (or not) hydrological trends between present (PT) 948 

and future (MC and EC) time slices considering different calibration sub-periods for the two 949 

hydrological models: white highlights a clear decrease, black highlights a clear increase and 950 

grey highlights no clear trend. 951 

952 
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 953 

Fig. 9. Distribution of NSEsq values obtained by the two models illustrating (i) calibration 954 

performance of the optimal parameter sets over the dry-validation subperiods (black „„OPT‟‟ 955 

boxplots) and (ii) validation performance over the dry validation sub-periods using optimal 956 

(white „„OPT‟‟ boxplots) and posterior (grey „„POS‟‟ boxplots) parameter sets identified on 957 

the whole record periods without the dry validation sub-periods. Results are shown for GR4J 958 

(left) and TOPMO (right). The boxplots show the 0.10, 0.25, 0.50, 0.75 and 0.90. 959 

960 
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 961 

Fig. 10. Sensitivity of the simulated flow characteristics (from top to bottom: Q95, QMA and 962 

Q05) on the dry validation sub-periods using the 2000 posterior parameter sets determined on 963 

the whole record periods without the dry validation sub-periods for the two hydrological 964 

models (left: GR4J; right: TOPMO). The Q–Q plots show the observed versus simulated 965 

value for each catchment, each dot representing the mean of simulated values when using the 966 

2000 posterior parameter sets and each bar representing the range of simulated values when 967 

using the 2000 posterior parameter sets. The boxplots on the right represent the distributions 968 

of the relative errors on the flow characteristic on the dry validation sub-periods over the 89 969 

catchments when considering the 2000 posterior parameter sets. The boxplots are constructed 970 

with the 0.10, 0.25, 0.50, 0.75 and 0.90 percentiles. 971 

972 
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 973 

Fig. 11. Comparison of the simulations of three streamflow characteristics (from top to 974 

bottom: Q95, QMA and Q05) obtained on the present time slice (PT) and future time slices 975 

(MC and EC) under projected climate conditions with the two hydrological models (left: 976 

GR4J; right: TOPMO). For each catchment, the range bars represent the range of estimated 977 

values with the 2000 posterior parameter sets obtained over the whole record period. 978 

979 



 46 

 980 

Fig. 12. Proportion of catchments showing (or not showing) hydrological trends between 981 

present (PT) and future (MC and EC) time slices considering (or not considering) posterior 982 

parameter sets for the two hydrological models: white highlights a clear decrease, black 983 

highlights a clear increase and grey highlights no clear trend. 984 


