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CLASSIFICATION OF THE SOLUTIONS TO AN OVERDETERMINED
ELLIPTIC PROBLEM IN THE PLANE

MARTIN TRAIZET

January 29, 2013

Abstract: we classify the solutions to an overdetermined elliptic problem in the plane in the
finite connectivity case. This is achieved by establishing a one-to-one correspondence between the
solutions to this problem and a certain type of minimal surfaces.

1. INTRODUCTION

In the theory of elliptic P.D.E., an overdetermined problem is one where both the Dirichlet and
Neumann boundary data are prescribed. This puts strong geometric constraints on the boundary
of the domain. For example, a famous result of Serrin [21] asserts that if €2 is a bounded domain
in R™ which admits a function u solution of Au = —1 in € with Dirichlet boundary data u =0
on Jf) and Neumann boundary data % constant on €2, then € is a ball.

In [11], the authors propose the following overdetermined problem. Let © be a smooth,
unbounded domain in R™ with non-empty boundary. The domain €2 is called exceptional if it
admits a positive harmonic function u which has Dirichlet boundary data u = 0 on 02 and

Neumann boundary data g—;f = c on 0Y), where c is a constant. By the boundary maximum
principle, the constant ¢ must be negative, and we may normalize ¢ = —1 by scaling of u. Also,
the Neumann boudary condition is equivalent to |Vu| = 1 on 9Q. So we may formulate the
above problem as:

Au=01in §,

u > 0in £,
(1) u =0 on 01,

|[Vu| =1 on 99Q.

This problem is related to the study of extremal domains, namely domains {2 in a Riemannian
manifold which are critical points for the functional A;(€2) under a volume constraint, where A\
denotes the first eigenvalue of the Laplace Beltrami operator. See [11] for more details.

For example, a half-space or the complementary of a ball are exceptional domains. In [11],
the authors discovered that in the case n = 2, the domain |y| < § + coshx in the plane is
an exceptional domain. They also developed a Weierstrass type Representation for exceptional
domains in the plane that are simply connected, and noted a strong analogy with minimal
surfaces. In this paper, we prove that the analogy goes very deep by establishing a one-to-one
correspondence between exceptional domains and a certain type of minimal surfaces which we
call minimal bigraphs. This correspondence allows us to find examples and classify solutions.
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We only address Problem (1) in the case of planar domains (n = 2) and we identify R? with
the complex plane C. The assumption that € is a smooth domain can be relaxed (see Proposition
1). Also, the solution u of Problem (1), when it exists, is unique (see Proposition 2).

By a trivial exceptional domain, we mean a half-plane. Let 2 be a non-trivial exceptional
domain. In Section 3, we prove that

e If Q has finite connectivity, then |Vu| <1 in Q.
o If Q is periodic and has finite connectivity in the quotient, then |Vu| < 1 in .

By finite connectivity, we mean that 92 has a finite number of components. By periodic, we
mean that (2 is invariant by a non-zero translation T. Note that an exceptional domain cannot
be doubly periodic (for the maximum principle implies that v = 0 in this case).

In Sections 4, 5 and 6, we establish a one-to-one correspondence between the following two
classes of objects:

o exceptional domains ) such that |Vu| <1 in Q,

o complete, embedded minimal surfaces M in R3 which are symmetric with respect to the
horizontal plane x3 = 0 and such that M+ = M N{x3 > 0} is a graph over the unbounded
domain in the plane bounded by M N{xs = 0}. We call such a minimal surface a minimal
bigraph.

(In fact, we will establish the above correspondence assuming that the domain ) satisfies a
mild additional geometric hypothesis, namely that its complement in non-thinning: see Definition
1. This hypothesis is always satisfied for domains with finite connectivity, or periodic domains
with finite connectivity in the quotient). For example:

(1) The vertical catenoid is a minimal bigraph. It corresponds to the exceptional domain
Q=C\D(0,1).

(2) The horizontal catenoid is a minimal bigraph. It corresponds to the exceptional domain
ly| < § + coshz discovered in [11].

(3) Scherk’s family of simply periodic minimal surfaces, suitably rotated, are minimal bi-
graphs. They correspond to a new family of periodic exceptional domains.

We give more details about these examples in Section 7.

In Section 8, we take advantage of the correspondence to translate classification results from
minimal surface theory into classification results for exceptional domains. We prove that (up to
similitude)

e The only exceptional domains in the plane with finite connectivity are the half-plane and
Ezxamples (1) and (2),

e The only periodic exceptional domains with finite connectivity in the quotient are the
half-plane and Examples (3).

Finally, in Section 9, we extend the correspondence to the case of immersed domains in the
plane.

Laurent Hauswirth pointed out to me that Problem (1) has been studied by D. Khavinson, E.
Lundberg and R. Teodorescu in a recent paper [13]. In this interesting paper, the authors obtain
partial classification results, under stronger topological and regularity assumptions than ours: In
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the 2-dimensional case, they prove that an exceptional domain whose complement is bounded and
connected is the complement of a disk (Theorem 3.1); an exceptional domain whose boundary
is a single arc which is C' at infinity is a half-plane (Theorem 5.1); and an exceptional domain
whose boundary consists of two arcs which are C! at infinity is the domain |y| < 5+coshz, up to
a similitude (Theorem 6.1). They also prove that in higher dimension, an exceptional domain in

R” whose complement is bounded, connected and has C>® boundary, is the exterior of a sphere
(Theorem 7.1).

2. PRELIMINARY REMARKS

The assumption that 2 is a smooth domain can be relaxed. Recall (|8] page 94) that an open
set 2 in R™ with non-empty boundary is a domain of class C* (resp. smooth, analytic...) if
for each point ¢ € 9, there exists £ > 0 and a diffeomorphisme v of class C* (resp. smooth,
analytic...) from the ball B(zg,¢) to a domain D C R™ such that

Y(B(z0,6) Q) = DNRY,  (B(xo,e) NIQ) = DN OR™

where R’} is the upper half space x,, > 0. (If £ = 0, then diffeomorphism of class C° means
homeomorphism.)

Proposition 1. Let Q be a domain of class C° in the plane. Assume that u is a “classical”
solution of Problem (1) on Q, namely: u is of class C? in Q, Au =0, u >0 in Q, and
Vzo € 0Q, lim u(z) =0 and lim |Vu(z)| =1.
Z—r20

Z—r20

Then Q is a smooth domain (actually, real analytic). Moreover, u extends to a harmonic function
defined in a neighborhood of ).

Proof: Let zy € 0f). By the definition of a domain of class CY, zy has a neighborhood Vao
such that V., N 2 is a Jordan domain (meaning that its boundary is a Jordan curve). Let
f:DT(0,1) — V., NQ be a conformal representation on the upper half-disk. Then f extends to
a homeomorphism of the closure of DT (0, 1) to the closure of V,, NQ by Caratheodory’s theorem
(Theorem 13.2.3 in [10]). We may choose f so that f maps (—1,1) to V, N 0S2. Consider the
harmonic function @(z) = uo f(z) on D*(0,1). Then @ is the real part of a holomorphic function
U on D*(0,1). Moreover,

Vxo € (—1,1), lim ReU(z) =0

Z—x0

so U extends to a holomorphic function on D(0,1) by the Schwarz reflection principle. On the
other hand, U’ = 2u, gives

U'(2)
= 2u.(f(z for 2 € DY(0,1).
) = ) (0.1
Of course, we do not know yet that f’ extends continuously to (—1,1). But our hypothesis on u

tells us that the ratio |(]{,l ((j)) | does, and morevoer,

Vao € (=1,1),  lim

zZ—T0
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Consequently, there exists €1 > 0 such that [J{,/((j)) # 0 for 2 € DT(0,e1). Consider the holomorphic

function h(z) = log ?,l((j)) on DT(0,e1). Then lim,_,,, Reh(z) = 0 for g € (—¢1,€1), so h
extends to a holomorphic function in the disk D(0,e1). Hence f’ and f extends holomorphically
to the disk D(0,e1), and f’ # 0 in this disk, so f is biholomorphic in a disk D(0,e2). This
implies that the boundary of € is real analytic in a neighborhood of zy. Moreover, the formula
u(z) = ReU(f~1(z)) shows that u can be extended to a function harmonic in a neighborhood of
zp. The extension is unique by analyticity so this shows that u can be extended to a neighborhood
of Q. O

Proposition 2. Let Q be an exceptional domain. Then Problem (1) has a unique solution wu.

Proof: Let u' be another solution. Then the difference v = u — v satisfies Av = 0 in © and
v =dv = 0 on 9. By proposition 1, both u and u’ extend to a neighborhood of Q. Then the
function v, is holomorphic in a neighborhood of €2 and v, = 0 on 92 so the zeros of v, are not
isolated. Hence v, =0 and v =0 in . O

Proposition 3. Let € be a smooth domain in the plane. Then each component of 0S) is either a
smooth Jordan curve or the image of a smooth proper embedding v : R — C (where proper means
limy 100 ¥(t) = 00). We call the later a proper arc.

Proof. Each component of 0f2 is a 1-dimensional submanifold so is either diffeomorphic to the
circle S! or the real line. In the first case, it is a smooth Jordan curve. In the later case, it is
the image of an embedding v : R — C. We claim that « is proper. If not, then there exists a
sequence t, — oo such that 7(t,) has a finite limit p. Now p must be on the boundary of €.
The definition of a smooth domain at p gives a contradiction. |

The condition |Vu| < 1, which we will address in Section 3, has the following interesting
geometric consequence for the domain §2:

Proposition 4. Let Q2 be an exceptional domain such that |Vu| < 1. Then Q is a strictly concave
domain, namely: each component of C\ Q is strictly convez.

Proof. The curvature of the level set u = 0 is given by (|9] page 72)

2 2
Ugp Uy + UyyUy — 2Ugyy U Uy
2 213/2
(u2 + uy) /

Regarding sign, the curvature is positive when the curvature vector points toward u < 0 (as can
be checked in the case u(z,y) = 2% + y? — 1: Formula (2) gives x = 1). Consider the harmonic
function g(z) = —log|2u,(z)|. Then g = 0 on 90 and g > 0 in Q. Let zy € 9. By rotation we
may assume that zp = 0 and Vu(0) = (1,0). Then for small € > 0, (0,¢) C 2. By the boundary
maximum principle (Lemma 3.4. in [8]), g,(0) > 0. On the other hand,

1
9:(0) = _W(Ux(o)um(o) + uy (0)ugy(0)) = —uaz(0).
Hence u,,(0) < 0. Since u is harmonic we obtain u,,(0) > 0. Formula (2) gives £(0) > 0. This
means that the curvature vector of the boundary points outside of €2, so the boundary is locally
strictly concave. Each component of 02 is then globally a strictly convex curve, meaning that
it bounds a strictly convex subset of the plane. (For the components of 92 which are Jordan

2) "=




CLASSIFICATION OF THE SOLUTIONS TO AN OVERDETERMINED ELLIPTIC PROBLEM 5
curves, this is standard. For the components of 92 which are proper arcs, this is also true, see
Theorem 9.40 in [17].) O

Let C be a convex set in the plane. For € > 0, we define

pe(C) = inf Area(C N D(p,¢)).
peC

If C' is a convex set with non-empty interior then p.(C) > 0.

Definition 1. Consider a subset A of the plane which is the union of a family of disjoint convex
sets (Cy)ier. We say that A is non-thinning if for some € > 0 we have

inf pe(Cy) > 0.

We will establish the correspondence in the case where the complement of €2 is non-thinning.
This prevents the components of C \ © from becoming thinner and thinner. Clearly if Q is a
concave domain with finite connectivity, or a concave periodic domain with finite connectivity
in the quotient, then its complement is non-thinning.

3. THE CONDITION |Vu| < 1.
The goal of this section if to prove the following theorem.

Theorem 1. Let Q be a non-trivial exceptional domain with finite connectivity (which means
that 02 has a finite number of components). Then |Vu| < 1 in Q.

We will in fact get more precise results: see Theorems 2, 5 and 6. We will also prove a result
in the periodic case: see Theorem 7.

3.1. The case 0f2 compact. We start with the case where 0f2 is the union of a finite number
of Jordan curves.

Theorem 2. Let Q2 be an exceptional domain such that C\ Q is bounded. Then |Vu| < 1 in Q
and

lim Vu(z) =0.
|z]—o00
Proof. Let @(z) = u(1). Then @ is a positive harmonic function in a punctured disk D*(0, ).
By Bocher Theorem (Theorem 3.9 in [1]), we can write

u(z) = clog|z| + h(z)

where ¢ is a constant and A is harmonic in the disk D(0, ). Then
1
u(2) = —clog 2] + h(2),

c 1.1

u.(z) = To, z(;)zﬁ-

Hence there exists R such that |Vu| < 1 for |z| > R. Then we have |Vu| < 1 on the boundary
of QN D(0, R). By the maximum principle, we have |Vu| < 1 in QN D(0, R). Moreover, u, is
not constant in € so the maximum principle implies that |Vu| < 1 in €. O
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3.2. A Phragmen Lindel6f type result for univalent functions in the upper half-plane.
Next we would like to do the case where 0f2 is a proper arc. For this we need a result about
univalent function in the upper half plane Im z > 0, which we denote H. (Recall that univalent
means injective.) We have the following distortion theorem for univalent functions in the half-
plane, which is an easy consequence of the standard distortion theorem for univalent functions

in the disk:

Theorem 3. Let f be univalent in the upper half-plane H and normalized by f(i) = 0 and
(i) =1. Then for z € H,

|z +i| — |z — 1]

(Iz 4+l + |z =)

Proof: Consider the Mobius transformation
(3) w=¢(z) =

This transformation is involutive and exchanges the unit disk D(0, 1) with the upper half-plane
H. Let F(w) = 5t f(¢(w)). Then F is univalent in the disk and satisfies F'(0) = 0, F’(0) = 1.
The distortion theorem for normalized univalent functions in the disk (Theorem 2.5 in [5]) tells
us that

|z +i| + |z — 1]
(Iz +i] =z —i])3

5 <If(2)] <4

zZ—1

1z — 1

1— |wl 1+ |w]
(4) Lo ) < M e,
(1+ |w])? (1= |w])?
The theorem follows by elementary computations. O

Using this theorem, we prove the following;:

Theorem 4. Let f be an univalent function in the upper half-plane H that extends C' to H.
Let ¢ be a positive number.

(1) If | f'| < ¢ on OH then |f'| < cin H.

(2) If | f'| > ¢ on OH then |f'| > c in H.

(3) If || is constant on OH then f’ is constant in H.

Proof: Without loss of generality, we may assume (replacing f by af + b) that f(i) = 0 and
f(i) = 1. Theorem 3 gives
e +il? —lz—d* _
: — < z)| <4
(|z+id + |z —i)* — £ @)l <
which implies, with z = x + iy

(|z +i] + |z —i])*
(Iz+if> — |z — i|?)3

y / (|2l +1)*
5 — < ) < —F".
) e < e <
The first two points of the theorem follow from Lemma 1 below (with ¢ = f’ in the first case
and g = 1/f" in the second one). To prove the third point, assume that |f’'| = ¢ on OH. By the
first two points, |f’| = ¢ in H. Since f’ is holomorphic, it must be constant in H. O

Lemma 1. Let g be a holomorphic function on the upper half-plane H, continuous on H. Assume

that
(][ +1)"
A

Y

l9(2)| < in H,
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lg(2)| <co on OH

for some positive numbers c1,co and positive integers n,m. Then |g(z)| < ¢ in H.

Proof: We prove that |g(z)| has polynomial growth and conclude with the Phragmen Lindel6f
principle. Given R > 1, consider the rectangular domain Qr = (=R, R) x (0, 1) and the function

hr(z)=(z—R)™(z+ R)™.

We estimate the function g(z)hr(z) on 0. On {£R} x (0,1), we have
(R+2)"
ym
where the letter C' means a constant independant of z and R. On [—R, R] x {0}, we have

9(2) S 2y |hr(2)] < B*™ = [g(2)hn(2)| < c2R*™
On [-R, R] x {1}, we have
9(2) < cl(BR+2)", [hr(2)] < @R+1)*" = [g(2)hr(2)] < CR*™.

Hence |g(2)hg(2)] < CR*™*" on 0Qg. By the maximum principle, |g(z)hg(z)] < CR>™" in
Qpr. Now if |z] < %, we have |hg(z)| > (%)zm, hence

l9(2)| < CR™.
This implies that in the band R x [0, 1],
(6) l9(2)] < C(lz] +1)".

For y > 1, (6) is true by the first hypothesis on g. Hence (6) holds in the whole upper half-plane.
By the Phragmen Lindelof principle for the half plane (Corollary 4.2 in [2]), |g(2)| < ¢ in H. O

9(2)] < &1 , hr(2) <y"QRR+1)™ = [g(2)hr(z)] < CR™T

3.3. The case where 0f? is a proper arc.

Theorem 5. Let Q be an exceptional domain such that 9 is a proper arc. Then |Vu| =1 in Q
and 2 is a half-plane.

Proof. Let v : R — C be a parametrization of 9€2. Since -y is proper, it extends to a continuous,
injective map from the extended real line RU {00} ~ S! to the Riemann sphere C U {cc}. Hence
Q) is bounded in the Riemann sphere by a Jordan curve. By the Riemann mapping theorem,
there exists a conformal representation F' from the unit disk D(0,1) to . By Caratheodory’s
Theorem (Theorem 13.2.3 in [10]), F extends to a homeomorphism from the closed disk D(0, 1)
to the closure of Q in the Riemann sphere, namely, Q U {oo}. Without loss of generality, we
may assume that F'(—i) = co. Composing with the Moebius map ¢ defined in (3), we obtain a
homeomorphism f : HU{oo} — QU {oo} that is conformal in the upper half-plane H and maps
oo to co. Moreover, f(R) = 9. Since 0 is smooth, f extends C' to R. (At this point, we
know nothing about the regularity of f at infinity.) Let w = wo f. Then w is a positive harmonic
function in H with zero boundary value. By Theorem 7.22 in [1], u(z) = aIm z for some positive

constant a. Then )
—ai

i (2) = w () =
Since |u,| = 1 on 99, we obtain that |f’| is constant on R. By Theorem 4, f’ is constant in H.

This implies that f is affine, so €2 is a half-plane, and u, is constant in €. O
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Remark 1. F. Helein, L. Hauswirth and F. Pacard [11] have obtained this result under the
additional hypothesis that u, > 0 in Q (Proposition 6.1). D. Khavinson, E. Lundberg and R.
Teodorescu [13] have also obtained this result under the additional hypothesis that 0 is O at
infinity (Theorem 5.1). (This is not clear in the statement of the theorem, but they clearly use it
when they say right after Equation (5.2) that the boundary of ﬁ, the image of Q under z — %, 18
Cl-smooth.) Also, they prove this result under the weaker assumption that Q is of Smirnov type

(which means that the derivative of a conformal representation offl on the unit disk is an inner
function).

3.4. The remaining case.

Theorem 6. Let Q be a non-trivial exceptional domain of finite connectivity. Assume that 09
is not bounded, so contains at least one proper arc. Then |Vu| < 1 in Q. Moreover, for each end
of Q, lim Vu(z) exists and its norm is equal to one. Finally, the number of proper arcs in OS2 is
at most two.

Proof: Fix some large number R such that:

e all Jordan curves in 92 are contained in D(0, R),
e all proper arcs in 02 have at least one point in D(0, R),
e R is not a critical value of the function |z| restricted to 0.

The last point implies that 02 is transverse to the circle |z| = R, so intersects this circle in a
finite number of points. Consequently, 92 \ D(0, R) has a finite number of components. Each
such component is either a curve with two endpoints on the circle C(0, R) or a proper arc with
one endpoint. Consider an unbounded component C' of Q\ D(0, R). By our choice of R, no
component of JC can be a component of 2. Hence JC has only one component, and we may
decompose OC as aj - ag - a3 where a1 and ag are proper arcs [0,00) — C with one endpoint on
the circle |z| = R, both included in 0%, and a3 is a curve with two enpoints on |z| = R. (The
curve ay consists of arcs of the circle |z| = R together with finite parts of 992). Arguing as in
the proof of Theorem 5, we can find a conformal representation f : H — C which extends to a
homeomorphism from H U {oo} to C U {oo}, mapping R to dC and oo to oo.

As in the proof of Theorem 5, let w = uw o f. Then w is a positive harmonic function in H.
Since H is simply connected, we may consider the conjugate harmonic function u* of u. Consider
the holomorphic function

U(z):=u(z) +iu*(z), =ze€H.

Let [a,b] = f~(a2). Then ReU(z) = 0 on R\ [a,b]. By the Schwarz reflection principle, U
extends to a holomorphic function on C\ [a, b]. By the boundary maximum principle, since u > 0
in H, we have u, > 0 on R\ [a,b]. By the Cauchy Riemann equation, u} = —,, so the function
u* is decreasing on (—o00,a) and (b, 00). Consequently, the function U takes each pure imaginary
value at most two times on C \ [a, b]. By Picard’s theorem, U has no essential singularity at oo,
so has at most a pole. Since Re U is positive in H, the pole has order at most one. This means
that we can write

U(z) = —ciz + h(%), 2eC\ [,

where the constant ¢ is non-negative and the function A extends holomorphically at 0. Then

1.1
U'(2) = —ci — W'(=)—=.
(2) = —ci = H(2)5;
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If ¢ = 0, let m be the order of the zero of b’ at 0 (with m = 0 if A’'(0) # 0). Then there are
positive constants ¢; and ¢y such that
€1

(7) e <|U'(2)] £ e2  for |z| large enough.

If ¢ > 0, then (7) still holds with m = —2 and ¢; = §. This implies in particular that U’(z) # 0
if |z] is large enough. By the Cauchy Riemann equation, we have U’ = 2u,, so u, # 0 for |z|
large enough. From this, we conclude that for z € C, |z| large enough, |Vu(z)| # 0. Therefore,
taking a larger value of R if necessary in the definition of C', we can assume that |Vu(z)| # 0 in
C. Consider the holomorphic function

2u,(2)
g9(z) = =2u,(f(z)), =z¢€H.
() = S = 2u(1(2)
By (5) and (7), we have for |z| large enough (say |z| > Rp):
3 4
y (lz[+1)
— < < cg———.

Since u, # 0 in C, there exists positive constants ¢} and ¢ such that for |z| < Ry,

1 < lg(2)] < .

Take )
¢] = min{c, %}, ¢y = max{cs, chRy}.
0
Then 5 A
1 Z/ /I(|Z’ + ]‘)
cH—" < z <c _, z € H
1(|Z|+1)m+6 —’g( )|— 2 y

Since |Vu| =1 on «a; and a3, we have |g(z)| = 1 on R\ [a,b]. Since u, # 0 on g, we have by
compactness that g(z) and g(z)~! are bounded on [a,b]. Hence g(z) and g(z)~! are bounded
on OH. By Lemma 1, we conclude that g(z) and g(z)~! are bounded in H. Now consider the
holomorphic function

G(z) =logg(z), z€ H.

Since g(z) and g(z)~! are bounded in H, ReG(z) is bounded in H. Moreover, Re G(z) = 0 on
R\ [a,b]. By the Schwarz reflection principle, G extends to a holomorphic function on C\ [a, b].
Now ReG(z) is still bounded in C\ [a,b], so G does not have an essential singularity at co by
Picard’s theorem, and cannot have a pole either, so G extends holomorphically at co. Moreover,
G(o0) € iR. This means that

(8) lim  2u.(z) exists
|z| 5 00,2€C

and is a unitary complex number, which proves the second assertion of Theorem 6.

To finish the proof of the theorem, let Cy, - - - , Cj be the unbounded components of 2\ D(0, R).
Given € > 0, there exists r > R such that |Vu| <1+ ¢ for z € C;, |z| > r. Consider the domain

k
QT:Q\U{zECi Dzl >}
i=1
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Then €, is a bounded domain and |Vu| < 1+4¢ on 912,. By the maximum principle, |Vu| < 1+¢
in Q,. Hence, [Vu| <1+ ¢ in Q. Since this holds for arbitrary positive e, we have |Vu| <1 in
2. The maximum principle implies that [Vu| < 1in © (else [Vu| =1 in  and in this case € is
a half-plane.)

Since Vu is normal to 0f2, (8) implies that the normal to the proper arc 9C; has a limit as
t — +o0o. Hence the image of OC; by z + 1/z is a C'! curve near zero, so the image of C; contains
a cone with vertex at the origin, positive radius € and angle § < 7 as close as we want to m. As
the image of Q by z — 1/z can contain at most two such cones, we have k¥ < 2. Theorems 6 and
1 are proved. O

3.5. The periodic case.

Theorem 7. Let Q be a non-trivial periodic exceptional domain tnvariant by a translation T .
Assume that Q)T has finite connectivity. Then |Vu| < 1 in Q. Moreover, the boundary of /T
is a finite union of Jordan curves, /T has one or two ends, each asymptotic to a half cylinder,
and lim Vu(z) exists on each end.

Proof: First observe that by uniqueness (Proposition 2), the function w is periodic: uoT = u.
Without loss of generality we may assume that 7' is the translation z +— 2z + 27wi. Let Q=0 JT.
Then Q is a smooth domain in C/T (for the definition of a smooth domain is local), so the
boundary of Q consists of smooth Jordan curves and proper arcs v : R — C/T. Choose R > 0
large enough so that the domain |Re z| < R contains all the Jordan curves in 9Q. Let Cg be the
half cylinder Rez > R in C/T and QR =Qn Cr.

Claim 1. Either Qr = Cr or Qp = 0.

Proof: Assume by contradiction that Q R is neither equal to Cr nor empty. Then (8?2) NCgr
is not empty. By our choice of R, this intersection contains a proper arc 7 : [0,00) — Cg such
that Rey(0) = R. Then Cg \ 7 is simply connected, so Qg lifts to an unbounded domain Qg
in C such that the canonical projection Q R — Q R is bijective. By the proof of Theorem 6, each
unbounded component of Q R contains an unbounded sector of angle 6 < 7 as close as desired to
7. Since the translation T is not injective on such a sector, we get a contradiction. O

Next assume that €25 is not empty, so is equal to Cz. The function log : C \ D(0,ef*) = Cp is
biholomorphic. Let @(w) = u(logw), so % is a positive harmonic function in the domain |w| > e.
By Bocher theorem (Theorem 3.9 in [1]), we may write

1
u(w) = clog |w| + h(;) for [w| > eft

where the harmonic function h extends analytically at 0. Substituting w = e*, we get

u(z) =cRez+h(e™®) for Rez > R,

Uy = % — h (e %)e "
From this, we conclude that lim, o 2u,(x + iy) = c exists. (Note that at this point, we do
not know that |¢| < 1.) This implies that |u,| is bounded in Q. Arguing in the same way for
x < —R, we conclude that |u.| is bounded in Q. The following theorem of Fuchs [7] with f = 2u,
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implies that [2u,| <1 in . (Indeed, the fact that |u.| is bounded rules out possibilities (b) and
(c).) O

Theorem 8 (Fuchs). Let Q be an unbounded region of the complex plane. If f is holomorphic
in Q and imsup,_,. .cq [f(2)| <1 for all { € 0Q, then one of the following mutually exclusive
possibilities must occur:

(a) |f(2)] <1 forall z€Q,

(b) f(z) has a pole at co,

(c) log M(r)/logr — oo as r — oo, where M(r) = sup|.|—, .cq | f(2)]-

This is a Phragmen Lindel6f type result. The striking fact about this result is that no assump-
tion is made on the geometry of the domain 2, as in the classical Phragmen Lindel6f principle.

4. THE MINIMAL SURFACE ASSOCIATED TO AN EXCEPTIONAL DOMAIN

To each exceptional domain €2, we associate a minimal surface M as follows. Consider the
holomorphic function g = 2u, and the holomorphic differential dh = 2u,dz on €. Observe that
both have the sames zeros, with same multiplicity. Fix some point zg € 0€2. The Weierstrass
Representation formula

(9) X(2) = (X1(2), Xa(2). Xa(2) = Re |

20

1, _ T, _
50— n 56+ g)dn.dn

defines locally a conformal, minimal immersion X :  — R3. It turns out that X (z) is in fact
globally well defined in 2. Regarding the third coordinate, we have

X3(z) = Re/ 2u,dz = / uydz + uzdz = / du = u(z)
20

20 20
so X3(z) is well defined in . Let
P(z) = X1(z) +iXa(2).
We will see in a moment that v(z) is well defined in Q. Let M+ = X (2). Then M lies in the
upper half-space x3 > 0, and the image of 92 lies in the horizontal plane x3 = 0. Since |g| = 1

on 0N, we may complete M by symmetry with respect to the horizontal plane into a minimal
surface M.

Theorem 9. In the above setup:

(1) ¥(z) is well defined in Q.

(2) For each component v of 082, ¥ (7) is obtained from v by a translation composed with
conjugation. (The translation depends on the component.)

(8) M is a complete, immersed minimal surface in R3.

Assume moreover that |Vu| < 1 in Q. Then:
(4) ¥ is a diffeomorphism from Q to 0= P(Q) and M is the graph over 0 of the function
u(z) = u(®™'(2)).
Consequently, M is embedded.

Assume moreover that the complement of ) is non-thinning (see Definition 1). Then:

(5) 09 = (09).
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Remark 2. [t is very much likely true that Point (5) is true without the non-thinning hypothesis
but I have not been able to prove it.

Proof: A standard computation gives

(10) dip = %(g—ldh ~ gdh).
This gives
(11) dip = %(dz — 4(u,)%dz).

We have to prove that di is an exact differential. In other words, we have to prove that for any
cycle v € H1(Q,7), fv dip) = 0. Since 2 is a planar domain, H;(€2,7Z) is generated by the closed
curves in J€). Let v be a parametrization of a component of 9€2. Then since u is zero on 0f2,
du(y') = 0 = (u.dz + uzdz) (7).
Multiply by 4u, and use the fact that 4u,uz = |Vu|? =1 on 9Q:
(4(uz)?dz + dz)(7) = 0
From this we obtain

(12) dip = dz on tangent vectors to 0f.

Hence if v is a closed curve on 0f2, f,y dip = 0. This proves Point (1). Point (2) is clearly a

consequence of (12). The metric induced on © by the conformal immersion X is given by the
standard formula

1 1
ds = (g dh| + lg~tdh|) = S+ |Vu|?)|dz| = \(2)|dz|  with
This implies that M is complete and proves Point (3).
Proof of Point (4): Using (11), the matrix of dy is

171 u? + uz —2uzuy
2 Uy —1—u2+ ui '

< Az) <1.

[N

We compute
1
det(dy) = Z(yvur1 —1).

Since |Vu| < 1, dv is a local diffeomorphism. This implies that the image Q= ¥(Q) is open.
The following claim proves that 1 is injective, so is a diffeomorphism from 2 to €.

Claim 2. Let 2,2 be two distinct points in Q. Then

(2" = 2,¥(2) = 1(2)) > 0.
Here, (v,v') = Re(vv’) denotes the usual euclidean scalar product on R? identified with C.

Proof. The segment [z, 2’| has a natural ordering which we denote <. If z1, z9 are two points
on the segment [z, 2] such that z; < 29 and (21, 22) C Q, then by Equation (11)

Re (= 2)lee) = w(en)] = e | = e = 1) = (= 2) [ 4w

21
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Now since z1, 29 are on the segment [z, 2/] and 21 < 29,
Re[(z —2)(m—71)] = (2 — 2,20 —z1) = |2/ — 2| |22 — 2.
Since |Vu| < 11in Q,

< |2 — 2| |22 — 21].

(+ - 2) / " d(ua)2d

1

Hence

(2" = 2,9(22) = (1)) > 0.
If [z,2'] C Q, the claim is proved (by taking z; = z and zo = 2’). Now assume that [z, 2’| crosses
the boundary of €. Let z; be the first point on [z, 2/] NI (where “first” refers to the ordering <
of points on [z, 2']). Let 1 be the component of 9 to which z; belongs. By Proposition 4, v,
bounds a convex domain which is in the complement of Q. The segment [z, 2’] exits this domain
at a point zo > z; and then does not cross ; anymore. (The convexity is not crucial to this
argument, but convenient). Since z; and 2z are on the same component of 9€2, we have by (12):

(z' = 2,(20) = ¥(21)) = (¢ — 2,220 — 21) = |2/ — 2|22 — 2.

Let n be the number of boundary components that the segment [z, 2’] crosses (which must be finite
by compactness). We may find an increasing sequence of points zg = 2,21, , 2on, 2on+1 = 2’
on the segment [z, 2’| such that for even i, (2;,z,+1) C Q and for odd 7, z; and z;41 are on the
same boundary component of ). By the two cases that we have seen, we have for 0 <17 < 2n

(2" — 2,9(zip1) —¥(2)) >0 (unless 241 = ).
Adding all these inequalities proves Claim 2.

Proof of Point (5): Let Q = (€2). Assume that 9Q \ 1)(9Q) contains a point ag. By Claim 3
below, d(ag, ¥ (0€2)) > 0. This contradicts Lemma 2 below (where we drop all hats), and proves

that 9Q = ¢ (0€). This concludes the proof of Theorem 9. O

Claim 3. ¢(092) is a closed subset of the plane.
Note that the non-thinning hypothesis is used only to ensure that Claim 3 holds true.

Proof: let (7;)icr be the components of 9Q, 7; = ¥(;), C; the convex set bounded by v; and
C; the convex set bounded by 7;. By Point (2) of Theorem 9, C; is the conjugate of a translate of
C;. Since C\ © is non-thinning, there exists ¢ > 0 and o > 0 such that for all i € I, u.(C;) > a.
Observe that pe(Ci) = pe(Cy). Let zg € C. Then D(zp,¢) can intersect only a finite number

A~

of the convex sets C;, namely at mos 2 Indeed, if p € @ N D(zp,€), then D(p,e) N @ is
f th ts C ly at most 7=

(0% JE—
included in D(zp,2¢) and has area greater than a.) Since each 7; N D(zg, ¢) is closed, we conclude

that 1 (92) N D(zo,¢) is closed. O

Lemma 2. Let M be a complete, connected minimal surface in R3. Assume that M is symmetric
with respect to the horizontal plane x3 = 0, and that M* = Mn{x3 > 0} is the graph of a function
u over a domain Q C C. Then 0Q C M9, where M = M N {z3 = 0}.
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Of course, if M is properly embedded, then MY is closed, so Lemma 2 says that 0Q = MP.
But we do not know that.

Proof: We follow the proof of Theorem 3.1 in [4]. Assume that 02 contains a point ag such
that d(ag, M°) > 0. Let ¢ = d(ag, M?). Choose a point a; €  such that |ag — a1| < £. Let
az be a point in 0N such that |a; — ag| is minimum (which exists because 0f2 is closed). Then
d(az, M?) > £ and the segment [a1,as) is entirely included in . Choose a sequence of points
Z, on this segment such that z, — a2 and |z, — az| < §. Let p, be the point on M T whose
horizontal projection is z,. Let U, be the component of B(py, §) N M which contains p,. Then

for p € U,,, we have

d(p, M®) > d(pn, M°) = = > d(z, M°) = = d(az, M) = - >

»-lk\m
»Mm

Since M is stable (as a graph), the norm of the second fundamental form of U, is bounded by
k= % by the estimate of Schoen [20] where ¢ > 1 is a universal constant. By the uniform graph
lemma (Lemma 4.1.1. in [18]), U, is the graph over the disk D(py, ;) in the tangent plane
T,, M of a function v,, which satisfies |d*v,,| < 16k. This implies that the slope of T},, M goes to
infinity as n — o0, else the horizontal projection of U,, will eventually contain as. Passing to a
subsequence, the normal N(p,) converges to a horizontal vector N,. Let U, = U, — Pn, SO U,
is a minimal surface containing the point 0. Since it has bounded curvature a subsequence of
Un converges smoothly to a minimal surface Uso. Moreover, the Gauss map of U at 0 is the
horizontal vector Nao. I claim that Us is flat. If not, then the Gauss map of Us is open, so will
take values in both the upper and lower hemisphere. But then the same is true for f/n for n large
enough, which contradicts the fact that M is a graph. Hence Us is a disk of radius ﬁ in the
vertical plane perpendicular to No,. This implies that the horizontal projection of U, converges
to the segment T of length i = o centered at ag and perpendicular to N. Then T' C 912, and
since d(az, M°) > 5, we conclude that T C Q\ M°. The choice of ay implies that 7" must be
perpendicular to as — a1, so the limit normal N, is uniquely defined, up to sign.

By changing the coordinate system, we may assume that a; and as are on the real axis, a; < 0
and az = 0, so Noo = £+(1,0,0). From what we have seen, we conclude that for any sequence

xn — 07, there is a subsequence such that lim% = +(1,0). Hence |ugy(z,0)| > @ for
x close to 0, say x € [—¢1,0). Consider the curve on M defined by v(z) = (x,0,u(z,0)) for

x € [—€1,0). Since M is complete, this curve has infinite length, SO

00 = V14 (ug)? <2 |ux|

—£1 —€1

Since uy has constant sign for « € [—¢1,0), this gives lim,_,o- u(x,0) = £oo. Since u is positive,
we conclude that the sign is +.

Consider a sequence of points z, on the segment (a1, a2) such that z,, — a2, so u(z,) — co. Let
rn = u(2,). We do the same argument again, replacing U, by the component of B(py, 3) N M,
which contains p,,. Then for p € Uy, we have d(p, M°) > &. Fix some arbitrary small £ > 0. By
the estimate of Schoen, the norm of the fundamental form of U, is bounded by £€ g0 is less than
k: for n large enough. The above argument tells us that 9€) contains the 5egment T of length
ﬁ centered at az and perpendicular to (aj,a2). Moreover, as each U, is a graph, ) contains
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a rectangle with one side equal to T' and non-empty interior (the width of this rectangle may
depend on k). We let k& — 0 and conclude that 02 contains a line L. By connectedness, 2 must
be on one side of L and M is contained in a vertical half-space.

To prove that u — oo on L, we do the same argument again, taking ag to be any point on the
line L. This time we can take aj such that (ag,a1) is perpendicular to L (thanks to the existence
of the above rectangle). Then as = ag, and we obtain that limu(z) = oo as z — L, the limit
being unifom on compact sets of L. The half-space theorem of Hoffman-Meeks [12] gives that
M is a vertical plane, which is a contradiction since M+ is a graph. (The half-space theorem
of Hoffman-Meeks requires that M is properly immersed. The fact that « — oo uniformly on
compact sets of L is enough, as is clear from the proof of the half-space theorem.) O

5. THE EXCEPTIONAL DOMAIN ASSOCIATED TO A MINIMAL BIGRAPH

Definition 2. A minimal bigraph is a complete embedded minimal surface M such that M is
symmetric with respect to the horizontal plane x3 =0, and M+ = M N {x3 > 0} is a graph over
the domain in the horizontal plane bounded by M N {x3 = 0}.

To each minimal bigraph M, we associate an exceptional domain 2 as follows. Assume that
M is the graph of a function @ on a domain Q. Let ¥ be the conformal structure of M (in other
words, any Riemann surface conformally equivalent to M). Let X = (X1, X2, X3) : ¥ — M be
a conformal parametrization of M. As M is a minimal bigraph, the Riemann surface ¥ admits
an antiholomorphic involution ¢ corresponding to the symmetry with respect to the horizontal
plane 23 = 0. The fixed set of o divides ¥ into two components. Let ¥ be the component
corresponding to MT. Let ¢ = X +iX,. Then as M is a graph over , ¢ is a diffeomorphism
from X+ to the domain €.

Let g be the (stereographically projected) Gauss map of M and dh = Q%dz the height
differential (where here z denotes a local complex coordinate on ¥). In other words, (%, g, dh)
is the Weirstrass data of M and M is parametrized by (9). Assume that M has been oriented
so that the normal points down in M ™, so that |g| < 1 in . Fix some base point py € 7.
Define ¢ : ¥ — C by

(p) = /pp g~ 'dh.

0

Define F' = ¢ o~ and 2 = ¢(X+). We have the following commutative diagram:
Q

AN

F

pIp A o BEELANG » Lo
\_/’

X3

Theorem 10. In the above setup:

(1) o(p) is well defined in XT.

(2) For each component ~y of 09, F(v) is obtained from ~ by a translation composed with
conjugation.
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(3) F : Q- Qisa diffeomorphism. Moreover, for any z,z" in Q, 1t holds
(13) |F(2) = F()| > |z = 2|,
Consequently, Q is an unbounded domain whose boundary is F(aﬁ)
(4) The function u(z) = u(F~1(2)) solves Problem (1) in Q. Moreover, |Vu| < 1 in Q.
Proof: We want to prove that dy = g~'dh is an exact diffential on ¥*. Since ©T is home-
omorphic to a planar domain, it suffices to prove that f7 g 'dh = 0 for all closed curves 7 on
OXt. Let v be a component of X1, Then since |g| = 1 on v and dh(v’) € iR, we have on

gdh(y') = —g~tdh(v').
By (10),

(14) dip(v') = de(').

Since 1 is well defined, di is an exact differential, so dy is exact too. This proves Point (1).
Equation (14) also proves Point (2). Regarding Point (3), the function g is holomorphic in X+
and has the same zeros as dh with the same multiplicity. Hence ¢ is holomorphic and dp = g~ 'dh
has no zero, so ¢ is locally biholomorphic and F' is a local diffeomorphism. We need the following

Claim 4. Given two distinct points z, 2" in Q, we have
(F(2)) = F(2),2 = 2) > |/ = 2.
Here (v,v") = Re(vv') denotes the usual euclidean scalar product on R? identified with C.
Proof: Assume that zq, 2o are two points on the segment [z, 2] such that 2; < 25 and the open
segment (21, 22) lies inside Q. (Here < denotes the natural order on the segment [z, 2z'].) Let

a :[0,1] — X+ be such that ¢ o « is the constant speed parametrization of the segment [z1, 22].
Fix some time ¢ € (0,1) and let

l— 1
v = §gfldh(a’), w=-39 dh(c).
Then by (10),
dp(a) =29 — 21 = v +w, do(a’) = 2v.
Since |g| < 1 in X", we have |w| < |v|, hence
(20,0 +w) > |v+ w|>

Hence

(dp(a’), 2 — z1) > |22 — 21
Since 29 — 21 = A(2 — 2) with A > 0,

(do(a!), 2 — 2) > (20 — 21,2 — 2).
Integrating from ¢t = 0 to 1, we obtain
(F(e2) = F(o0), 2 — 2) = (o(a(D) — pa0)), 2/ — 2) > (22 — 21,2/ — 2).

Next assume that z1, z9 are two points on the segment [z, 2] such that 21 < 29 and 21 and 2z are
on the same component of 9. Then by (14), F(22) — F'(21) = Zz — Zz1 so we have

(F(29) — F(21),2 — 2) = (20— 21,2 — 2).
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We conclude as in the proof of Claim 2 by decomposing the segment [z, 2’] into a finite number of
segments which are either included in €2 or whose endpoints are on the same boundary component.
(Note that since M is a minimal bigraph, the domain 2 must be concave.) O

Returning to the proof of Theorem 10, Claim 4 implies Inequality (13). This implies that
F' is injective, so F : Q- Qisa diffeomorphism, and that F' is proper. Hence 0 = F (8Q)
Regarding Point (4), ¢ is biholomorphic and X3 is harmonic so u = X3 o ¢! is harmonic in Q.
Since u > 0 in Q and u = 0 on 912, we have v > 0 in Q and v = 0 on 9f2. Finally, differentiating
uop = X3, we get

0X.
2u.(p(2)) x (g~ dh) = 28—3(12 = dh.
z
Hence

[Vu(p(2))] = lg(2)]

which implies that |u| < 1 in £ and |u| = 1 on 09Q. O

6. THE CORRESPONDENCE

We denote by M| the minimal surface M associated to 2 by Theorem 9 and by Q[M] the
domain 2 associated to the bigraph M by Theorem 10. Observe that the definition of M)
depends on the choice of a base point zy. However, changing zy amounts to translate M by a
horizontal vector. The same comment applies to Q[M]: changing the base point py amounts to
translate 2. Hence if we consider as equivalent two domains that differ by a translation, and two
minimal surfaces that differ by a translation, M[Q] and Q[M] are well defined.

Theorem 11. The maps Q — MI[Q] and M — Q[M] are inverse of each other, and establish a
one-to-one correspondence between

e exceptional domains 2 whose complement is non-thinning and such that |Vu| < 1 in Q,
o minimal surfaces M which are bigraph over a domain whose complement is non-thinning.

Proof:

e Assume that we are given Q and let M = M[Q]. Recall that M is conformally
parametrized on € by the Weierstrass data g = 2u,, dh = 2u,dz. Then dp = g~ 'dh = dz
on X1 = Q, so Q[M] is equal to 2, up to a translation. (Here, the conformal structure
Y of M is the “double” of 2, see [6] page 49).

e Assume that we are given M and let Q = Q[M]. Let (X, g,dh) be the Weierstrass data
of M. Then Q = ¢(XT) where dp = g~ 'dh and u(p(2)) = X3(2). By differentiating, we
get

X
2u,(p(2))dp = 2%@ =dh, hence 2u,(p(2)) = g(2)

©*(2u,dz) = gdy = dh.

Hence (X7, g,dh) is the pullback by ¢ of (Q,2u,,2u,dz). So M[Q] = M, up to a
translation.

g
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7. EXAMPLES

In this section, we develop three examples. Please take care that in the setup of Theorem 10,
it is required that both X3 > 0 and |g| < 1 in ¥T. The following standard facts will be useful.
Proposition 5. Let (X, g,dh) be the Weierstrass data of a minimal surface M. Then:

(1) (%, 7717 dh) is the Weierstrass data of o(M) with the opposite orientation, where

0'(331, z2, :E3) = (:El’ —ZL‘Q,.'L'?,)

is the symmetry with respect to the vertical plane xo = 0.

2) (%, %7 %(% — g)dh) is the Weierstras data of p(M) with the same orientation, where

p(xl; z2, ZE3) = (_1133,(172,{1)1)
is the rotation of angle /2 around the xa-azis.

7.1. The vertical catenoid. The Weierstrass data of the standard catenoid is usually written
as

dz
=—
Then X3 = log|z| so we see that X3 > 0 in |2| > 1. Since |g| > 1 in this domain, we use Point
(1) of Proposition 5 and take g = =%, Then ¢(2) = —z, so Q is the domain |2| > 1.

Y=C* g=2z2 dh

7.2. The horizontal catenoid. By Point (2) of Proposition 5, the Weierstrass data of a hori-
zontal catenoid is

2
S=Cr, o g= ii dh:%dz.
Here it is convenient to replace z by —z so
2
9= 1 + i h= ZTz?le'
Then
X3(z) = 1Re (1 + z>
2 z
and

X3>0<Rez>0«|g| < 1.

1 z
©(2) /g dh 5, ~logz—5

For t real and ¢ = £1, we have
o(eie') = —t —ei (g + cosht) :

Hence, €2 is the domain |y| < § + coshz (see Figure 1). This is precisely the domain obtained in
Proposition 2.1 of [11].

Remark 3. We see on this example that it may happen that ¢ is not well defined on all of X.
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FiGURE 1. The boundary of the domain Q over which the catenoid is a bigraph
(dots) and the boundary of the corresponding exceptional domain €2 (solid). The
domains have been rotated by 90° so that the figure fits the page.

7.3. Scherk’s simply periodic surface. This periodic surface depends on a parameter o €
(0,%). Its Weierstrass data is usually written as:

4sin(2a) zdz

Y»=CuU ﬂ:iaiiia cherk — < dh01er: .
{oo} \ {£e™, 2™}, gsonen = 2 Scherk 24 —2cos(2a) 22 + 1

This is actually the Weierstrass data of the surface in the quotient by its period which is the
vertical vector (0,0, 27). The immersion (9) is multi-valued on ¥ — the multi-valuation gives rise
to the periodicity of the surface — and is well defined on a certain covering of 3. This surface is a
bigraph over the vertical plane 21 = 0 and also over o = 0. Using Point (2) of Proposition 5, we
obtain the Weierstrass data of the horizontal Scherk surface (with horizontal period (27,0,0))
which is a bigraph over the horizontal plane x3 = 0:

142 2sin(2a) (1 — 22)dz
g:=——, dh= .
1—2z 24 —2cos(2a) 22 + 1
Let 0(z) = —2z. Then o*dh = —dh. Consequently, taking po = 0 as base point, we have

X3(z) =0 oniRU{oco}. From the geometry of the Scherk surface, we know that this is precisely
the zero set of X3. To determine the sign of X3(z) in Re z > 0, we observe that dh ~ 2sin(2a)dz
near 0 so X3 ~ 2sin(2a) = near 0. Hence X3 > 0 in Rez > 0. Since |g| > 1 in this domain, we
use Point (1) of Proposition 5 and replace g by —1/g. This gives

—2sin(2a) (z + 1)2%dz (z+1)2

dp = 24— 2 Cos(2a)z2 +1 = _Tdhscherk-

Hence

Resgiadp = —(1 + cos ) Resgia dhgenerk = (1 + cos ).
The residue at e~** is opposite by symmetry. Hence ¢ is multi-valued on £+, with multi-valuation
equal to 27(1 + cosar). So Q) is a periodic domain with period

To =27(1 4 cos ).

Now the horizontal Scherk surface is a bigraph over a domain Q which is bounded by a convex
curve 7 together with its translates by multiples of 27. By Theorem 10, €2 is the domain bounded
by ~ together with its translates by multiples of T,. This is a completely explicit geometric
description of 2 (see Figure 2).
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O O O O O

FIGURE 2. Top (dots): the boundary of the domain ) over which the Scherk
surface is a bigraph in the case o = §. Bottom (solid): the boundary of the
corresponding exceptional domain  (translated vertically so one can see some-
thing).

It turns out that one can actually compute an equation of . Let us just give the main steps
of the computation. The curve v is the image of the circle iR U {oo} by ¢. Then

o — el Z_l_ewz:|

=— [(1 1 1-— log ———
o(2) i [(1+ cosa)log + (1 —cosa) 08 i

z — el
Write z =it, t € R and ¢(it) = (z(t),y(t)). Then

2(t) = 2arctan <m> ’

(t) | t2 4+ 2sinat+1
— COS & 10 .
y S\ 2simat+1

Elimination of ¢ gives us an implicit equation of ~
(15) cos? a cosh(L) = sin® a 4 cos(2a — z).
Ccos o

(More precisely, = is the component of the solution set of (15) which goes through 0.) In the
particular case a = 7, Equation (15) simplifies to

cosh(v2y) =1 + 2sin .

Remark 4. Let Q) be the exceptional domain corresponding to the Scherk surface of parameter
a. Using Equation (15), one can prove that:

o Asa— 0, Q4 converges to the domain |z — 1| > 1
o Asa — 7, ﬁ@a converges to the domain |x + 1+ 5| < § + coshy.

The limit domains are, up to similitude, the examples of Sections 7.1 and 7.2. This corresponds
to the well known fact that the horizontal Scherk surface, suitably scaled, converges to a vertical
catenoid as o — 0 and a horizontal catenoid as o — 5. As a consequence, if we consider as
equivalent two domains which differ by a similitude, we can put all the examples of Sections 7.1,
7.2 and 7.3 in a continuous family Qy, for o € [0, 5]: Qg is the example of Section 7.1 and Qg

is the example of Section 7.2.
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8. CLASSIFICATION RESULTS

Theorem 12. Let Q2 be an exceptional planar domain of finite connectivity (meaning that OS2
has a finite number of components). Then § is one of the following domains:

e q half-plane,
e the outside of a disk,
e the domain |y| < § + coshz, up to a similitude.

Assume that © is not a half-plane. By Theorem 1, |Vu| < 1 in Q. Let M be the minimal
bigraph associated to €2 by Theorem 9. If 0f2 is compact, then M has two ends. By Theorem 2,
lim, 0 g(z) = 0. This implies that M has finite total curvature. By a theorem of Schoen [19],
an embedded minimal surface with finite total curvature and two ends is a catenoid. Since g =0
at the top end, M is a vertical catenoid.

Else, let £ > 1 be the number of proper arcs in 9€2. Then M has k ends. By Theorem 6,
k < 2 and the limit of the Gauss map at each end exists and is a complex number of norm 1.
This implies that M has finite total curvature. If & = 1, then M is vertical plane because the
only embedded minimal surface with finite total curvature and one end is the plane. This is not
possible because the vertical plane is not a bigraph. Hence k = 2, and M is a horizontal catenoid
by the theorem of Schoen. O

Theorem 13. Let 2 be a periodic exceptional domain. Assume that € has finite connectivity in
the quotient. Then ) is one of the following domains:

e a half plane,
e the exceptional domain corresponding to a horizontal Scherk surface (namely, one of the
domains described in Section 7.3, up to similitude).

Proof: Assume that €2 is not a half-plane. By Theorem 7, |Vu| < 1 in Q. Let M be the
minimal bigraph associated to by Theorem 9. Then M is a periodic minimal surface with
horizontal period T. By Theorem 7, M* /T is bounded by a finite number of Jordan curves in
the plane x3 = 0, and has at most two ends. Moreover, the Gauss map has a limit at each end,
so M/T has finite total curvature. By a theorem of Meeks-Rosenberg [15], the ends of M /T
are either of planar, helicoidal or Scherk type. In both the planar and helicoidal cases, M+ /T
would intersect the horizontal plane x3 = 0 in a non-compact set. Hence M /T has at most four
Scherk-type ends. If M /T has two Scherk-type ends then it is a plane, which is not possible. So
it has four Scherk-type ends. By a theorem of Meeks-Wolf [16], M is a Scherk surface. a

Remark 5. The theorem of Meeks-Wolf is a difficult result. Moreover, Theorem 13 is equivalent
to the Theorem of Meeks-Wolf: Indeed, using the Alexandrov moving plane method, one can prove
that a periodic minimal surface with 4 Scherk-type ends must be a minimal bigraph over some
plane. For this reason, I don’t think that there is an elementary proof of Theorem 13.

9. IMMERSED DOMAINS

In [11], the authors also propose to study Problem (1) on arbitrary flat Riemannian manifolds
with boundary. They construct examples which have some analogy with immersed minimal sur-
faces called k-noids. This was another hint at the correspondence between exceptional domains



22 MARTIN TRAIZET

and minimal surfaces. The correspondence, however, does not generalize to arbitrary flat sur-
faces. Let me propose a setup where the correspondence extends. This will allow us to recover
the examples discussed in [11], and more. The following definitions are standard:

Definition 3. (1) A (smooth, 2-dimensional) immersed domain € is a smooth, complete,
flat, 2-dimensional Riemannian manifold-with-boundary such that there exists a map f :
Q — C which is a local isometry, called the developing map of €.
(2) We say that 2 has embedded ends if the developing map is injective on each end of §Q.

Note that by definition of a manifold-with-boundary, €2 includes its boundary. We will denote
by Q=0 \ 092 the set of interior points of 2. Here the word complete means that € is complete
as a metric space. A flat Riemannian manifold always admits locally a developing map, but the
developing map is in general not globally defined unless the manifold is simply connected. The
definition of an immersed domain requires the developing map to be globally defined.

An immersed domain Q (with non-empty boundary) is called exceptional if Problem (1) has a
solution u on © (where Au and |Vu| are computed for the metric of ). Theorem 1 generalizes
to:

Theorem 14. Let Q be a non-trivial exceptional immersed domain with finite connectivity and
embedded ends. Then |[Vu| <1 in ().

Proof: Theorem 1 is proved by showing that |Vu/| is bounded in each unbounded component
of Q\ D(0, R). Since we assume that our immersed domain has embedded ends, the proof carries
OVer. O

Next we recall the definition of strong symmetry from [3], Definition 1. Let X : M — R3 be
an isometric immersion of a connected orientable surface M, and II be a plane in R? which we
normalize as the horizontal plane x3 = 0. Denote by S the symmetry with respect to the plane
x3 = 0, and

MT=MnN{X3>0}, M =Mn{X3<0}, M°=Mn{X;=0}.

Definition 4. M is strongly symmetric with respect to 11 if:

(1) There exists an isometric involution s : M — M such that X os = So X,

(2) The set of fized points of s is M,

(3) The third coordinate N3 of the Gauss map of M takes positive (resp. negative) values on
M™ (resp. M~).

With these definitions, Theorem 11 generalizes to:

Theorem 15. There is a one-to-one correspondence between the following two classes of objets:

e immersed domains ) which have finite connectivity, embedded ends and are homeomor-
phic to a planar domain,

e complete, tmmersed minimal surfaces M which are strongly symmetric, have finite total
curvature, embedded ends, and such that M™ is homeomorphic to a planar domain.

There are plenty of such minimal surfaces. The basic example is the Jorge-Meeks k-noid, which
has k > 3 horizontal catenoidal ends. Genus zero examples with k& > 3 horizontal catenoidal
ends are classified by Cosin - Ros in [3], they form a 2k — 2 parameters family which includes
the Jorge-Meeks k-noid as the most symmetric member. The corresponding exceptional domains
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are the domains constructed in Section 4 of [11]. Genus one examples with & > 3 horizontal
catenoidal ends are constructed by Mazet in [14].

Proof: Assume that we are given an exceptional immersed domain €2 with developing map f,
satisfying all the hypothesis of Theorem 15. We define the holomorphic differential dh by

dh = 2dM0y = 2u,dz

where z is a local conformal coordinate on ). The holomorphic function g is defined by

B @ _ 2u,
A
Since f is a local isometry, the metric of € in the local coordinate z is |f/(z)dz|. Hence
|2u,|
Vu| = =|g|.
|Vl 7 9l

Let M be the minimal surface parametrized on Q by the Weierstrass Representation formula
(9). To see that the immersion X is well defined, consider the differential

1
dyp =dX1 +i1dXy = g(gfldh — gdh).
Then on the boundary of 2 we have
d = g~ 1dh = df.

Since the developing map is well defined in €2, df is an exact differential. Since 2 is homeomorphic
to a planar domain, H;(2,7Z) is generated by the closed curves in 0. Hence di is an exact
differential on Q and X is well defined. Since X3 = 0 and |g| = 1 on 92, we may extend M ™ by
symmetry with respect to the plane 3 = 0 into a strongly symmetric immersed minimal surface
M. The metric induced on §2 by the conformal immersion X is

1+ g
5
Since |g| < 1 in €, this implies that M is complete. Let E be an end of Q. There are two cases:

L, _
(16) ds = S (lg tdh| + |gdh|) = |df|

e If f(E) is the complement of a bounded domain in C, then E is conformally a punctured
disk and df has a double pole at the puncture. Moreover, by Theorem 2, |Vu| — 0 so g
has a zero at the puncture. This implies that ¢g~'dh, gdh and dh have at most double
poles at the puncture. Since this characterizes embedded ends of finite total curvature,
we conclude that the corresponding end of M is embedded.

e If the boundary of f(FE) is not bounded: then by passing to a sub-end, we may assume
that f(FE) is a concave domain bounded by aj - s - a3, where ay and ag are proper arcs:
[0,00) — C and a3 is a straight segment connecting the endpoints of a; and as. The
proof of Point (4) of Theorem 9 says that ¢ is injective on E, so X(F) is a graph and
the corresponding end of M is embedded. (Indeed, if 2,2’ are two points in f(FE), the
segment [z, 2’| can only cross the boundary components a; and as.)

Finally, the fact that g has a limit at each end implies that M has finite total curvature.
Conversely, assume that we are given a minimal surface M satisfying all the hypothesis of

Theorem 15. Let (X, g,dh) be the Weierstrass data of M. Since M is strongly symmetric, the
Riemann surface ¥ admits a antiholomorphic involution s such that X os = SoX. Moreover, the
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fixed set of s divides 3 into two components X and ¥~ such that [g| < 1in X" and |g| > 1in ™.
(Observe that since M has finite total curvature, it is properly immersed, so the strong halfspace
theorem of Hoffman Meeks (Theorem 2 in [12]) implies that M is connected.) Consider the
differential df = g~ 'dh in ©T. Since g and dh have the same zeros with same multiplicity, df
is holomorphic with no zeros in ¥*. On the boundary of ¥, we have df = di) = dX| — i dX>.
Since X is well defined and ¥ is homeomorphic to a planar domain, this implies that df is
exact. By integration, we obtain a well defined holomorphic function f : ¥ — C with non-zero
derivative. We define  as ¥ with the conformal metric |df| and f as developing map. Formula
(16) shows that the metric |df| is equivalent to the metric ds induced by the immersion X on
¥ 7. Hence ) is complete, so is an immersed domain.

It remains to prove that ) has embedded ends. Fix an end F of M. Since M is complete and
has finite total curvature, Osserman’s theorem tells us that E can be parametrized conformally
on a punctured disk. Moreover, g and dh extend meromorphically at the puncture. Since M
is strongly symmetric, Lemma 4 in [3] tells us that the asymptotic normal at the end is either
horizontal or vertical. Therefore, either g = 0, g = 0o or |g| = 1 at the puncture corresponding
to the end.

e If g = 0 at the puncture, then the end can be parametrized on a punctured disk entirely
included in ¥ . Moreover, since the end is embedded, g~ 'dh has a double pole at the
puncture. Therefore, f has a simple pole, so is injective in a neighborhood of the end.
This implies that the corresponding end of € is embedded (and asymptotic to a plane).

e If g = 0o at the puncture, then the end can be parametrized on a punctured disk entirely
contained in X7, so we do not see it in €.

e If |g| = 1 at the puncture, then Point (b) of Lemma 4 in [3] says that the end is asymptotic
to a horizontal catenoid. Therefore, ET = E N M™ is a graph over a concave domain
E in the plane, which we may take to be bounded by a3 - as - a3, where o; and a3 are
convex curves included in M? and ay is a straight segment. The proof of Point (3) of
Theorem 10 tells us that f is injective in ET.

g
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