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CLASSIFICATION OF THE SOLUTIONS TO AN OVERDETERMINED
ELLIPTIC PROBLEM IN THE PLANE

MARTIN TRAIZET

January 29, 2013

Abstract: we classify the solutions to an overdetermined elliptic problem in the plane in the
finite connectivity case. This is achieved by establishing a one-to-one correspondence between the
solutions to this problem and a certain type of minimal surfaces.

1. Introduction

In the theory of elliptic P.D.E., an overdetermined problem is one where both the Dirichlet and
Neumann boundary data are prescribed. This puts strong geometric constraints on the boundary
of the domain. For example, a famous result of Serrin [21] asserts that if Ω is a bounded domain
in Rn which admits a function u solution of ∆u = −1 in Ω with Dirichlet boundary data u = 0
on ∂Ω and Neumann boundary data ∂u

∂ν constant on ∂Ω, then Ω is a ball.

In [11], the authors propose the following overdetermined problem. Let Ω be a smooth,
unbounded domain in Rn with non-empty boundary. The domain Ω is called exceptional if it
admits a positive harmonic function u which has Dirichlet boundary data u = 0 on ∂Ω and
Neumann boundary data ∂u

∂ν = c on ∂Ω, where c is a constant. By the boundary maximum
principle, the constant c must be negative, and we may normalize c = −1 by scaling of u. Also,
the Neumann boudary condition is equivalent to |∇u| = 1 on ∂Ω. So we may formulate the
above problem as:

(1)


∆u = 0 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,
|∇u| = 1 on ∂Ω.

This problem is related to the study of extremal domains, namely domains Ω in a Riemannian
manifold which are critical points for the functional λ1(Ω) under a volume constraint, where λ1

denotes the first eigenvalue of the Laplace Beltrami operator. See [11] for more details.

For example, a half-space or the complementary of a ball are exceptional domains. In [11],
the authors discovered that in the case n = 2, the domain |y| < π

2 + coshx in the plane is
an exceptional domain. They also developed a Weierstrass type Representation for exceptional
domains in the plane that are simply connected, and noted a strong analogy with minimal
surfaces. In this paper, we prove that the analogy goes very deep by establishing a one-to-one
correspondence between exceptional domains and a certain type of minimal surfaces which we
call minimal bigraphs. This correspondence allows us to find examples and classify solutions.
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We only address Problem (1) in the case of planar domains (n = 2) and we identify R2 with
the complex plane C. The assumption that Ω is a smooth domain can be relaxed (see Proposition
1). Also, the solution u of Problem (1), when it exists, is unique (see Proposition 2).

By a trivial exceptional domain, we mean a half-plane. Let Ω be a non-trivial exceptional
domain. In Section 3, we prove that

• If Ω has finite connectivity, then |∇u| < 1 in Ω.
• If Ω is periodic and has finite connectivity in the quotient, then |∇u| < 1 in Ω.

By finite connectivity, we mean that ∂Ω has a finite number of components. By periodic, we
mean that Ω is invariant by a non-zero translation T . Note that an exceptional domain cannot
be doubly periodic (for the maximum principle implies that u ≡ 0 in this case).

In Sections 4, 5 and 6, we establish a one-to-one correspondence between the following two
classes of objects:

• exceptional domains Ω such that |∇u| < 1 in Ω,
• complete, embedded minimal surfaces M in R3 which are symmetric with respect to the
horizontal plane x3 = 0 and such that M+ = M ∩{x3 > 0} is a graph over the unbounded
domain in the plane bounded by M ∩{x3 = 0}. We call such a minimal surface a minimal
bigraph.

(In fact, we will establish the above correspondence assuming that the domain Ω satisfies a
mild additional geometric hypothesis, namely that its complement in non-thinning: see Definition
1. This hypothesis is always satisfied for domains with finite connectivity, or periodic domains
with finite connectivity in the quotient). For example:

(1) The vertical catenoid is a minimal bigraph. It corresponds to the exceptional domain
Ω = C \D(0, 1).

(2) The horizontal catenoid is a minimal bigraph. It corresponds to the exceptional domain
|y| < π

2 + coshx discovered in [11].
(3) Scherk’s family of simply periodic minimal surfaces, suitably rotated, are minimal bi-

graphs. They correspond to a new family of periodic exceptional domains.
We give more details about these examples in Section 7.

In Section 8, we take advantage of the correspondence to translate classification results from
minimal surface theory into classification results for exceptional domains. We prove that (up to
similitude)

• The only exceptional domains in the plane with finite connectivity are the half-plane and
Examples (1) and (2),
• The only periodic exceptional domains with finite connectivity in the quotient are the
half-plane and Examples (3).

Finally, in Section 9, we extend the correspondence to the case of immersed domains in the
plane.

Laurent Hauswirth pointed out to me that Problem (1) has been studied by D. Khavinson, E.
Lundberg and R. Teodorescu in a recent paper [13]. In this interesting paper, the authors obtain
partial classification results, under stronger topological and regularity assumptions than ours: In
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the 2-dimensional case, they prove that an exceptional domain whose complement is bounded and
connected is the complement of a disk (Theorem 3.1); an exceptional domain whose boundary
is a single arc which is C1 at infinity is a half-plane (Theorem 5.1); and an exceptional domain
whose boundary consists of two arcs which are C1 at infinity is the domain |y| < π

2 +coshx, up to
a similitude (Theorem 6.1). They also prove that in higher dimension, an exceptional domain in
Rn whose complement is bounded, connected and has C2,α boundary, is the exterior of a sphere
(Theorem 7.1).

2. Preliminary remarks

The assumption that Ω is a smooth domain can be relaxed. Recall ([8] page 94) that an open
set Ω in Rn with non-empty boundary is a domain of class Ck (resp. smooth, analytic...) if
for each point x0 ∈ ∂Ω, there exists ε > 0 and a diffeomorphisme ψ of class Ck (resp. smooth,
analytic...) from the ball B(x0, ε) to a domain D ⊂ Rn such that

ψ(B(x0, ε) ∩ Ω) = D ∩ Rn+, ψ(B(x0, ε) ∩ ∂Ω) = D ∩ ∂Rn+
where Rn+ is the upper half space xn > 0. (If k = 0, then diffeomorphism of class C0 means
homeomorphism.)

Proposition 1. Let Ω be a domain of class C0 in the plane. Assume that u is a “classical”
solution of Problem (1) on Ω, namely: u is of class C2 in Ω, ∆u = 0, u > 0 in Ω, and

∀z0 ∈ ∂Ω, lim
z→z0

u(z) = 0 and lim
z→z0

|∇u(z)| = 1.

Then Ω is a smooth domain (actually, real analytic). Moreover, u extends to a harmonic function
defined in a neighborhood of Ω.

Proof: Let z0 ∈ ∂Ω. By the definition of a domain of class C0, z0 has a neighborhood Vz0
such that Vz0 ∩ Ω is a Jordan domain (meaning that its boundary is a Jordan curve). Let
f : D+(0, 1)→ Vz0 ∩Ω be a conformal representation on the upper half-disk. Then f extends to
a homeomorphism of the closure of D+(0, 1) to the closure of Vz0 ∩Ω by Caratheodory’s theorem
(Theorem 13.2.3 in [10]). We may choose f so that f maps (−1, 1) to Vz0 ∩ ∂Ω. Consider the
harmonic function ũ(z) = u◦f(z) on D+(0, 1). Then ũ is the real part of a holomorphic function
U on D+(0, 1). Moreover,

∀x0 ∈ (−1, 1), lim
z→x0

ReU(z) = 0

so U extends to a holomorphic function on D(0, 1) by the Schwarz reflection principle. On the
other hand, U ′ = 2ũz gives

U ′(z)

f ′(z)
= 2uz(f(z)) for z ∈ D+(0, 1).

Of course, we do not know yet that f ′ extends continuously to (−1, 1). But our hypothesis on u
tells us that the ratio |U

′(z)
f ′(z) | does, and morevoer,

∀x0 ∈ (−1, 1), lim
z→x0

∣∣∣∣U ′(z)f ′(z)

∣∣∣∣ = 1.
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Consequently, there exists ε1 > 0 such that U
′(z)

f ′(z) 6= 0 for z ∈ D+(0, ε1). Consider the holomorphic

function h(z) = log U ′(z)
f ′(z) on D+(0, ε1). Then limz→x0 Reh(z) = 0 for x0 ∈ (−ε1, ε1), so h

extends to a holomorphic function in the disk D(0, ε1). Hence f ′ and f extends holomorphically
to the disk D(0, ε1), and f ′ 6= 0 in this disk, so f is biholomorphic in a disk D(0, ε2). This
implies that the boundary of Ω is real analytic in a neighborhood of z0. Moreover, the formula
u(z) = ReU(f−1(z)) shows that u can be extended to a function harmonic in a neighborhood of
z0. The extension is unique by analyticity so this shows that u can be extended to a neighborhood
of Ω. 2

Proposition 2. Let Ω be an exceptional domain. Then Problem (1) has a unique solution u.

Proof: Let u′ be another solution. Then the difference v = u − u′ satisfies ∆v = 0 in Ω and
v = dv = 0 on ∂Ω. By proposition 1, both u and u′ extend to a neighborhood of Ω. Then the
function vz is holomorphic in a neighborhood of Ω and vz = 0 on ∂Ω so the zeros of vz are not
isolated. Hence vz ≡ 0 and v ≡ 0 in Ω. 2

Proposition 3. Let Ω be a smooth domain in the plane. Then each component of ∂Ω is either a
smooth Jordan curve or the image of a smooth proper embedding γ : R→ C (where proper means
limt→±∞ γ(t) =∞). We call the later a proper arc.

Proof. Each component of ∂Ω is a 1-dimensional submanifold so is either diffeomorphic to the
circle S1 or the real line. In the first case, it is a smooth Jordan curve. In the later case, it is
the image of an embedding γ : R → C. We claim that γ is proper. If not, then there exists a
sequence tn → ±∞ such that γ(tn) has a finite limit p. Now p must be on the boundary of Ω.
The definition of a smooth domain at p gives a contradiction. 2

The condition |∇u| < 1, which we will address in Section 3, has the following interesting
geometric consequence for the domain Ω:

Proposition 4. Let Ω be an exceptional domain such that |∇u| < 1. Then Ω is a strictly concave
domain, namely: each component of C \ Ω is strictly convex.

Proof. The curvature of the level set u = 0 is given by ([9] page 72)

(2) κ =
uxxu

2
y + uyyu

2
x − 2uxyuxuy

(u2
x + u2

y)
3/2

.

Regarding sign, the curvature is positive when the curvature vector points toward u < 0 (as can
be checked in the case u(x, y) = x2 + y2 − 1: Formula (2) gives κ = 1). Consider the harmonic
function g(z) = − log |2uz(z)|. Then g = 0 on ∂Ω and g > 0 in Ω. Let z0 ∈ ∂Ω. By rotation we
may assume that z0 = 0 and ∇u(0) = (1, 0). Then for small ε > 0, (0, ε) ⊂ Ω. By the boundary
maximum principle (Lemma 3.4. in [8]), gx(0) > 0. On the other hand,

gx(0) = − 1

|∇u(0)|2
(ux(0)uxx(0) + uy(0)uxy(0)) = −uxx(0).

Hence uxx(0) < 0. Since u is harmonic we obtain uyy(0) > 0. Formula (2) gives κ(0) > 0. This
means that the curvature vector of the boundary points outside of Ω, so the boundary is locally
strictly concave. Each component of ∂Ω is then globally a strictly convex curve, meaning that
it bounds a strictly convex subset of the plane. (For the components of ∂Ω which are Jordan
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curves, this is standard. For the components of ∂Ω which are proper arcs, this is also true, see
Theorem 9.40 in [17].) 2

Let C be a convex set in the plane. For ε > 0, we define

µε(C) = inf
p∈C

Area(C ∩D(p, ε)).

If C is a convex set with non-empty interior then µε(C) > 0.

Definition 1. Consider a subset A of the plane which is the union of a family of disjoint convex
sets (Ci)i∈I . We say that A is non-thinning if for some ε > 0 we have

inf
i∈I

µε(Ci) > 0.

We will establish the correspondence in the case where the complement of Ω is non-thinning.
This prevents the components of C \ Ω from becoming thinner and thinner. Clearly if Ω is a
concave domain with finite connectivity, or a concave periodic domain with finite connectivity
in the quotient, then its complement is non-thinning.

3. The condition |∇u| < 1.

The goal of this section if to prove the following theorem.

Theorem 1. Let Ω be a non-trivial exceptional domain with finite connectivity (which means
that ∂Ω has a finite number of components). Then |∇u| < 1 in Ω.

We will in fact get more precise results: see Theorems 2, 5 and 6. We will also prove a result
in the periodic case: see Theorem 7.

3.1. The case ∂Ω compact. We start with the case where ∂Ω is the union of a finite number
of Jordan curves.

Theorem 2. Let Ω be an exceptional domain such that C \ Ω is bounded. Then |∇u| < 1 in Ω
and

lim
|z|→∞

∇u(z) = 0.

Proof. Let ũ(z) = u(1
z ). Then ũ is a positive harmonic function in a punctured disk D∗(0, ε).

By Bôcher Theorem (Theorem 3.9 in [1]), we can write

ũ(z) = c log |z|+ h(z)

where c is a constant and h is harmonic in the disk D(0, ε). Then

u(z) = −c log |z|+ h(
1

z
),

uz(z) = − c

2z
− hz(

1

z
)

1

z2
.

Hence there exists R such that |∇u| < 1 for |z| ≥ R. Then we have |∇u| ≤ 1 on the boundary
of Ω ∩D(0, R). By the maximum principle, we have |∇u| ≤ 1 in Ω ∩D(0, R). Moreover, uz is
not constant in Ω so the maximum principle implies that |∇u| < 1 in Ω. 2
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3.2. A Phragmen Lindelöf type result for univalent functions in the upper half-plane.
Next we would like to do the case where ∂Ω is a proper arc. For this we need a result about
univalent function in the upper half plane Im z > 0, which we denote H. (Recall that univalent
means injective.) We have the following distortion theorem for univalent functions in the half-
plane, which is an easy consequence of the standard distortion theorem for univalent functions
in the disk:

Theorem 3. Let f be univalent in the upper half-plane H and normalized by f(i) = 0 and
f ′(i) = 1. Then for z ∈ H,

4
|z + i| − |z − i|

(|z + i|+ |z − i|)3
≤ |f ′(z)| ≤ 4

|z + i|+ |z − i|
(|z + i| − |z − i|)3

.

Proof: Consider the Möbius transformation

(3) w = ϕ(z) =
z − i
iz − 1

This transformation is involutive and exchanges the unit disk D(0, 1) with the upper half-plane
H. Let F (w) = −1

2 f(ϕ(w)). Then F is univalent in the disk and satisfies F (0) = 0, F ′(0) = 1.
The distortion theorem for normalized univalent functions in the disk (Theorem 2.5 in [5]) tells
us that

(4)
1− |w|

(1 + |w|)3
≤ |F ′(w)| ≤ 1 + |w|

(1− |w|)3
, w ∈ D.

The theorem follows by elementary computations. 2

Using this theorem, we prove the following:

Theorem 4. Let f be an univalent function in the upper half-plane H that extends C1 to H.
Let c be a positive number.

(1) If |f ′| ≤ c on ∂H then |f ′| ≤ c in H.
(2) If |f ′| ≥ c on ∂H then |f ′| ≥ c in H.
(3) If |f ′| is constant on ∂H then f ′ is constant in H.

Proof: Without loss of generality, we may assume (replacing f by af + b) that f(i) = 0 and
f ′(i) = 1. Theorem 3 gives

4
|z + i|2 − |z − i|2

(|z + i|+ |z − i|)4
≤ |f ′(z)| ≤ 4

(|z + i|+ |z − i|)4

(|z + i|2 − |z − i|2)3
.

which implies, with z = x+ iy

(5)
y

(|z|+ 1)4
≤ |f ′(z)| ≤ (|z|+ 1)4

y3
.

The first two points of the theorem follow from Lemma 1 below (with g = f ′ in the first case
and g = 1/f ′ in the second one). To prove the third point, assume that |f ′| ≡ c on ∂H. By the
first two points, |f ′| ≡ c in H. Since f ′ is holomorphic, it must be constant in H. 2

Lemma 1. Let g be a holomorphic function on the upper half-plane H, continuous on H. Assume
that

|g(z)| ≤ c1
(|z|+ 1)n

ym
in H,
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|g(z)| ≤ c2 on ∂H
for some positive numbers c1, c2 and positive integers n,m. Then |g(z)| ≤ c2 in H.

Proof: We prove that |g(z)| has polynomial growth and conclude with the Phragmen Lindelöf
principle. Given R ≥ 1, consider the rectangular domain ΩR = (−R,R)× (0, 1) and the function

hR(z) = (z −R)m(z +R)m.

We estimate the function g(z)hR(z) on ∂ΩR. On {±R} × (0, 1), we have

|g(z)| ≤ c1
(R+ 2)n

ym
, |hR(z)| ≤ ym(2R+ 1)m ⇒ |g(z)hR(z)| ≤ CRm+n

where the letter C means a constant independant of z and R. On [−R,R]× {0}, we have

|g(z)| ≤ c2, |hR(z)| ≤ R2m ⇒ |g(z)hR(z)| ≤ c2R
2m.

On [−R,R]× {1}, we have

|g(z)| ≤ c1(R+ 2)n, |hR(z)| ≤ (2R+ 1)2m ⇒ |g(z)hR(z)| ≤ CR2m+n.

Hence |g(z)hR(z)| ≤ CR2m+n on ∂ΩR. By the maximum principle, |g(z)hR(z)| ≤ CR2m+n in
ΩR. Now if |x| ≤ R

2 , we have |hR(z)| ≥ (R2 )2m, hence

|g(z)| ≤ CRn.
This implies that in the band R× [0, 1],

(6) |g(z)| ≤ C(|z|+ 1)n.

For y ≥ 1, (6) is true by the first hypothesis on g. Hence (6) holds in the whole upper half-plane.
By the Phragmen Lindelöf principle for the half plane (Corollary 4.2 in [2]), |g(z)| ≤ c2 in H. 2

3.3. The case where ∂Ω is a proper arc.

Theorem 5. Let Ω be an exceptional domain such that ∂Ω is a proper arc. Then |∇u| = 1 in Ω
and Ω is a half-plane.

Proof. Let γ : R→ C be a parametrization of ∂Ω. Since γ is proper, it extends to a continuous,
injective map from the extended real line R∪{∞} ' S1 to the Riemann sphere C∪{∞}. Hence
Ω is bounded in the Riemann sphere by a Jordan curve. By the Riemann mapping theorem,
there exists a conformal representation F from the unit disk D(0, 1) to Ω. By Caratheodory’s
Theorem (Theorem 13.2.3 in [10]), F extends to a homeomorphism from the closed disk D(0, 1)
to the closure of Ω in the Riemann sphere, namely, Ω ∪ {∞}. Without loss of generality, we
may assume that F (−i) =∞. Composing with the Moebius map ϕ defined in (3), we obtain a
homeomorphism f : H ∪{∞} → Ω∪{∞} that is conformal in the upper half-plane H and maps
∞ to ∞. Moreover, f(R) = ∂Ω. Since ∂Ω is smooth, f extends C1 to R. (At this point, we
know nothing about the regularity of f at infinity.) Let ũ = u◦f . Then ũ is a positive harmonic
function in H with zero boundary value. By Theorem 7.22 in [1], ũ(z) = a Im z for some positive
constant a. Then

ũz(z) = uz(f(z))f ′(z) =
−ai

2
Since |uz| = 1 on ∂Ω, we obtain that |f ′| is constant on R. By Theorem 4, f ′ is constant in H.
This implies that f is affine, so Ω is a half-plane, and uz is constant in Ω. 2
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Remark 1. F. Helein, L. Hauswirth and F. Pacard [11] have obtained this result under the
additional hypothesis that ux > 0 in Ω (Proposition 6.1). D. Khavinson, E. Lundberg and R.
Teodorescu [13] have also obtained this result under the additional hypothesis that ∂Ω is C1 at
infinity (Theorem 5.1). (This is not clear in the statement of the theorem, but they clearly use it
when they say right after Equation (5.2) that the boundary of Ω̂, the image of Ω under z 7→ 1

z , is
C1-smooth.) Also, they prove this result under the weaker assumption that Ω̂ is of Smirnov type
(which means that the derivative of a conformal representation of Ω̂ on the unit disk is an inner
function).

3.4. The remaining case.

Theorem 6. Let Ω be a non-trivial exceptional domain of finite connectivity. Assume that ∂Ω
is not bounded, so contains at least one proper arc. Then |∇u| < 1 in Ω. Moreover, for each end
of Ω, lim∇u(z) exists and its norm is equal to one. Finally, the number of proper arcs in ∂Ω is
at most two.

Proof: Fix some large number R such that:
• all Jordan curves in ∂Ω are contained in D(0, R),
• all proper arcs in ∂Ω have at least one point in D(0, R),
• R is not a critical value of the function |z| restricted to ∂Ω.

The last point implies that ∂Ω is transverse to the circle |z| = R, so intersects this circle in a
finite number of points. Consequently, ∂Ω \ D(0, R) has a finite number of components. Each
such component is either a curve with two endpoints on the circle C(0, R) or a proper arc with
one endpoint. Consider an unbounded component C of Ω \ D(0, R). By our choice of R, no
component of ∂C can be a component of ∂Ω. Hence ∂C has only one component, and we may
decompose ∂C as α1 ·α2 ·α3 where α1 and α3 are proper arcs [0,∞)→ C with one endpoint on
the circle |z| = R, both included in ∂Ω, and α2 is a curve with two enpoints on |z| = R. (The
curve α2 consists of arcs of the circle |z| = R together with finite parts of ∂Ω). Arguing as in
the proof of Theorem 5, we can find a conformal representation f : H → C which extends to a
homeomorphism from H ∪ {∞} to C ∪ {∞}, mapping R to ∂C and ∞ to ∞.

As in the proof of Theorem 5, let ũ = u ◦ f . Then ũ is a positive harmonic function in H.
Since H is simply connected, we may consider the conjugate harmonic function ũ∗ of ũ. Consider
the holomorphic function

U(z) := ũ(z) + iũ∗(z), z ∈ H.
Let [a, b] = f−1(α2). Then ReU(z) = 0 on R \ [a, b]. By the Schwarz reflection principle, U
extends to a holomorphic function on C\ [a, b]. By the boundary maximum principle, since ũ > 0
in H, we have ũy > 0 on R \ [a, b]. By the Cauchy Riemann equation, ũ∗x = −ũy, so the function
ũ∗ is decreasing on (−∞, a) and (b,∞). Consequently, the function U takes each pure imaginary
value at most two times on C \ [a, b]. By Picard’s theorem, U has no essential singularity at ∞,
so has at most a pole. Since ReU is positive in H, the pole has order at most one. This means
that we can write

U(z) = −ciz + h(
1

z
), z ∈ C \ [a, b]

where the constant c is non-negative and the function h extends holomorphically at 0. Then

U ′(z) = −ci− h′(1

z
)

1

z2
.
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If c = 0, let m be the order of the zero of h′ at 0 (with m = 0 if h′(0) 6= 0). Then there are
positive constants c1 and c2 such that

(7)
c1

|z|m+2
≤ |U ′(z)| ≤ c2 for |z| large enough.

If c > 0, then (7) still holds with m = −2 and c1 = c
2 . This implies in particular that U ′(z) 6= 0

if |z| is large enough. By the Cauchy Riemann equation, we have U ′ = 2ũz, so ũz 6= 0 for |z|
large enough. From this, we conclude that for z ∈ C, |z| large enough, |∇u(z)| 6= 0. Therefore,
taking a larger value of R if necessary in the definition of C, we can assume that |∇u(z)| 6= 0 in
C. Consider the holomorphic function

g(z) =
2ũz(z)

f ′(z)
= 2uz(f(z)), z ∈ H.

By (5) and (7), we have for |z| large enough (say |z| ≥ R0):

c1
y3

(|z|+ 1)m+6
≤ |g(z)| ≤ c2

(|z|+ 1)4

y
.

Since uz 6= 0 in C, there exists positive constants c′1 and c′2 such that for |z| ≤ R0,

c′1 ≤ |g(z)| ≤ c′2.

Take

c′′1 = min{c1,
c′1
R3

0

}, c′′2 = max{c2, c
′
2R0}.

Then

c′′1
y3

(|z|+ 1)m+6
≤ |g(z)| ≤ c′′2

(|z|+ 1)4

y
, z ∈ H.

Since |∇u| = 1 on α1 and α3, we have |g(z)| = 1 on R \ [a, b]. Since uz 6= 0 on α2, we have by
compactness that g(z) and g(z)−1 are bounded on [a, b]. Hence g(z) and g(z)−1 are bounded
on ∂H. By Lemma 1, we conclude that g(z) and g(z)−1 are bounded in H. Now consider the
holomorphic function

G(z) = log g(z), z ∈ H.
Since g(z) and g(z)−1 are bounded in H, ReG(z) is bounded in H. Moreover, ReG(z) = 0 on
R \ [a, b]. By the Schwarz reflection principle, G extends to a holomorphic function on C \ [a, b].
Now ReG(z) is still bounded in C \ [a, b], so G does not have an essential singularity at ∞ by
Picard’s theorem, and cannot have a pole either, so G extends holomorphically at∞. Moreover,
G(∞) ∈ iR. This means that

(8) lim
|z|→∞,z∈C

2uz(z) exists

and is a unitary complex number, which proves the second assertion of Theorem 6.

To finish the proof of the theorem, let C1, · · · , Ck be the unbounded components of Ω\D(0, R).
Given ε > 0, there exists r ≥ R such that |∇u| ≤ 1 + ε for z ∈ Ci, |z| ≥ r. Consider the domain

Ωr = Ω \
k⋃
i=1

{z ∈ Ci : |z| ≥ r}.
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Then Ωr is a bounded domain and |∇u| ≤ 1+ε on ∂Ωr. By the maximum principle, |∇u| ≤ 1+ε
in Ωr. Hence, |∇u| ≤ 1 + ε in Ω. Since this holds for arbitrary positive ε, we have |∇u| ≤ 1 in
Ω. The maximum principle implies that |∇u| < 1 in Ω (else |∇u| ≡ 1 in Ω and in this case Ω is
a half-plane.)

Since ∇u is normal to ∂Ω, (8) implies that the normal to the proper arc ∂Ci has a limit as
t→ ±∞. Hence the image of ∂Ci by z 7→ 1/z is a C1 curve near zero, so the image of Ci contains
a cone with vertex at the origin, positive radius ε and angle θ < π as close as we want to π. As
the image of Ω by z 7→ 1/z can contain at most two such cones, we have k ≤ 2. Theorems 6 and
1 are proved. 2

3.5. The periodic case.

Theorem 7. Let Ω be a non-trivial periodic exceptional domain invariant by a translation T .
Assume that Ω/T has finite connectivity. Then |∇u| < 1 in Ω. Moreover, the boundary of Ω/T
is a finite union of Jordan curves, Ω/T has one or two ends, each asymptotic to a half cylinder,
and lim∇u(z) exists on each end.

Proof: First observe that by uniqueness (Proposition 2), the function u is periodic: u ◦T = u.
Without loss of generality we may assume that T is the translation z 7→ z + 2πi. Let Ω̃ = Ω/T .
Then Ω̃ is a smooth domain in C/T (for the definition of a smooth domain is local), so the
boundary of Ω̃ consists of smooth Jordan curves and proper arcs γ : R → C/T . Choose R > 0

large enough so that the domain |Re z| < R contains all the Jordan curves in ∂Ω̃. Let CR be the
half cylinder Re z > R in C/T and Ω̃R = Ω̃ ∩ CR.

Claim 1. Either Ω̃R = CR or Ω̃R = ∅.

Proof: Assume by contradiction that Ω̃R is neither equal to CR nor empty. Then (∂Ω̃) ∩ CR
is not empty. By our choice of R, this intersection contains a proper arc γ : [0,∞) → CR such
that Re γ(0) = R. Then CR \ γ is simply connected, so Ω̃R lifts to an unbounded domain Ω̂R

in C such that the canonical projection Ω̂R → Ω̃R is bijective. By the proof of Theorem 6, each
unbounded component of Ω̂R contains an unbounded sector of angle θ < π as close as desired to
π. Since the translation T is not injective on such a sector, we get a contradiction. 2

Next assume that Ω̃R is not empty, so is equal to CR. The function log : C\D(0, eR)→ CR is
biholomorphic. Let ũ(w) = u(logw), so ũ is a positive harmonic function in the domain |w| > eR.
By Bôcher theorem (Theorem 3.9 in [1]), we may write

ũ(w) = c log |w|+ h(
1

w
) for |w| > eR

where the harmonic function h extends analytically at 0. Substituting w = ez, we get

u(z) = cRe z + h(e−z) for Re z > R,

uz =
c

2
− hz(e−z)e−z.

From this, we conclude that limx→∞ 2uz(x + iy) = c exists. (Note that at this point, we do
not know that |c| ≤ 1.) This implies that |uz| is bounded in Ω̃R. Arguing in the same way for
x < −R, we conclude that |uz| is bounded in Ω. The following theorem of Fuchs [7] with f = 2uz
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implies that |2uz| ≤ 1 in Ω. (Indeed, the fact that |uz| is bounded rules out possibilities (b) and
(c).) 2

Theorem 8 (Fuchs). Let Ω be an unbounded region of the complex plane. If f is holomorphic
in Ω and lim supz→ζ,z∈Ω |f(z)| ≤ 1 for all ζ ∈ ∂Ω, then one of the following mutually exclusive
possibilities must occur:

(a) |f(z)| ≤ 1 for all z ∈ Ω,
(b) f(z) has a pole at ∞,
(c) logM(r)/ log r →∞ as r →∞, where M(r) = sup|z|=r,z∈Ω |f(z)|.

This is a Phragmen Lindelöf type result. The striking fact about this result is that no assump-
tion is made on the geometry of the domain Ω, as in the classical Phragmen Lindelöf principle.

4. The minimal surface associated to an exceptional domain

To each exceptional domain Ω, we associate a minimal surface M as follows. Consider the
holomorphic function g = 2uz and the holomorphic differential dh = 2uzdz on Ω. Observe that
both have the sames zeros, with same multiplicity. Fix some point z0 ∈ ∂Ω. The Weierstrass
Representation formula

(9) X(z) = (X1(z), X2(z), X3(z)) = Re

∫ z

z0

[
1

2
(g−1 − g)dh,

i

2
(g−1 + g)dh, dh

]
defines locally a conformal, minimal immersion X : Ω → R3. It turns out that X(z) is in fact
globally well defined in Ω. Regarding the third coordinate, we have

X3(z) = Re

∫ z

z0

2uzdz =

∫ z

z0

uzdz + uzdz =

∫ z

z0

du = u(z)

so X3(z) is well defined in Ω. Let

ψ(z) = X1(z) + iX2(z).

We will see in a moment that ψ(z) is well defined in Ω. Let M+ = X(Ω). Then M+ lies in the
upper half-space x3 > 0, and the image of ∂Ω lies in the horizontal plane x3 = 0. Since |g| = 1
on ∂Ω, we may complete M+ by symmetry with respect to the horizontal plane into a minimal
surface M .

Theorem 9. In the above setup:
(1) ψ(z) is well defined in Ω.
(2) For each component γ of ∂Ω, ψ(γ) is obtained from γ by a translation composed with

conjugation. (The translation depends on the component.)
(3) M is a complete, immersed minimal surface in R3.

Assume moreover that |∇u| < 1 in Ω. Then:
(4) ψ is a diffeomorphism from Ω to Ω̂ = ψ(Ω) and M+ is the graph over Ω̂ of the function

û(z) = u(ψ−1(z)).

Consequently, M is embedded.
Assume moreover that the complement of Ω is non-thinning (see Definition 1). Then:

(5) ∂Ω̂ = ψ(∂Ω).
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Remark 2. It is very much likely true that Point (5) is true without the non-thinning hypothesis
but I have not been able to prove it.

Proof: A standard computation gives

(10) dψ =
1

2
(g−1dh− g dh).

This gives

(11) dψ =
1

2
(dz − 4(uz)

2dz).

We have to prove that dψ is an exact differential. In other words, we have to prove that for any
cycle γ ∈ H1(Ω,Z),

∫
γ dψ = 0. Since Ω is a planar domain, H1(Ω,Z) is generated by the closed

curves in ∂Ω. Let γ be a parametrization of a component of ∂Ω. Then since u is zero on ∂Ω,

du(γ′) = 0 = (uzdz + uzdz)(γ
′).

Multiply by 4uz and use the fact that 4uzuz = |∇u|2 = 1 on ∂Ω:

(4(uz)
2dz + dz)(γ′) = 0

From this we obtain

(12) dψ = dz on tangent vectors to ∂Ω.

Hence if γ is a closed curve on ∂Ω,
∫
γ dψ = 0. This proves Point (1). Point (2) is clearly a

consequence of (12). The metric induced on Ω by the conformal immersion X is given by the
standard formula

ds =
1

2
(|g dh|+ |g−1dh|) =

1

2
(1 + |∇u|2)|dz| = λ(z)|dz| with

1

2
≤ λ(z) ≤ 1.

This implies that M is complete and proves Point (3).

Proof of Point (4): Using (11), the matrix of dψ is

1

2

(
1− u2

x + u2
y −2uxuy

2uxuy −1− u2
x + u2

y

)
.

We compute

det(dψ) =
1

4
(|∇u|4 − 1).

Since |∇u| < 1, dψ is a local diffeomorphism. This implies that the image Ω̂ = ψ(Ω) is open.
The following claim proves that ψ is injective, so is a diffeomorphism from Ω to Ω̂.

Claim 2. Let z, z′ be two distinct points in Ω. Then

〈z′ − z, ψ(z′)− ψ(z)〉 > 0.

Here, 〈v, v′〉 = Re(v v′) denotes the usual euclidean scalar product on R2 identified with C.

Proof. The segment [z, z′] has a natural ordering which we denote ≺. If z1, z2 are two points
on the segment [z, z′] such that z1 ≺ z2 and (z1, z2) ⊂ Ω, then by Equation (11)

Re
[
(z′ − z)(ψ(z2)− ψ(z1))

]
=

1

2
Re

[
(z′ − z)(z2 − z1)− (z′ − z)

∫ z2

z1

4(uz)
2dz

]
.
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Now since z1, z2 are on the segment [z, z′] and z1 ≺ z2,

Re
[
(z′ − z)(z2 − z1)

]
= 〈z′ − z, z2 − z1〉 = |z′ − z| |z2 − z1|.

Since |∇u| < 1 in Ω, ∣∣∣∣(z′ − z) ∫ z2

z1

4(uz)
2dz

∣∣∣∣ < |z′ − z| |z2 − z1|.

Hence
〈z′ − z, ψ(z2)− ψ(z1)〉 > 0.

If [z, z′] ⊂ Ω, the claim is proved (by taking z1 = z and z2 = z′). Now assume that [z, z′] crosses
the boundary of Ω. Let z1 be the first point on [z, z′]∩∂Ω (where “first” refers to the ordering ≺
of points on [z, z′]). Let γ1 be the component of ∂Ω to which z1 belongs. By Proposition 4, γ1

bounds a convex domain which is in the complement of Ω. The segment [z, z′] exits this domain
at a point z2 � z1 and then does not cross γ1 anymore. (The convexity is not crucial to this
argument, but convenient). Since z1 and z2 are on the same component of ∂Ω, we have by (12):

〈z′ − z, ψ(z2)− ψ(z1)〉 = 〈z′ − z, z2 − z1〉 = |z′ − z| |z2 − z1|.

Let n be the number of boundary components that the segment [z, z′] crosses (which must be finite
by compactness). We may find an increasing sequence of points z0 = z, z1, · · · , z2n, z2n+1 = z′

on the segment [z, z′] such that for even i, (zi, zi+1) ⊂ Ω and for odd i, zi and zi+1 are on the
same boundary component of Ω. By the two cases that we have seen, we have for 0 ≤ i ≤ 2n

〈z′ − z, ψ(zi+1)− ψ(zi)〉 > 0 (unless zi+1 = zi).

Adding all these inequalities proves Claim 2.

Proof of Point (5): Let Ω̂ = ψ(Ω). Assume that ∂Ω̂ \ ψ(∂Ω) contains a point a0. By Claim 3
below, d(a0, ψ(∂Ω)) > 0. This contradicts Lemma 2 below (where we drop all hats), and proves
that ∂Ω̂ = ψ(∂Ω). This concludes the proof of Theorem 9. 2

Claim 3. ψ(∂Ω) is a closed subset of the plane.

Note that the non-thinning hypothesis is used only to ensure that Claim 3 holds true.

Proof: let (γi)i∈I be the components of ∂Ω, γ̂i = ψ(γi), Ci the convex set bounded by γi and
Ĉi the convex set bounded by γ̂i. By Point (2) of Theorem 9, Ĉi is the conjugate of a translate of
Ci. Since C \Ω is non-thinning, there exists ε > 0 and α > 0 such that for all i ∈ I, µε(Ci) ≥ α.
Observe that µε(Ĉi) = µε(Ci). Let z0 ∈ C. Then D(z0, ε) can intersect only a finite number
of the convex sets Ĉi, namely at most 4πε2

α . (Indeed, if p ∈ Ĉi ∩ D(z0, ε), then D(p, ε) ∩ Ĉi is
included in D(z0, 2ε) and has area greater than α.) Since each γ̂i∩D(z0, ε) is closed, we conclude
that ψ(∂Ω) ∩D(z0, ε) is closed. 2

Lemma 2. LetM be a complete, connected minimal surface in R3. Assume thatM is symmetric
with respect to the horizontal plane x3 = 0, and thatM+ = M∩{x3 > 0} is the graph of a function
u over a domain Ω ⊂ C. Then ∂Ω ⊂M0, where M0 = M ∩ {x3 = 0}.



14 MARTIN TRAIZET

Of course, if M is properly embedded, then M0 is closed, so Lemma 2 says that ∂Ω = M0.
But we do not know that.

Proof: We follow the proof of Theorem 3.1 in [4]. Assume that ∂Ω contains a point a0 such
that d(a0,M

0) > 0. Let ε = d(a0,M
0). Choose a point a1 ∈ Ω such that |a0 − a1| ≤ ε

4 . Let
a2 be a point in ∂Ω such that |a1 − a2| is minimum (which exists because ∂Ω is closed). Then
d(a2,M

0) ≥ ε
2 and the segment [a1, a2) is entirely included in Ω. Choose a sequence of points

zn on this segment such that zn → a2 and |zn − a2| ≤ ε
8 . Let pn be the point on M+ whose

horizontal projection is zn. Let Un be the component of B(pn,
ε
8) ∩M which contains pn. Then

for p ∈ Un, we have

d(p,M0) ≥ d(pn,M
0)− ε

8
≥ d(zn,M

0)− ε

8
≥ d(a2,M

0)− ε

4
≥ ε

4
.

Since M+ is stable (as a graph), the norm of the second fundamental form of Un is bounded by
k = 4c

ε by the estimate of Schoen [20], where c > 1 is a universal constant. By the uniform graph
lemma (Lemma 4.1.1. in [18]), Un is the graph over the disk D(pn,

1
4k ) in the tangent plane

TpnM of a function vn which satisfies |d2vn| ≤ 16k. This implies that the slope of TpnM goes to
infinity as n → ∞, else the horizontal projection of Un will eventually contain a2. Passing to a
subsequence, the normal N(pn) converges to a horizontal vector N∞. Let Ũn = Un − pn, so Ũn
is a minimal surface containing the point 0. Since it has bounded curvature, a subsequence of
Ũn converges smoothly to a minimal surface Ũ∞. Moreover, the Gauss map of Ũ∞ at 0 is the
horizontal vector N∞. I claim that Ũ∞ is flat. If not, then the Gauss map of Ũ∞ is open, so will
take values in both the upper and lower hemisphere. But then the same is true for Ũn for n large
enough, which contradicts the fact that M is a graph. Hence Ũ∞ is a disk of radius 1

4k in the
vertical plane perpendicular to N∞. This implies that the horizontal projection of Un converges
to the segment T of length 1

2k = ε
2c centered at a2 and perpendicular to N∞. Then T ⊂ ∂Ω, and

since d(a2,M
0) ≥ ε

2 , we conclude that T ⊂ ∂Ω \M0. The choice of a2 implies that T must be
perpendicular to a2 − a1, so the limit normal N∞ is uniquely defined, up to sign.

By changing the coordinate system, we may assume that a1 and a2 are on the real axis, a1 < 0
and a2 = 0, so N∞ = ±(1, 0, 0). From what we have seen, we conclude that for any sequence
xn → 0−, there is a subsequence such that lim ∇u(xn,0)

|∇u(xn,0)| = ±(1, 0). Hence |ux(x, 0)| ≥
√

2
2 for

x close to 0, say x ∈ [−ε1, 0). Consider the curve on M defined by γ(x) = (x, 0, u(x, 0)) for
x ∈ [−ε1, 0). Since M is complete, this curve has infinite length, so

∞ =

∫ 0

−ε1

√
1 + (ux)2 ≤ 2

∫ 0

−ε1
|ux|.

Since ux has constant sign for x ∈ [−ε1, 0), this gives limx→0− u(x, 0) = ±∞. Since u is positive,
we conclude that the sign is +.

Consider a sequence of points zn on the segment (a1, a2) such that zn → a2, so u(zn)→∞. Let
rn = u(zn). We do the same argument again, replacing Un by the component of B(pn,

rn
2 )∩Mn

which contains pn. Then for p ∈ Un, we have d(p,M0) ≥ rn
2 . Fix some arbitrary small k > 0. By

the estimate of Schoen, the norm of the fundamental form of Un is bounded by 2c
rn

so is less than
k for n large enough. The above argument tells us that ∂Ω contains the segment T of length
1
2k centered at a2 and perpendicular to (a1, a2). Moreover, as each Un is a graph, Ω contains
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a rectangle with one side equal to T and non-empty interior (the width of this rectangle may
depend on k). We let k → 0 and conclude that ∂Ω contains a line L. By connectedness, Ω must
be on one side of L and M is contained in a vertical half-space.

To prove that u→∞ on L, we do the same argument again, taking a0 to be any point on the
line L. This time we can take a1 such that (a0, a1) is perpendicular to L (thanks to the existence
of the above rectangle). Then a2 = a0, and we obtain that limu(z) = ∞ as z → L, the limit
being unifom on compact sets of L. The half-space theorem of Hoffman-Meeks [12] gives that
M is a vertical plane, which is a contradiction since M+ is a graph. (The half-space theorem
of Hoffman-Meeks requires that M is properly immersed. The fact that u → ∞ uniformly on
compact sets of L is enough, as is clear from the proof of the half-space theorem.) 2

5. The exceptional domain associated to a minimal bigraph

Definition 2. A minimal bigraph is a complete embedded minimal surface M such that M is
symmetric with respect to the horizontal plane x3 = 0, and M+ = M ∩ {x3 > 0} is a graph over
the domain in the horizontal plane bounded by M ∩ {x3 = 0}.

To each minimal bigraph M , we associate an exceptional domain Ω as follows. Assume that
M+ is the graph of a function û on a domain Ω̂. Let Σ be the conformal structure ofM (in other
words, any Riemann surface conformally equivalent to M). Let X = (X1, X2, X3) : Σ → M be
a conformal parametrization of M . As M is a minimal bigraph, the Riemann surface Σ admits
an antiholomorphic involution σ corresponding to the symmetry with respect to the horizontal
plane x3 = 0. The fixed set of σ divides Σ into two components. Let Σ+ be the component
corresponding to M+. Let ψ = X1 + iX2. Then as M+ is a graph over Ω̂, ψ is a diffeomorphism
from Σ+ to the domain Ω̂.

Let g be the (stereographically projected) Gauss map of M and dh = 2∂X3
∂z dz the height

differential (where here z denotes a local complex coordinate on Σ). In other words, (Σ, g, dh)
is the Weirstrass data of M and M is parametrized by (9). Assume that M has been oriented
so that the normal points down in M+, so that |g| < 1 in Σ+. Fix some base point p0 ∈ Σ+.
Define ϕ : Σ+ → C by

ϕ(p) =

∫ p

p0

g−1dh.

Define F = ϕ ◦ ψ−1 and Ω = ϕ(Σ+). We have the following commutative diagram:

Ω̂

û

  
F
��

Σ+

ψ
>>

ϕ
//

X3

55Ω
u // R+∗

Theorem 10. In the above setup:
(1) ϕ(p) is well defined in Σ+.
(2) For each component γ of ∂Ω̂, F (γ) is obtained from γ by a translation composed with

conjugation.
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(3) F : Ω̂→ Ω is a diffeomorphism. Moreover, for any z, z′ in Ω̂, it holds

(13) |F (z)− F (z′)| ≥ |z − z′|.

Consequently, Ω is an unbounded domain whose boundary is F (∂Ω̂).
(4) The function u(z) = û(F−1(z)) solves Problem (1) in Ω. Moreover, |∇u| < 1 in Ω.

Proof: We want to prove that dϕ = g−1dh is an exact diffential on Σ+. Since Σ+ is home-
omorphic to a planar domain, it suffices to prove that

∫
γ g
−1dh = 0 for all closed curves γ on

∂Σ+. Let γ be a component of ∂Σ+. Then since |g| = 1 on γ and dh(γ′) ∈ iR, we have on γ

g dh(γ′) = −g−1dh(γ′).

By (10),

(14) dψ(γ′) = dϕ(γ′).

Since ψ is well defined, dψ is an exact differential, so dϕ is exact too. This proves Point (1).
Equation (14) also proves Point (2). Regarding Point (3), the function g is holomorphic in Σ+

and has the same zeros as dh with the same multiplicity. Hence ϕ is holomorphic and dϕ = g−1dh
has no zero, so ϕ is locally biholomorphic and F is a local diffeomorphism. We need the following

Claim 4. Given two distinct points z, z′ in Ω̂, we have

〈F (z′)− F (z), z′ − z〉 > |z′ − z|2.
Here 〈v, v′〉 = Re(v v′) denotes the usual euclidean scalar product on R2 identified with C.

Proof: Assume that z1, z2 are two points on the segment [z, z′] such that z1 ≺ z2 and the open
segment (z1, z2) lies inside Ω̂. (Here ≺ denotes the natural order on the segment [z, z′].) Let
α : [0, 1]→ Σ+ be such that ψ ◦ α is the constant speed parametrization of the segment [z1, z2].
Fix some time t ∈ (0, 1) and let

v =
1

2
g−1dh(α′), w = −1

2
g dh(α′).

Then by (10),
dψ(α′) = z2 − z1 = v + w, dϕ(α′) = 2v.

Since |g| < 1 in Σ+, we have |w| < |v|, hence
〈2v, v + w〉 > |v + w|2.

Hence
〈dϕ(α′), z2 − z1〉 > |z2 − z1|2.

Since z2 − z1 = λ(z′ − z) with λ > 0,

〈dϕ(α′), z′ − z〉 > 〈z2 − z1, z
′ − z〉.

Integrating from t = 0 to 1, we obtain

〈F (z2)− F (z1), z′ − z〉 = 〈ϕ(α(1))− ϕ(α(0)), z′ − z〉 > 〈z2 − z1, z
′ − z〉.

Next assume that z1, z2 are two points on the segment [z, z′] such that z1 ≺ z2 and z1 and z2 are
on the same component of ∂Ω̂. Then by (14), F (z2)− F (z1) = z2 − z1 so we have

〈F (z2)− F (z1), z′ − z〉 = 〈z2 − z1, z
′ − z〉.
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We conclude as in the proof of Claim 2 by decomposing the segment [z, z′] into a finite number of
segments which are either included in Ω̂ or whose endpoints are on the same boundary component.
(Note that since M is a minimal bigraph, the domain Ω̂ must be concave.) 2

Returning to the proof of Theorem 10, Claim 4 implies Inequality (13). This implies that
F is injective, so F : Ω̂ → Ω is a diffeomorphism, and that F is proper. Hence ∂Ω = F (∂Ω̂).
Regarding Point (4), ϕ is biholomorphic and X3 is harmonic so u = X3 ◦ ϕ−1 is harmonic in Ω.
Since û > 0 in Ω̂ and û = 0 on ∂Ω̂, we have u > 0 in Ω and u = 0 on ∂Ω. Finally, differentiating
u ◦ ϕ = X3, we get

2uz(ϕ(z))× (g−1dh) = 2
∂X3

∂z
dz = dh.

Hence
|∇u(ϕ(z))| = |g(z)|

which implies that |u| < 1 in Ω and |u| = 1 on ∂Ω. 2

6. The correspondence

We denote by M [Ω] the minimal surface M associated to Ω by Theorem 9 and by Ω[M ] the
domain Ω associated to the bigraph M by Theorem 10. Observe that the definition of M [Ω]
depends on the choice of a base point z0. However, changing z0 amounts to translate M by a
horizontal vector. The same comment applies to Ω[M ]: changing the base point p0 amounts to
translate Ω. Hence if we consider as equivalent two domains that differ by a translation, and two
minimal surfaces that differ by a translation, M [Ω] and Ω[M ] are well defined.

Theorem 11. The maps Ω 7→M [Ω] and M 7→ Ω[M ] are inverse of each other, and establish a
one-to-one correspondence between

• exceptional domains Ω whose complement is non-thinning and such that |∇u| < 1 in Ω,
• minimal surfaces M which are bigraph over a domain whose complement is non-thinning.

Proof:
• Assume that we are given Ω and let M = M [Ω]. Recall that M+ is conformally
parametrized on Ω by the Weierstrass data g = 2uz, dh = 2uzdz. Then dϕ = g−1dh = dz
on Σ+ = Ω, so Ω[M ] is equal to Ω, up to a translation. (Here, the conformal structure
Σ of M is the “double” of Ω, see [6] page 49).
• Assume that we are given M and let Ω = Ω[M ]. Let (Σ, g, dh) be the Weierstrass data
of M . Then Ω = ϕ(Σ+) where dϕ = g−1dh and u(ϕ(z)) = X3(z). By differentiating, we
get

2uz(ϕ(z))dϕ = 2
∂X3

∂z
dz = dh, hence 2uz(ϕ(z)) = g(z)

ϕ∗(2uzdz) = g dϕ = dh.

Hence (Σ+, g, dh) is the pullback by ϕ of (Ω, 2uz, 2uz dz). So M [Ω] = M , up to a
translation.

2
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7. Examples

In this section, we develop three examples. Please take care that in the setup of Theorem 10,
it is required that both X3 > 0 and |g| < 1 in Σ+. The following standard facts will be useful.

Proposition 5. Let (Σ, g, dh) be the Weierstrass data of a minimal surface M . Then:
(1) (Σ, −1

g , dh) is the Weierstrass data of σ(M) with the opposite orientation, where

σ(x1, x2, x3) = (x1,−x2, x3)

is the symmetry with respect to the vertical plane x2 = 0.
(2) (Σ, 1+g

1−g ,
1
2(1
g − g)dh) is the Weierstras data of ρ(M) with the same orientation, where

ρ(x1, x2, x3) = (−x3, x2, x1)

is the rotation of angle π/2 around the x2-axis.

7.1. The vertical catenoid. The Weierstrass data of the standard catenoid is usually written
as

Σ = C∗, g = z, dh =
dz

z
.

Then X3 = log |z| so we see that X3 > 0 in |z| > 1. Since |g| > 1 in this domain, we use Point
(1) of Proposition 5 and take g = −1

z . Then ϕ(z) = −z, so Ω is the domain |z| > 1.

7.2. The horizontal catenoid. By Point (2) of Proposition 5, the Weierstrass data of a hori-
zontal catenoid is

Σ = C∗, g =
1 + z

1− z
, dh =

1− z2

2z2
dz.

Here it is convenient to replace z by −z so

g =
1− z
1 + z

, dh =
z2 − 1

2z2
dz.

Then

X3(z) =
1

2
Re

(
1

z
+ z

)
and

X3 > 0⇔ Re z > 0⇔ |g| < 1.

ϕ(z) =

∫
g−1dh =

1

2z
− log z − z

2
.

For t real and ε = ±1, we have

ϕ(εiet) = −t− εi
(π

2
+ cosh t

)
.

Hence, Ω is the domain |y| < π
2 + coshx (see Figure 1). This is precisely the domain obtained in

Proposition 2.1 of [11].

Remark 3. We see on this example that it may happen that ϕ is not well defined on all of Σ.
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Figure 1. The boundary of the domain Ω̂ over which the catenoid is a bigraph
(dots) and the boundary of the corresponding exceptional domain Ω (solid). The
domains have been rotated by 90◦ so that the figure fits the page.

7.3. Scherk’s simply periodic surface. This periodic surface depends on a parameter α ∈
(0, π2 ). Its Weierstrass data is usually written as:

Σ = C ∪ {∞} \ {±eiα,±e−iα}, gScherk = z, dhScherk =
4 sin(2α) z dz

z4 − 2 cos(2α) z2 + 1
.

This is actually the Weierstrass data of the surface in the quotient by its period which is the
vertical vector (0, 0, 2π). The immersion (9) is multi-valued on Σ – the multi-valuation gives rise
to the periodicity of the surface – and is well defined on a certain covering of Σ. This surface is a
bigraph over the vertical plane x1 = 0 and also over x2 = 0. Using Point (2) of Proposition 5, we
obtain the Weierstrass data of the horizontal Scherk surface (with horizontal period (2π, 0, 0))
which is a bigraph over the horizontal plane x3 = 0:

g :=
1 + z

1− z
, dh =

2 sin(2α) (1− z2)dz

z4 − 2 cos(2α) z2 + 1
.

Let σ(z) = −z. Then σ∗dh = −dh. Consequently, taking p0 = 0 as base point, we have
X3(z) = 0 on iR∪{∞}. From the geometry of the Scherk surface, we know that this is precisely
the zero set of X3. To determine the sign of X3(z) in Re z > 0, we observe that dh ' 2 sin(2α)dz
near 0 so X3 ' 2 sin(2α)x near 0. Hence X3 > 0 in Re z > 0. Since |g| > 1 in this domain, we
use Point (1) of Proposition 5 and replace g by −1/g. This gives

dϕ =
−2 sin(2α) (z + 1)2dz

z4 − 2 cos(2α)z2 + 1
= −(z + 1)2

2z
dhScherk.

Hence
Reseiαdϕ = −(1 + cosα) ReseiαdhScherk = i(1 + cosα).

The residue at e−iα is opposite by symmetry. Hence ϕ is multi-valued on Σ+, with multi-valuation
equal to 2π(1 + cosα). So Ω is a periodic domain with period

Tα = 2π(1 + cosα).

Now the horizontal Scherk surface is a bigraph over a domain Ω̂ which is bounded by a convex
curve γ together with its translates by multiples of 2π. By Theorem 10, Ω is the domain bounded
by γ together with its translates by multiples of Tα. This is a completely explicit geometric
description of Ω (see Figure 2).
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Figure 2. Top (dots): the boundary of the domain Ω̂ over which the Scherk
surface is a bigraph in the case α = π

4 . Bottom (solid): the boundary of the
corresponding exceptional domain Ω (translated vertically so one can see some-
thing).

It turns out that one can actually compute an equation of γ. Let us just give the main steps
of the computation. The curve γ is the image of the circle iR ∪ {∞} by ϕ. Then

ϕ(z) = −i
[
(1 + cosα) log

z − eiα

z − e−iα
+ (1− cosα) log

z + eiα

z + e−iα

]
.

Write z = it, t ∈ R and ϕ(it) = (x(t), y(t)). Then

x(t) = 2 arctan

(
sin(2α)

t2 + cos(2α)

)
,

y(t) = cosα log

(
t2 + 2 sinα t+ 1

t2 − 2 sinα t+ 1

)
.

Elimination of t gives us an implicit equation of γ

(15) cos2 α cosh(
y

cosα
) = sin2 α+ cos(2α− x).

(More precisely, γ is the component of the solution set of (15) which goes through 0.) In the
particular case α = π

4 , Equation (15) simplifies to

cosh(
√

2 y) = 1 + 2 sinx.

Remark 4. Let Ωα be the exceptional domain corresponding to the Scherk surface of parameter
α. Using Equation (15), one can prove that:

• As α→ 0, 1
2αΩα converges to the domain |z − 1| > 1

• As α→ π
2 ,

1
π−2αΩα converges to the domain |x+ 1 + π

2 | <
π
2 + cosh y.

The limit domains are, up to similitude, the examples of Sections 7.1 and 7.2. This corresponds
to the well known fact that the horizontal Scherk surface, suitably scaled, converges to a vertical
catenoid as α → 0 and a horizontal catenoid as α → π

2 . As a consequence, if we consider as
equivalent two domains which differ by a similitude, we can put all the examples of Sections 7.1,
7.2 and 7.3 in a continuous family Ωα for α ∈ [0, π2 ]: Ω0 is the example of Section 7.1 and Ωπ

2

is the example of Section 7.2.
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8. Classification results

Theorem 12. Let Ω be an exceptional planar domain of finite connectivity (meaning that ∂Ω
has a finite number of components). Then Ω is one of the following domains:

• a half-plane,
• the outside of a disk,
• the domain |y| < π

2 + coshx, up to a similitude.

Assume that Ω is not a half-plane. By Theorem 1, |∇u| < 1 in Ω. Let M be the minimal
bigraph associated to Ω by Theorem 9. If ∂Ω is compact, then M has two ends. By Theorem 2,
limz→∞ g(z) = 0. This implies that M has finite total curvature. By a theorem of Schoen [19],
an embedded minimal surface with finite total curvature and two ends is a catenoid. Since g = 0
at the top end, M is a vertical catenoid.

Else, let k ≥ 1 be the number of proper arcs in ∂Ω. Then M has k ends. By Theorem 6,
k ≤ 2 and the limit of the Gauss map at each end exists and is a complex number of norm 1.
This implies that M has finite total curvature. If k = 1, then M is vertical plane because the
only embedded minimal surface with finite total curvature and one end is the plane. This is not
possible because the vertical plane is not a bigraph. Hence k = 2, andM is a horizontal catenoid
by the theorem of Schoen. 2

Theorem 13. Let Ω be a periodic exceptional domain. Assume that Ω has finite connectivity in
the quotient. Then Ω is one of the following domains:

• a half plane,
• the exceptional domain corresponding to a horizontal Scherk surface (namely, one of the
domains described in Section 7.3, up to similitude).

Proof: Assume that Ω is not a half-plane. By Theorem 7, |∇u| < 1 in Ω. Let M be the
minimal bigraph associated to Ω by Theorem 9. Then M is a periodic minimal surface with
horizontal period T . By Theorem 7, M+/T is bounded by a finite number of Jordan curves in
the plane x3 = 0, and has at most two ends. Moreover, the Gauss map has a limit at each end,
so M/T has finite total curvature. By a theorem of Meeks-Rosenberg [15], the ends of M/T
are either of planar, helicoidal or Scherk type. In both the planar and helicoidal cases, M+/T
would intersect the horizontal plane x3 = 0 in a non-compact set. Hence M/T has at most four
Scherk-type ends. If M/T has two Scherk-type ends then it is a plane, which is not possible. So
it has four Scherk-type ends. By a theorem of Meeks-Wolf [16], M is a Scherk surface. 2

Remark 5. The theorem of Meeks-Wolf is a difficult result. Moreover, Theorem 13 is equivalent
to the Theorem of Meeks-Wolf: Indeed, using the Alexandrov moving plane method, one can prove
that a periodic minimal surface with 4 Scherk-type ends must be a minimal bigraph over some
plane. For this reason, I don’t think that there is an elementary proof of Theorem 13.

9. Immersed domains

In [11], the authors also propose to study Problem (1) on arbitrary flat Riemannian manifolds
with boundary. They construct examples which have some analogy with immersed minimal sur-
faces called k-noids. This was another hint at the correspondence between exceptional domains
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and minimal surfaces. The correspondence, however, does not generalize to arbitrary flat sur-
faces. Let me propose a setup where the correspondence extends. This will allow us to recover
the examples discussed in [11], and more. The following definitions are standard:

Definition 3. (1) A (smooth, 2-dimensional) immersed domain Ω is a smooth, complete,
flat, 2-dimensional Riemannian manifold-with-boundary such that there exists a map f :
Ω→ C which is a local isometry, called the developing map of Ω.

(2) We say that Ω has embedded ends if the developing map is injective on each end of Ω.

Note that by definition of a manifold-with-boundary, Ω includes its boundary. We will denote
by Ω̊ = Ω \ ∂Ω the set of interior points of Ω. Here the word complete means that Ω is complete
as a metric space. A flat Riemannian manifold always admits locally a developing map, but the
developing map is in general not globally defined unless the manifold is simply connected. The
definition of an immersed domain requires the developing map to be globally defined.

An immersed domain Ω (with non-empty boundary) is called exceptional if Problem (1) has a
solution u on Ω (where ∆u and |∇u| are computed for the metric of Ω). Theorem 1 generalizes
to:

Theorem 14. Let Ω be a non-trivial exceptional immersed domain with finite connectivity and
embedded ends. Then |∇u| < 1 in Ω̊.

Proof: Theorem 1 is proved by showing that |∇u| is bounded in each unbounded component
of Ω\D(0, R). Since we assume that our immersed domain has embedded ends, the proof carries
over. 2

Next we recall the definition of strong symmetry from [3], Definition 1. Let X : M → R3 be
an isometric immersion of a connected orientable surface M , and Π be a plane in R3 which we
normalize as the horizontal plane x3 = 0. Denote by S the symmetry with respect to the plane
x3 = 0, and

M+ = M ∩ {X3 > 0}, M− = M ∩ {X3 < 0}, M0 = M ∩ {X3 = 0}.

Definition 4. M is strongly symmetric with respect to Π if:
(1) There exists an isometric involution s : M →M such that X ◦ s = S ◦X,
(2) The set of fixed points of s is M0,
(3) The third coordinate N3 of the Gauss map of M takes positive (resp. negative) values on

M+ (resp. M−).

With these definitions, Theorem 11 generalizes to:

Theorem 15. There is a one-to-one correspondence between the following two classes of objets:
• immersed domains Ω which have finite connectivity, embedded ends and are homeomor-
phic to a planar domain,
• complete, immersed minimal surfaces M which are strongly symmetric, have finite total
curvature, embedded ends, and such that M+ is homeomorphic to a planar domain.

There are plenty of such minimal surfaces. The basic example is the Jorge-Meeks k-noid, which
has k ≥ 3 horizontal catenoidal ends. Genus zero examples with k ≥ 3 horizontal catenoidal
ends are classified by Cosin - Ros in [3], they form a 2k − 2 parameters family which includes
the Jorge-Meeks k-noid as the most symmetric member. The corresponding exceptional domains
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are the domains constructed in Section 4 of [11]. Genus one examples with k ≥ 3 horizontal
catenoidal ends are constructed by Mazet in [14].

Proof: Assume that we are given an exceptional immersed domain Ω with developing map f ,
satisfying all the hypothesis of Theorem 15. We define the holomorphic differential dh by

dh = 2d(1,0)u = 2uzdz

where z is a local conformal coordinate on Ω. The holomorphic function g is defined by

g =
dh

df
=

2uz
f ′
.

Since f is a local isometry, the metric of Ω in the local coordinate z is |f ′(z)dz|. Hence

|∇u| = |2uz|
|f ′|

= |g|.

Let M+ be the minimal surface parametrized on Ω by the Weierstrass Representation formula
(9). To see that the immersion X is well defined, consider the differential

dψ = dX1 + i dX2 =
1

2
(g−1dh− gdh).

Then on the boundary of Ω we have

dψ = g−1dh = df.

Since the developing map is well defined in Ω, df is an exact differential. Since Ω is homeomorphic
to a planar domain, H1(Ω,Z) is generated by the closed curves in ∂Ω. Hence dψ is an exact
differential on Ω and X is well defined. Since X3 = 0 and |g| = 1 on ∂Ω, we may extend M+ by
symmetry with respect to the plane x3 = 0 into a strongly symmetric immersed minimal surface
M . The metric induced on Ω by the conformal immersion X is

(16) ds =
1

2
(|g−1dh|+ |gdh|) = |df |1 + |g|2

2
.

Since |g| < 1 in Ω, this implies that M is complete. Let E be an end of Ω. There are two cases:
• If f(E) is the complement of a bounded domain in C, then E is conformally a punctured
disk and df has a double pole at the puncture. Moreover, by Theorem 2, |∇u| → 0 so g
has a zero at the puncture. This implies that g−1dh, gdh and dh have at most double
poles at the puncture. Since this characterizes embedded ends of finite total curvature,
we conclude that the corresponding end of M is embedded.
• If the boundary of f(E) is not bounded: then by passing to a sub-end, we may assume
that f(E) is a concave domain bounded by α1 ·α2 ·α3, where α1 and α3 are proper arcs:
[0,∞) → C and α2 is a straight segment connecting the endpoints of α1 and α3. The
proof of Point (4) of Theorem 9 says that ψ is injective on E, so X(E) is a graph and
the corresponding end of M is embedded. (Indeed, if z, z′ are two points in f(E), the
segment [z, z′] can only cross the boundary components α1 and α3.)

Finally, the fact that g has a limit at each end implies that M has finite total curvature.

Conversely, assume that we are given a minimal surface M satisfying all the hypothesis of
Theorem 15. Let (Σ, g, dh) be the Weierstrass data of M . Since M is strongly symmetric, the
Riemann surface Σ admits a antiholomorphic involution s such that X ◦s = S◦X. Moreover, the
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fixed set of s divides Σ into two components Σ+ and Σ− such that |g| < 1 in Σ+ and |g| > 1 in Σ−.
(Observe that sinceM has finite total curvature, it is properly immersed, so the strong halfspace
theorem of Hoffman Meeks (Theorem 2 in [12]) implies that M+ is connected.) Consider the
differential df = g−1dh in Σ+. Since g and dh have the same zeros with same multiplicity, df
is holomorphic with no zeros in Σ+. On the boundary of Σ+, we have df = dψ = dX1 − i dX2.
Since X is well defined and Σ+ is homeomorphic to a planar domain, this implies that df is
exact. By integration, we obtain a well defined holomorphic function f : Σ+ → C with non-zero
derivative. We define Ω as Σ+ with the conformal metric |df | and f as developing map. Formula
(16) shows that the metric |df | is equivalent to the metric ds induced by the immersion X on
Σ+. Hence Ω is complete, so is an immersed domain.

It remains to prove that Ω has embedded ends. Fix an end E of M . Since M is complete and
has finite total curvature, Osserman’s theorem tells us that E can be parametrized conformally
on a punctured disk. Moreover, g and dh extend meromorphically at the puncture. Since M
is strongly symmetric, Lemma 4 in [3] tells us that the asymptotic normal at the end is either
horizontal or vertical. Therefore, either g = 0, g = ∞ or |g| = 1 at the puncture corresponding
to the end.

• If g = 0 at the puncture, then the end can be parametrized on a punctured disk entirely
included in Σ+. Moreover, since the end is embedded, g−1dh has a double pole at the
puncture. Therefore, f has a simple pole, so is injective in a neighborhood of the end.
This implies that the corresponding end of Ω is embedded (and asymptotic to a plane).
• If g =∞ at the puncture, then the end can be parametrized on a punctured disk entirely
contained in Σ−, so we do not see it in Ω.
• If |g| = 1 at the puncture, then Point (b) of Lemma 4 in [3] says that the end is asymptotic
to a horizontal catenoid. Therefore, E+ = E ∩M+ is a graph over a concave domain
Ê in the plane, which we may take to be bounded by α1 · α2 · α3, where α1 and α3 are
convex curves included in M0 and α2 is a straight segment. The proof of Point (3) of
Theorem 10 tells us that f is injective in E+.

2
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