
HAL Id: hal-00785185
https://hal.science/hal-00785185

Submitted on 5 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-periodic Riemann examples with handles
Filippo Morabito, Martin Traizet

To cite this version:
Filippo Morabito, Martin Traizet. Non-periodic Riemann examples with handles. Advances in Math-
ematics, 2012, 229, pp.26–53. �hal-00785185�

https://hal.science/hal-00785185
https://hal.archives-ouvertes.fr


NON-PERIODIC RIEMANN EXAMPLES WITH HANDLES

FILIPPO MORABITO AND MARTIN TRAIZET

Abstract. We show the existence of 1-parameter families of non-periodic, complete, embedded
minimal surfaces in Euclidean space with infinitely many parallel planar ends. In particular we
are able to produce finite genus examples and quasi-periodic examples of infinite genus.

1. Introduction

The goal of this paper is to construct families of complete, embedded minimal surfaces in
Euclidean space, with infinitely many planar ends. The classical examples of such surfaces have
been discovered in 19th century by B. Riemann and are called Riemann minimal examples. They
have genus zero and are periodic. W. Meeks, J. Pérez, A. Ros [5] proved that they are the only
properly embedded minimal surfaces of genus zero with infinitely many ends.

Periodic examples were constructed by the second author in [7] by adding handles, in a periodic
way, to Riemann examples. Our goal in this paper is to follow the same strategy without assuming
any periodicity. The first class of examples that we obtain have finite genus:

Theorem 1.1. For each integer g ≥ 1, there exists a 1-parameter family of complete, properly
embedded minimal surfaces which have genus g and infinitely many planar ends. These surfaces
have two limit ends.

W. Meeks, J. Perez and A. Ros [4] have proven that a properly embedded minimal surface of
finite genus and infinitely many ends, must have planar ends and two limit ends. (This later point
means, in the finite genus case, that it is homeomorphic to a compact closed surfaceM punctured
in a countable set with precisely two limit points.) Such surfaces have been constructed by L.
Hauswirth and F. Pacard [1] using an analytic gluing procedure. Note however that the surfaces
we construct are different: their examples degenerate into Costa-Hoffman-Meeks surfaces whereas
our examples degenerate into catenoids.

We also obtain examples of infinite genus. In particular we can construct quasi-periodic
examples.

Theorem 1.2. There exists complete, properly embedded minimal surfaces in Euclidean space
which are quasi-periodic and non-periodic. These surfaces have infinite genus, infinitely many
planar ends and two limit ends.

Recall that a minimal surface M is periodic if there exists a non-zero translation T such that
T (M) = M . We say that a minimal surface M is quasi-periodic if there exists a diverging
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sequence of translations (Tn)n∈N such that the sequence (Tn(M))n∈N converges smoothly to M
on compact subsets of R3 [3]. (This notion of quasi-periodicity is weaker than the usual notion
of quasi-periodicity in cristallography.) An example of quasi-periodic minimal surface in the flat
manifold R2 × S1 was constructed in [2].

To describe the surfaces we construct, we introduce some terminology. Let M be a complete,
properly embedded minimal surface with an infinite number of horizontal planar ends.

Definition 1.3. We say that M is of type (nk)k∈Z if there exists an increasing sequence (hk)k∈Z
such that for each k ∈ Z,

• the intersection of M with the horizontal plane x3 = hk is the union of nk smooth Jordan
curves,
• the domain hk < x3 < hk+1 of M has one planar end and is homeomorphic to a planar
domain.

For example, Riemann examples are of type (1)k∈Z. If M is of type (nk)k∈Z, then its genus is
equal to

∑
k∈Z(nk − 1), possibly infinite. The following theorem is a particular case of our main

result, to be stated in the next section.

Theorem 1.4. Let (nk)k∈Z be a sequence of positive integers. Assume that
• the sequence (nk)k∈Z is bounded,
• for all k ∈ Z, either nk = 1 or nk+1 = 1.

Then there exists a family of complete properly embedded minimal surfaces with infinitely many
planar ends and of type (nk)k∈Z. Moreover, these surfaces are periodic (resp. quasi-periodic) if
and only if the sequence (nk)k∈Z is periodic (resp. quasi-periodic).

We say that a sequence (uk)k∈Z is periodic if there exists a positive integer T such that
uk+T = uk. We say it is quasi-periodic if there exists a diverging sequence of integers (Tn)n∈N
such that for all k ∈ Z, lim

n→∞
uk+Tn = uk. (In the case of a sequence of integer numbers, this

means that for all k ∈ Z, there exists an integer N such that for all n ≥ N , uk+Tn = uk. In
other words, any finite portion of the sequence is repeated infinitely many times.) It is clear that
Theorems 1.1 and 1.2 follow from this theorem by choosing appropriate sequences (nk)k∈Z.

Example 1.5. Take nk = 2 if k is even and positive, and nk = 1 otherwise. The minimal
surfaces we obtain by Theorem 1.4 have a bottom limit end of genus zero and a top limit end of
infinite genus. These new examples support a conjecture by W. Meeks on necessary and sufficient
topological conditions for an open orientable surface of infinite topology to properly minimally
embed in R3.

Heuristically, our surfaces are constructed by taking an infinite stack of horizontal planes
(Pk)k∈Z, ordered by their height, and gluing nk catenoidal necks between the planes Pk and
Pk+1 for each k ∈ Z. It is clear that in this way, we obtain a surface of type (nk)k∈Z.

The construction follows the lines of the one in the periodic case in [7]. In the periodic case,
we worked in the quotient by the period, so we only had to glue a finite number of catenoids and
we could use the classical theory of compact Riemann surfaces. In the non-periodic case that
we consider in this paper, we have to glue infinitely many catenoids at the same time, and the
underlying Riemann surface is not compact. Technically, the construction relies on the theory
of opening infinitely many nodes developped by the second author in [8].
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2. Configurations and forces, main result

Let (nk)k∈Z be a sequence of positive integers. A configuration of type (nk)k∈Z is a sequence
of complex numbers (pk,i)1≤i≤nk,k∈Z. The points pk,i, 1 ≤ i ≤ nk, represent the position of the
catenoidal necks that we will create between the planes Pk and Pk+1. These points must satisfy
a balancing condition which we express in term of forces. Let ck = 1

nk
.

Definition 2.1. The force Fk,i exerted on pk,i by the other points of the configuration is defined
as

(1) Fk,i = 2

nk∑
j=1
j 6=i

c2
k

pk,i − pk,j
−
nk+1∑
j=1

ckck+1

pk,i − pk+1,j
−
nk−1∑
j=1

ckck−1

pk,i − pk−1,j
.

A configuration {pk,i}k∈Z,i∈{1,...,nk} is said to be balanced if all forces Fk,i vanish.

For the forces to be defined, we need that for each k ∈ Z, the points pk,i, 1 ≤ i ≤ nk and
pk±1,i, 1 ≤ i ≤ nk±1 are distinct, which we assume from now on. We will see later the existing
relationship between the balancing condition and the period problem that we have to solve to
construct our family of minimal surfaces.

Example 2.2. Fix some non-zero complex number a. The configuration given by nk = 1 and
pk,1 = ka for all k ∈ Z is balanced. This configuration yields the family of Riemann examples.

Moreover, as our construction is based on the implicit function Theorem, we need the differ-
ential of the force map to be invertible in some sense. In the case of Example 2.2, the differential
of Fk,1 is given by

dFk,1 =
1

a2
(2dpk,1 − dpk−1,1 − dpk+1,1).

The operator (uk)k∈Z 7→ (2uk − uk−1 − uk+1)k∈Z is neither injective nor surjective from `∞(Z)
to `∞(Z), where `∞(Z) is the space of bounded sequences (uk)k∈Z with the sup norm. This
motivates the following change of variables.

(2)
{
uk,i = pk,i − pk,1, 1 ≤ i ≤ nk, k ∈ Z
`k = pk,1 − pk−1,1, k ∈ Z.

By definition we have uk,1 = 0. We denote by U the sequence

(3) . . . , `k, uk,2, . . . , uk,nk , `k+1, uk+1,2, . . . , uk+1,nk+1
, `k+2, . . .

The parameter U determines the configuration up to a translation, which is irrelevant since the
forces are invariant by translation of the configuration.

The expression of the forces in terms of the new variables is

Fk,i = 2

nk∑
j=1
j 6=i

c2
k

uk,i − uk,j
−
nk+1∑
j=1

ckck+1

uk,i − `k+1 − uk+1,j
−
nk−1∑
j=1

ckck−1

uk,i + `k − uk−1,j
.

We define

Gk =

nk∑
i=1

nk−1∑
j=1

ckck−1

pk,i − pk−1,j
=

nk∑
i=1

nk−1∑
j=1

ckck−1

uk,i + `k − uk−1,j
.
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An elementary computation gives
nk∑
i=1

Fk,i = Gk+1 −Gk.

Therefore, the configuration is balanced if and only if for all k ∈ Z, we have Fk,i = 0 for
2 ≤ i ≤ nk and Gk = G0. We denote by F̃ the sequence

(4) . . . , Gk, Fk,2, . . . , Fk,nk , Gk+1, Fk+1,2, . . . , Fk+1,nk+1
, Gk+2, . . .

The configuration is balanced if and only if F̃ = 0.

Definition 2.3. We say that the configuration is non-degenerate if the differential of F̃ with
respect to U, from `∞(Z) to itself, exists and is an isomorphism.

Let us return to the configuration of Example 2.2 and see that it is non-degenerate. The
configuration is given by `k = a. We have U = (`k)k∈Z and F̃ = (Gk)k∈Z = ( 1

`k
)k∈Z. The map

U 7→ F̃ is differentiable with differential equal to −1
a2
id, so the configuration is non-degenerate.

We are ready to state the main result of this paper.

Theorem 2.4. Consider a balanced, non-degenerate configuration U of type (nk)k∈Z. Further
assume that

(1) the sequence (nk)k∈Z is bounded,
(2) the sequence U takes a finite number of values,

(3) for all k ∈ Z,
1

nk

nk∑
i=1

pk,i 6=
1

nk−1

nk−1∑
i=1

pk−1,i.

Then there exists a 1-parameter family (Mt)0<t<ε of complete, properly embedded minimal sur-
faces with infinitely many planar ends, of type (nk)k∈Z. Furthermore, each surface Mt is periodic
(resp. quasi-periodic) if and only if the configuration is periodic (resp. quasi-periodic).

We say that the configuration is periodic if there exists a positive integer T such that for all
k ∈ Z, nk+T = nk, `k+T = `k and uk+T,i = uk,i for all 2 ≤ i ≤ nk. We say the configuration
is quasi-periodic if there exists a diverging sequence of integers (Tn)n∈N such that for all k ∈ Z,
there exists an integer N such that for n ≥ N , nk+Tn = nk, `k+Tn = `k and uk+Tn,i = uk,i for
2 ≤ i ≤ nk. (In other words, any finite part of the configuration is repeated infinitely many
times.)

Remark 2.5. Let us discuss the various hypotheses of the theorem.
• We formulated the definition of non-degeneracy by using the `∞ norm. It is certainly
the case that for many configurations, this is not the right norm to use: they are non-
degenerate for a suitable choice of the norms on both the domain and the target space
of the differential of the force map. We chose the `∞ norm because this is the most
natural one and there are already plenty of configurations which are non-degenerate for
this norm.
• It would certainly be interesting to allow for unbounded sequences (nk)k∈Z, but such
configurations cannot be non-degenerate for the `∞ norm. Maybe a result is possible
using a weighted `∞ norm, with the weight depending in some way on nk.
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• Hypothesis 2 is not required in any fundamental way, but makes the proof of the theorem
much easier. It ensures the finiteness Hypothesis 4.1, see Section 4.1. For the examples
of configuration that we will consider, hypothesis 2 is a consequence of hypothesis 1, see
Remark 3.3.
• We do not know of any example of balanced configuration for which hypothesis 3 fails. It
ensures that the Gauss map has multiplicity 2 at the ends and makes the proof slightly
simpler at one point (see Section 4.3). Theorem 2.4 definitely holds without this hypoth-
esis.

3. Examples of balanced non-degenerate configurations

In this section, we obtain balanced, non-degenerate configurations by concatenation of finite
configurations.

3.1. Concatenation of finite configurations. Let h be a positive integer and (n0, · · · , nh)
be a finite sequence of positive integers, such that n0 = nh = 1. A finite configuration of type
(n0, · · · , nh) is a collection C of complex numbers (pk,i)0≤k≤h,1≤i≤nk . We call the points p0,1

and ph,1 respectively the first and last point of the configuration. We call h the height of the
configuration. We call width of the configuration the quantity max{n0, · · · , nh}. As in Section 2
we make the change of variables{

uk,i = pk,i − pk,1, 1 ≤ i ≤ nk, 0 ≤ k ≤ h
`k = pk,1 − pk−1,1, 1 ≤ k ≤ h.

The forces Fk,i for 0 ≤ k ≤ h and 1 ≤ i ≤ nk are defined as in Section 2, with the convention
that n−1 = nh+1 = 0. The quantities Gk for 1 ≤ k ≤ h are defined in the same way.

Definition 3.1. A finite configuration C of type (n0, · · · , nh) is said to be
• balanced if Fk,i = 0 for 1 ≤ k ≤ h− 1 and 1 ≤ i ≤ nk. Note that we do not require that
the forces F0,1 and Fh,1 vanish. We will denote by FC the value of F0,1 and we will call
it the residual force of the configuration.
• non-degenerate if the differential of the map which associates to the vector

(5) (`1, u1,2, . . . , u1,n1 , `2, u2,2, . . . , u2,n2 , `3, . . . , `h)

the vector

(6) (G1, F1,2, . . . , F1,n1 , G2, F2,2, . . . , F2,n2 , G3, . . . , Gh)

is an isomorphism.

Proposition 3.2. If C is a finite, balanced configuration of height h, it holds

Fh,1 = −F0,1 = −FC ,

(ph,1 − p0,1)FC =

h∑
k=1

1

nk
.

In particular, the residual force never vanishes.
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Proof. The proposition comes from the following two formulae, which hold for any configuration
of height h (not necessarily balanced).

h∑
k=0

nk∑
i=1

Fk,i = 0

h∑
k=0

nk∑
i=1

pk,iFk,i =

h∑
k=0

nk(nk − 1)c2
k −

h−1∑
k=0

nknk+1ckck+1 = 1−
h∑
k=0

1

nk
.

We omit the proof of these formulae. �

Remark 3.3. Let us fix the height h and the type of the configuration, namely the sequence
(n0, · · · , nh). We observe that the balancing condition can be written as a finite system of
polynomial equations in the unknowns `k for 1 ≤ k ≤ h and uk,i for 1 ≤ k ≤ h − 1 and
2 ≤ i ≤ nk. Each polynomial equation defines an algebraic variety in Cn, where n is the number
of unknowns. The set of balanced configurations of type (n0, · · · , nh) is the intersection of these
varieties. There might be components of non-zero dimension, but a non-degenerate configuration
cannot belong to such a component. Basic results of algebraic geometry ensure that there is only
a finite number of dimension zero components (which are points), so there is at most a finite
number of balanced, non-degenerate configurations of type (n0, · · · , nh).

Definition 3.4. We will say that two configurations C1, C2 of finite height are compatible if their
residual forces are equal, that is FC1 = FC2 .

Given a sequence of finite configurations (Cm)m∈Z, we define their concatenation C as follows.
We denote by hm the height of Cm. We write n(m)

k , p(m)
k,i , `

(m)
k , u(m)

k,i and F (m)
k,i for the quantities

associated to the configuration Cm. Let (ϕm)m∈Z be the sequence defined inductively by ϕ0 = 0
and ϕm+1 = ϕm + hm for m ∈ Z. We define the sequence (nk)k∈Z by

nϕm+k = n
(m)
k for m ∈ Z, 0 ≤ k ≤ hm

which makes sense because n(m)
hm

= 1 = n
(m+1)
0 . We define the configuration C, of type (nk)k∈Z,

by {
`ϕm+k = `

(m)
k for m ∈ Z, 1 ≤ k ≤ hm,

uϕm+k,i = u
(m)
k,i for m ∈ Z, 1 ≤ k ≤ hm − 1, 2 ≤ i ≤ n(m)

k .

This amounts to translate the configurations so that for each m ∈ Z, the last point of Cm
coincides with the first point of Cm+1, and identify these two points. The following result is a
generalization of Proposition 2.3 in [7].

Proposition 3.5. Let (Cm)m∈Z be a sequence of finite configurations. Let C be the configuration
obtained by concatenation of these configurations, as explained above. Then:

• if all configurations Cm are balanced and compatible, then the configuration C is balanced,
• if moreover, all configurations Cm are non-degenerate and have height and width bounded
by some number independant of m, then the configuration C is non-degenerate and the
sequence U defined by equation (3) takes a finite number of values.
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Proof. Let us write, for m ∈ Z,

U(m) = (`
(m)
1 , u

(m)
1,2 , . . . , u

(m)
1,n1

, `
(m)
2 , u

(m)
2,2 , . . . , u

(m)
2,n2

, `
(m)
3 , . . . , `

(m)
h ),

F̃(m) = (G
(m)
1 , F

(m)
1,2 , . . . , F

(m)
1,n1

, G
(m)
2 , F

(m)
2,2 , . . . , F

(m)
2,n2

, G
(m)
3 , . . . , G

(m)
h )

for the parameters and forces corresponding to the configuration Cm. Then we have, for the
configuration C, U = (U(m))m∈Z by definition of the concatenation and F̃ = (F̃(m))m∈Z by
inspection. If all configurations Cm are balanced and compatible, then all Gk are equal and the
configuration C is balanced.

Let us assume that the configurations Cm are non-degenerate and have bounded height and
width. Then there is only a finite number of possibilities for the types of the configurations. By
Remark 3.3, there is only a finite number of configurations Cm for m ∈ Z (some of them are
repeated infinitely many times in the sequence (Cm)m∈Z). Hence the sequence U takes only a
finite number of values.

To prove that F̃ is differentiable with respect to U, we observe that for each m ∈ Z, F̃(m) only
depends on U(m). Since there is only a finite number of distinct configurations, the differential
of F̃(m) with respect to U(m) has norm bounded by some number independent of m, and the
same is true for the second order differential. This implies that F̃ is differentiable with respect
to U from `∞ to itself, with differential given by

dF̃(U)(X) =
(
dF̃(m)(U(m))(X(m))

)
m∈Z

.

(In other words, the differential has a block diagonal structure.) Again, since there is only a
finite number of distinct configurations, the norms of the inverses of dF̃(m)(U(m)) are bounded
by some number independent of m, so the operator

X 7→
(
dF̃(m)(U(m))−1(X(m))

)
m∈Z

is bounded from `∞ to itself, so dF̃(U) is invertible and the configuration C is non-degenerate. �

3.2. Examples of finite configurations.

Example 3.6. A trivial example: fix some non-zero complex number a and some positive integer
number h. The configuration of height h and type (1, 1, · · · , 1) defined by pk,1 = ka for 0 ≤ k ≤ h
is balanced, non-degenerate and has residual force equal to 1

a .

Example 3.7. A nice family of configurations of height 2 and type (1, n, 1), where n ∈ N∗,
which comes from [7]. It is given by

p0,1 = 0, p2,1 = 2i,

p1,j = i + cot
jπ

n+ 1
, for 1 ≤ j ≤ n.

Proposition 3.8. This configuration is balanced, non-degenerate and has residual force
n+ 1

2ni
.



8 FILIPPO MORABITO AND MARTIN TRAIZET

Proof. This configuration is proven to be balanced in [7], Proposition 2.1. Let us prove that it
is non-degenerate. It is enough to prove that the differential is injective. Let X be an element
in its kernel. Consider a path U(t) = (`1(t), u1,2(t), · · · , u1,n(t), `2(t)) in the parameter space,
such that U(0) is the given configuration, and U′(0) = X. Then G′1(0), G′2(0) and F ′1,i(0),
2 ≤ i ≤ n all vanish because X is in the kernel. The points of the configuration at time t are
given by p0,1(t) = 0, p1,i(t) = `1(t) + u1,i(t) for 1 ≤ i ≤ n and p2,1(t) = `1(t) + `2(t) (with
u1,1(t) = 0). We extend this configuration into a periodic configuration, denoted p̃k,i(t) of period
T (t) = `1(t) + `2(t) by writing p̃2k,1(t) = kT (t) and p̃2k+1,i(t) = p1,i(t) + kT (t) for k ∈ Z. If we
write F̃k,i(t) for the forces of this configuration, we have

F̃2k,1(t) = F0,1(t) + F2,1(t) = G1(t)−G2(t),

F̃2k+1,i(t) = F2k+1,i(t).

Hence, the derivatives of these forces at time 0 all vanish. Next, we scale this configuration by
1/T (t) so that its period is constant by writing p̂k,i(t) =

p̃k,i(t)
T (t) . If we write F̂k,i(t) for the forces

of this configuration, we have F̂ ′k,i(0) = 0. Since this periodic configuration is non-degenerate
by Proposition 2.1 in [7], in the sense given just after Theorem 1.4 in the same paper, we have
p̂′k,i(0) = 0 for all (k, i). From this we get, for 0 ≤ k ≤ 2

p′k,i(0) = T ′(0)p̂k,i(0) = λpk,i(0) with λ = T ′(0)
T (0) .

Then we write

G2(t) =
1

n

n∑
j=1

1

p2,1(t)− p1,j(t)
,

G′2(0) =
1

n

n∑
j=1

−1

(p2,1 − p1,j)2
(λp2,1 − λp1,j) = −λG2(0).

SinceG′2(0) = 0 andG2(0) = FC 6= 0, this gives λ = 0, so p′k,i(0) = 0 andX = 0. This proves that
the configuration is non-degenerate. We compute the residual force using Proposition 3.2. �

Remark 3.9. We can scale these configurations by 2n
n+1 so that they are compatible. Then by

Proposition 3.5, we can concatenate them to obtain balanced configuration whose type is any
bounded sequence (nk)k∈Z such that nk = 1 for even k. This proves Theorem 1.4.

Example 3.10. An example of height 3 and type (1, 2, 2, 1) given by

p0,1 = 0, p1,1 =
−
√

2

2
+ i, p1,2 =

√
2

2
+ i,

p2,1 =
−
√

2

2
+ 2i, p2,2 =

√
2

2
+ 2i, p3,1 = 3i.

Proposition 3.11. This configuration is balanced, non-degenerate and has residual force 2
3i .

The proof is purely computational, we omit the details. (The determinant of the matrix
associated to the differential, computed with Mathematica, equals 4/243).

4. Proof of the main theorem

In this section we prove Theorem 2.4.
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4.1. Notations and parameters. There are six parameters in the construction, denoted by
t, a, b, α, β and γ. The parameter t is a positive real number. All other five parameters are
sequences of complex numbers of the form u = (uk,i)k∈Z,1≤i≤nk . We use the notation uk =
(uk,i)1≤i≤nk ∈ Cnk .

The `∞ norm of the sequence u is defined as usual as ||u||∞ = sup{|uk,i| : k ∈ Z, 1 ≤ i ≤ nk}.
Each parameter varies in a neighborhood for the `∞ norm of a central value. The central value
is denoted by an upperscript 0, so the central value of the parameters are denoted by a0, b0, α0,
β0 and γ0. Most of our statements only hold in a small neighborhood of the central values.

The central value of the parameters will be given later. An important point is that the
following hypothesis holds. We say that a sequence u = (uk,i)k∈Z,1≤i≤nk is finitely valued if the
set {uk,i : k ∈ Z, 1 ≤ i ≤ nk} is finite.

Hypothesis 4.1 (Finiteness hypothesis). The central value of each parameter is finitely valued.

This will be useful to make various statements uniform with respect to k ∈ Z. By a uniform
constant, we mean some number which only depends on the central value of the parameters. We
use the notation D(a, r) for the disk of center a and radius r in C.

4.2. Opening nodes. Consider infinitely many copies of the Riemann sphere, labelled (C k)k∈Z.
We denote by∞k the point∞ in C k, and Ck = C k \{∞k}. For each k ∈ Z and each 1 ≤ i ≤ nk,
select a point ak,i ∈ Ck and a point bk,i ∈ Ck+1. Identify these two points to create a node.
This defines a Riemann surface with nodes which we call Σ0. The parameters involved in this
construction are the sequences a = (ak,i)k∈Z,1≤i≤nk and b = (bk,i)k∈Z,1≤i≤nk . The central value
of these parameters is given, in term of the given configuration, by

a0
k,i = (−1)kconjk(`0k + u0

k,i)

b0k,i = (−1)k+1conjk+1(u0
k,i)

where conj(z) = z denotes conjugation, so conjk(z) is equal to z if k is even and z if k is odd.
Observe that a0 and b0 are finitely valued by hypothesis 2 of Theorem 2.4.

For any k ∈ Z, the points a0
k,i for 1 ≤ i ≤ nk and b0k−1,i for 1 ≤ i ≤ nk−1 are distinct in Ck.

That follows from the identity

l0k + u0
k,i − u0

k−1,j = p0
k,i − p0

k−1,j

and the fact that second member does not vanish by construction.

Let εk > 0 be the smallest value of the distance between these points in Ck. Because of the
finiteness hypothesis, {εk : k ∈ Z} is finite so we can take ε = min{εk : k ∈ Z} > 0. If
||a− a0||∞ < ε

4 and ||b− b0||∞ < ε
4 , then for any k ∈ Z, the points ak,i for 1 ≤ i ≤ nk and bk−1,i

for 1 ≤ i ≤ nk−1 are at distance greater than ε
2 from each other, so they remain distinct. We

will be using this kind of argument very often. We will not enter in details anymore and simply
refer to the finiteness hypothesis.

For each k ∈ Z we consider a function gk defined on C k by

gk(z) =

nk−1∑
i=1

βk−1,i

z − bk−1,i
−

nk∑
i=1

αk,i
z − ak,i

.
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The new parameters are the sequences

α = (αk,i)k∈Z,1≤i≤nk and β = (βk,i)k∈Z,1≤i≤nk .

We assume that these parameters satisfy the equation

(7) ∀k ∈ Z,
nk∑
i=1

αk,i =

nk∑
i=1

βk,i = 1.

We will see the role of this equation in Section 4.3. The central values of these parameters are
given by

α0
k,i = β0

k,i =
1

nk
.

Recall that the set {nk : k ∈ Z} is finite, so the sequences α0 and β0 are finitely valued as
required.

If ||α−α0||∞ and ||β−β0||∞ are small enough, we have αk,i 6= 0 and βk,i 6= 0 for all k ∈ Z and
1 ≤ i ≤ nk. Then gk(z) ∼

−αk,i
z−ak,i in a neighborhood of ak,i, so 1

gk
is a local complex coordinate

in a neighborhood of ak,i. In the same way, gk+1 ∼
βk,i
z−bk,i in a neighborhood of bk,i, so 1

gk+1
is a

local complex coordinate in a neighborhood of bk,i. The finiteness hypothesis allows us to find a
positive number ρ so that if a, b, α and β are close enough to a0, b0, α0 and β0 in `∞ norm, for
any k ∈ Z and 1 ≤ i ≤ nk, 1

gk
is a diffeomorphism from a neighborhood Vk,i of ak,i in Ck to the

disk D(0, ρ) and 1
gk+1

is a diffeomorphism from a neighborhood Wk,i of bk,i in Ck+1 to the disk
D(0, ρ). We define

vk,i :=
1

gk
: Vk,i

∼→ D(0, ρ) vk,i(ak,i) = 0,

wk,i :=
1

gk+1
: Wk,i

∼→ D(0, ρ) wk,i(bk,i) = 0.

By taking ρ small enough, and still using the finiteness hypothesis, we can assume that the ratio∣∣∣ vk,i
z−ak,i

∣∣∣ in Vk,i and ∣∣∣ wk,iz−bk,i

∣∣∣ in Wk,i are bounded from above and below by some uniform positive
numbers (by which we mean that they are independent of k, i and the value of the parameters).
Hence these coordinates are admissible in the sense of Definition 2 of [8].

We use these coordinates to open the nodes. Consider a real parameter t ∈ (0, ρ). For each
k ∈ Z and 1 ≤ i ≤ nk, remove the disks |vk,i| ≤ t2

ρ from Vk,i and |wk,i| ≤ t2

ρ from Wk,i. Identify
each point z ∈ Vk,i with the point z′ ∈Wk,i such that

vk,i(z)wk,i(z
′) = t2.

This creates a neck connecting C k and C k+1. We call Σt the resulting Riemann surface.

4.3. The Gauss map. We define a meromorphic function g on Σt, to be the Gauss map, by

g(z) = (tgk(z))
(−1)k =

{
tgk(z) if z ∈ C k, k even

1
tgk(z) if z ∈ C k, k odd
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This function is well defined because if, say, k is even and z ∈ Vk,i ⊂ Ck is identified with
z′ ∈Wk,i ⊂ Ck+1, then

g(z) = tgk(z) =
t

vk,i(z)
=
wk,i(z

′)

t
=

1

tgk+1(z′)
= g(z′).

In a neighborhood of ∞ we have, thanks to the normalization (7)

gk(z) '
1

z2

(nk−1∑
i=1

βk−1,ibk−1,i −
nk∑
i=1

αk,iak,i

)
so the Gauss map has at least a double zero or pole at ∞, as required for a planar end. At the
central value of the parameters we have

nk−1∑
i=1

β0
k−1,ib

0
k−1,i −

nk∑
i=1

α0
k,ia

0
k,i = (−1)kconjk

(
1

nk−1

nk−1∑
i=1

p0
k−1,i −

1

nk

nk∑
i=1

p0
k,i

)
.

This is non-zero by hypothesis 3 of Theorem 2.4, so gk has a zero of multiplicity precisely 2
at ∞k. By the finiteness hypothesis, this remains true when the parameters are close to their
central value in `∞ norm. Hence the Gauss map has a double zero at ∞k if k is even and a
double pole if k is odd.

4.4. The height differential. Fix some small number ε > 0. For each k ∈ Z, let Ωk,ε be Ck
minus the disks D(a0

k,i, ε) for 1 ≤ i ≤ nk and D(b0k−1,i, ε) for 1 ≤ i ≤ nk−1. Let Ωε be the disjoint
union of the domains Ωk,ε for k ∈ Z. We assume that ||a − a0||∞, ||b − b0||∞ and t are small
enough so that the disks |vk,i| ≤ t2

ρ and |wk,i| ≤ t2

ρ (which were removed when defining Σt) are
included respectively in the disks D(a0

k,i, ε) and D(b0k,i, ε). This allow us to see the fixed domain
Ωε as a domain in Σt. Let Ω1(Σt) be the space of holomorphic 1-forms ω on Σt such that the
norm

||ω||L∞(Ωε) = sup
k∈Z

sup
z∈Ωk,ε

∣∣∣ ω
dz

∣∣∣
is finite. This is well known to be a Banach space.

Next we define natural cycles on Σt. For any k ∈ Z and 1 ≤ i ≤ nk, let Ak,i be the
homology class in Σt of the circle C(bk,i, ε) in Ck+1. This circle is homologous in Σt to the circle
C(ak,i, ε) with the opposite orientation. By Theorem 2 in [8], for t small enough, the operator
ω 7→ (

∫
Ak,i

ω)k∈Z,1≤i≤nk is an isomorphism of Banach spaces from Ω1(Σt) to the set of sequences
γ = (γk,i)k∈Z,1≤i≤nk in `∞ which satisfy the compatibility relation

(8) ∀k ∈ Z,
nk∑
i=1

γk,i =

nk−1∑
i=1

γk−1,i.

(Equation (8) is what equation (2) of [8] becomes in our case.) So we can define a holomorphic
differential ω on Σt by prescribing its Ak,i-periods as∫

Ak,i

ω = 2πiγk,i, k ∈ Z, 1 ≤ i ≤ nk.
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The new parameter is the sequence γ = (γk,i)k∈Z,1≤i≤nk . The central value of this parameter is
given by γ0

k,i = 1
nk

. We require that

∀k ∈ Z,
nk∑
i=1

γk,i = 1

so that the compatibility relation (8) is satisfied.

Proposition 4.2. The differential ω depends smoothly on all parameters involved in this con-
struction, namely a, b, α, β, γ and t, in a neighborhood of their respective central value a0, b0,
α0, β0, γ0 and 0. Moreover, when t = 0, we have ω = ωk in Ck, where

ωk =

nk−1∑
i=1

γk−1,i

z − bk−1,i
dz −

nk∑
i=1

γk,i
z − ak,i

dz.

Proof. The smoothness statement is Theorem 4 in [8]. Smoothness is for the norm defined above:
in particular this means that the restriction of ω to the (fixed) domain Ωε depends smoothly on
all parameters.

When t = 0, ω is a regular differential on Σ0 (see Definition 1 in [8]) so has simple poles at
all points ak,i, bk,i. The residues are determined by the prescribed periods, and this gives the
claimed formula. �

4.5. The equations we have to solve. We define the Weierstrass data on Σt by the standard
formula

(φ1, φ2, φ3) =

(
1

2
(g−1 − g)ω,

i

2
(g−1 + g)ω, ω

)
.

The minimal surface is defined by the Weierstrass representation formula :

ψ(z) = Re

∫ z

z0

(φ1, φ2, φ3) : Σt → R3 ∪ {∞}.

The points ∞k for k ∈ Z have to be the planar ends of our minimal surface.
For ψ to be a regular immersion, we need that at each zero or pole of the Gauss map g, which

does not corresponds to an end, ω has a zero of the same order. At the end ∞k, the Gauss map
has a double zero or pole. To have an embedded planar end, we need that ω is holomorphic
(which is already the case) and does not vanish. We deal with these conditions in Section 4.6.

Then we need ψ(z) to be independent of the integration path from z0 to z, this is the period
problem. We fix some small number ε′ > 0 and we define the cycle Bk,i for k ∈ Z and 2 ≤ i ≤ k
as the composition of the following four paths :

(1) a fixed path from a0
k,i + ε′ to a0

k,1 + ε′,
(2) a path from a0

k,1 + ε′ to b0k,1 + ε′, going through the neck,
(3) a fixed path from b0k,1 + ε′ to b0k,i + ε′,
(4) a path from b0k,i + ε′ to a0

k,i + ε′, going through the neck.
Note that unlike Ak,i, the cycle Bk,i is not defined when t = 0. We need to solve the following
period problem :

Re

∫
Ak,i

φν = 0 k ∈ Z, 1 ≤ i ≤ nk, 1 ≤ ν ≤ 3,
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Re

∫
Bk,i

φν = 0 k ∈ Z, 2 ≤ i ≤ nk, 1 ≤ ν ≤ 3.

Indeed, the first condition ensures that Re
∫
φν is well defined in each Ck, and in particular

that the residue at ∞ vanishes as required for a planar end. The second condition ensures that
Re
∫
φν does not depend on the choice of the path from Ck to Ck+1.

Our strategy consists in proving that these equations, suitably renormalized, extend smoothly
at t = 0, and in solving them using the implicit function Theorem at t = 0 to determine all
parameters as functions of t.

4.6. Zeros of ω. Let us first locate the zeros and poles of g. If k is even, then the zeros of g
in Ck are the zeros of gk, and g has no poles in Ck (because the poles of gk were removed when
opening nodes). If k is odd, the poles of g in Ck are the zeros of gk, and g has no zeros in Ck.
What we need is that for each k ∈ Z, ω has a zero at each zero of gk in Ck, with the same
multiplicity, and has no further zeros.

Proposition 4.3. For (t, a, b, γ) in a neighborhood of (0, a0, b0, γ0), there exist values of the
parameters α and β, depending smoothly on (t, a, b, γ), such that for all k ∈ Z, ω has a zero at
each finite zero of gk in Ck, with the same multiplicity, and has no further zero. Moreover, when
t = 0, we have α(0, a, b, γ) = β(0, a, b, γ) = γ.

Proof. Since gk has a double zero at ∞k, it has nk + nk−1 − 2 finite zeros in Ck, counting
multiplicities. Let us count the number of zeros of ω in Ck. By the finiteness hypothesis, we may
choose ε > 0 small enough and R large enough (both independent of k and the parameters) so
that Uk = Ωk,ε ∩D(0, R) contains all zeros of gk. Let us write ω = fk(z)dz in Ck. The number
of zeros of ω in Uk, counting multiplicities, is given by

Nk =
1

2πi

∫
∂Uk

dfk
fk
.

At the central value of the parameters, we have fk = gk, so fk does not vanish on ∂Uk. Thanks
to the finiteness hypothesis, we may find a number c > 0 independent of k such that for all
k, |fk| ≥ c on ∂Uk (still, at the central value of the parameters). By smooth dependence of ω
on parameters, we have |fk| ≥ c

2 on ∂Uk when the parameters stay close, in `∞ norm, to their
central value. Hence Nk is a smooth, integer valued function of the parameters, so it is constant.
This proves that for each k ∈ Z, ω has nk + nk−1 − 2 zeros in Uk.

Let us now see that ω has no further zeros. It is proven in [8], Corollary 1, that there exists a
uniform constant C (independent of ε) such that the following is true for t small enough : for any
k ∈ Z and any 1 ≤ i ≤ nk, if |γk,i| ≥ Cε||γ||∞, then ω has no zero in the annulus in Σt bounded
by the circles C(ak,i, ε) in Ck and C(bk,i, ε) in Ck+1 (this annulus is what we call a neck). Recall
that the central value of the parameter γk,i is γ0

k,i = 1
nk

. Since the sequence (nk)k∈Z is bounded,

the ratio |γk,i|
||γ||∞ is bounded from below by a uniform positive number when the parameter γ is

close to γ0. Hence, provided we choose ε > 0 small enough, ω has no zeros on the necks.
It remains to consider the zeros of ω outside the disk D(0, R) in Ck. We introduce the

coordinate w = 1/z on this domain and write ω = hk(w)dw, w ∈ D(0, 1
R). At the central value

of the parameters, the function hk has no zero, so |hk| is bounded from below by a constant
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independent of k by the finiteness hypothesis. Hence when the parameters are close to their
central value, we have that for any k, ω has no zero outside the disk D(0, R) in Ck.

Next we need to adjust the parameters α and β so that ω vanishes at the zeros of gk. One
problem is that we do not know a priori the multiplicities of the zeros of gk. The following lemma
is useful.

Lemma 4.4. Let P be a polynomial of degree d and Ω be a domain in C containing all the zeros
of P . Given a holomorphic function f in Ω, let

Fi =

∫
∂Ω

zif(z)

P (z)
dz.

If Fi = 0 for all 0 ≤ i ≤ d− 1 then f/P is holomorphic in Ω.

Proof of Lemma 4.4. By the Weierstrass Preparation Theorem, we may write f = Ph+ r, where
h is holomorphic in Ω and r is a polynomial of degree less than d. By Cauchy’s Theorem,

Fi =

∫
∂Ω

zir(z)

P (z)
dz = −2πi Res∞

(
zir(z)

P (z)
dz

)
.

To establish last identity, we have used the residue Theorem on the complementary of Ω in C,
and the fact that Ω contains all the zeros of P so the only pole is at infinity. Assume that r 6= 0
and let k = deg(r). Take i = d− k − 1. By a straightforward computation, we get

Res∞
zir(z)dz

P (z)
= −rk

pd

where rk and pd are respectively the leading coefficients of the polynomials r and p. Hence Fi = 0
implies that rk = 0, contradicting the fact that r has degree k. Hence r = 0 so f/P = h is
holomorphic in Ω. �

Returning to the proof of Proposition 4.3, let

Qk =

nk∏
i=1

(z − ak,i)
nk−1∏
i=1

(z − bk−1,i)

and write gk = Pk
Qk

, so Pk is a polynomial of degree nk + nk−1 − 2. Define, for k ∈ Z and
0 ≤ i ≤ nk + nk−1 − 3

Zk,i =

∫
∂Uk

ziω

Pk(z)
.

Let Z = Z(t, a, b, α, β, γ) = (Zk,i)k∈Z,0≤i≤nk+nk−1−3. This is a smooth function of all parameters
(with the `∞ norm on the target space). If Z = 0, then by the lemma, for all k ∈ Z, ω/Pk is
holomorphic in Uk, so at each zero of gk, ω has a zero with at least same order. Since we counted
the number of zeros to be the same, the multiplicities are equal as required. The proposition
then follows from the following lemma and the implicit function Theorem. (The last statement
of the proposition follows from the uniqueness part of the implicit function Theorem.)

Lemma 4.5. When t = 0 and α = β = γ, we have Z(0, a, b, γ, γ, γ) = 0. Moreover, the partial
differential of Z with respect to (α, β) at (0, a0, b0, α0, β0, γ0) is an isomorphism of Banach spaces.
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Proof of Lemma 4.5. If t = 0 and α = β = γ, then by Proposition 4.2, ω = gkdz in Ck for all
k ∈ Z, so Z = 0. We write D for the partial differential with respect to (α, β) at the central
value of the parameters. Observe that when t = 0, Σ0 does not depend on (α, β), so ω does not
depend on (α, β) and Dω = 0. Hence

D

(
ziω

Pk

)
= −z

iω

P 2
k

DPk = − zidz

PkQk
DPk = −z

idz

Pk
Dgk

DZk,i(α, β) = −
∫
∂Uk

zi

Pk
fkdz with fk =

nk−1∑
j=1

βk−1,j

z − b0k−1,j

−
nk∑
j=1

αk,j
z − a0

k,j

.

From this we see that DZk(α, β) only depends on αk and βk−1 (so DZ has “block diagonal”
form). Let us prove that for each k, the operator (αk, βk−1) 7→ DZk(αk, βk−1) is an isomorphism.
The domain and target spaces both have finite complex dimension nk + nk−1 − 2, because by
normalization of the parameters, we have

∑nk
i=1 αk,i =

∑nk−1

i=1 βk−1,i = 0 (instead of 1 since we are
in the tangent space to the parameter space when we compute the differential). Let (αk, βk−1) be
in the kernel. Then by Lemma 4.4, the function fk

Pk
is holomorphic in Uk. Hence the polynomials

fkQk and Pk, which have the same degree, have the same zeros, hence are proportional. So there
exists λ ∈ C such that αk = λα0

k and βk−1 = λβ0
k−1. Because of the normalizations this gives

αk = βk−1 = 0. Hence for each k, the operator (αk, βk−1) 7→ DZk(αk, βk−1) is an isomorphism.
By the finiteness hypothesis, the inverse of these operators is bounded by a constant independent
of k. It readily follows that DZ is an isomorphism of Banach spaces from `∞ to `∞. 2

4.7. The period problem for ω.

Proposition 4.6. Assume that α and β are given by Proposition 4.3. For (t, a, b) in a neigh-
borhood of (0, a0, b0), there exist values of the parameter γ, depending continuously on (t, a, b),
such that the following period problem is solved :

Re

∫
Ak,i

ω = 0, k ∈ Z, 1 ≤ i ≤ nk,

Re

∫
Bk,i

ω = 0, k ∈ Z, 2 ≤ i ≤ nk.

Moreover, when t = 0, we have γk,i(0, a, b) = 1
nk
.

Proof. The period problem for the cycles Ak,i is equivalent to γk,i ∈ R, which we assume from
now on. Regarding the cycles Bk,i, we need the following

Lemma 4.7. The function(
Re

∫
Bk,i

ω − 2(γk,i − γk,1) log t

)
k∈Z,2≤i≤nk

extends smoothly at t = 0 to a smooth function of all parameters (with the `∞ norm on the target
space).
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The proof of this lemma is technical and given in appendix A. We make the change of variable
t = e−1/τ2 , where τ > 0 is in a neighborhood of 0. Define

Vk,i = τ2Re

∫
Bk,i

ω

and V = (Vk,i)k∈Z,2≤i≤nk . By the lemma, the function V extends smoothly at τ = 0 to a smooth
function of the parameters (τ, a, b, γ). Moreover, when τ = 0, we have

V(0, a, b, γ) = −2(γk,i − γk,1).

For each k ∈ Z, the partial differential of Vk with respect to γ only depends on γk, and it is
straightforward to see that it is an isomorphism. (The domain and target spaces are both real
vector spaces of dimension nk − 1 : recall the normalization

∑nk
i=1 γk,i = 1.) The proposition

then follows by the implicit function Theorem. �

Remark 4.8. γ is a smooth function of the parameters (τ, a, b). From now on the parameter τ
replaces the parameter t.

4.8. The B-period problem for φ1 and φ2. In this section we solve the period problem

Re

∫
Bk,i

φ1 = Re

∫
Bk,i

φ2 = 0, k ∈ Z, 2 ≤ i ≤ nk.

This is equivalent to ∫
Bk,i

g−1ω =

∫
Bk,i

gω, k ∈ Z, 2 ≤ i ≤ nk.

We define for k ∈ Z and 2 ≤ i ≤ nk

Hk,i = t

(∫
Bk,i

g(−1)kω −
∫
Bk,i

g(−1)k+1ω

)
.

Let H = (Hk,i)k∈Z,2≤i≤nk . We want to solve the equation H = 0.

Lemma 4.9. The function H extends smoothly at τ = 0 to a smooth function of all parameters
(for the `∞ norms). Moreover, when τ = 0 we have

Hk,i =

∫ bk,i

bk,1

g−1
k+1ωk+1 −

∫ ak,1

ak,i

g−1
k ωk.

The proof of this lemma is technical and is given in appendix A.

Assume that the parameters α, β and γ are determined as functions of (τ, a, b) by Propositions
4.3 and 4.6. Then H extends at τ = 0 to a smooth function of (τ, a, b). Moreover, as α = β = γ
when τ = 0, we have ωk = gkdz so

Hk,i(0, a, b) = bk,i − bk,1 + ak,i − ak,1.
We normalize the parameter b by requiring that bk,1 = 0 for all k ∈ Z. (This may be seen as a
normalization of translation in Ck.) Let Hk = (Hk,i)2≤i≤nk . For each k, the partial differential of
Hk with respect to b only depends on bk, and is easily seen to be injective, so is an isomorphism
because the domain and range both have complex dimension nk − 1. Hence, by the finiteness
hypothesis, the partial differential of H with respect to b is an isomorphism from `∞ to `∞. By
the implicit function Theorem, we get
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Proposition 4.10. Assume that the parameters α, β, γ are determined by Propositions 4.3 and
4.6. For (τ, a) in a neighborhood of (0, a0), there exist values of the parameter b, depending
smoothly on (τ, a), such that H(τ, a, b(τ, a)) = 0. Moreover, when τ = 0, we have

bk,i = −ak,i + ak,1.

4.9. The A-period problem for φ1 and φ2. In this section we solve the period problem

Re

∫
Ak,i

φ1 = Re

∫
Ak,i

φ2 = 0, k ∈ Z, 1 ≤ i ≤ nk.

This is equivalent to ∫
Ak,i

g−1ω =

∫
Ak,i

gω, k ∈ Z, 1 ≤ i ≤ nk.

Recall that conj(z) = z denotes the complex conjugation. We define

F−k,i =
−1

t
conjk

(∫
Ak,i

g(−1)kω

)
,

F+
k,i =

1

t
conjk+1

(∫
Ak,i

g(−1)k+1
ω

)
,

Fk,i = F−k,i + F+
k,i.

We want to solve the equations Fk,i = 0 for all k ∈ Z and 1 ≤ i ≤ nk. This equation will give
us the balancing equation Fk,i = 0 of Section 2. However, to be able to use the non-degeneracy
hypothesis, we have to reformulate this infinite system of equations in a slightly different way,
as we did for the balancing condition Fk,i = 0 in Section 2. Define

F−k =

nk∑
i=1

F−k,i,

F+
k =

nk∑
i=1

F+
k,i,

Fk =

nk∑
i=1

Fk,i = F−k + F+
k .

Lemma 4.11. It holds, independently of the values of the parameters,

∀k ∈ Z, F−k + F+
k−1 = 0.

Proof. We have, in Ck, g(−1)k = tgk. This function is holomorphic at ∞k. Hence, by the residue
Theorem,

−
nk∑
i=1

∫
Ak,i

g(−1)kω +

nk−1∑
i=1

∫
Ak−1,i

g(−1)kω = 0

so
tconjk(F−k ) + tconjk(F+

k−1) = 0.

which proves the lemma. �
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Let us write Gk = −F−k . Then by the lemma,

Fk = F−k −F
−
k+1 = Gk+1 − Gk.

Solving Fk,i = 0 for all k ∈ Z and 1 ≤ i ≤ nk is then equivalent to solve for all k ∈ Z, Fk,i = 0
for 2 ≤ i ≤ nk and Gk = G0. We write F = (Fk,i)k∈Z,2≤i≤nk and G = (Gk)k∈Z.

Next we need to introduce the parameters `k and uk,i of Section 2 to make use of the non-
degeneracy hypothesis. We make the change of parameter

ak,i = (−1)kconjk(`k + uk,i).

We define the parameter U by equation (3).

Proposition 4.12. Assume that the parameters α, β, γ and b are determined by Propositions
4.3, 4.6 and 4.10. The functions F and G extend at τ = 0 to smooth functions of (τ,U) (for the
`∞ norms). Moreover, at τ = 0 we have

Fk,i(0,U) = 4πiFk,i(U),

Gk(0,U) = 4πiGk(U)

where the functions Fk,i and Gk are as in Section 2. Hence, if the configuration is balanced and
non-degenerate in the sense of Definition 2.3, for τ in a neighborhood of 0, there exist values of
the parameter U, depending smoothly on τ for the `∞ norm, such that F(U(τ)) = F(U0) = 0
and G(U(τ)) = G(U0) = constant, so our period problem is solved.

Proof. We have g(−1)k = tgk in Ck, and Ak,i is homologous to the circle C(ak,i, ε) in Ck with the
negative orientation, so

F−k,i = conjk

(∫
C(ak,i,ε)

gkω

)
.

We see by this formula that F−k,i extends at τ = 0. Now ω depends smoothly on all parameters
(for the norm ||ω||∞ defined in Section 4.4), and the function equal to gk in each Ck also depends
smoothly on all parameters (using the finiteness hypothesis). So (F−k,i)k∈Z,1≤i≤nk is a smooth
function of all parameters by composition with a bounded linear operator.

In the same way, we have g(−1)k+1
= tgk+1 in Ck+1 and Ak,i is homologous to the circle

C(bk,i, ε) in Ck+1, so

F+
k,i = conjk+1

(∫
C(bk,i,ε)

gk+1ω

)
.

It follows that (F+
k,i)k∈Z,1≤i≤nk is a smooth function of all parameters. Hence F and G are smooth

functions of the parameters.
Next assume that τ = 0 and α, β, γ and b are determined by Propositions 4.3, 4.6 and 4.10.

Then

αk,i = βk,i = γk,i =
1

nk
= ck,

and ω = gkdz in Ck. Also
bk,i = (−1)k+1conjk+1(uk,i).
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Then we compute F−k,i and F
+
k,i as residues :

F−k,i = conjk
(
2πi Resak,i(gk)

2
)

= 2πi(−1)kconjk

2
∑
j 6=i

c2
k

ak,i − ak,j
− 2

nk−1∑
j=1

ckck−1

ak,i − bk−1,j


= 4πi

∑
j 6=i

c2
k

uk,i − uk,j
−
nk−1∑
j=1

ckck−1

`k + uk,i − uk−1,j


F+
k,i = conjk+1

(
2πi Resbk,i(gk+1)2

)
= 2πi(−1)k+1conjk+1

2
∑
j 6=i

c2
k

bk,i − bk,j
− 2

nk+1∑
j=1

ckck+1

bk,i − ak+1,j


= 4πi

∑
j 6=i

c2
k

uk,i − uk,j
−
nk+1∑
j=1

ckck+1

uk,i − `k+1 − uk+1,j


This gives Fk,i = 4πiFk,i. Regarding Gk, we have

nk∑
i=1

nk∑
j=1
j 6=i

1

uk,i − uk,j
= 0

so Gk = 4πiGk. �

4.10. Embeddedness. At this point we have constructed a one parameter family of minimal
immersion ψt : Σt → R3 for t > 0 small enough. (We switch back to the parameter t.) Let
Mt = ψt(Σt).

Proposition 4.13. Mt is an embedded minimal surface.

Proof. Fix a complex number O and for k ∈ Z, let Ok be the point z = O in Ck. By the finiteness
hypothesis, we may choose O so that Ok ∈ Ωk,ε for all k ∈ Z. Let ϕt : R3 → R3 be the affine
transformation (x1, x2, x3) 7→ (2tx1, 2tx2, x3). Define

ψk,t(z) = ϕt(ψt(z)− ψt(Ok)) : Ωk,ε → R3.

If k is even, then g = tgk in Ck so

ψk,t(z) = Re

∫ z

O

(
(g−1
k − t

2gk)ω, i(g
−1
k + t2gk)ω, ω

)
.

This extends (as a smooth function of τ) at t = 0, with value

ψk,0(z) = Re

∫ z

O
(dz, idz, ωk) = (Re(z),−Im(z), hk(z)− hk(O))

where the function hk is defined by

hk(z) =

nk−1∑
i=1

ck−1 log |z − b0k−1,i| −
nk∑
i=1

ck log |z − a0
k,i|.
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Hence the image ψk,t(Ωk,ε) converges to the graph of z 7→ hk(z)−hk(O) on Ωk,ε, so it is embedded
for t small enough. When k is odd, we have by similar computations that ψk,t(Ωk,ε) converges
to the graph of z 7→ hk(−z)− hk(−O).

Observe that the function hk is bounded on Ωk. Provided ε is small enough, we can find a
number η large enough such that the level line hk = η consists of nk closed convex curves around
the points a0

k,i, 1 ≤ i ≤ nk, and the level line hk = −η consists of nk−1 closed convex curves
around the points b0k−1,i, 1 ≤ i ≤ nk−1.

Back to our minimal immersion ψt, let Mk,t be the intersection of the image ψt(Ωk,ε) with
the slab ψt(Ok) − η < x3 < ψt(Ok) + η. By what we have seen, for t small enough, each Mk,t

is embedded, and its boundary consists of nk closed horizontal convex curves on the top and
nk−1 closed convex curves on the bottom. By Lemma A.2,

∫ Ok+1

Ok
ω ∼ −2ck log t, so we see that

Mk+1,t lies strictly above Mk,t.

The intersection of Mt with the slab ψt(Ok) + η < x3 < ψt(Ok+1) − η is the union of nk
minimal annuli. Each annulus is bounded by convex curves in horizontal planes, so is foliated
by horizontal convex curves by a theorem of Shiffman [6], hence embedded.

It remains to see that these nk annuli are disjoint. Consider one of these annuli. There exists
i, 1 ≤ i ≤ nk such that our annulus is included in the image of the annulus bounded by the
circles C(a0

k,i, ε
′) and C(b0k,i, ε

′) (provided we take η large enough). The image of these circles

are close to circles of radius ε′

2t . By Lemma A.3, t
∫ b0k,i+ε′
a0k,i+ε

′ g
±1ω extends smoothly at t = 0 (as a

smooth function of τ), with value ±ε′. Hence the boundary circles are inside a vertical cylinder
of radius 2ε′

t for t small enough. By the convex hull property of minimal surfaces, the annulus is
inside this cylinder.

Now from our analysis of ψk,t, the axes of these cylinders are separated by a distance greater
than c

t for some uniform positive number c. Hence these cylinders are disjoint provided we take
ε′ > 0 small enough. This proves that the annuli are disjoint, so Mt is embedded. �

Appendix A. Proof of Lemmas 4.7 and 4.9

We start by proving Lemma 4.7. The period of ω on Bk,i has four terms corresponding to
the four paths in the definition of Bk,i. The first term is easily dealt with. Indeed, the path
from a0

k,i + ε′ to a0
k,1 + ε′ is fixed and may be chosen in the domain Ωk,ε′ . The restriction

of ω to Ωε′ depends smoothly on all parameters, and we compose it with the linear operator

ω 7→ (
∫ a0k,1+ε′

a0k,i+ε
′ ω)k∈Z,2≤i≤nk which is bounded from L∞(Ωε′) to `∞ hence smooth. We treat the

third term, where the integral along a path joining b0k,1 + ε′ to b0k,i + ε′ appears, in the same way.
To handle the second and fourth terms, we expand ω in Laurent series and estimate carefully

its coefficients. First let us define various constants and in particular explain how we choose ε′
in the definition of the cycle Bk,i. Remember that we have fixed a small number ε > 0. We
choose a constant r independent of k such that for all k ∈ Z, |gk| ≤ r

2 in Ωk,ε. We choose a small
number ε′ > 0 independent of k such that for all k ∈ Z and 1 ≤ i ≤ nk, |gk| ≥ 2r in the disk
D(ak,i, 2ε

′) and |gk+1| ≥ 2r in the disk D(bk,i, 2ε
′). If ||a − a0||∞ ≤ ε′ and ||b − b0||∞ ≤ ε′, we

have |gk| ≥ 2r in the disk D(a0
k,i, ε

′) and |gk+1| ≥ 2r in the disk D(b0k,i, ε
′). Finally, we choose a
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constant r′ independent of k such that for all k ∈ Z, |gk| ≤ r′

2 in Ωk,ε′ . All this is possible thanks
to the finiteness hypothesis.

Lemma A.1. Let v = vk,i. We have, in the annulus t2

ρ ≤ |v| ≤ ρ,

ω = −γk,i
dv

v
+
∑
n≥0

rn+1c+
k,i,nv

ndv +
∑
n≥2

(rt2)n−1c−k,i,n
dv

vn
.

The coefficients c±k,i,n are bounded. More precisely, let c+ = (c+
k,i,n)k∈Z,1≤i≤nk,n≥0 and c− =

(c−k,i,n)k∈Z,1≤i≤nk,n≥2. Then c+ and c− are in `∞ and are smooth functions of all parameters.

Proof. Using v = vk,i as a coordinate, we can write the Laurent series of ω in the annulus
t2

ρ ≤ |v| ≤ ρ as

ω =
∑
n∈Z

ck,i,nv
ndv.

The coefficient ck,i,n is given by

ck,i,n =
1

2πi

∫
∂Vk,i

ω

vn+1
=

1

2πi

∫
∂Vk,i

ωgn+1
k .

In particular ck,i,−1 = −γk,i. For n ≥ 0, we write ck,i,n = rn+1c+
k,i,n with

c+
k,i,n =

1

2πi

∫
C(a0k,i,ε)

ω
(gk
r

)n+1
.

We have used that ∂Vk,i is homologous to the circle C(a0
k,i, ε). We have |gkr | ≤

1
2 in Ωk,ε so

(c+
k,i,n)n∈N is bounded. The function equal to gk

r in each Ωk,ε is in the open unit ball of L∞(Ωε)

and depends smoothly on parameters. Recall that L∞(Ωε) is a Banach algebra for the pointwise
product. If A is a Banach algebra, the map x 7→ (xn)n∈N is smooth from the open unit ball of
A to AN with the sup norm (an easy exercice). From this and the fact that ω, restricted to Ωε,
depends smoothly on parameters, and composition with a bounded linear operator, we conclude
that c+ depends smoothly on all parameters.

For n ≤ −2 we write m = −n ≥ 2 and ck,i,−m = (rt2)m−1c−k,i,m with

c−k,i,m =
1

2πi

∫
∂Vk,i

ω
(vk,i
rt2

)m−1
=
−1

2πi

∫
∂Wk,i

ω

(
1

rwk,i

)m−1

=
−1

2πi

∫
C(b0k,i,ε)

ω
(gk+1

r

)m−1
.

We have used the fact that vk,iwk,i = t2 and ∂Vk,i is homologous to −∂Wk,i. From this we
conclude in the same way as above that c− is in `∞ and depends smoothly on all parameters. �

Lemma 4.7 follows from the following lemma.

Lemma A.2. The function (∫ b0k,i+ε
′

a0k,i+ε
′
ω + 2γk,i log t

)
k∈Z,1≤i≤nk
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extends smoothly at t = 0 to a smooth function of all parameters (for the `∞ norm).

Proof. Let ϕk,i = vk,i(ak,i+ ε′) and ψk,i = wk,i(bk,i+ ε′), so vk,i(bk,i+ ε′) = t2

ψk,i
. Then by Lemma

A.1 ∫ b0k,i+ε
′

a0k,i+ε
′
ω =

∫ t2

ψk,i

v=ϕk,i

−γk,idv
v

+
∑
n≥0

rn+1c+
k,i,nv

ndv +
∑
n≥2

(rt2)n−1c−k,i,n
dv

vn


= −γk,i log t2 + γk,i log(ϕk,iψk,i)

+
∑
n≥0

c+
k,i,n

n+ 1

((
rt2

ψk,i

)n+1

− (rϕk,i)
n+1

)

+
∑
n≥2

c−k,i,n
n− 1

((
rt2

ϕk,i

)n−1

− (rψk,i)
n−1

)

By our choice of ε′ we have |rϕk,i| ≤ 1
2 and |rψk,i| ≤ 1

2 . By our choice of r′ we have | rt2ϕk,i
| ≤

rr′t2

2 ≤ 1
2 provided t2 ≤ 1

rr′ . In the same way | rt2ψk,i
| ≤ 1

2 . So the sequences (rϕk,i)k,i, (rψk,i)k,i,

( rt
2

ϕk,i
)k,i and ( rt

2

ψk,i
)k,i are all in the ball of radius 1

2 in `∞, and they depend smoothly on all
parameters (they are given by explicit formula). Let us deal only with the term in the above
formula containing rϕk,i, as the others are similar. We write this term as∑

n≥0

c+
k,i,n

n+ 1

(
1√
2

)n+1

(r
√

2ϕk,i)
n+1.

The sequence (r
√

2ϕk,i)k,i is in the open unit ball of `∞, so by the fact recalled above about
Banach algebras, the sequence ((r

√
2ϕk,i)

n+1)k,i,n is in `∞ and depends smoothly on parameters.
We multiply by the sequence (c+

k,i,n)k,i,n which depends smoothly on parameters, and compose
with the linear operator which maps the sequence (xk,i,n)k∈Z,1≤i≤nk,n∈N in `∞ to∑

n≥0

1

n+ 1

(
1√
2

)n+1

xk,i,n


k∈Z,1≤i≤nk

.

This operator is bounded, so we conclude that third term in the expansion of the integral of ω
depends smoothly on parameters. We deal with the other terms in the same way. �

To prove Lemma 4.9, we need a lemma which is similar to Lemma A.2.

Lemma A.3. The function (∫ b0k,i+ε
′

a0k,i+ε
′
vk,iω

)
k∈Z,1≤i≤nk

extends smoothly at τ = 0 to a smooth function of all parameters. Moreover, its value at τ = 0
is (∫ ak,i

a0k,i+ε
′
g−1
k ωk

)
k∈Z,1≤i≤nk

.
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The function (∫ b0k,i+ε
′

a0k,i+ε
′
wk,iω

)
k∈Z,1≤i≤nk

extends smoothly at τ = 0 to a smooth function of all parameters. Moreover, its value at τ = 0
is (∫ b0k,i+ε

′

bk,i

g−1
k+1ωk+1

)
k∈Z,1≤i≤nk

.

Proof. Let us prove the first statement. Using Lemma A.1 we have∫ b0k,i+ε
′

a0k,i+ε
′
vk,iω =

∫ t2

ψk,i

v=ϕk,i

∑
n≥−1

c+
k,i,nr

n+1vn+1dv +
∑
n≥2

(rt2)n−1c−k,i,n
dv

vn−1


=

1

r

∑
n≥−1

c+
k,i,n

n+ 2

((
rt2

ψk,i

)n+2

− (rϕk,i)
n+2

)
+ rt2c−k,i,2(log t2 − log(ϕk,iψk,i))

+ rt2
∑
n≥3

c−k,i,n
n− 2

((
rt2

ϕk,i

)n−2

− (rψk,i)
n−2

)
The terms on the second and fourth line extend smoothly at t = 0 by the same argument as
in Lemma A.2. The term on the third line extends continously at t = 0, and only as a smooth
function of τ because of the term t2 log t2. The value of the integral when t = 0 is

−1

r

∑
n≥−1

c+
k,i,n

n+ 2
(rϕk,i)

n+2 =

∫ 0

v=ϕk,i

∑
n≥−1

c+
k,i,nr

n+1vn+1dv =

∫ ak,i

a0k,i+ε
′
g−1
k ωk.

The proof of the second statement of Lemma A.3 is similar, using wk,i instead of vk,i as a
coordinate. �

We are now ready to prove Lemma 4.9. Recall that g(−1)k is equal to tgk in Ck, (tgk+1)−1 in
Ck+1, and

wk,i
t in Wk,i. So we have

t

∫
Bk,i

g(−1)kω = t2
∫ a0k,1+ε′

a0k,i+ε
′
gkω +

∫ b0k,1+ε′

a0k,1+ε′
wk,1ω +

∫ b0k,i+ε
′

b0k,1+ε′
g−1
k+1ω +

∫ a0k,i+ε
′

b0k,i+ε
′
wk,iω.

The first and third terms are integrals on fixed paths, so they depend smoothly on parameters
by the smooth dependence of ω. The second and fourth terms extend smoothly at τ = 0 by the
previous lemma. Moreover, the value at τ = 0 is∫ b0k,1+ε′

bk,1

g−1
k+1ωk+1 +

∫ b0k,i+ε
′

b0k,1+ε′
g−1
k+1ωk+1 +

∫ bk,i

b0k,i+ε
′
g−1
k+1ωk+1 =

∫ bk,i

bk,1

g−1
k+1ωk+1.

In the same way, we write

t

∫
Bk,i

g(−1)k+1
ω =

∫ a0k,1+ε′

a0k,i+ε
′
g−1
k ω +

∫ b0k,1+ε′

a0k,1+ε′
vk,1ω + t2

∫ b0k,i+ε
′

b0k,1+ε′
gk+1ω +

∫ a0k,i+ε
′

b0k,i+ε
′
vk,iω.
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This function extends smoothly at τ = 0 with value∫ a0k,1+ε′

a0k,i+ε
′
g−1
k ωk +

∫ ak,1

a0k,1+ε′
g−1
k ωk +

∫ a0k,i+ε
′

ak,i

g−1
k ωk =

∫ ak,1

ak,i

g−1
k ωk.

This proves Lemma 4.9. 2
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