
HAL Id: hal-00785180
https://hal.science/hal-00785180v1

Submitted on 5 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting control flow in Smarphones: Combining static
and dynamic analyses

Mariem Graa, Nora Cuppens-Bouhlahia, Frédéric Cuppens, Ana Cavalli

To cite this version:
Mariem Graa, Nora Cuppens-Bouhlahia, Frédéric Cuppens, Ana Cavalli. Detecting control flow in
Smarphones: Combining static and dynamic analyses. CSS 2012: The 4th International Symposium
on Cyberspace Safety and Security, Dec 2012, Melbourne, Australia. pp.33 - 47, �10.1007/978-3-642-
35362-8_4�. �hal-00785180�

https://hal.science/hal-00785180v1
https://hal.archives-ouvertes.fr

Detecting control flow in Smarphones:

Combining static and dynamic analyses

Mariem Graa1,2, Nora Cuppens-Boulahia1, Frédéric Cuppens1, Ana Cavalli2

1Telecom-Bretagne, 2 Rue de la Châtaigneraie, 35576 Cesson Sévigné - France
{mariem.benabdallah,nora.cuppens,frederic.cuppens}@telecom-bretagne.eu

2Telecom-SudParis, 9 Rue Charles Fourier, 91000 Evry - France
{mariem.graa,ana.cavalli}@it-sudparis.eu

Abstract. Security in embedded systems such as smartphones requires
protection of confidential data and applications. Many of security mech-
anisms use dynamic taint analysis techniques for tracking information
flow in software. But these techniques cannot detect control flows that
use conditionals to implicitly transfer information from objects to other
objects. In particular, malicious applications can bypass Android system
and get privacy sensitive information through control flows. We propose
an enhancement of dynamic taint analysis that propagates taint along
control dependencies by using the static analysis in embedded system
such as Google Android operating system. By using this new approach,
it becomes possible to protect sensitive information and detect most
types of software exploits without reporting too many false positives.

1 Introduction

Today security is a requirement for an increasing number of embedded systems,
such as smartphones. These systems are usually used to connect to the inter-
net and download third-party applications. Apple recently announced that more
than three billion apps have been downloaded from its groundbreaking App Store
by iPhone and iPod touch users worldwide [2]. These downloaded applications
can access and manipulate privacy data. An attacker can exploit a malicious
application and launch overwrite attacks (such as worms, injection attacks and
flow control attacks) to compromise the confidentiality and integrity of the An-
droid system. Many mechanisms are used to protect the Android system against
attacks, such as the dynamic taint analysis that is implemented in TaintDroid
[11]. The principle of dynamic taint analysis is to “taint” some of the data in a
system and then propagate the taint to data for tracking the information flow in
the program. Two types of flows are defined: explicit flows such as x = y, where
we observe an explicit transfer of a value from x to y, and implicit flows (control
flows) shown in Figure 1 were there is no direct transfer of value from a to b, but
when the code is executed, b would obtain the value of a. we will interest only
on direct and implicit flows; we do not consider covert channels such as timing,
power channels, probabilistic channels, etc.

1.boolean b = false;

2.boolean c = false;

3.if (!a)

4. c = true;

5.if (!c)

6. b = true;

Fig. 1. Implicit flow example.

The dynamic taint analysis mechanism is used primarily for vulnerability
detection and protection of sensitive data. To detect the exploitation of vulnera-
bilities, the sensitive transactions must be monitored to ensure that they are not
tainted by outside data. But this technique does not detect control flows which
can cause an under-tainting problem i.e. that some values should be marked
as tainted, but are not. Consider the code in Figure 1 that presents an under
tainting problem. When a = false and a is tainted, the first branch is executed
but the second is not, thus b is not tainted while b depends on a (b depends
on c that depends on a). This can cause a failure to detect a leak of sensitive
information. Thus, malicious applications can bypass the Android system and
get privacy sensitive information through control flows. We propose an enhance-
ment of dynamic taint analysis that propagates taint along control dependencies
to track implicit flows in embedded systems such as the Google Android operat-
ing system. In this paper, guiding dynamic taint analysis by static analysis, we
show how to solve the under-tainting problem and detect most types of software
exploits without reporting too many false positives. This paper is organized as
follows: section 2 presents a motivating example. Related work about static and
dynamic taint analysis is discussed in section 3 and we analyze existing solutions
to solve the under tainting problem. Section 4 describes our formal specification
of under tainting. Section 5 presents our solution based on a hybrid approach
that improves the functionality of TaintDroid by integrating the concepts in-
troduced by Trishul (an information flow control system that correctly handle
implicit flows). Finally, section 6 concludes with an outline of future work.

2 Motivating example

An attacker can exploit an indirect control dependency to exploit a vulnerability.
For example, consider the attack shown in Figure 2.

The variables a and b are both initialized to false. On Line 4, the attacker
tests the user’s input for a specific value. Let us assume that the attacker was
lucky and the test was positive. In this case, Line 5 is executed, setting a to
true and a is tainted. Variable b keeps its false value, since the assignment on
Line 7 is not executed and b is not tainted because dynamic tainting occurs only
along the branch that is actually executed. Since b has not been modified, the
condition on b (Line 10) evaluates to true. As b is not tainted, no tainted scope
is generated for this branch, and the attacker is free to enter malicious code at

1.a= false;

2.b=false;

3.char c[256];

4.if(gets(c) == "aaa")

5. a=true;

6.else

7. b=true;

8.if (a==false)

9. //Line 7 was executed, and a is not tainted

10.if (b==false)

11. //Line 5 was executed, and b is not tainted

Fig. 2. Attack using indirect control dependency

this point in the program. In this case, it is not possible to detect all information
flows by dynamic analysis [27] because dynamic tainting occurs only along the
branch that is actually executed. Variable b should be tainted, but is not. Thus
the code presents an under-tainting problem that can be the cause of a failure
to detect a leak of sensitive information.

3 Related work

Many works exist in the literature to track information flows. They are based on
data tainting and static and dynamic analyses for detection of vulnerabilities.
One of the most familiar work on data tainting is Perl’s taint mode [30], an
interpreted language which explicitly marks as tainted any data originating from
outside a program, and prevents it from being used as arguments for certain
sensitive functions that affect the local system - such as running local commands,
creating and writing files and sending data over the network. Like Perl, the
Ruby programming language [19] has a taint checking mechanism but with finer-
grained taint levels than Perl. It has five safety levels ranging from 0 to 4,
different security checks being performed at each level. One of the limits of Perl
and Ruby approaches is that they can protect only against vulnerabilities in
language-specific code.

Static taint analysis has been used to detect bugs in C programs. For ex-
ample, Evans’ Splint static analyzer [12] and Cqual [32] take C source codes
as input annotated with “tainted” and “untainted” annotations to find security
vulnerabilities such as string format vulnerabilities and buffer overflows. The
static analysis based approach of Splint and Cqual presents many limitations
due to undecidability problems including reachability and determining possible
aliases. Shankar et al [28] use a similar approach but they add a new qualifier,
tainted, to tag data that originated from an untrustworthy source. Denning [7,
8] defines a certification mechanism that determines the consistency of the data
flow with the flow relation on given security classes specified by the programmer.
To construct this mechanism, a lattice model is used at the analysis phase of

compilation to certify the security of a program. JFlow compiler [22] statically
checks programs for correctness using information flow annotations and formal
rules to prevent information leaks through storage channels. The major disad-
vantage of all the static analysis approaches is that they require a source code,
they have some limitations due to undecidability problems [21] and they might
report a number of false positives [6].

TaintCheck [25] is a mechanism that can perform dynamic taint analysis at
binary level by instrumenting the code using Valgrind [24]. TaintTrace [5] is more
efficient than TaintCheck. It is based on DynamoRIO [10] and consists of a num-
ber of optimizations to keep the overhead low. Also, LIFT [26] presents a low
overhead information flow tracking system at software level. [17] presents a taint
analysis for Java that instruments different classes to implement untrustworthy
sources and sensitive sinks. [31] proposes an approach of dynamic instrumenta-
tion to keep track of how tainted data propagates throughout the whole system.
The previous instrumentation-based approaches, implemented with a dynamic
taint analysis, insert additional code into original application to trace and main-
tain information about the propagation. Thus they suffer from significant per-
formance overhead that does not encourage their use in real-time applications.

TaintDroid [11] implements Dynamic taint analysis in real-time applications.
Its design was inspired by these prior works, but addresses different challenges
specific to mobile phones like the resource limitations. Hauser and al [18] present
an approach for confidentiality violation detection based on dynamic data taint-
ing. They extended Blare [16], an information flow monitor at the operating sys-
tem level. Blare is able to dynamically observe information propagation. How-
ever, a significant limitation of standard approaches based on dynamic taint
analysis is that they do not propagate taint along control dependencies. This
can cause an under-tainting problem.

Some works have been undertaken to solve this under-tainting problem. Bit-
Blaze [29] presents a novel fusion of static and dynamic taint analysis techniques
to track implicit and explicit flow. DTA++ [20], based on the Bitblaze approach,
presents an enhancement of dynamic taint analysis to limit the under-tainting
problem. However DTA++ is evaluated only on benign applications but mali-
cious programs in which an adversary uses implicit flows to circumvent analysis
are out of scope. Furthermore, DTA++ is not implemented in embedded ap-
plication. Trishul [23] correctly identifies implicit flow of information to detect
a leak of sensitive information. The Data Mark Machine is an abstract model
created by Fenton to handle implicit flows. It associates a security class p to a
program counter p. This class is defined as follows: Whenever a conditional struc-
ture c : S1, . . . , Sm is entered, p is set to p⊕ c. If a statement S is conditioned on
the value of k condition variables c1, . . . , ck then p is set to p = c1⊕ . . .⊕ ck. If S
represents an explicit flow from objects a1, . . . , an to an object b, the instruction
execution mechanism verifies that a1⊕ . . .⊕ an⊕ p→ b. Fenton [13] proves that
this mechanism is sufficient to ensure the security of all implicit flows. But it is
insufficient to guarantee security. Considering the implicit flow example shown in
Figure 1 proposed by Fenton [14] where at the end of the execution, b attains the

value of a whereas b <> a. The problem is that the updating mechanism does
not take into account the implicit flow when a branch is not executed. Thus the
first branch is not followed (a = true) but it contains information which is then
leaked using the next if. To solve this problem, Fenton [13] and Gat and Saal
[15] proposed a solution which restores the value and class of objects changed
during the execution of conditional structure to the value and security class it
had before entering the branch. But, this approach cannot be applied in practice
because existing application code does not modify control structures to consider
information flow leaks. Furthermore, the Data Mark Machine is an abstract con-
cept that lacks formal proofs of its soundness and was never implemented. By
contrast, Gat and Saal’s approach is based on specialized hardware architec-
ture to control information flow. Aries [4] considers that writing to a particular
location within a branch is disallowed when the security class associated with
that location is equal or less restrictive than the security class of p. So, in the
example shown in Figure 1, if a is false then the compile time system prohibits
the program to write to c since the security class of c (Low) is less or equal then
the security class of p (Low <= p). But, p is not known at compile time and this
approach is based only on high and low security classes. Beres and Dalton [3]
suggest that taking the Aries approach would preclude many applications from
executing correctly, and might potentially still leak some information through
other covert channels. Therefore, they are based on the principle that in prac-
tice, when running real applications it is acceptable to ignore certain information
leaks. In Denning’s approach [9], whether the branch is taken or not, the com-
piler inserts in the compiled program updating instructions that determine the
required class updated to reflect the information flow. In the previous example,
it inserts an instruction at the end of the if (!a) c = true code block to update c

to p (= a). In the approach we propose, we draw our inspiration from the Den-
ning approach, but we perform the required class update when Java methods
are invoked, as we track Java applications, instead of performing the update at
compile time. These approaches are not implemented in embedded systems like
smartphones. Thus, to secure a running process of a smartphone, we propose to
prevent the execution of the malicious code by monitoring transfers of control in
a program. Then we show that this approach is effective to detect control flow
attacks and solve the under-tainting problem.

4 Formal specification of the under tainting problem

Denning [7] defined an information flow model as:

FM =< N,P, SC,⊕,→> .

N is a set of logical storage objects (files, program variables, ...). P is a set of
processes that are executed by the active agents responsible for all information
flow. SC is a set of security classes that are assigned to the objects in N . SC
is finite and has a lower bound L attached to objects in N by default. The
class combining operator “⊕” specifies the class result of any binary function on

values from the operand classes. A flow relation “→” between pairs of security
classes A and B means that “information in class A is permitted to flow into
class B”. A flow model FM is secure if and only if execution of a sequence of
operations cannot produce a flow that violates the relation “→”.

We draw our inspiration from the Denning information flow model to for-
mally specify under tainting. However, we assign taint to the objects instead of
assigning security classes. Thus, the class combining operator “⊕” is used in our
formal specification to combine taints of objects.

We use the following syntax to formally specify under tainting: A and B are
two logical formulas and x and y are two variables.

– A⇒ B : If A Then B

– x→ y : Information flow from object x to object y
– x← y : the value of y is assigned to x

– Taint(x)⊕ Taint(y) : specifies the taint result of combined taints.

Definition:We have a situation of under tainting when x depends on a condition,
the value of x is modified in the conditional branch and condition is tainted but
x is not tainted.

Formally, we can define the under tainting when there is a variable x and a
condition such that:

Ismodified(x) ∧Dependency(x, condition) ∧ Tainted(condition)

∧¬Tainted(x)
(1)

where:

– Ismodified(x) associates with x the result of explicitflowstatement.

Ismodified(x)
def
≡ (x← explicitflowstatement)

– Dependency(x, condition) defines an information flow from condition to x

when x depends on the condition.

Dependency(x, condition)
def
≡ (condition→ x)

Axioms: Let us consider the following axioms:

(x→ y)⇒ (Taint(y)← Taint(x)) (2)

(x← y)⇒ (y → x) (3)

(Taint(x)← Taint(y)) ∧ (Taint(x)← Taint(z))

⇒ (Taint(x)← Taint(y)⊕ Taint(z))
(4)

Proof of non Under-tainting: We will prove that our system cannot be
in an under tainting situation. We perform a proof reductio ad absurdum.
We assume that the conditions necessary to be in an under tainting situation
are satisfied. Thus, (1) is valid. Therefore, Dependency(x, condition) is true,

Ismodified(x) is true, Tainted(condition) is true and Taint(x) is false. But,
Dependency(x, condition) is true implies that condition → x. Then, by ap-
plying axiom (2), we have Tainted(condition) is true. Then x is tainted and
Taint(x)← Taint(condition) which contradicts with Taint(x) is false. �

Proof of propagation taint rules: We consider that ContextTaint is the
taint of the condition. To know the exact taint of x we prove that the two rules
that specify the propagation taint policy are valid:

– Rule 1: if the value of x is modified and x depends on the condition and the
branch is taken, we will apply the first rule to taint x.

Ismodified(x) ∧Dependency(x, condition) ∧BranchTaken

Taint(x)← ContextTaint⊕ Taint(explicitflowstatement)

– Rule 2: if the value of x is modified and x depends on the condition and the
branch is not taken, we will apply the second rule to taint x.

Ismodified(x) ∧Dependency(x, condition) ∧ ¬BranchTaken

Taint(x)← Taint(x)⊕ ContextTaint

Let us start with the first rule and suppose that Dependency(x, condition) is
true, Ismodified(x) is true and BranchTaken is true, we will demonstrate that
(Taint(x)← ContextTaint⊕ Taint(explicitflowstatement)) is valid.
Given that Dependency(x, condition) is true, thus condition → x, using axiom
(2) we obtain Taint(x)← Taint(condition). As ContextTaint= Taint(condition),
then Taint(x) ← ContextTaint. Now, Ismodified(x) is true, then
x ← explicitflowstatement. Using axiom (3), we obtain:
Taint(x) ← Taint(explicitflowstatement). Finally, using axiom (4), we get:
Taint(x) ← ContextTaint ⊕ Taint(explicitflowstatement). �

We will now prove the second rule. Let us first assume that Dependency

(x, condition) is true, Ismodified(x) is true and BranchTaken is false, we will
demonstrate that (Taint(x)← Taint(x)⊕ ContextTaint) is valid.

The relation “→ ” is reflexive then x→ x , we use (2): Taint(x)← Taint(x).
Dependency(x, condition) is true then condition → x, we use (2) to obtain
Taint(x) ← Taint(condition). As, ContextTaint = Taint(condition) then
Taint(x)← ContextTaint.
We use (4) : Taint(x)← Taint(x)⊕ContextTaint. The predicate BranchTaken

specifies that branch is executed. So, an explicit flow which contains x is exe-
cuted. Otherwise, branch is not taken so x depends only on implicit flow and
does not depend on explicit flow. �

5 Detecting control flow in embedded systems

TaintDroid cannot detect control flows because it only uses dynamic taint anal-
ysis. We aim to enhance the TaintDroid approach by tracking control flow in

the Android system to solve the under-tainting problem. To do so, we adapt
and integrate the implicit flow management approach defined in Trishul. We use
also a hybrid approach that combines and benefits from the advantages of static
and dynamic analyses. To solve the under-tainting problem, we use the previous
rules of taint propagation that we proved in section 4. We present in the follow-
ing TaintDroid and Trishul from which we took our inspiration to implement
our approach in real-time applications such as smartphone applications.

5.1 Background

TaintDroid : architecture and principles Third-party smartphone applica-
tions can access to sensitive data and compromise confidentiality and integrity
of Android systems. To solve this problem, TaintDroid, an extension to the An-
droid mobile-phone platform, implements dynamic taint analysis to track the
information flow in real-time and control the handling of private data.

Architecture of TaintDroid Figure 3 presents the TaintDroid architecture.
After tainting data in the trusted application (1), a native method called by
the taint interface stores the taint in the virtual taint map (2). The taint tags
are propagated by the Dalvik VM referencing (3) data flow rules. When the
tainted information is used in an IPC transaction, the modified binder library
(4) verifies that the taint tag parcel is equivalent to combined taint marking of
all data in the parcel. The parcel is sent through the kernel (5) and received by
the remote untrusted application (only the interpreted code is untrusted). The
modified binder library assigns the taint tag from the parcel to all values read
from it (6). The taint tags are propagated by the remote Dalvik VM instance
(7) identically to the untrusted application. When tainted data is used in a taint
sink (network sink) (8), the library specifies the taint sink, gets the taint tag (9)
and reports the event.

Handling Flows with TaintDroid TaintDroid uses the dynamic taint analysis
to track explicit flows on smartphones. First, it defines a sensitive source. Each
input data is tainted with its source taint. Then, TaintDroid tracks propagation
of tainted data at the instruction level. The taint propagation is patched by
running the native code without instrumentation. To minimize IPC overhead, it
implements message-level tracking between applications and file-level tracking.
Finally, vulnerability can be detected when tainted data are used in taint sink
(network interface). One limit of TaintDroid is that it cannot detect control
flows because it uses dynamic taint analysis. We aim to enhance the TaintDroid
approach by tracking control flow in the Android system to solve the under-
tainting problem. To do so, we adapt and integrate the Trishul approach. We
describe this approach with more details in the following.

Trishul Trishul is an information flow control system. It is implemented in
a Java virtual machine to secure execution of Java applications by tracking

Fig. 3. TaintDroid architecture [11]

data flow within the environment. It does not require a change to the operating
system kernel because it analyzes the bytecode of an application being executed.
Trishul is based on the hybrid approach to correctly handle implicit flows using
the compiled program rather than the source code at load-time.

Architecture of Trishul When an application calls a function, the Trishul’s
run-time policy enforcement architecture provides a mechanism to trap these
function calls. By using a policy decision engine that prevents tainted data to
be propagated to insecure locations (network channels), it checks the policy
and decides whether or not to allow the calls. To do that, Trishul is placed
between the Java application and the operating system. The Trishul architecture
is based on two parts illustrated in Figure 4: the core Trishul JVM system and
the pluggable policy engine. The core JVM allows information flow tracking and
provides the policy engine with the hooks needed to trap the calls performed by
the untrusted application. Using these hooks, the policy engine loads appropriate
policies into the Trishul system based on the access and propagation of tainted
data in the application to allow or not the application function call. When the
application code is loaded, a policy engine is also loaded in the JVM. If the
application reads a piece of data from the hard disk (1), these data are loaded
into Trishul (2). The policy engine hooks onto the call and taints the data. The
information flow control functionality of Trishul ensures that the taint remains
associated with the data when it is propagated (3). When the tainted data is
used by the application (4) (sent over a socket connection) (5), Trishul interposes
(6) and transfers the control to the policy decision engine (7). The engine checks
with the respective data’s usage policy (8) and decides whether or not to allow
the application to proceed.

Fig. 4. Architecture of Trishul [23]

Handling Flows with Trishul Trishul assigns a taint to each value that
appears as an operand on the JVM working stack (local variable, parameter
and return value). It handles explicit flows by instrumenting the Java bytecode
instructions to combine the taint values when the corresponding values are used
as operands of a logic or arithmetic operation. To detect the implicit flow, Trishul
uses:

– Static analysis of the bytecode at load time: To define the conditional con-
trol flow instruction, Trishul creates the control flow graph (CFG) which is
analyzed to determine branches in the method control flow. A basic block
is assigned to each control flow branch. When the basic block is executed,
the condition taint is included in its context taint, because the information
flow in that block depends on the condition. This taint is removed from
the context taint when all paths have converged and the condition does not
influence the control flow. A dataflow analysis (postdominator analysis) is
determined to detect branching and merging of the flow of control in the
graph. A context bitmap summarizes the result of this dataflow and is used
to update the context-taint appropriately at run-time.

– The dynamic system uses information provided by the static analysis and
run-time enforcement: The run-time enforcement allows policies to be at-
tached when the program is executed. Trishul attaches an array of context
taints to each method that is stored in the method’s stack frame. When the
conditional flow instruction is executed, the condition taint is stored in an
appropriate entry of the array.

Trishul solves the under-tainting problem by updating the context taint and
maintaining a list of all the variables that are modified in a basic block of con-
trol flow graph to handle not executed branches. But, it is not implemented in

embedded system such as smartphone. We adapt and integrate the implicit flow
management approach of Trishul and we follow not executed branches to solve
the under-tainting problem in the Android system. We present, in the following,
extensions of the TaintDroid and Trishul works that we implement in real-time
applications such as smartphone applications.

5.2 Handling implicit flow in Android system

To solve the under-tainting problem in the Android system [1] we use a hybrid
approach that improves the functionality of TaintDroid by integrating the con-
cepts introduced by Trishul. TaintDroid is composed of four modules: (1) Explicit
flow module that tracks variable at the virtual machine level, (2) IPC Binder
module that tracks messages between applications, (3) File module that tracks
files at the storage level and (4) Taint propagation module that is implemented
in the native methods level.

To track implicit flow, we propose to add an implicit flow module in the
Dalvik VM bytecode verifier which checks instructions of methods at load time.
We define two additional rules that we prove in section 4 to propagate taint in
the control flow. At class load time, we build an array of variables that are mod-
ified to handle the branch that is not executed. Figure 5 presents the modified
architecture to handle implicit flow. Our process is summarized in Figure 6.

Fig. 5. Modified architecture to handle implicit flow.

– Static analysis at load time:

• We create the control flow graphs which will be analyzed to determine
branches in the method control flow. In a control flow graph, each node in
the graph represents a basic block. Directed edges are used to represent
jumps in the control flow.

Fig. 6. Handling implicit flow in Android system.

• We detect the flow of the condition-dependencies from blocks in the
graph.

• We detect variables that are modified in a basic block of the control flow
graph to handle not executed branches.

– Dynamic analysis, at run time, uses information provided by the static anal-
ysis:
• We create an array of context taints that includes all condition taints.
• By referencing to the condition-dependencies from block in the graph,
we set the context taint of each basic block.

• We taint modified variables that exist in the conditional instruction ac-
cording to the rules of taint propagation (see section 4): If the branch
is taken: Taint(x) = ContextTaint⊕ Taint(explicitflowstatement). If
the branch is not taken: Taint(x) = ContextTaint⊕ Taint(x)

• We attach the policies that prevent the use of tainted data in defined
taint sink.

Application of our approach:

Fig. 7. Source code for implicit flow Fig. 8. Bytecode for implicit flow

The source code in Figure 7 presents an indirect transfer of value from x to y.
If x = true the first branch is executed but the second is not, thus y = true. The

same result when x = false. In this case, we have an implicit flow of information
from x to y. To detect such flows, a control flow graph, represented in Figure 9,

Fig. 9. Control flow graph corresponding to Figure 7 example.

is created at load time using the byte code shown in Figure 8. The bytecode is
composed of basic blocks that present the node of CFG. Each basic block groups
instructions in the control flow block. The range of instructions covered by this
basic block is < pc start, pc end >. An analysis flow allows detecting the flow of
the condition-dependencies from the blocks in the graph. It is composed of bits.
When both bits are set (basic block 4 of the graph), the flow of control is merged.
Thus this block is not controlled by control condition. It is controlled when one
bit is set (basic blocks 2 and 3 of the graph). If no bit is set, this block represents
the conditional instruction (basic block 1 of the graph). The context bitmap is
composed of one bit per conditional instruction. It represents the analysis flow
value on one bit. At run time, we use the context bitmap to know dependency of
blocks to the conditional instruction. This dependency is detected when the con-
text bitmap is set. Thus, we include the condition taint in the context taint. In
our example, we include the taint of x in the context taint. We use the two prop-
agation rules of section 4 and assume that x = true. The first branch is taken, so
we use the first rule: Taint(y) = ContextTaint⊕Taint(explicitflowstatement)
or ContextTaint = Taint(x) then Taint(y) depends on Taint(x). The second
branch is not taken, so we use the second rule: Taint(y) = ContextTaint ⊕

Taint(y) or ContextTaint = Taint(x) then Taint(y) depends on Taint(x). So,
implicit flow of information from x to y is correctly identified with this approach.
We have a similar result when x = false.

6 Conclusion

In order to protect embedded systems from software vulnerabilities, it is neces-
sary to have automatic attack detection mechanisms. In this paper, we show how
to enhance dynamic taint analysis with static analysis to track implicit flows in
the Google Android operating system. We prove that our system cannot create
under tainting states. Thus, malicious applications cannot bypass the Android
system and get privacy sensitive information through control flows. The imple-
mentation of our approach “static analysis at the load time” to handle implicit
flows is underway. We perform a static verification on a single method by check-
ing its instructions at load time. When it is a control instruction (if, Go to, etc.),
we allocate and insert a BasicBlock at the end of the basic blocks list. We specify
its target and allocate a BitmapBits for tracking condition dependency. Future
work will be to create the CFG from the method and implement the dynamic
analysis at run time based on information provided by the static analysis. Once
the implementation is finished, we will be able to evaluate our approach in terms
of overhead and false alarms. We will also demonstrate the completeness of the
propagation rules.

References

1. Android, http://www.android.com/
2. APPLE, I.: Apple store downloads top three billion

(January2010), http://www.apple.com/pr/library/2010/01/

05Apples-App-Store-Downloads-Top-Three-Billion.html

3. Beres, Y., Dalton, C.: Dynamic label binding at run-time. In: Proceedings of the
2003 Workshop on New security paradigms. pp. 39–46. ACM (2003)

4. Brown, J., Knight Jr, T.: A minimal trusted computing base for dynamically en-
suring secure information flow. Project Aries TM-015 (November 2001) (2001)

5. Cheng, W., Zhao, Q., Yu, B., Hiroshige, S.: Tainttrace: Efficient flow tracing with
dynamic binary rewriting. In: ISCC’06. Proceedings. 11th IEEE Symposium on.
pp. 749–754. IEEE (2006)

6. Chess, B., McGraw, G.: Static analysis for security. Security & Privacy, IEEE 2(6),
76–79 (2004)

7. Denning, D.: A lattice model of secure information flow. Communications of the
ACM 19(5), 236–243 (1976)

8. Denning, D., Denning, P.: Certification of programs for secure information flow.
Communications of the ACM 20(7), 504–513 (1977)

9. Denning, D.: Secure information flow in computer systems. Ph.D. thesis, Purdue
University (1975)

10. Derek Bruening, Q.Z.: Dynamorio : Dynamic instrumentation tool platform. http:
//dynamorio.org/

11. Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., Sheth, A.: Taint-
droid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In: Proceedings of the 9th USENIX conference on Operating sys-
tems design and implementation. pp. 1–6. USENIX Association (2010)

12. Evans, D., Larochelle, D.: Improving security using extensible lightweight static
analysis. Software, IEEE 19(1), 42–51 (2002)

13. Fenton, J.: Information protection systems. Ph.D. thesis, University of Cambridge
(1973)

14. Fenton, J.: Memoryless subsystem. Computer Journal 17(2), 143–147 (1974)
15. Gat, I., Saal, H.: Memoryless execution: a programmers viewpoint. Ibm tech. rep.

025, IBM Israeli Scientific Center (1975)
16. George, L., Viet Triem Tong, V., Mé, L.: Blare tools: A policy-based intrusion

detection system automatically set by the security policy. In: Recent Advances in
Intrusion Detection. pp. 355–356. Springer (2009)

17. Haldar, V., Chandra, D., Franz, M.: Dynamic taint propagation for java. In: Pro-
ceedings of the 21st Annual Computer Security Applications Conference. pp. 303–
311. Citeseer (2005)

18. Hauser, C., Tronel, F., Reid, J., Fidge, C.: A taint marking approach to confiden-
tiality violation detection. In: Proceedings of the 10th Australasian Information
Security Conference (AISC 2012). vol. 125. Australian Computer Society (2012)

19. Hunt, A., Thomas, D.: Programming ruby: The pragmatic programmer’s guide.
New York: Addison-Wesley Professional. 2 (2000)

20. Kang, M., McCamant, S., Poosankam, P., Song, D.: Dta++: Dynamic taint anal-
ysis with targeted control-flow propagation. In: Proc. of the 18th Annual Network
and Distributed System Security Symp. San Diego, CA (2011)

21. Landi, W.: Undecidability of static analysis. ACM Letters on Programming Lan-
guages and Systems (LOPLAS) 1(4), 323–337 (1992)

22. Myers, A.: Jflow: Practical mostly-static information flow control. In: Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages. pp. 228–241. ACM (1999)

23. Nair, S., Simpson, P., Crispo, B., Tanenbaum, A.: A virtual machine based infor-
mation flow control system for policy enforcement. Electronic Notes in Theoretical
Computer Science 197(1), 3–16 (2008)

24. Nethercote, N., Seward, J.: Valgrind:: A program supervision framework. Electronic
notes in theoretical computer science 89(2), 44–66 (2003)

25. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. Citeseer (2005)

26. Qin, F., Wang, C., Li, Z., Kim, H., Zhou, Y., Wu, Y.: Lift: A low-overhead practical
information flow tracking system for detecting security attacks. In: Proceedings of
the 39th Annual IEEE/ACM International Symposium on Microarchitecture. pp.
135–148. IEEE Computer Society (2006)

27. Sabelfeld, A., Myers, A.: Language-based information-flow security. Selected Areas
in Communications, IEEE Journal on 21(1), 5–19 (2003)

28. Shankar, U., Talwar, K., Foster, J., Wagner, D.: Detecting format string vulnera-
bilities with type qaualifiers. In: Proceedings of the 10th conference on USENIX
Security Symposium-Volume 10. pp. 16–16. USENIX Association (2001)

29. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M., Liang, Z., New-
some, J., Poosankam, P., Saxena, P.: Bitblaze: A new approach to computer secu-
rity via binary analysis. Information Systems Security pp. 1–25 (2008)

30. Wall, L., Christiansen, T., Orwant, J.: Programming perl. O’Reilly Media (2000)
31. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-

wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conference on Computer and Communications Security. pp. 116–127.
ACM (2007)

32. Zhang, X., Edwards, A., Jaeger, T.: Using cqual for static analysis of authorization
hook placement. In: Proceedings of the 11th USENIX Security Symposium. pp.
33–48 (2002)

