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ASYMPTOTIC BEHAVIOR FOR A CLASS OF THE RENEWAL NONLINEAR

EQUATION WITH DIFFUSION.

PHILIPPE MICHEL AND TARIK MOHAMED TOUAOULA

Abstract. In this paper we consider nonlinear age structured equation with diffusion under

nonlocal boundary condition and nonnegative initial data. More precisely, we prove that under
some assumptions on the nonlinear term in a model of McKendrick-Von Foerster with diffusion

in age, solutions exist and converge (long time convergence) towards a stationary solution. In

the first part, we use classical analysis tools to prove the existence, uniqueness and the positivity
of the solution. In the second part, using comparison principle, we prove the convergence of this

solution towards the stationary solution.

1. Introduction

In the study of population of cells, animals or humans, one of the most used model is the
McKendrick-Von Foerster model said also renewal model, where the density of population n(t, x)
at time t and age x, is described by the master equation

(1.1)

{
nt(t, x) + nx(t, x) + d(x)n(t, x) = 0, t ≥ 0, x ≥ 0
n(t, 0) =

∫∞
0
B(x)n(t, x)dx, and n(0, x) = n0(x),

where B ≥ 0 is the birth rate, d ≥ 0 is the death rate. It’s well known that the long time asymptotic
is described by the first eigenvalue λ and positive engenvector N of the stationary problem of (1.1).
More precisely, for a large time, n ∼ CstNeλt, see for instance [10], [11], [18] (using General Relative
Entropy method) and (for instance) [7, 8] (using semigroup method). This of course does not take
in account the use of resources. Indeed, the population growth is not limited in time when the
Malthusian growth rate (eigenvalue λ) is strictly positive. Nevertheless resources are limited and
so we expect that there is a limitation of the size of the population (an ”equilibrium” between the
quantity of resources and their use). On the other hand, we notice that the population goes to the
extinction when the Malthusian growth rate is strictly negative. Nevertheless, in this case there is
no limitation of the resource and the extinction cannot be explained by the lack of resources. In
order to take in account the consumption of nutrient, we can for instance change the linear birth
term in (1.1) by a nonlinear birth term (see for instance [5, 6, 9, 21]) :{

nt(t, x) + nx(t, x) + d(x)n(t, x) = 0, t ≥ 0, x ≥ 0
n(t, 0) = f(

∫∞
0
B(x)n(t, x)dx), and n(0, x) = n0(x).

In [2], [3], the authors propose to define the ’biological age’ according to the DNA content and
diffusion accounts for its variability. Therefore considering that the variable x is a biological age
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and can vary according to certain proteins causing degradation or recovery caused by external
factors, the density of the population satisfies the master equation

(1.2)

{
nt(t, x)− nxx(t, x) + (g(x)n(t, x))x + d(x)n(t, x) = 0 t ≥ 0, x ≥ 0
g(0)n(t, 0)− nx(t, 0) = f(

∫∞
0
B(x)n(t, x)dx), and n(0, x) = n0(x) ∈ L1

+(R+),

where B ≥ 0 is the birth rate, d ≥ 0 is the death rate and the diffusion term modelizes the
variability evolution of the ’biological age’ x. We notice that the problem (1.2) arises in many
other applications, see for instance [4],[13], [14], [20] and the references therein. Recently we
have treated the linear case of this renewal model with diffusion (see [1]), we proved the existence,
uniqueness and positivity of the solution, and we showed that for a large time, n ∼ CstNeλt (with
the decay estimate of the solution). Nevertheless it does not take into account the consumption
of resources. In the system (1.2) we overcome this, and consider the consumption of the resources
like nutrients, by introducing nonlinearity in the birth term. In general this term may limit the
possible extra growth of the population. In the system (1.2), we notice that the nonlinear form of
the recruitment term only takes in accounts newborns. This means that, in a population modelized
by system (1.2), ”giving birth” and ”newborns” need more resources and may limit growth of the
population.

2. Assumptions and main results

In this section we give the main assumptions of this work and state the main results of the paper
We suppose that B and d are nonnegative continuous functions and satisfy

(2.1) 0 < Bm ≤ B(x) ≤ BM and 0 < dm ≤ d(x) ≤ dM ,

The nonlinear growth function f is smooth (for instance C1(]0,∞[)), nondecreasing and verifies
the condition

(2.2) f(x) ≤ αx+ γ,

with γ positive and α ∈ [0, A) with a constant A to be chosen later.

(2.3) ∃s0 > 0 : ∀s′ ∈]0, s0[ f(s′)/s′ > dM/Bm,

and

(2.4) ∃s1 > 0 : ∀s′ ∈]s1,∞[ f(s′)/s′ < dm/BM .

The growth rate g is a C1 positive function satisfying,

(2.5) 0 < gm ≤ g(x) ≤ gM ,

(2.6)

∫ ∞
0

e−G(x)dx <∞.

where G(x) :=
∫ x

0
g(s)ds, and there exists a positive constant ε such that

(2.7) d(x) + g′(x) ≥ ε
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Remark 2.1. We notice that the condition (2.3) (resp. (2.4)) avoid the extinction (resp. the
unlimited growth) of the population which cannot be explained by the lack of resources. Indeed,
under the existence of solutions to (1.2) (proved in section 3), we have

d

dt

∫ ∞
0

n(t, x)dx ≥ f(Bm

∫ ∞
0

n(t, x)dx)− dM
∫ ∞

0

n(t, x)dx,

and the condition (2.3) implies that
∫∞

0
n(t, x)dx ≥ min(

∫∞
0
n0(x)dx, s0) for all time t ≥ 0. This

means that the trivial solution is not stable. For instance, the condition (2.3) is satisfied for
functions which behave as f(t) ∼t→0 Ct

α with α < 1 and C > 0 or α = 1 and C > dM/Bm.

We will prove the following result, which concern the existence and uniqueness of the positive
solution.

Theorem 2.2. Under assumptions (2.1)-(2.6) and for all positive initial datum n0 ∈ L1(R+, e−G(x)dx),
the problem (1.2) has a unique positive solution n ∈ C([0, T ], L1(R+, e−G(x)dx)).

The following theorem concern the asymptotic behavior of the solution n to problem (1.2). To
be more precise, let N be solution of the following stationary problem

(2.8)


−N ′′(x) + (gN)′(x) + d(x)N(x) = 0, x ≥ 0,
g(0)N(0)−N ′(0) = f(

∫∞
0
B(x)N(x)dx),∫∞

0
N(x)dx <∞, and N ≥ 0.

Then we have,

Theorem 2.3. Assume that (2.1)-(2.7) hold. Then for all positive initial datum n0 ∈ L1(R+, e−G(x)dx),
with n0(x) ≤ CN(x), the solution n to (1.2) satisfies

N(x) ≤ lim inf
t→∞

n(t, x) ≤ lim sup
t→∞

n(t, x) ≤ N̄(x),

where N̄ (resp. N) is the maximal (resp. minimal) non trivial solution to the stationary problem
(2.8). In addition if the stationary problem (2.8) has an unique non trivial solution N then we
have the convergence of n(t, x) to N(x).

The paper is organized as follows. In section 3 we prove the existence, uniqueness and positivity
of solutions to the problems (1.2). Section 4 is devoted to prove the convergence of solutions
towards the solution of the stationary problem N . In the section 5 we prove a blow up result
and an extinction result under some assumptions on the growth function f . Finally, the paper is
supplemented by the numerical simulation, and discuss on the model and the theoretical results.

3. Existence results

In this section we will prove the existence, uniqueness and positivity of the solution to the non-
linear partial differential equation (1.2). The following theorem is devoted to prove the existence,
uniqueness and positivity of the solution to problem (1.2) in a regularized space. More precisely,

Theorem 3.1. Under assumptions (2.1)-(2.6) and for all positive initial datum n0 ∈ L1(R+) ∩
L2(R+), there is a unique positive solution n to problem (1.2) that belongs to C([0,∞);L2(IR+))∩
L1((0, T )× R+) ∩ L2(0, T ;W 1,2(R+)) for all T > 0.
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We begin by stating the comparison principle lemma which is very useful for the rest of the
paper. We consider the following problem

(3.1)

{
nt(t, x)− nxx(t, x) + (g(x)n(t, x))x + d(x)n(t, x) = 0, t ≥ 0, x ≥ 0
g(0)n(t, 0)− nx(t, 0) = α

∫∞
0
B(x)n(t, x)dx+ γ, and n(0, x) = n0(x) ∈ L1(R+),

then we have

Lemma 3.2. Let v and u be a nonnegative supersolution and a nonnegative subsolution of problem
(3.1), respectively. If v(0, x) ≥ u(0, x) ≥ 0 then v(t, x) ≥ u(t, x) ≥ 0.

Proof. Let φ ∈ L2((0, T );W 1,2(R+)) be a solution to a following problem

(3.2)

{
φτ (τ, x) + φxx(τ, x) + g(x)φx(τ, x)− d(x)φ(τ, x) = 0, 0 < τ < t, x ≥ 0,
φx(τ, 0) = 0, and φ(t, x) = ψ(t, x),

where ψ(t, x) = 1{u−v>0}. Is not difficult to see that the problem (3.2) has a positive solution. By
setting w = u− v, we have

(3.3)

{
wt(t, x)− wxx(t, x) + (g(x)w(t, x))x + d(x)w(t, x) ≤ 0, t ≥ 0, x ≥ 0
g(0)w(t, 0)− wx(t, 0) ≤

∫∞
0
B(x)w+(t, x)dx, and w(0, x) ≤ 0.

If we multiply the first inequality in (3.3) by φ and integrate over (0, t)× R+ we get∫ ∞
0

w(t, x)φ(t, x)dx ≤
∫ t

0

∫ ∞
0

φ(τ, 0)B(x)w(τ, x)dxdτ.(3.4)

Hence from (3.4) we obtain∫ ∞
0

w+(t, x)dx ≤M
∫ t

0

∫ ∞
0

w+(τ, x)dxdτ.

Applying Gronwall’s inequality, the conclusion of this theorem follows.

The existence, uniqueness and positiveness of the solution to problem (3.1) are stated in the
following Lemma,

Lemma 3.3. Let n0 ∈ L1(R+)
⋂
L2(R+), then the problem (3.1) has a unique positive solution in

L1((0, T )× R+)
⋂
L2((0, T );W 1,2(R+)).

Proof. The proof of this lemma is almost similar as in [1], for the sake of completeness we done
it.
To prove the existence result we will argue by approximation, namely we consider the case of
bounded domain [0, R] and then we pass to the limit in R. We begin by proving the next Lemma.

Lemma 3.4. The following problem

(3.5)


vt(t, x)− vxx(t, x) + (g(x)v(t, x))x + (d(x) + µ)v(t, x) = 0, t ≥ 0, x ∈ (0, R),

g(0)v(t, 0)− vx(t, 0) = α
∫ R

0
B(y)v(t, y)dy + γe−µt, and v(t, R) = 0,

v(0, x) = n0(x).

has a unique positive solution vR, moreover if R1 ≤ R2, then vR1
≤ vR2

.
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Proof. To prove the existence of a positive solution to (3.5) we use the Piccard Banach fixed

point theorem in the Banach space XR = C([0, T ], L1(0, R)) with ||φ||XR
= sup

t∈[0,T ]

∫ R
0
|φ(t, x)|dx

and µ > 0 to be chosen later. More precisely given m ∈ XR, we define v := S(m) as the solution
to problem

(3.6)


vt(t, x)− vxx(t, x) + (g(x)v(t, x))x + (d(x) + µ)v(t, x) = 0, in (0, T )× (0, R),

g(0)v(t, 0)− vx(t, 0) = α
∫ R

0
B(x)m(t, x)dx+ γe−µt, v(t, R) = 0,

v(0, x) = n0(x), x ∈ (0, R).

It is clear that v ∈ L2(0, T ;W 1,2(0, R))) ∩ XR. For m1,m2 ∈ XR we consider v1 := S(m1),
v2 := S(m2). Let v = v1 − v2, m = m1 −m2, it follows that

(3.7)


vt(t, x)− vxx(t, x) + (g(x)v(t, x))x + (d(x) + µ)v(t, x) = 0, in (0, T )× (0, R),

g(0)v(t, 0)− vx(t, 0) = α
∫ R

0
B(x)m(t, x)dx, v(t, R) = 0,

v(0, x) = 0.

Multiplying equation (3.7) by sgn(v) and integrating in x,

(3.8)
d

dt

∫ R

0

|v(t, x)|dx+

∫ R

0

(d(x) + µ)|v(t, x)|dx ≤ α
∫ R

0

B(y)|m(t, y)|dy,

after integration over (0, T1), T1 ≤ T ,∫ R

0

|v(T1, x)|dx+

∫ T1

0

∫ R

0

(d(x) + µ)|v(t, x)|dx ≤ αBMT ||m||XR

and then ||v||XR
≤ αBMT ||m||XR

. Hence choosing T such αTBM < 1 we obtain that the operator
S is strict contraction in Banach space XR which proves the existence of a unique fixed point vR.
As usual we can iterate the operator on [T, 2T ], [2T, 3T ], ... since the condition on T does not
depend on the iteration. With this iteration process, we have built a solution in C([0, T ], L1(0, R)).
The positivity of the solution, is a simple consequence of the above comparison lemma. The strong
maximum principle allows us to get the strict positivity of vR. Let R1 ≤ R2, and consider the
corresponding solutions vR1

and vR2
. It is clear that vR2

is a supersolution to the vR1
-problem.

Hence using the comparison principle we obtain that vR1
≤ vR2

. Therefore the result follows.

We return now to prove the first existence lemma
Proof of Lemma 3.3. Let vR the solution to problem (3.5) obtained above. We define vR
for (t, x) ∈ (0, T ) × (R,∞) by setting set vR(t, x) = 0. Then vR ∈ X ≡ L1((0, T ) × R+) ∩
L2(0, T ;W 1,2(R+)). We know that

d

dt

∫ R

0

vR(t, x)dx+

∫ R

0

(d(x) + µ)vR(t, x)dx ≤ αBM
∫ R

0

vR(t, y)dy + γe−µt.

Choosing µ > αBM , it follows that

d

dt

∫ R

0

vR(t, x)dx+

∫ R

0

(d(x) + µ−BM )vR(t, x)dx ≤ γe−µt.
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Hence from Gronwall lemma we get ∫ R

0

vR(t, x)dx ≤ C,

with C > 0. Thus we conclude that vR is uniformly bounded in L1((0, T )× R+).
Therefore using the monotonicity of the sequence {vR} we get the existence of v ∈ L1((0, T )×R+)
such that vR ↑ v as R→∞.

Taking vR as a test function in (3.5), after integration, there result that

1

2

d

dt

∫ R

0

v2
R(t, x)dx+

∫ R

0

(d(x) +
1

2
g′(x) + µ)|vR(t, x)|2dx+

∫ R

0

|(vR)x(t, x)|2dx ≤ C,

by integration in the time we have∫ R

0

|vR(t, x)|2dx+

∫ t

0

∫ R

0

(d(x)+
1

2
g′(x)+µ)|vR(t, x)|2dxdt+

∫ t

0

∫ R

0

|(vR)x(t, x)|2dx ≤ 1

2
||n0||2L2+Ct,

where C is a positive constant. Thus for µ so large, we have ||vR||L2(0,T ;W 1,2(R+)) ≤ C and then

vR ⇀ v weakly in L2(0, T ;W 1,2(R+)).
Therefore classical regularity result of parabolic equation allows us to pass to the limit in the

boundary condition to conclude that v solves problem (3.1). To get the uniqueness result for
problem (3.1), we suppose that v1, v2 ∈ X are two solution of (3.1), then w = v1 − v2, solves (1.1)
with w(0, x) = 0. Hence multiply the equation of w by sgn(w), after integrating over (0,∞), we
obtain ∫ ∞

0

|w|t(t, x)dx+

∫ ∞
0

(d(x) + µ)|w(t, x)|dx ≤ αBM
∫ ∞

0

|w(t, x)|dx,

thus ∫ ∞
0

|w|t(t, x)dx+ C1

∫ ∞
0

|w(t, x)|dx ≤ 0,

and then by the Gronwall lemma we conclude that w = 0. Hence the result follows.

proof of Theorem 3.1. We consider the following approximated problem

(3.9)

 nkt (t, x)− nkxx(t, x) + (g(x)nk(t, x))x + d(x)nk(t, x) = 0, t ≥ 0, x ≥ 0
g(0)nk(t, 0)− nkx(t, 0) = f(

∫∞
0
B(x)nk−1(t, x)dx), and nk(0, x) = n0(x)

n0(t, x) = v(t, x),

with v is solution to problem (3.1). We easily proved that 0 ≤ nk ≤ v ( since 0 is subsolution to
(1.2)).

Now multiplying the solution of (3.9) by nk and integrating over (0,∞), we have

1

2

d

dt

∫ ∞
0

|nk|2dx+

∫ ∞
0

d(x)|nk(t, x)|2dx+

∫ ∞
0

|(nk)x(t, x)|2dx ≤ 1

2
f2(

∫ ∞
0

B(x)nk−1(t, x)dx),

≤ α2(

∫ ∞
0

B(x)v(t, x)dx)2 + γ2 +
1

2

∫ ∞
0

|g′(x)|v2(t, x)dx,
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then

nk ⇀ n in L2((0, T );W 1,2(R+))

hence n is solution to problem (1.2). The uniqueness is proved easily by the above comparison
principle.

proof of Theorem 2.2. Consider n0 ∈ L1(R+, e−G(x)dx). By density we can find a non-
decreasing sequence nk0 ∈ L1(R+)

⋂
L2(R+) such that nk0 → n0 in L1(R+, e−G(x)dx). We de-

note by n(k)(t, x) the corresponding solution to problem (1.2). We compute for the solution
w = (n(k) − n(p))e−µt, it follows

(3.10)


e−G(x)wt(t, x)− (e−G(x)wx(t, x))x + d(x)e−G(x)w(t, x) = 0 t ≥ 0, x ≥ 0
g(0)w(t, 0)− wx(t, 0) =

(
f(
∫∞

0
B(x)n(k)(t, x)dx)− f(

∫∞
0
B(x)n(p)(t, x)dx)

)
e−µt,

w(0, x) = n
(k)
0 (x)− n(p)

0 (x),

setting the truncated function

T1(w) =

{
w if |w| ≤ 1
w

|w|
if |w| > 1.

and Θ(s) =
∫ s

0
T1(σ)dσ. Multiplying the equation of problem (3.10) by T1(w) and integrating,

d

dt

∫ ∞
0

e−G(x)Θ(w(t, x))dx+

∫ ∞
0

e−G(x)wx(t, x)(T1(w(t, x)))xdx

+

∫ ∞
0

e−G(x)(d(x) + g′(x) + µ)w(t, x)T1(w(t, x))dx = −wx(t, 0)T1(w(t, 0))

thus
d

dt

∫ ∞
0

e−G(x)Θ(w(t, x))dx ≤ (f ′(θ(t))

∫ ∞
0

B(x)w(t, x)dx− w(t, 0))T1(w(t, 0)),

with θ(t) is a value between
∫∞

0
B(x)n(k)(t, x)dx and

∫∞
0
B(x)n(p)(t, x)dx, which have uniformly

bounded. Now, we have by integrating over (0, t),∫ ∞
0

e−G(x)Θ(w(t, x))dx ≤ C

∫ t

0

∫ ∞
0

|w(s, x)|dxds+

∫ ∞
0

e−G(x)Θ(w(0, x))dx,

≤ C

∫ t

0

∫ ∞
0

|w(s, x)|dxds

+

∫
{x∈R+,|w(0,x)|>1}

e−G(x)|w(0, x)|dx+
1

2

∫
{x∈R+,|w(0,x)|≤1}

e−G(x)|w(0, x)|2dx.

By integrating the equation (1.2) and again Gronwall lemma, we obtain∫ ∞
0

∫ ∞
0

n(k)(t, x)dx ≤ C.

Therefore using the monotonicity of the sequence n(k) we get existence of n ∈ L1(R+ × R+) such
that n(k) −→ n as k −→∞ in L1(R+×R+). Henceforth w is a Cauchy sequence in L1((0, T )×R+).
In other hand,∫ ∞

0

e−G(x)Θ(w(t, x))dx =

∫
{x∈R+,|w|>1}

e−G(x)|w|dx+
1

2

∫
{x∈R+,|w|≤1}

e−G(x)|w|2dx,
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and, by Holder inequality, we find∫
{x∈R+,|w|≤1}

e−G(x)|w|dx ≤
( ∫
{x∈R+,|w|≤1}

e−G(x)|w|2dx
) 1

2 (

∫ ∞
0

e−G(x)dx)
1
2 .

Combining these above results and by the hypothesis of the initial data, we prove that n(k) is a
Cauchy sequence C([0, T ], L1(R+, e−G(x)dx)). Therefore it’s converges to function n ∈ C([0, T ], L1(R+, e−G(x)dx)).
The result is proved.

4. Convergence to a stationary problem

In this section we prove that under some hypotheses on the growth of f and the initial data, we
have the convergence towards a stationary solution.

Noticing that the trivial solution is not stable (see section 1) for all positive (non trivial) initial
datum n0 ∈ L1(R+, e−G(x)dx), n(t, x) solution to (1.2) is also solution to the problem

(4.1)

{
nt(t, x)− nxx(t, x) + (g(x)n(t, x))x + d(x)n(t, x) = 0 t ≥ 0, x ≥ 0

g(0)n(t, 0)− nx(t, 0) = f̃(
∫∞

0
B(x)n(t, x)dx), and n(0, x) = n0(x) ∈ L1

+(R+),

where f̃(x) = f(max(x,min(s0,
∫∞

0
n0(y)dy)) is strictly positive and f̃(0) 6= 0.

We consider the following problem

(4.2)

 −u
′′(x)− g(x)u′(x) + d(x)u(x) = B(x), x ≥ 0,

u′(0) = 0,
u ∈W 1,∞(R+).

We begin by stating the existence, positivity and boundedness of the solution to problem (4.2).

Lemma 4.1. Under the hypotheses (2.1),(2.5), the problem (4.2) has a unique positive solution
u. In addition we have

(4.3) 0 < u(x) ≤ BM
dm

, ∀ x ≥ 0.

Proof. In order to prove the existence of solution, we argue by approximation, namely we consider
the case of bounded domain [0, R] and then we pass to the limit in R. So let us define the following
problem

(4.4)

 −u
′′
R(x)− g(x)u′R(x) + d(x)uR(x) = B(x), x ∈ (0, R),

u′R(0) = 0,
uR(R) = 0.

Using (for instance) Lax-Milgram method and multiplying by the negative part of uR, the
problem (4.4) has a unique positive solution. Moreover by principle maximum the solution uR
is strictly positive in [0, R). Now remarking that uR = BM

dm
is supersolution of problem (4.4).

Consequently by classical comparison principle we prove the inequalities 0 < uR(x) ≤ BM

dm
. In

addition, notice that (again by principle comparison) the sequence uR is nondecreasing with respect
to R, therefore uR (see as an extension by 0 outside (0, R)) converge to strictly positive function
u solution of problem (4.2). Now we suppose that v is another solution of problem (4.2) then v is
a supersolution of problem (4.4) in (0, R) (v(R) > 0), thus uR ≤ v and by passing to a limit, we
can prove that u is the minimal solution of problem (4.2).
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Moreover, rewriting the equation (4.2) as

(4.5) −(u′eG(x))′ + d(x)eG(x)u(x) = B(x)eG(x),

by integration, we obtain

u′(x) = e−G(x)

∫ x

0

d(s)

g(s)
g(s)eG(s)u(s)ds− e−G(x)

∫ x

0

B(s)

g(s)
g(s)eG(s)ds,

thus

|u′(x)| ≤ (
dM
gm

+
BM
gm

)(1− e−G(x)).

The existence of the minimal solution in W 1,∞(R+) is proved. Concerning the uniqueness, we set
w = v − u ≥ 0, thus w satisfy the following problem

(4.6)

 −(w′eG(x))′ + d(x)eG(x)w(x) = 0, x ≥ 0,
w′(0) = 0,
w ∈W 1,∞(R+).

Multiplying the equation of problem (4.6) by a test function φ(x) = e−ΓG(x), with Γ > 1 is a
constant to be chosen later, and integrating by part, we obtain

−w(0)φ′(0) +

∫ ∞
0

(d(x) + Γg′(x)− Γ(Γ− 1)g2(x))φ(x)eG(x)w(x)dx = 0.

Now choosing Γ such that

d(x) + Γg′(x)− Γ(Γ− 1)g2(x) ≥ δ > 0,

and since φ′(0) < 0 then w(x) = 0. Hence the lemma is proved

In order to analyze the asymptotic behavior of the solution to problem (1.2), we need to show
the existence, uniqueness and positivity of the stationary solution to problem (2.8). Indeed we
have the following lemma

Lemma 4.2. The problem (2.8) has a positive solution N with N ∈W 2,2(R+) if and only if there
exists a positive constant Γ such that

f(Γ) =
1

u(0)
Γ,(4.7)

with u is solution to problem (4.2). Moreover Γ =
∫∞

0
B(x)N(x)dx.

Proof. Multiplying the equation of problem (2.8) by u solution to the problem (4.2) and integrating
over (0,∞) we have

(4.8)

∫ ∞
0

B(x)N(x)dx = f(

∫ ∞
0

B(x)N(x)dx)u(0),

Now, let N be the solution of the following problem

(4.9)


−N ′′(x) + (gN)′(x) + d(x)N(x) = 0, x ≥ 0,
g(0)N(0)−N ′(0) = f(Γ),∫∞

0
N(x)dx <∞, and N ≥ 0.
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Multiplying by u and integrating, we obtain

(4.10)

∫ ∞
0

B(x)N(x)dx = f(Γ)u(0),

thus by hypothesis (4.7), we have Γ =
∫∞

0
B(x)N(x)dx.

In order to prove the asymptotic behavior of the solution to problem (1.2), we consider the
following auxiliary problems, setting ũ(x) := V (x) + CN(x),

(4.11)

{
Ut(t, x)− Uxx(t, x) + (g(x)U(t, x))x + d(x)U(t, x) = 0, t ≥ 0, x ≥ 0,

g(0)U(t, 0)− Ux(t, 0) = f̃(
∫∞

0
B(x)U(t, x)dx), and U(0, x) = ũ,

with C ≥ 1 to be chosen later. N is the solution of the stationary problem (2.8) and V satisfies

(4.12)

{
−V ′′(x) + (gV )′(x) + d(x)V (x) = 0, x ≥ 0
g(0)V (0)− V ′(0) = α

∫∞
0
B(x)V (x)dx+ γ and

∫∞
0
V (x)dx <∞.

First of all, we begin by studying the above stationary problem (4.12). Indeed we have the
following Lemma which the proof is the same as Lemma 4.2. However we give a somehow different
proof.

Lemma 4.3. The problem (4.12) has a unique positive solution if and only if α <
1

u(0)
, and

γ > 0.

Proof. By multiplying the equation of problem (4.12) by u the minimal solution of problem (4.2)
and integrating, we obtain

(4.13) (1− αu(0))

∫ ∞
0

B(x)V (x)dx = γu(0),

on the other hand, we define the operator A from L1(R+, B(x)dx) to L1(R+, B(x)dx) such that
for each function m we set A(m) = V, with V satisfies

(4.14)

 −V
′′(x) + (gV )′(x) + d(x)V (x) = 0, x ≥ 0,

g(0)V (0)− V ′(0) =
1

u(0)

∫∞
0
B(x)m(x)dx+ γ,

thus by applying the Banach Piccard fixed point theorem we can easily prove the existence,
uniqueness of the solution to problem (4.12).

Lemma 4.4. Assume that (2.3), (2.4) and n0(x) ≤ CN(x). Let Ū(t, x) and U(t, x) be the solutions

of the problem (4.11), with the initial condition is respectively ũ and 0. Suppose that α <
1

u(0)
and γ > 0. Then we have the following inequalities

0 ≤ U(t, x) ≤ n(t, x) ≤ Ū(t, x) ≤ ũ(x),∀t ≥ 0,

Furthermore Ū(t, x) resp(U(t, x)) is nonincreasing in t (is nondecreasing in t).

Proof. First of all, remarking that the assumptions (2.3) and (2.4) give the existence of Γ > 0

solution to f(Γ) =
1

u(0)
Γ. Setting w(t, x) = Ū(t, x)− ũ(x), then w satisfies
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(4.15)


wt(t, x)− wxx(t, x) + (g(x)w(t, x))x + d(x)w(t, x) = 0, t ≥ 0, x ≥ 0
g(0)w(t, 0)− wx(t, 0) ≤ α

∫∞
0
B(x)w(t, x)dx

w(0, x) = 0.

As a simple consequence of comparison principle, we get the desired result. Similarly by setting
w(t, x) = n(t, x)− Ū(t, x) we have
(4.16)

wt(t, x)− wxx(t, x) + (g(x)w(t, x))x + d(x)w(t, x) = 0, t ≥ 0, x ≥ 0

g(0)w(t, 0)− wx(t, 0) = f̃(
∫∞

0
B(x)n(t, x)dx)− f̃(

∫∞
0
B(x)Ū(t, x)dx) = f̃ ′(θ(t))

∫∞
0
B(x)w(t, x)dx,

w(0, x) ≤ 0,

where θ(t) is a value between
∫∞

0
B(x)n(t, x)dx and

∫∞
0
B(x)Ū(t, x)dx. Remarking that θ(t) is

uniformly bounded (Ū ≤ ũ) and so using the fact that f is nondecreasing, we have

(4.17)


wt(t, x)− wxx(t, x) + (g(x)w(t, x))x + d(x)w(t, x) = 0, t ≥ 0, x ≥ 0
g(0)w(t, 0)− wx(t, 0) ≤ c

∫∞
0
B(x)w+(t, x)dx,

w(0, x) ≤ 0,

where the positive constant c satisfying f ′(θ(t)) ≤ c. Again by comparison principle we obtain
w ≤ 0. Concerning the monotonicity of Ū , by setting w = Ū(t+ t1, x)− Ū(t, x) for all t1 positive,
so w satisfies the problem (4.16) with w(0, x) = U(t1, x) − ũ(x) ≤ 0, and so another time by
comparison principle, we have the monotonicity of Ū(t, x).

Now we are able to prove the theorem 2.3. Indeed,
Proof of theorem 2.3.

First we know that Ū(t, x) converges to a limit, so setting Ū(t, x)→ Ūs(x) as t→∞. Consider
the boundary- value problem

(4.18)

{
−v′′(x) + (gv)′(x) + d(x)v(x) = 0, x ≥ 0

g(0)v(0)− v′(0) = f̃(
∫∞

0
B(y)Ūs(y)dy).

Now by setting w(t, x) = Ū(t, x) − v(x), and W (x) = ũ(x) − v(x). We claim that W ≥ 0. Indeed
W satisfies

(4.19)

{
−W ′′(x) + (gW )′(x) + d(x)W (x) ≥ 0, x ≥ 0
g(0)W (0)−W ′(0) ≥ 0,

then by the simple comparison principle we conclude the claim. Using the same idea as above and
the fact that f is nondecreasing we can prove that w(t, x) ≥ 0.

Multiplying the solution of problem (4.16) by w and integrating over (t, t+ 1)× (0,∞),∫ t+1

t

∫ ∞
0

∂

∂s
w(s, x)w(s, x)dx+

∫ t+1

t

∫ ∞
0

(d(x) +
1

2
g′(x))|w(s, x)|2dxds+

∫ t+1

t

∫ ∞
0

|wx(s, x)|2dxds

≤ 1

2

∫ t+1

t

(
f̃(

∫ ∞
0

B(x)Ū(s, x)dx)− f̃(

∫ ∞
0

B(x)Ūs(x)dx)
)2
ds.
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Thus using the fact that w(t, .) is nonincreasing in t, we obtain

1

2

∫ ∞
0

(|w(t+ 1, x)|2 − |w(t, x)|2)dx+

∫ ∞
0

(d(x) +
1

2
g′(x))|w(t+ 1, x)|2dx

≤ 1

2

(
f̃(

∫ ∞
0

B(x)Ū(t, x)dx)− f̃(

∫ ∞
0

B(x)Ūs(x)dx)
)2
.

In addition, Ū(t, x)→ Ūs(x) as t→∞ in L1(R+) and the continuity of f̃ we have

f̃(

∫ ∞
0

B(x)Ū(t, x)dx)→ f̃(

∫ ∞
0

B(x)Ūs(x)dx)

as t→∞.
By passing to the limit as t −→∞ and combining these above results we obtain
w(t, .)→ 0 in L2(R+) and so v = Ūs, and consequently Ūs = N. In order to prove that Ūs is the

maximal solution of stationary problem (2.8), we set w = Ū(t, x)−N(x), with N is any solution of
problem (2.8). Applying the Lemma 3.2, we can prove that Ū(t, x) ≥ N(x). Now by passing to the
limit, we obtain the result. Applying the same idea as above, we can prove that U(t, x) → N(x)
as t→∞. hence we conclude the proof of the theorem.

We have the following corollary concerning the case, where the problem (2.8) has a multiple non
trivial stationary solution.

Corollary 4.5. Suppose that the problem (2.8) admits n nontrivial steady states called Ni(x)
for 1 ≤ i ≤ n. Assume that the initial condition satisfy either Ni(x) � n0(x) � Ni+1(x) for
1 ≤ i ≤ n− 1 or Nn(x) ≤ n0(x) ≤ CNn(x), resp (n0(x) ≤ N1(x)) and n0 is a supersolution, resp
(subsolution) of problem (2.8). Then the solution of problem (1.2) converge to Ni(x) resp(Ni+1(x)).

Proof. Since n0 is supersolution of problem (2.8), then by principle comparison, we have n(t, x) ≤
n0(x) and n(t, x) is nonincreasing with respect to t. Consequently its admits a limit. By following
the proof of theorem 2.3, we get the result.

5. Blow up /Extinction

In this section we are concerned with a blow up (resp. extinction) of the solution to problem
(1.2) under some assumptions on the growth of f .

Theorem 5.1. Under the existence of M1 and M2 such that

(5.1) αx+ γ ≤ f(x) ≤M1x+M2,

with α ≥ 1

u(0)
and γ > 0 or α >

1

u(0)
and γ = 0, the solution n to (1.2) satisfies

lim
t→∞

∫ ∞
0

n(t, x)dx = +∞.(5.2)

Proof. Multiplying the equation (1.2) by u and integrating, we have
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∫ ∞
0

nt(t, x)u(x)dx =

∫ ∞
0

(nxx − (gn)x − d(x)n)u(x)dx

= u(0)(n(t, 0)− nx(t, 0)) +

∫ ∞
0

n(t, x)(u′′(x) + g(x)u′(x)− d(x)u(x))dx,

= u(0)f(

∫ ∞
0

B(x)n(t, x)dx)−
∫ ∞

0

B(x)n(t, x)dx,

≥ u(0)((α− 1

u(0)
)

∫ ∞
0

B(x)n(t, x)dx) + γ),

Hence, using Lemma 4.1 we get the result.

We have directly the following extinction result.

Theorem 5.2. Under the existence of M1 such that

(5.3) f(x) ≤M1x,

with M1 <
1

u(0)
the solution n to (1.2) satisfies

lim
t→∞

∫ ∞
0

n(t, x)dx = 0.(5.4)

6. Numerical simulation

We present some examples to illustrate the result of the previous sections, namely the con-
vergence toward the positive steady states. For almost all these examples we suppose that the
recruitment term f(x) =

√
x, and the transport term g(x) = 1 which satisfy the assumptions

of the theorem 2.3. The initial conditions is assumed to be equal to 1. We compute numerical
solution to the system (1.2) using finite difference with Dirichlet condition at the right boundary.
The birth and death terms are given by B(x) = 5e−x + 10(1− e−x), and d(x) = 2e−x + 4(1− e−x).
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Figure 1. : The numerical simulation of the steady state solution to problem (2.8).

The next figure illustrate the Theorem 2.3, namely the convergence of the solution to problem
(1.2) towards the nontrivial solution of problem (2.8).
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Figure 2. : x = 0.2. The numerical simulation of the solution to problem (1.2).
Here we fix an age x = 0.2, we compute n(t, x) and we observe the convergence in
long time asymptotic.

7. Conclusion

We have proved the existence, uniqueness and study the dynamics of solutions to the nonlinear
partial differential equation (1.2).

We notice that the assumptions (2.3)-(2.4) on the growth of the nonlinear birth rate function f
depends on the supremum and infimum of the birth rate B and death rate d. In the general case,
the birth rate vanishes when the age is too small (immature) or too large (do not give birth when
the individual is too old). In the same way, the biological age of individuals is ”limited” and so the
death rate can goes to infinity when the age is too large. In figure 4, we conjecture that we can
obtain the same result, even if the birth term vanishes and the death term goes to infinity, but not
too fast, (behaves as x in infinity for example). Therefore, it will be interesting to find assumptions
on f which extend the convergence result when the birth rate and death rate are nonnegative and
not necessarily bounded.
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