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Nonlinear Filtering with Transfer Operator

Parikshit Dutta, Abhishek Halder, and Raktim Bhattacharya

Abstract— This paper presents a new nonlinear filtering
algorithm that is shown to outperform state-of-the-art particle
filters with resampling. Starting from the Itô stochastic differ-
ential equation, the proposed algorithm harnesses Karhunen-
Loéve expansion to derive an approximate non-autonomous
dynamical system, for which transfer operator based density
computation can be performed in exact arithmetic. It is proved
that the algorithm is asymptotically consistent in mean-square
sense. Numerical results demonstrate that explicitly accounting
prior dynamics entail significant performance improvement for
nonlinear non-Gaussian estimation problems with infrequent
measurement updates, as compared to the performance of
particle filters.

I. INTRODUCTION

On a probability space (Ω,F ,P) with filtration {Ft}t>0,

consider the nonlinear estimation problem associated with

the Itô stochastic differential equations (SDEs)

dx (t) = f (x (t) , t, δ) dt+ dW (ω, t) , (1)

dy (t) = h (x (t) , t, δ) dt+ dV (ω, t) , (2)

where at time instance t, the state vector x (t) ∈ R
n, and the

measurement vector y (t) ∈ R
m. δ ∈ R

p is the parameter

vector, and W (ω, t) : Ω × R
+ 7→ R

n, V (ω, t) : Ω × R
+ 7→

R
m are mutually independent Wiener processes denoting

process and measurement noise, respectively. Further, ω ∈ Ω,

and the functions f (.) and h (.) represent the dynamics and

measurement models, respectively.

State and parameter estimation for nonlinear systems

such as above, are commonly done using sequential Monte

Carlo (SMC) methods, particle filter being the most popu-

lar amongst them [1]. These algorithms follow traditional

prediction-update framework where the prior is predicted

using state dynamics, followed by a Bayesian update using

measurement model, resulting the posterior. It is well known

[2] that these methods require large number of samples

for convergence, leading to higher computational cost. This

problem is usually tackled by combining particle filters with

resampling [3], [4], commonly known as bootstrap filters

[5]. However, resampling may introduce loss of diversity

amongst particles [6]. Several other methods like regularized

particle filter [7], and filters with Markov Chain Monte Carlo

(MCMC) move step [8], have been proposed to enhance

sample diversity. At the same time, even with resampling,
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due to the simulation based nature of these filters, the

sample size scales exponentially with state dimension [9].

To circumvent this problem, particle filters based on Rao-

Blackwellization [10] have been proposed to partially solve

the estimation problem analytically. However, its application

remains limited to systems where the required partition of

the state space is possible.
The main idea of this paper is to recognize the fact that

much of the computational burden of particle filter, stems

from the Monte Carlo approximation of the prior. Lack of

statistically consistent methods for high dimensional uncer-

tainty propagation, has stymied the accurate computation of

prior density. In the previous work, the authors developed

[11] Perron-Frobenius (PF) operator [12] based methods

for numerically efficient uncertainty propagation schemes

for nonlinear systems with parametric and initial condition

uncertainties. This was achieved by solving the charac-

teristic ordinary differential equation (ODE) corresponding

to the Liouville partial differential equation (PDE), along

the trajectories in the extended state space z := [x δ]
⊤

.

In the estimation setting, it was observed [13] that prior

probability density function (PDF) computed via PF operator,

followed by Bayesian update, outperformed particle filter in

the absence of process noise.
In the presence of process noise, the transport PDE as-

sociated with forward Kolmogorov operator is the Fokker-

Planck-Kolmogorov (FPK) equation [14], which being a

second order PDE, does not enjoy method-of-characteristics

(MOC) based ODE formulation. Function approximation

techniques for solving FPK eqn. usually suffer from the

“curse of dimensionality” [15]. This severely limits the ac-

curacy of prior computation, and hence that of the nonlinear

filters. An alternative approach was proposed recently by the

authors [16], where instead of directly approximating the

prior, the process noise was approximated by a finite-term

Karhunen-Loéve (KL) expansion resulting an approximate

state dynamics. Next, the MOC based PF operator compu-

tation was performed on this approximate non-autonomous

dynamical system in exact arithmetic. [16] provided strong

numerical evidence that such two step “first KL, then PF”

(henceforth KLPF) algorithm is asymptotically consistent in

distribution. However, two issues remained unsettled.

1) In [16], the distributional consistency was algorithmi-

cally verified. A rigorous proof for convergence was

lacking. Also, it was not clear whether the distribu-

tional convergence is only sufficient, i.e. whether a

stronger notion of convergence holds true.

2) No detailed numerical investigation was performed to

assess the filtering performance improvement resulting



from KLPF algorithm, vis-a-vis with particle filter.

This paper has two key contributions. First, we prove

that solution of the KL approximated dynamics, converges

to that of the true Itô SDE in mean-square (m.s.) sense.

This is indeed stronger than the distributional convergence of

[16]. Further, the m.s. convergence is shown to be necessary

and sufficient. Second, we provide strong numerical results

showing that the proposed algorithm, henceforth referred as

KLPF filter, achieves superior estimation accuracy than the

particle filter with resampling.

The rest of this paper is structured as follows. Section II

describes the KLPF formulation for computing prior PDF

and provides m.s. convergence guarantees. The nonlinear

filtering algorithm is introduced in Section III. Section IV

contains numerical results for both linear Gaussian and

nonlinear non-Gaussian estimation problems. Section V con-

cludes the paper.

Notation

In denotes the n-by-n identity matrix, and diag (·) denotes

the diagonal matrix. The symbol N (µ,Σ) denotes joint

Gaussian PDF with mean µ and covariance Σ. N stands

for the set of natural numbers, tr (·) denotes the trace of

a matrix, and div(·) denotes the divergence operator. The

symbol δij represents Kronecker delta, and the symbol ∧
denotes minimum.

II. APPROXIMATING PRIOR DYNAMICS

A. KLPF Formulation

Given the Itô SDE (1), we write an approximate dynamical

system corresponding to its Langevin ODE form for the jth

state:

ẋ
(j)
N = f (j) (xN (t), t, δ) +

N∑

i=1

√
Λi ζ

(j)
i (ω) ei (t) , (3)

where j = 1, 2, . . . , n. Further, {Λi, ei (t)}∞i=1 is the se-

quence of eigenvalue-eigenfunction pairs of the covariance

function C (t1, t2) associated with the additive stationary

process noise, and ζi (ω) are i.i.d. random variables drawn

from the distribution of the noise stochastic process. For

example, if W (ω, t) is Wiener process with C (t1, t2) =
σ2 (t1 ∧ t2), t1, t2 ∈ [0, T ], then {Λi, ei (t)}∞i=1 is the eigen-

pair sequence for Gaussian white noise η (ω, t), and ζi (ω) ∼
N
(
0, σ2

)
. In effect, the second term in the RHS of (3), is

the N -term KL expansion for η (ω, t). We affix subscript

N to the states (xN (t)) of the approximate dynamics (3), to

distinguish them from the sample paths (x(t)) of the original

SDE (1).

Next, we augment (3) with the characteristic ODE

ϕ̇− = −div
(
f̃
)
ϕ−, (4)

where f̃ denotes the RHS nonlinearity of (3), and

ϕ− (xN (t), t, δ) denotes the prior at time t, supported over

the extended state space [xN δ]
⊤ ∈ R

n+p. Consequently,

(4) computes the evolution of joint prior PDF along the

characteristic curves xN (t). Notice that we do not assume
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Fig. 1. Summary of the KLPF formulation.

the process noise to be Gaussian. As long as the additive

noise has finite second moment, we can write down the ap-

proximate dynamical system (3) via the noise KL expansion

(Table I). The overall formulation is summarized in Fig. 1.
It is well-known [18] that as N → ∞, the finite-term noise

KL expansion

N∑

i=1

√
Λi ζ

(j)
i (ω) ei (t) converges uniformly

to the unstructured noise η (ω, t) in m.s. sense. However,

to justify our formulation, it remains to answer whether

xN (t) converges to that of x (t), and in what sense. The

following sub-section answers this issue. For notational ease,

we disregard uncertainty on parameter δ, without loss of

generality. It is straightforward to verify that the following

results generalize to extended state space.

B. Quality of Approximation

1) Asymptotic convergence: In [16], it was verified

through simulation that as N → ∞, xN (t) → x(t) in

distribution, i.e. ϕ− (xN (t), t) → ϕ− (x(t), t), ∀t > 0. Here

we prove the stronger result that xN (t) → x(t) in m.s. sense.

All proofs are given in the Appendix.
Theorem 1: Let x (ω, t) be the solution of the nonlinear

Itô SDE

dx(t) = f(x(t), t)dt+ dW(ω, t), (5a)

⇒
d

dt
x (t) = f (x, t) + η(ω, t), (5b)

where dW (ω, t) = η (ω, t) dt, and f : R
n × [0, T ] → R

n

satisfies the following:

1) non-explosion condition: ∃ D ≥ 0, s.t. |f (x, t)| <
D(1 + |x|) where x ∈ R

n, t ∈ [0, T ];
2) Lipschitz condition: ∃ C ≥ 0, s.t.

|f (x, t) − f (x̆, t)| < C |x− x̆|, where x, x̆ ∈ R
n,

t ∈ [0, T ].

Let xN (t) be solution of the ODE

d

dt
xN (t) = f (xN (t), t) + ηN (ω, t), (6)



TABLE I

NOISE KL EXPANSION: EXAMPLES

Noise W(ω, t) in SDE C (t1, t2) for W(ω, t) White noise η(ω, t) in Langevin ODE KL expansion of η (ω, t), 0 < t 6 T

Wiener process σ2 (t1 ∧ t2) Gaussian white noise

√
2

T

∞∑

i=1

ζi (ω) cos

((
i− 1

2

)
πt

T

)

Compound Poisson process λσ2 (t1 ∧ t2) + (λµ)2t1t2 Poisson white noise (Appendix A)

∞∑

i=1

ζi (ω)

2
βi

√
Λi

√
2T − βi sin 2T

βi

cos

(
t

βi

)

where ηN (ω, t) is the N -term truncated orthonormal expan-

sion of η(ω, t), and E

[∫ T

0

ηN (ω, t)dt

]
<∞. Then,

lim
N→∞

E|x (t) − xN (t)|2 = 0, (7)

iff xN (t) is the KL expansion of x (t).

Theorem 1 states conditions upon the solutions of approx-

imated and true systems for m.s. convergence to hold, under

certain assumptions on the nonlinearities. No condition has

been imposed yet on the initial states, which we investigate

next.
Theorem 2: Given the stochastic dynamical system

dx(t) = f(x(t), t)dt + dW (ω, t) , (8)

and its corresponding N -term KL approximation given by

dx
(j)
N (t) = f (j)(xN (t), t) dt +

N∑

i=1

√
Λiζ

(j)
i (ω)ei(t) dt, (9)

where, lim
N→∞

E

∣∣∣∣∣W
(j) (ω, t) −

N∑

i=1

√
Λiζ

(j)
i (ω)ei(t)

∣∣∣∣∣

2

= 0,

∀ j = 1, 2, . . . , n. Then, lim
N→∞

E|x(t) − xN (t)|2 = 0, if

x(0) = xN (0).

Corollary 3: Suppose xN (0) 6= x (0). If xN (0) is the

generalized polynomial chaos (gPC) expansion of x(0), then

lim
N→∞

E|x(t) − xN (t)|2 = 0.

III. KLPF FILTER

Algorithm 1 Continuous-discrete KLPF filter (‘time of measure-

ment’ index: k = 1, . . . , τ ; sample index: i = 1, . . . , ν)

Require: {yk}τk=1 and ϕ0 ⊲ Measurements & initial joint state PDF
1: {x0,i}νi=1 ← MCMC({ϕ0,i}νi=1) ⊲ Initial sampling
2: for k = 0 to τ − 1 do
3: {ϕ−

k+1,i, x
−
k+1,i}νi=1 ← Propagate{ϕ+

k,i, x
+
k,i}νi=1 ⊲ MOC (4)

4: {̺(k+1|k+1),i}νi=1 ← (2π)−
m
2 |R|− 1

2 exp[− 1
2
(yk+1 −

h(x−
k+1,i, tk))⊤R−1(yk+1 − h(x−

k+1,i, tk))] ⊲ Likelihood function

5: {ϕ+
k+1,i}νi=1 ← Update{ϕ−

k+1,i, ̺(k+1|k+1),i}νi=1 ⊲ Bayes’

6: x̂k+1 ←
∑ν

i=1 x−
k+1,i ϕ+

k+1,i ⊲ State estimate at k + 1th time

7: end for ⊲ Repeat for next measurement

IV. NUMERICAL RESULTS

In this subsection, we consider two examples for which

the estimation problem is exactly solvable and hence the

true posterior is known. To demonstrate the performance

improvement achieved by KLPF compared to particle filter,

we must show that the KLPF posterior is closer to the true

posterior, than particle filter. In other words, the “distance”

between KLPF posterior and true posterior, must remain

smaller than the “distance” between particle filter posterior

and true posterior, for all times. The notion of distributional

distance used here, is the quadratic Wasserstein metric of

order two (denoted as 2W2), that measures the difference

in shapes between the two statistical distributions under

comparison.
Definition 1: (Wasserstein distance) Consider a metric

space (M, ℓp) and let x, x̃ ∈ M . For q ∈ N, let Pq (M)
denote the collection of all probability measures µ supported

on M , which have finite qth moment. Then the ℓp Wasserstein

distance of order q, denoted as pWq, between two probability

measures ς1, ς2 ∈ Pq (M), is defined as

pWq (ς1, ς2) :=

(
inf

µ∈M(ς1,ς2)

∫

M×M

‖ x− x̃ ‖q
ℓp

dµ (x, x̃)

) 1

q

where M (ς1, ς2) is the set of all measures supported on the

product space M × M , with first marginal ς1 and second

marginal ς2.
Remark 1: Intuitively, Wasserstein distance quantifies the

minimum amount of work required to convert one distribu-

tional shape to the other, and can be interpreted as the cost

for Monge-Kantorovich optimal transportation plan [19]. We

set p = q = 2 (see [20] for details) for comparing posteriors,

and for notational ease, henceforth denote 2W2 as W . For

absolutely continuous measures ς1 and ς2, with PDFs ϕ1 and

ϕ2, we can write W (ϕ1, ϕ2) in lieu of W (ς1, ς2).
Remark 2: For multivariate Gaussians, W admits [21] a

closed form expression, given by

W (N (µ1, Σ1) ,N (µ2, Σ2)) =

(
‖ µ1 − µ2 ‖2

2 + tr (Σ1 + Σ2)

− 2 tr
[√

Σ1Σ2

√
Σ1

]1/2
)1/2

.

(10)

In general, computation of W from definition 1, necessitates

solving a linear program (LP). We refer the readers to [22]

for details of this computation.



Fig. 2. Plot of means and standard deviations of the Wasserstein distances
of the posteriors from KLPF filter (solid line) and the particle filter
(hyphenated line) for the Kalman filter. The vertical lines about the means
represent ±1σ limits.

A. Kalman filter

Let us consider the continuous-discrete Kalman filter with

continuous-time state dynamics

ẋ (t) = −0.05 I2 x (t) + [1 1]
⊤
η (t) , (11)

and discrete-time measurement model

yk = [1 1] xk + vk, k ∈ N, (12)

where η (t) and vk are independent zero mean Gaussian

white noise processes, with variances Q = 1/8 and R = 1/4,

respectively. We assume the initial joint state PDF to be

N
(
[1 1]

⊤
, diag (1, 1)

)
.

From this initial state PDF, we draw 100 sample sets, each

with sample size 500. Then using (10), we compute two

Wasserstein time histories: W
(
ϕ+

Kalman (t) , ϕ+
Particle (t)

)
and

W
(
ϕ+

Kalman (t) , ϕ+
KLPF (t)

)
, where ϕ+

Kalman (t), ϕ+
Particle (t) and

ϕ+
KLPF (t) denote posteriors at time t, obtained from Kalman

filter, particle filter and KLPF filter, respectively. The means

and standard deviations of these time histories are shown

in Fig. 2. This plot shows that the KLPF filter posterior

remains indeed closer to the Kalman posterior, compared to

the particle filter posterior.

B. Benes̆ filter

Benes̆ filter is one of the few [23] nonlinear filters which

admit a known finite-dimensional solution of the nonlinear

estimation problem. Here, the nonlinear drift in state dynam-

ics, is assumed to satisfy a Riccati differential equation [24]

and the measurement model is taken to be affine in states.

We consider the continuous-continuous scalar Benes̆ filtering

problem of the form:

dx (t) =
κex − e−x

κex + e−x
dt+ dW (ω, t) , (13)

dy (t) = x (t) dt+ dV (ω, t) , (14)

with κ = 0.5 and deterministic initial condition x0. The

process and measurement noise densities are N (0, Q) and

N (0, R) respectively, with Q = 1, R = 10. It can be shown

[25] that the drift nonlinearity satisfies the necessary Riccati
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Fig. 3. Plot of means and standard deviations of the Wasserstein distances
of the posteriors from KLPF filter (solid line) and the particle filter
(hyphenated line) for the Benes̆ filter. The vertical lines about the means
represent ±1σ limits.

condition and the resulting solution [26] is given by the

normalized posterior density

ϕ (x (t) |Yt) =

√
coth(t)

2π

(
κex + e−x

κeIt(y(ω)) + e−It(y(ω))

)

exp
(
− 1

2Γ (t)
)
, (15)

where Yt is the history (filtration) till time t, and

It (y (ω)) := sech(t)

[
x0 +

∫ t

0

sinh(s)dys (ω)

]
, (16)

Γ (t) := tanh(t) + coth(t) (x− It (y (ω)))
2
.(17)

Notice that for this nonlinear non-Gaussian estimation prob-

lem, unlike Kalman filter case, we can not write the Wasser-

stein distance between the true posterior (15) and particle

filter/KLPF posterior, as an analytical expression in terms of

the respective sufficient statistics. Thus, in order to compute

the Wasserstein time history, we resort to the LP formulation

[22]. At each time, we sample (15) using the Metropolis-

Hastings MCMC technique [27], and solve the LP between

the sampled true Benes̆ posterior and particle filter/KLPF

posterior, to result the normalized Wasserstein trajectories

shown in Fig. 3. Like the Kalman filter case, as time

progresses, KLPF posterior gets closer, compared to particle

filter, to true Benes̆ posterior.

V. CONCLUSIONS

A new nonlinear filtering algorithm is presented in this

paper, that is shown to outperform the estimation accuracy

of particle filters in numerical simulations. This is achieved

by explicitly taking the prior dynamics into account. Con-

trary to the traditional “top-down” approach of numerically

solving the FPK PDE via function approximation, a “bottom

up” approach for prior computation is developed by first

approximating the problem via spectral parametrization of

the noise, and then solving that approximate problem in exact

arithmetic via MOC computation of the transfer operator.

The resulting algorithm, dubbed as KLPF filter, is a non-

particle filter [29], and is amenable to both Gaussian and

non-Gaussian process noise.



APPENDIX

A. KL Expansion of Poisson White Noise

We first obtain the KL expansion of compound Poisson
process [17] with covariance kernel C(s, t) = λσ2(s ∧ t) +
st(λµ)2, as listed in Table I. This requires us to solve the
associated Fredholm integral equation of second kind, given

by Λnen(s) = (λµ)2s
∫ T

0
ten(t) dt + λσ2

∫ s

0
ten(t) dt +

λσ2s
∫ T

s
en(t) dt, which, upon differentiating w.r.t. s, yields

Λne
′
n(s) = (λµ)2

∫ T

0

ten(t) dt + λσ
2

∫ T

s

en(t) dt, Λn. (18)

Thus, we have e′′n(s) = −λσ2en(s), which solves as

en(t) = A sin
(

t
βn

)
+ B cos

(
t

βn

)
, where βn ,

√
Λn

λσ2 .

Imposing boundary conditions Λnen(0) = 0 ⇒ B = 0,

and
∫ T

0
e2n(t) dt = 1 ⇒ A = 2√

[2T−βn sin 2T
βn

]
. Hence,

the eigenfunction for Poisson process for t ∈ [0, T ], is

en(t) = 2√
[2T−βn sin 2T

βn
]
sin
(

t
βn

)
.

Now we substitute s = T , and en(t) as derived above, in
the Fredholm integral equation, to obtain

Λn sin
T

βn
=
[
(λµ)2T + λσ

2]
[
β

2
n sin

T

βn
− Tβn cos

T

βn

]
. (19)

Similarly, substituting s = T , and en(t) in (18) results

Λn

βn
cos

T

βn
= (λµ)2β2

n sin
T

βn
− (λµ)2Tβn cos

T

βn
. (20)

From (19) and (20), we have

tan

(
σT

√
λ

Λn

)
=

[
1 +

1

λT

(
σ

µ

)2
](

σT

√
λ

Λn

)
, (21)

where λ, σ, µ, T > 0;n ∈ N. Consequently, the KL ex-

pansion of compound Poisson process Y (ω, t) is given by

Y (ω, t) =

∞∑

n=1

√
Λnζn (ω) en (t), where ζi(ω) ∼ N (0, 1);

and Λn solves the transcendental equation (21). Next, we

take the formal derivative (in m.s. sense) of the KL expansion

of Y (ω, t), to arrive at the KL expansion of Poisson white

noise, given in the second row, right-most column in Table

I.

B. Proof for Theorem 1

(⇐) Given (7) holds, we need to show xN (ω, t) is the KL

expansion of x (ω, t). Let {ψm(t)}∞m=1 be any orthonormal

basis. Then x (ω, t) can be written as a convergent sum in

L2 (Ω,F ,P), i.e. x (ω, t) =
∞∑

m=1

bmcm(ω)ψm(t).

Let xN (ω, t) be an N -term m.s. convergent approx-

imation of x (ω, t), and the resulting truncation error

equals EN (ω, t) =
∞∑

m=N+1

bmcm(ω)ψm(t). Further, pro-

jecting x (ω, t) onto the basis ψm(t) results cm(ω) =
1

bm

∫ T

0
x(ω, t)ψm(t)dt. For convergence, the basis ψm(t)

should minimize
∫ T

0
E [EN (ω, t)] dt subject to the orthonor-

mality constraint
∫ T

0
φm(t)φk(t)dt = δmk, ∀m, k ∈ N.

Introducing b2m as Lagrange multipliers and using the

above derived formula for cm (ω), the first order optimality

condition yields
∫ T

0
Cxx (t1, t2)ψm (t1) dt1 = b2mψm (t2),

which is the Fredholm integral equation of second kind for

the covariance function of random process x (ω, t). Hence

{b2m, ψm(t)}∞m=1 is the eigenvalue-eigenfunction sequence

for Cxx(t1, t2). Thus, the original expansion is indeed a KL

expansion. �
(⇒) To proceed, we need the following uniqueness condi-

tions on (i) solution of (5a), and (ii) KL expansion of a

random process.

Proposition 1 ( [30], Chap. 5): Given, the non-explosion

condition and the Lipschitz condition are satisfied for f (·, ·)
in (5a). Let Z be a random variable, independent of the σ-

algebra generated by η(ω, t), t ≥ 0, and E
[
|Z|2

]
<∞. Then

the SDE (5a) where t ∈ [0, T ], X(ω, 0) = Z, has a unique

t-continuous solution x(ω, t) adapted to the filtration FZ
t

generated by Z, and E

[∫ T

0

|x(ω, t)|2dt

]
<∞.

Proposition 2 ( [28], Chap. 2): The Karhunen-Loève ex-

pansion of a random process x(ω, t), given by x(ω, t) =
∞∑

i=1

√
Λiζi(ω)ei(t), is unique.

Let us assume that x̆N (ω, t) is the KL expansion of x(ω, t).
Furthermore, if possible, assume that x̆N (ω, t) 6= xN (ω, t),
which is the solution of (6) and converges to the solution of

(5a) in m.s. sense.

Notice that (6) has unique solution as RHS of (6) sat-

isfies Lipschitz condition. This can be proved as follows:

for RHS of (6) to satisfy Lipschitz condition, we must

have |f(x, t) + ηN (ω, t) − f(x̆, t) − ηN (ω, t)| ≤ C |x− x̆|,
which is true since f(·, ·) itself satisfies Lipschitz condition.

Hence (5a) has unique solution that admits a unique KL

expansion. Also according to our assumption, the solution

of (6) converges to the solution of (5a) in m.s. sense. This

contradicts our assumption that x̆N (ω, t) 6= xN (ω, t), which

completes the proof. �

C. Proof for Theorem 2

Integrating (8) and (9) and taking the expected value of
square of the difference, we obtain

E|x(t) − xN (t)|2 = E

[∣∣∣∣(x(0) − xN (0)) +

∫ t

0

(f(x, s)−

f (xN , s)) ds +

∫ t

0

d(Ws −
N∑

i=1

√
Λiζi(ω)ei(s))

∣∣∣∣∣

2

 ,

≤ E|(x(0) − xN (0))|2︸ ︷︷ ︸
0=:B (say)

+E

∣∣∣∣
∫ t

0

(f(x, s) − f(xN , s))ds

∣∣∣∣
2

+

E

∣∣∣∣∣

∫ t

0

d(Ws −
N∑

i=1

√
Λiζi(ω)ei(s))

∣∣∣∣∣

2

,

≤ B + tE

∫ t

0

|f(x, s) − f(xN , s)|2 ds +

E

∣∣∣∣∣

∫ t

0

d(Ws −
N∑

i=1

√
Λiζi(ω)ei(s))

∣∣∣∣∣

2

, (22)



where in the last step, we used Chebyshev’s integral
inequality. Consequently, we have

lim
N→∞

E|x(t) − xN (t)|2 ≤ B + lim
N→∞

tE

[∫ t

0

|f(x, s) − f(xN , s)|2

ds] + lim
N→∞

E

∣∣∣∣∣

∫ t

0

d(Ws −
N∑

i=1

√
Λiζi(ω)ei(s))

∣∣∣∣∣

2

. (23)

Using the Lipschitz criterion and property of KL expansion,
from (23) we get

lim
N→∞

E|x(t) − xN (t)|2
︸ ︷︷ ︸

v(t) (say)

≤ B + tC

∫ t

0

lim
N→∞

E |x(s) − xN (s)|2 ds,

⇒ v(t) ≤ B + A

∫ t

0

v(s)ds ⇒ v(t) ≤ B exp(At), (24)

where the last step follows from Gronwall’s inequality, with

tC ≤ A,∀t ∈ (0, T ]. Therefore, lim
N→∞

E|x(t) − xN (t)|2 =

0, since x(0) = xN (0) ⇒ B = 0, as per our assumption. �

D. Proof for Corollary 3

In the proof of Theorem 2, for x(0) 6= xN (0), taking the
limit N → ∞ yields

lim
N→∞

E|x(t) − xN (t)|2 ≤ lim
N→∞

E|(x(0) − xN (0))|2+

lim
N→∞

tE

∫ t

0

|f(x, s) − f(xN , s)|2 ds+

lim
N→∞

E

∣∣∣∣∣

∫ t

0

d(Ws −
N∑

i=1

√
Λiζi(ω)ei(s))

∣∣∣∣∣

2

.

Going through the subsequent steps as before, we arrive at

lim
N→∞

E|x(t) − xN (t)|2 = 0, if lim
N→∞

E|x(0) − xN (0)|2 = 0.

However, if xN (0) is the gPC expansion of x(0), then

they asymptotically converge in m.s. sense [28]. Hence

lim
N→∞

E|x(0) − xN (0)|2 = 0, which, from the Gronwall’s

inequality, implies that lim
N→∞

E|x(t) − xN (t)|2 = 0. This

completes our proof. �
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