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A GENERALIZATION OF LÖWNER-JOHN’S ELLIPSOID

THEOREM

JEAN B. LASSERRE

Abstract. We address the following generalization P of the Löwner-
John ellipsoid problem. Given a (non necessarily convex) compact set
K ⊂ R

n and an even integer d ∈ N, find an homogeneous polynomial g
of degree d such that K ⊂ G := {x : g(x) ≤ 1} and G has minimum
volume among all such sets. We show that P is a convex optimization
problem even if neither K nor G are convex! We next show that P has
a unique optimal solution and a characterization with at most

(

n+d−1

d

)

contacts points in K∩G is also provided. This is the analogue for d > 2
of the Löwner-John’s theorem in the quadratic case d = 2, but impor-
tantly, we neither require the set K nor the sublevel set G to be convex.
More generally, there is also an homogeneous polynomial g of even de-
gree d and a point a ∈ R

n such that K ⊂ Ga := {x : g(x − a) ≤ 1}
and Ga has minimum volume among all such sets (but uniqueness is
not guaranteed). Finally, we also outline a numerical scheme to approx-
imate as closely as desired the optimal value and an optimal solution.
It consists of solving a hierarchy of convex optimization problems with
strictly convex objective function and Linear Matrix Inequality (LMI)
constraints.

1. Introduction

“Approximating” data by relatively simple geometrical objects is a fun-
damental problem with many important applications and the ellipsoid of
minimum volume is the most well-known of the associated computational
techniques.

In addition to its nice properties from the viewpoint of applications, the
ellipsoid of minimum volume is also very interesting from a mathematical
viewpoint. Indeed, if K ⊂ R

n is a convex body, computing an ellipsoid of
minimum volume that contains K is a classical and famous problem which
has a unique optimal solution called the Löwner-John ellipsoid. In addition,
John’s theorem states that the optimal ellipsoid Ω is characterized by s
contacts points ui ∈ K ∩ Ω (more precisely ui ∈ ∂K ∩ ∂Ω), and positive
scalars λi, i = 1, . . . , s, where s is bounded above by n(n+3)/2 in the general
case and s ≤ n(n + 1)/2 when K is symmetric; see e.g. Ball [4, 5], Henk
[19]. More precisely, the unit ball Bn is the unique ellipsoid with minimum
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volume containing K if and only if
∑s

i=1 λiui = 0 and
∑s

i=1 λiuiu
T
i = In,

where In is the n× n identity matrix.
In particular, and in contrast to other approximation techniques, com-

puting the ellipsoid of minimum volume is a convex optimization problem
for which efficient techniques are available; see e.g. Calafiore [10] and Sun
and Freund [45] for more details. For a nice recent historical survey on the
Löwner-John’s ellipsoid, the interested reader is referred to the recent paper
by Henk [19] and the many references therein.

As underlined in Calafiore [10], “The problem of approximating observed
data with simple geometric primitives is, since the time of Gauss, of fun-
damental importance in many scientific endeavors”. For practical purposes
and numerical efficiency the most commonly used are polyhedra and ellip-
soids and such techniques are ubiquitous in several different area, control,
statistics, computer graphics, computer vision, to mention a few. For in-
stance:

• In robust linear control, one is interested in outer or inner approxima-
tions of the stability region associated with a linear dynamical system, that
is, the set of initial states from which the system can be stabilized by some
control policy. Typically, the stability region which can be formulated as
a semi-algebraic set in the space of coefficients of the characteristic poly-
nomial, is non convex. By using the Hermite stability criterion, it can be
described by a parametrized polynomial matrix inequality where the pa-
rameters account for uncertainties and the variables are the controller co-
efficients. Convex inner approximations of the stability region have been
proposed in form of polytopes in Nurges [35], ellipsoids in Henrion et al.
[22], and more general convex sets defined by Linear Matrix Inequalities
(LMIs) in Henrion et al. [24], and Karimi et al. [27].

• In statistics one is interested in the ellipsoid ξ of minimum volume cover-
ing some given k of m data points because ξ has some interesting statistical
properties such as affine equivariance and positive breakdown properties [12].
In this context the center of the ellipsoid is called the minimum volume el-
lipsoid (MVE) location estimator and the associated matrix associated with
ξ is called the MVE scatter estimator; see e.g. Rousseeuw [43] and Croux et
al. [12].

• In pattern separation, minimum volume ellipsoids are used for separating
two sets of data points. For computing such ellipsoids, convex programming
techniques have been used in the early work of Rosen [40] and more modern
semidefinite programming techniques in Vandenberghe and Boyd [47]. Sim-
ilarly, in robust statistics and data mining the ellipsoid of minimum volume
covering a finite set of data points identifies outliers as the points on its
boundary; see e.g. Rousseeuw and Leroy [43]. Moreover, this ellipsoid tech-
nique is also scale invariant, a highly desirable property in data mining which
is not enjoyed by other clustering methods based on various distances; see
the discussion in Calafiore [10], Sun and Freund [45] and references therein.
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• Other clustering techniques in computer graphics, computer vision and
pattern recognition, use various (geometric or algebraic) distances (e.g. the
equation error) and compute the best ellipsoid by minimizing an associated
non linear least squares criterion (whence the name “least squares fitting
ellipsoid” methods). For instance, such techniques have been proposed in
computer graphics and computer vision by Bookstein [9] and Pratt [37], in
pattern recognition by Rosin [41], Rosin and West [42], Taubin [46], and in
another context by Chernousko [11]. When using an algebraic distance (like
e.g. the equation error) the geometric interpretation is not clear and the re-
sulting ellipsoid may not be satisfactory; see e.g. an illuminating discussion
in Gander et al. [17]. Moreover, in general the resulting optimization prob-
lem is not convex and convergence to a global minimizer is not guaranteed.

So optimal data fitting using an ellipsoid of minimum volume is not only
satisfactory from the viewpoint of applications but is also satisfactory from
a mathematical viewpoint as it reduces to a (often tractable) convex opti-
mization problem with a unique solution having a nice characterization in
term of contact points in K ∩ Ω. In fact, reduction to solving a convex
optimization problem with a unique optimal solution, is a highly desirable
property of any data fitting technique!

A more general optimal data fitting problem. In the Löwner-John
problem one restricts to convex bodies K because for a non convex set K

the optimal ellipsoid is also solution to the problem where K is replaced
with its convex hull co(K). However, if one considers sets that are more
general than ellipsoids, an optimal solution for K is not necessarily the
same as for co(K), and indeed, in some applications one is interested in
approximating as closely as desired a non convex set K. In this case a non
convex approximation is sometimes highly desirable as more efficient.

For instance, in the robust control problem already alluded to above,
in Henrion and Lasserre [23] we have provided an inner approximation of
the stability region K by the sublevel set G = {x : g(x) ≤ 0} of a non
convex polynomial g. By allowing the degree of g to increase one obtains the
convergence vol(G) → vol(K) which is impossible with convex polytopes,
ellipsoids and LMI approximations as described in [35, 22, 24, 27].

So if one considers the more general data fitting problem where K and/or
the (outer) approximating set are allowed to be non convex, can we still
infer interesting conclusions as for the Löwner-John problem? Can we also
derive a practical algorithm for computing (or at least approximating) an
optimal solution?

The purpose of this paper is to provide results in this direction that can
be seen as a non convex generalization of the Lowner-John problem but,
surprisingly, still reduces to solving a convex optimization problem with a
unique optimal solution.
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Figure 1. G1 with g(x) = x4 + y4 − 1.925x2y2 (left) and
with g(x) = x6 + y6 − 1.925x3y3 (right)

Some works have considered generalizations of the Löwner-John problem.
Fo instance, Giannopoulos et al. [13] have extended John’s theorem for
couples (K1,K2) of convex bodies when K1 is in maximal volume position
of K1 inside K2, whereas Bastero and Romance [7] refined this result by
allowing K1 to be non-convex.

In this paper we consider a different non convex generalization of the
Löwner-John ellipsoid problem, with a more algebraic flavor. Namely, we
address the following two problems P0 and P.

P0: Let K ⊂ R
n be a compact set (not necessarily convex) and let d be

an even integer. Find an homogeneous polynomial g of degree d such that
its sublevel set G1 := {x : g(x) ≤ 1} contains K and has minimum volume
among all such sublevel sets with this inclusion property.

P: Let K ⊂ R
n be a compact set (not necessarily convex) and let d be an

even integer. Find an homogeneous polynomial g of degree d and a ∈ R
n

such that the sublevel set Ga
1 := {x : g(x − a) ≤ 1} contains K and has

minimum volume among all such sublevel sets with this inclusion property.

Necessarily g is a nonnegative homogeneous polynomial since otherwise
the volumes of G1 and Ga

1 are not finite. Of course, when d = 2 then g is
convex (i.e., G1 and Ga

1 are ellipsoids) because every nonnegative quadratic
form defines a convex function, and g is an optimal solution for problem P

with K or its convex hull co(K). That is, one retrieves the Löwner-John
problem. But when d > 2 then G1 and Ga

1 are not necessarily convex. For
instance, takeK = {x : g(x) ≤ 1} where g is some nonnegative homogeneous
polynomial such that K is compact but non convex. Then g is an optimal
solution for problem P0 with K and cannot be optimal for co(K); a two-
dimensional example is (x, y) 7→ g(x, y) := x4 + y4 − ǫx2y2 and another one
is g(x, y) := x6 + y6 − ǫx3y3, for ǫ > 0 sufficiently small; see Figure 1.

Contribution. We show that problem P0 and P are indeed natural gener-
alizations of the Löwner-John ellipsoid problem in the sense that:

- (a) P0 also has a unique solution g∗.
- (b) A characterization of g∗ also involves s contact points in K ∩ G1

(more precisely in ∂K ∩ ∂G1), where s is now bounded by
(n+d−1

d

)
(when

d = 2 one retrieves the bound for the symmetric Löwner-John problem).
And so when d = 2 we retrieve the symmetric Löwner-John problem

as a particular case. In fact it is shown that P0 is a convex optimization
problem no matter if neither K nor G1 are convex. Of course, convexity in
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itself does not guarantee a favorable computational complexity1. As we will
see P0 reduces to minimizing a strictly convex function over a convex cone
intersected with an affine subspace and “hardness” of P0 is reflected in two
of its components: (i) The (convex) objective function as well as its gradient
and Hessian are difficult to evaluate, and (ii) the cone membership problem
is NP-hard in general. However convexity is crucial to show the uniqueness
and characterization of the optimal solution in (a) and (b) above.

We use an intermediate and crucial result of independent interest. Namely,
the Lebesgue-volume function g 7→ v(g) := vol(G1) is a strictly convex func-
tion of the coefficients of g, which is far from being obvious from its defini-
tion. Concerning the more general problem P, we also show that there is
an optimal solution (g∗,a∗) with again a characterization which involves s
contact points in K∩Ga∗

1 , but now uniqueness is not guaranteed. Again and
importantly, in both problems P0 and P, neither K nor Ga

1 are required to
be convex.

On the computational side. Even though P0 is a convex optimization
problem, it is hard to solve because even if K would be a finite set of points
(as is the case in statistics applications of the Löwner-John problem) and
in contrast to the quadratic case, evaluating the (strictly convex) objective
function, its gradient and Hessian can be a challenging problem, especially if
the dimension is larger than n = 3. Indeed evaluating the objective function
reduces to computing the Lebesgue volume of the sublevel set G1 whereas
evaluating its gradient and Hessian requires computing other moments of the
Lebesgue measure on G1. So this is one price to pay for the generalization
of the Löwner-John ellipsoid problem. (Notice however that if K is not a
finite set of points then even the Löwner-John ellipsoid problem is also hard
to solve because for more general sets K the inclusion constraint K ⊂ ξ
(or conv(K) ⊂ ξ) can be difficult to handle.) In general, and even for
convex bodies, computing the volume is an NP-hard problem; in fact even
approximating the volume efficiently within given bounds is hopeless. For
more details the interested reader is referred to e.g. Barvinok [6], Dyer et
al. [14] and the many references therein. On the other hand, even though
G1 is not necessarily convex, it is still a rather specific set and assessing a
precise computational complexity for its volume remains to be done.

However, we can still approximate as closely as desired the objective func-
tion as well as its gradient and Hessian by using the methodology developed
in Henrion et al [21], especially when the dimension is small n = 2, 3 (which
is the case in several applications in statistics).

Moreover, if K is a (compact) basic semi-algebraic set with an explicit
description {x : gj(x) ≥ 0, j = 1, . . . ,m} for some polynomials (gj) ⊂ R[x],
then we can use powerful positivity certificates from real algebraic geometry

1For instance some well-known NP-hard 0/1 optimization problems reduce to conic LP
optimization problems over the convex cone of copositive matrices (and/or its dual) for
which the associated membership problem is hard.
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to handle the inclusion constraint G1 ⊃ K in the associated convex opti-
mization problem. Therefore, in this context, we also provide a numerical
scheme to approximate the optimal value and the unique optimal solution
of P0 as closely as desired. It consists of solving a hierarchy of convex opti-
mization problems where each problem in the hierarchy has a strictly convex
objective function and a feasible set defined by Linear Matrix Inequalities
(LMIs).

2. Notation, definitions and preliminary results

2.1. Notation and definitions. Let R[x] be the ring of polynomials in the
variables x = (x1, . . . , xn) and let R[x]d be the vector space of polynomials

of degree at most d (whose dimension is s(d) :=
(n+d
n

)
). For every d ∈ N,

let N
n
d := {α ∈ N

n : |α| (=
∑

i αi) ≤ d}, and let vd(x) = (xα), α ∈ N
n, be

the vector of monomials of the canonical basis (xα) of R[x]d. For two real
symmetric matrices B,C, the notation 〈B,C〉 stands for trace (BC); also,
the notation B � 0 (resp. B ≻ 0) stands for B is positive semidefinite (resp.
positive definite). A polynomial f ∈ R[x]d is written

x 7→ f(x) =
∑

α∈Nn

fα x
α,

for some vector of coefficients f = (fα) ∈ R
s(d). A polynomial f ∈ R[x]d is

homogeneous of degree d if f(λx) = λdf(x) for all x ∈ R
n and all λ ∈ R.

Let us denote by H[x]d, d ∈ N, the space of homogeneous polynomials
of degree d and P[x]d ⊂ H[x]d, its subset of homogeneous polynomials of
degree d such that their sublevel set G1 := {x : g(x) ≤ 1 } has finite
Lebesgue volume, denoted vol(G1). Notice that g ∈ P[x]d is necessarily
nonnegative (so that d is necessarily even) and 0 6∈ P[x]d; but P[x]d is not
the set of positive semidefinite (psd) forms of degree d (excluding the zero
form); indeed if n = 2 and x 7→ g(x) = (x1 − x2)

2 then G1 does not have
finite Lebesgue volume. On the other hand when g ∈ P[x]d the set G1 is not
necessarily bounded; for instance if n = 2 and x 7→ g(x) := x21x

2
2(x

2
1 + x22),

the set G1 has finite volume but is not bounded2. So P[x]d is not the space
of positive definite (pd) forms of degree d either.

For d ∈ N and a closed set K ⊂ Rn, denote by Cd(K) the convex cone of
all polynomials of degree at most d that are nonnegative on K, and denote
by M(K) the Banach space of finite signed Borel measures with support
contained in K (equipped with the total variation norm). Let M(K)+ ⊂
M(K) be the convex cone of finite (positive) Borel measures on K.

In the Euclidean space R
n we denote by 〈·, ·〉 the usual duality bracket.

Laplace transform. Given a measurable function f : R → R with f(t) = 0
for all t < 0, its one-sided (or unilateral) Laplace transform L[f ] : C → C is

2We thank Pham Tien Son for providing these two examples.
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defined by

λ 7→ L[f ](λ) :=

∫ ∞

0
exp(−λt)f(t) dt, λ ∈ D,

where its domain D ⊂ C is the set of λ ∈ C where the above integral is
finite. For instance, let f(t) = 0 if t < 0 and f(t) = ta for t ≥ 0 and

a > −1. Then L[f ](λ) = Γ(a+1)
λa+1 and D = {λ : ℜ(λ) > 0}. Moreover L[f ]

is analytic on D and therefore if there exists an analytic function F such
that L[f ](λ) = F (λ) for all λ in a segment of the real line contained in D,
then L[f ](λ) = F (λ) for all λ ∈ D. This is a consequence of the Identity
Theorem for analytic functions; see e.g. Freitag and Busam [16, Theorem
III.3.2, p. 125]. A classical reference for the Laplace transform is Widder
[48].

2.2. Some preliminary results. We first have the following result:

Lemma 2.1. The set P[x]d is a convex cone.

Proof. Let g, h ∈ P[x]d with associated sublevel sets G1 = {x : g(x) ≤
1} and H1 = {x : h(x) ≤ 1}. For λ ∈ (0, 1), consider the nonnegative
homogeneous polynomial θ := λg+(1−λ)h ∈ R[x]d, with associated sublevel
set

Θ1 := {x : θ(x) ≤ 1} = {x : λg(x) + (1− λ)h(x) ≤ 1}.

Write Θ1 = Θ1
1 ∪ Θ2

1 where Θ1
1 = Θ1 ∩ {x : g(x) ≥ h(x)} and Θ2

1 =
Θ1 ∩ {x : g(x) < h(x)}. Observe that x ∈ Θ1

1 implies h(x) ≤ 1 and so
Θ1

1 ⊂ H1. Similarly x ∈ Θ2
1 implies g(x) ≤ 1 and so Θ2

1 ⊂ G1. Therefore
vol(Θ1) ≤ vol(G1) + vol(H1) <∞. And so θ ∈ P[x]d. �

With y ∈ R and g ∈ R[x] let Gy := {x : g(x) ≤ y}. The following
intermediate result which is crucial and of independent interest was already
proved in Morozov and Shakirov [33, 34] with different arguments.

Theorem 2.2. Let g ∈ P[x]d. Then for every y ≥ 0:

(2.1) vol(Gy) =
yn/d

Γ(1 + n/d)

∫

Rn

exp(−g(x)) dx.

Proof. As g ∈ P[x]d, and using homogeneity, vol(G1) <∞ implies vol(Gy) <
∞ for every y ≥ 0. Let h : R → R be the function y 7→ h(y) := vol(Gy).
Since g is nonnegative, the function h vanishes on (−∞, 0]. Its Laplace
transform L[h] : C → C is the function

λ 7→ L[h](λ) :=

∫ ∞

0
exp(−λy)h(y) dy, ℜ(λ) > 0,
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whose domain is D = {λ ∈ C : ℜ(λ) > 0}. Observe that whenever λ ∈ R

with λ > 0,

L[h](λ) =

∫ ∞

0
exp(−λy)

(
∫

{x:g(x)≤y}
dx

)

dy

=

∫

Rn

(
∫ ∞

g(x)
exp(−λy)dy

)

dx [by Fubini’s Theorem]

=
1

λ

∫

Rn

exp(−λg(x)) dx

=
1

λ

∫

Rn

exp(−g(λ1/dx)) dx [by homogeneity]

=
1

λ1+n/d

∫

Rn

exp(−g(z)) dz [by λ1/dx → z]

=

∫

Rn

exp(−g(z)) dz

Γ(1 + n/d)
︸ ︷︷ ︸

constant c

Γ(1 + n/d)

λ1+n/d
.

Next, the function λ 7→ cΓ(1+n/d)

λ1+n/d is analytic on D and coincide with L[h]

on the real half-line {t : t > 0} contained in D. Therefore by the Identity

Theorem L[h](λ) = cΓ(1+n/d)

λ1+n/d on D. Finally observe that Γ(1+n/d)

λ1+n/d is the

Laplace transform of t 7→ u(t) = tn/d, which yields the desired result h(y) =

vol(Gy) = c yn/d. �

And we also conclude:

Corollary 2.3. Let g ∈ H[x]d. Then g ∈ P[x]d, i.e. vol(G1) < ∞, if and

only if

∫

Rn

exp(−g(x))dx <∞.

Proof. The implication ⇒ follows from Theorem 2.2. For the reverse impli-
cation consider the function u : Rn×R+ → R defined by (x, y) 7→ u(x, y) :=
exp(−y) I{x:g(x)≤y}, which is measurable and nonnegative. Therefore by
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Tonelli’s Theorem (see e.g. Royden [44]):

∫

Rn

∫

R+

u(x, y) dx dy =

∫

Rn









∫

R+

u(x, y) dy

︸ ︷︷ ︸

exp(−g(x))









dx < ∞

=

∫

R+

(∫

Rn

u(x, y) dx

)

dy

=

∫

R+

exp(−y)








∫

Rn

I{x:g(x)≤y} dx

︸ ︷︷ ︸

vol (Gy)







dy.

Therefore vol (Gy) is finite (and so is G1). �

As already mentioned, Formula (2.1) relating the Lebesgue volume G1

with the integral
∫
exp(−g) is already proved (with a different argument) in

Morozov and Shakirov [33, 34] where the authors want to express the non
Gaussian integral

∫
exp(−g) in terms of algebraic invariants of g.

Sensitivity analysis and convexity. We now investigate some properties
of the function v : P[x]d → R defined by

(2.2) g 7→ v(g) := vol(G1) =

∫

{x : g(x)≤1}
dx, g ∈ P(x]d,

i.e., we now view vol(G1) as a function of the vector g = (gα) ∈ R
ℓ(d) of

coefficients of g in the canonical basis of homogeneous polynomials of degree
d (and ℓ(d) =

(n+d−1
d

)
).

Theorem 2.4. The Lebesgue-volume function v : P(x]d → R defined in
(2.2) is strictly convex. In int(P[x]d) its gradient ∇v and Hessian ∇2v are
given by:

(2.3)
∂v(g)

∂gα
=

−1

Γ(1 + n/d)

∫

Rn

xα exp(−g(x)) dx,

for all α ∈ N
n
d , |α| = d.

(2.4)
∂2v(g)

∂gα∂gβ
=

1

Γ(1 + n/d)

∫

Rn

xα+β exp(−g(x)) dx,

for all α, β ∈ N
n
d , |α| = |β| = d. Moreover, we also have

(2.5)

∫

Rn

g(x) exp(−g(x)) dx =
n

d

∫

Rn

exp(−g(x)) dx.
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Proof. By Theorem 2.2 v(g) = c
∫

Rn exp(−g(x))dx with c = Γ(1 + n/d)−1.
Let p, q ∈ P[x]d and α ∈ [0, 1]. By convexity of u 7→ exp(−u),

v(αp + (1− α)q) ≤ c

∫

Rn

[α exp(−p(x)) + (1− α) exp(−q(x)) ] dx

= αv(p) + (1− α)v(q),

and so v is convex. Next, in view of the strict convexity of u 7→ exp(−u),
equality may occur only if p(x) = q(x) almost everywhere, which implies
p = q and which in turn implies strict convexity of v.

To obtain (2.3)-(2.4) when g ∈ int(P[x]d), one takes partial derivatives
under the integral sign, which in this context is allowed. Indeed, write g in
the canonical basis as g(x) =

∑

|α|=d gαx
α. For every α ∈ N

n
d with |α| = d,

let (eα) ⊂ R
ℓ(d) be the standard unit vectors of Rℓ(d). Then for every t > 0

sufficiently small, x 7→ g(x) + txα ∈ P[x]d and

v(g + teα)− v(g)

t
= c

∫

Rn

exp(−g)







exp(−txα)− 1

t
︸ ︷︷ ︸

ψ(t,x)






dx <∞

Notice that for every x, by convexity of the function t 7→ exp(−txα),

lim
t↓0

ψ(t,x) = inf
t>0

ψ(t,x) = exp(−txα)′|t=0 = −xα,

because for every x, the function t 7→ ψ(t,x) is nondecreasing; see e.g.
Rockafellar [39, Theorem 23.1]. Hence, the one-sided directional derivative
v′(g; eα) in the direction eα satisfies

v′(g; eα) = lim
t↓0

v(g + teα)− v(g)

t
= lim

t↓0
c

∫

Rn

exp(−g)ψ(t,x) dx

= c

∫

Rn

exp(−g) lim
t↓0

ψ(t,x) dµ(x) = c

∫

Rn

−xα exp(−g) dx,

where the third equality follows from the Extended Monotone Convergence
Theorem [3, 1.6.7]. Indeed for all t < t0 with t0 sufficiently small, the
function ψ(t, ·) is bounded above by ψ(t0, ·) and

∫

Rn exp(−g)ψ(t0,x)dµ <∞.
Similarly, for every t > 0

v(g − teα)− v(g)

t
= c

∫

Rn

exp(−g)
exp(txα)− 1

t
︸ ︷︷ ︸

ξ(t,x)

dx,

and by convexity of the function t 7→ exp(txα)

lim
t↓0

ξ(t,x) = inf
t>0

ξ(t,x) = exp(txα)′|t=0 = xα.
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Therefore, with exactly same arguments as before,

v′(g;−eα) = lim
t↓0

v(g − teα)− v(g)

t

= c

∫

Rn

xα exp(−g) dx = −v′(g; eα),

and so
∂v(g)

∂gα
= −c

∫

Rn

xα exp(−g) dx,

for every α with |α| = d, which yields (2.3). Similar arguments can used for
the Hessian ∇2v(g) which yields (2.4).

To obtain (2.5) observe that g 7→ H(g) :=
∫
exp(−g)dx, g ∈ P[x]d, is a

positively homogeneous function of degree −n/d, continuously differentiable.
And so combining (2.3) with Euler’s identity 〈∇H(g), g〉 = −nH(g)/d,
yields:

−
n

d

∫

Rn

exp(−g(x)) dx = −
n

d
H(g)

= 〈∇H(g), g〉 [by Euler’s identity]

= −

∫

Rn

g(x) exp(−g(x)) dx.

�

Notice that convexity of v is not obvious at all from its definition (2.2)
whereas it becomes almost transparent when using formula (2.1).

2.3. The dual cone of Cd(K). For a convex cone C ⊂ R
n, the convex cone

C∗ := {y : 〈y,x〉 ≥ 0 ∀x ∈ C },

is called the dual cone of C, and if C is closed then (C∗)∗ = C. Recall that
for a set K ⊂ R

n, Cd(K) denotes the convex cone of polynomials of degree

at most d which are nonnegative on K. We say that a vector y ∈ R
s(d) has a

representing measure (or is a d-truncated moment sequence) if there exists
a finite Borel measure φ on R

n such that

yα =

∫

Rn

xα dφ, ∀α ∈ N
n
d .

We will need the following (already known) characterization the dual cone
Cd(K)∗ (which is also transparent in [18, §1.1, p. 852]).

Lemma 2.5. Let K ⊂ R
n be compact. For every d ∈ N, the dual cone

Cd(K)∗ is the convex cone

(2.6) ∆d :=

{(∫

K

xα dφ

)

, α ∈ N
n
d : φ ∈ M(K)+

}

,

i.e., the convex cone of vectors of Rs(d) which have a representing measure
with support contained in K.
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Proof. For every y = (yα) ∈ ∆d and f ∈ Cd(K) with coefficient vector

f ∈ R
s(d):

(2.7) 〈y, f〉 =
∑

α∈Nn
d

fα yα =
∑

α∈Nn
d

∫

K

fα x
α dφ =

∫

K

f dφ ≥ 0.

Since (2.7) holds for all f ∈ Cd(K) and all y ∈ ∆d, then necessarily ∆d ⊆
Cd(K)∗ and similarly, Cd(K) ⊆ ∆∗

d. Next,

∆∗
d =

{

f ∈ R
s(d) : 〈f ,y〉 ≥ 0 ∀y ∈ ∆d

}

=

{

f ∈ R[x]d :

∫

K

f dφ ≥ 0 ∀φ ∈ M(K)+

}

⇒ ∆∗
d ⊆ Cd(K),

and so ∆∗
d = Cd(K). Hence the result follows if one proves that ∆d is closed,

because then Cd(K)∗ = (∆∗
d)

∗ = ∆d, the desired result. So let (yk) ⊂ ∆d,

k ∈ N, with yk → y as k → ∞. Equivalently,
∫

K
xαdφk → yα for all α ∈ N

n
d .

In particular, the convergence yk0 → y0 implies that the sequence of measures
(φk), k ∈ N, is bounded, that is, supk φk(K) < M for some M > 0. As K

is compact, the unit ball of M(K) is sequentially compact in the weak ⋆
topology σ(M(K), C(K)) where C(K) is the space of continuous functions
on K. Hence there is a finite Borel measure φ ∈ M(K)+ and a subsequence
(ki) such that

∫

K
gdφki →

∫

K
gdφ as i→ ∞, for all g ∈ C(K). In particular,

for every α ∈ N
n
d ,

yα = lim
k→∞

ykα = lim
i→∞

ykiα = lim
i→∞

∫

K

xαdφki =

∫

K

xαdφ,

which shows that y ∈ ∆d, and so ∆d is closed. �

And we also have:

Lemma 2.6. Let K ⊂ R
n be with nonempty interior. Then the interior of

Cd(K)∗ is nonempty.

Proof. Since Cd(K) is nonempty and closed, by Faraut and Korány [15,
Prop. I.1.4, p. 3]

int(Cd(K)∗) = {y : 〈y,g〉 > 0, ∀g ∈ Cd(K) \ {0} },

where g ∈ R
s(d) is the coefficient of g ∈ Cd(K), and

int(Cd(K)∗) 6= ∅ ⇐⇒ Cd(K) ∩ (−Cd(K)) = {0}.

But g ∈ Cd(K) ∩ (−Cd(K)) implies g ≥ 0 and g ≤ 0 on K, which in turn
implies g = 0 because K has nonempty interior. �

For simplicity and with a slight abuse of notation, we will sometimes write
〈z, g〉 in lieu of 〈z,g〉 and 〈z, 1− g〉 in lieu of 〈z, e0 −g〉 (where e0 is the unit
vector corresponding to the constant polynomial equal to 1).
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3. Main result

Consider the following problem P0, a non convex generalization of the
Löwner-John ellipsoid problem:

P0: Let K ⊂ R
n be a compact set not necessarily convex and d an even

integer. Find an homogeneous polynomial g of degree d such that its sublevel
set G1 := {x : g(x) ≤ 1} contains K and has minimum volume among all
such sublevel sets with this inclusion property.

In the above problem P0, the set G1 is symmetric and so when K is a
symmetric convex body and d = 2, one retrieves the Löwner-John ellipsoid
problem in the symmetric case. In the next section we will consider the
more general case where G1 is of the form Ga

1 := {x : g(x − a) ≤ 1} for
some a ∈ R

n and some g ∈ P[x]d.

Recall that P[x]d ⊂ R[x]d is the convex cone of nonnegative homogeneous
polynomials of degree d whose sublevel set G1 = {x : g(x) ≤ 1} has finite
volume. Recall also that Cd(K) ⊂ R[x]d is the convex cone of polynomials
of degree at most d that are nonnegative on K.

We next show that solving P0 is equivalent to solving the convex opti-
mization problem:

(3.1) P : ρ = inf
g∈H[x]d

{∫

Rn

exp(−g) dx : 1− g ∈ Cd(K)

}

.

Proposition 3.1. Problem P0 has an optimal solution if and only if problem
P in (3.1) has an optimal solution. Moreover, P is a finite-dimensional
convex optimization problem.

Proof. By Theorem 2.2,

vol (G1) =
1

Γ(1 + n/d)

∫

Rn

exp(−g) dx

whenever G1 has finite Lebesgue volume. Moreover G1 contains K if and
only if 1 − g ∈ Cd(K) and so P0 has an optimal solution g∗ ∈ P[x]d if
and only if g∗ is an optimal solution of P (with value vol(G∗

1)Γ(1 + n/d)).
Now since g 7→

∫

Rn exp(−g)dx is strictly convex (by Lemma 2.4) and both
Cd(K) and P[x]d are convex cones, problem P is a finite-dimensional convex
optimization problem. �

We now can state the first main result of this paper: Recall that M(K)+
is the convex cone of finite Borel measures on K.

Theorem 3.2. Let K ⊂ R
n be compact with nonempty interior and consider

the convex optimization problem P in (3.1).
(a) P has a unique optimal solution g∗ ∈ P[x]d.
(b) Let g∗ ∈ P[x]d be the unique optimal solution of P and let G∗

1 =
{x : g∗(x) ≤ 1 }. If g∗ ∈ int(P[x]d) then there exists a finite Borel measure
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µ∗ ∈ M(K)+ such that
∫

Rn

xα exp(−g∗)dx =

∫

K

xα dµ∗, ∀|α| = d(3.2)

∫

K

(1− g∗) dµ∗ = 0; µ∗(K) =
n

d

∫

Rn

exp(−g∗) dx.(3.3)

In particular, µ∗ is supported on the set V := {x ∈ K : g∗(x) = 1} (=
K∩G∗

1) and in fact, µ∗ can be substituted with another measure ν∗ ∈ M(K)+
supported on at most

(n+d−1
d

)
contact points of V .

(c) Conversely, if g∗ ∈ R[x]d is homogeneous with 1 − g∗ ∈ Cd(K), and
there exist points (xi, λi) ∈ K×R, λi > 0, i = 1, . . . , s, such that g∗(xi) = 1
for all i = 1, . . . , s, and

∫

Rn

xα exp(−g∗) dx =

s∑

i=1

λi x
α
i , |α| = d,

then g∗ is the unique optimal solution of problem P.

The proof is postponed to §7. Importantly, notice that neither K nor G∗
1

are required to be convex.

3.1. On the contact points. Theorem 3.2 states that P (hence P0) has
a unique optimal solution g∗ ∈ P[x]d and one may find contact points xi ∈

K ∩G∗
1, i = 1, . . . , s, with s ≤

(n+d−1
d

)
, such that

(3.4) y∗α =

∫

Rn

xα exp(−g∗(x)) dx =
s∑

i=1

λi x
α
i , |α| = d,

for some positive weights λi. In particular, using the identity (2.5) and
〈1− g∗,y∗〉 = 0, as well as g∗(xi) = 1 for all i,

y∗0 =
∑

|α|=d

y∗α g
∗
α =

n

d

∫

Rn

exp(−g∗(x)) dx =

s∑

i=1

λi.

Next, recall that d is even and let vd/2 : R
n → R

ℓ(d/2) be the mapping

x 7→ vd/2(x) = (xα), |α| = d/2,

i.e., the
(n−1+d/2

d/2

)
-vector of the canonical basis of H[x]d/2. From (3.4),

(3.5)

∫

Rn

vd/2(x)vd/2(x)
T exp(−g∗) dx =

s∑

i=1

λi vd/2(xi)vd/2(xi)
T .

Hence, when d = 2 and K is symmetric, one retrieves the characterization
in John’s theorem [19, Theorem 2.1], namely that if the euclidean ball ξn :=
{x : ‖x‖ ≤ 1} is the unique ellipsoid of minimum volume containing K then
there are contact points (xi) ⊂ ξn ∩K and positive weights (λi), such that
∑

i λixix
T
i = In (where In is the n × n identity matrix). Indeed in this



A GENERALIZATION OF LÖWNER-JOHN’S ELLIPSOID THEOREM 15

case, vd/2(x) = x, g∗(x) = ‖x‖2 and
∫

Rn xx
T exp(−‖x‖2)dx = c In for some

constant c.
So (3.5) is the analogue for d > 2 of the contact-points property in John’s

theorem and we obtain the following generalization: For d even, let ‖x‖d :=
(
∑n

i=1 x
d
i )

1/d denote the d-norm with unit ball ξdn := {x : ‖x‖d ≤ 1}.

Corollary 3.3. If in Theorem 3.2 the unique optimal solution G∗
1 is the d-

unit ball ξdn then there are contact points (xi) ⊂ K∩ ξdn and positive weights

λi, i = 1, . . . , s, with s ≤
(n+d−1

d

)
, such that for every |α| = d,

s∑

i=1

λi vd/2(xi)vd/2(xi)
T =

∫

Rn

vd/2(x)vd/2(x)
T exp(−‖x‖dd) dx.

Equivalently, for |α| = d,

s∑

i=1

λi x
α
i =







n∏

j=1

∫

R

tαj exp(−td) dt if α = 2β

0 otherwise.

Example

With n = 2 let K ⊂ R
2 be the box [−1, 1]2 and let d = 4, 6, that is,

one searches for the unique homogeneous polynomial g ∈ R[x]4 or g ∈ R[x]6
which contains K and has minimum volume among such sets.

Theorem 3.4. The sublevel set G4
1 = {x : g4(x) ≤ 1 } associated with the

homogeneous polynomial

(3.6) x 7→ g4(x) = x41 + x42 − x21x
2
2,

is the unique solution of problem P0 with d = 4. That is, K ⊂ G4
1 and

G4
1 has minimum volume among all sets G1 ⊃ K defined with homogeneous

polynomials of degree 4.
Similarly, the sublevel set G6

1 = {x : g6(x) ≤ 1 } associated with the
homogeneous polynomial

(3.7) x 7→ g6(x) = x61 + x62 − (x41x
2
2 + x21x

4
2)/2

is the unique solution of problem P0 with d = 6.

Proof. Let g4 be as in (3.6). We first prove that K ⊂ G4
1, i.e., 1− g4(x) ≥ 0

whenever x ∈ K. But observe that if x ∈ K then

1− g4(x) = 1− x41 − x42 + x21x
2
2 = 1− x41 + x22(x

2
1 − x22)

≥ 1− x41 + x22(x
2
1 − 1) [as −x22 ≥ −1 and x22 ≥ 0]

≥ (1− x21) (1 + x21 − x22)

≥ (1− x21)x
2
1 ≥ 0 [as −x22 ≥ −1 and 1− x21 ≥ 0].

Hence 1−g4 ∈ Cd(K). Observe that K∩G4
1 consists of the 8 contact points

(±1,±1) and (0,±1), (±1, 0). Next let ν∗ be the measure defined by

(3.8) ν∗ = a (δ(−1,1) + δ(1,1)) + b (δ(1,0) + δ(0,1))
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where δx denote the Dirac measure at x and a, b ≥ 0 are chosen to satisfy

2 a + b =

∫

Rn

x41 exp(−g4) dx; 2 a =

∫

Rn

x21x
2
2 exp(−g4) dx,

so that ∫

xα dν∗ =

∫

Rn

xα exp(−g4(x)) dx, |α| = 4.

Of course a unique solution (a, b) ≥ 0 exists since
∫

Rn

x41 exp(−g4) dx

∫

Rn

x42 exp(−g4) dx =

(∫

Rn

x41 exp(−g4) dx

)2

≥

(∫

Rn

x21x
2
2 exp(−g4) dx

)2

.

Therefore the measure ν∗ is indeed as in Theorem 3.2(c) and the proof is
completed. Notice that as predicted by Theorem 3.2(b), ν∗ is supported on

4 ≤
(
n+d−1

d

)
= 5 points. Similarly with g6 as in (3.7) and x ∈ K,

1− g6(x) = 1− x61 − x62 + (x41x
2
2 + x21x

4
2)/2

= (1− x61)/2 + (1− x62)/2 − x41(x
2
1 − x22)/2 − x42(x

2
2 − x21)/2

≥ (1− x61)/2 + (1− x62)/2 − x41(1− x22)/2 − x42(1− x21)/2

[as −x61 ≥ −x41 and −x62 ≥ −x42]

≥ (1− x21)(1 + x21 + x41 − x42)/2 + (1− x22)(1 + x22 + x42 − x41)/2

≥ (1− x21)(x
2
1 + x41)/2 + (1− x22)(x

2
2 + x42)/2 ≥ 0

[as 1− x41 ≥ 0 and 1− x42 ≥ 0].

So again the measure ν∗ defined in (3.8) where a, b ≥ 0 are chosen to satisfy

2 a + b =

∫

Rn

x61 exp(−g6) dx; 2 a =

∫

Rn

x41x
2
2 exp(−g6) dx,

is such that
∫

xα dµ∗ =

∫

Rn

xα exp(−g6(x)) dx, |α| = 6.

Again a unique solution (a, b) ≥ 0 exists because
(∫

Rn

x61 exp(−g6) dx

)(∫

Rn

x21x
4
2 exp(−g6) dx

)

≥

(∫

Rn

x41x
2
2 exp(−g6) dx

)2

.

�

With d = 4, the non convex sublevel set G4
1 = {x : g4(x) ≤ 1} which is

displayed in Figure 2 (left) is a much better approximation of K = [−1, 1]2

than the ellipsoid of minimum volume ξ = {x : ‖x‖2 ≤ 2} that contains
K. In particular, vol(ξ) = 2π ≈ 6.28 whereas vol(G4

1) ≈ 4.32. With d = 6,
the non convex sublevel set G6

1 = {x : g6(x) ≤ 1} which is displayed in
Figure 2 (right) is again a better approximation of K = [−1, 1]2 than the
ellipsoid of minimum volume ξ = {x : ‖x‖2 ≤ 2} that contains K, and as
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Figure 2. K = [−1, 1]2 and G4
1 = {x : x41 + x42 − x21x

2
2 ≤ 1}

(left), G6
1 = {x : x61 + x62 − (x41x

2
2 + x21x

4
2)/2 ≤ 1} (right)

vol(G6
1) ≈ 4.1979 it provides a better approximation than the sublevel set

G4
1 with d = 4.
Finally if K = G6

1 then G4
1 is an optimal solution of P0 with d = 4, that

is G4
1 has minimum volume among all sets G1 ⊃ G6

1 defined by homoge-
neous polynomials g ∈ P[x]4. Indeed first we have solved the polynomial
optimization problem: ρ = infx{1− g4(x) : 1− g6(x) ≥ 0} via the hierarchy
of semidefinite relaxations3 defined in [30, 31] and at the fifth semidefinite
relaxation (i.e. with moments of order 12) we found ρ = 0 with the eight
contact points (±1,±1), (±1, 0), (0,±1) ∈ G4

1 ∩ G6
1 as global minimizers!

This shows (up to 10−9 numerical precision) that G6
1 ⊂ G4

1. Then again the
measure ν∗ defined in (3.8) satisfies Theorem 3.2(b) and so g4 is an optimal
solution of problem P0 with K = G6

1 and d = 4.
At last, the ball G2

1 = {x : (x21 + x22)/2 ≤ 1} is an optimal solution of P0

with d = 2 and we have K ⊂ G6
1 ⊂ G4

1 ⊂ G2
1.

4. The general case

We now consider the more general case where the set G1 is of the form
{x : g(x− a) ≤ 1} =: Ga

1 where a ∈ R
n and g ∈ P[x]d.

For every a ∈ R
n and g ∈ R[x]d (with coefficient vector g ∈ R

s(d)) define
the polynomial ga ∈ R[x]d by x 7→ ga(x) := g(x − a) and its sublevel set
Ga

1 := {x : ga(x) ≤ 1}. The polynomial ga can be written

(4.1) ga(x) = g(x − a) =
∑

α∈Nn
d

pα(a,g)x
α,

where g ∈ R
s(d) and the polynomial pα ∈ R[x,g] is linear in g, for every

α ∈ N
n
d . Consider the following generalization of P0:

P: Let K ⊂ R
n be a compact set not necessarily convex and d ∈ N an

even integer. Find an homogeneous polynomial g of degree d and a point
a ∈ R

n such that the sublevel set Ga
1 := {x : g(x − a) ≤ 1} contains K

and has minimum volume among all such sublevel sets with this inclusion
property.

When d = 2 one retrieves the general (non symmetric) Löwner-John el-
lipsoid problem. For d > 2, an even more general problem would be to find
a (non homogeneous) polynomial g of degree d such that K ⊂ G1 = {x :
g(x) ≤ 1} and G1 has minimum volume among all such set G1 with this
inclusion property. However when g is not homogeneous we do not have an
analogue of Theorem 2.2 for the Lebesgue-volume vol(G1).

3We have used the GloptiPoly software [20] dedicated to solving the generalized problem
of moments.
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So in view of (4.3), one wishes to solve the optimization problem

(4.2) P : ρ = min
a∈Rn,g∈P[x]d

{vol(Ga
1) : 1− ga ∈ Cd(K)},

a generalization of (3.1) where a = 0. In contrast to P0, problem P is
not convex and so computing a global optimal solution is more difficult.
In particular we do not provide an analogue of the numerical scheme for
P0 described in §5 and the results of this section are mostly of theoretical
interest. However we still can show that for every optimal solution (a∗, g∗) ∈
R
n × P[x]d, there is a characterization of Ga∗

1 similar to the one obtained
for P0.

Let K − a denotes the set {x − a : x ∈ K}, and observe that whenever
g ∈ P[x]d,

(4.3) vol(Ga
1) = vol(G0

1) = vol(G1) =
1

Γ(1 + n/d)

∫

Rn

exp(−g(x)) dx.

Theorem 4.1. Let K ⊂ R
n be compact with nonempty interior and consider

the optimization problem P in (4.2).
(a) P has an optimal solution (a∗, g∗) ∈ R

n ×P[x]d.
(b) Let (a∗, g∗) ∈ R

n × P[x]d be an optimal solution of P. If g∗ ∈
int(P[x]d) then there exists a finite Borel measure µ∗ ∈ M(K − a∗)+ such
that

∫

Rn

xα exp(−g∗)dx =

∫

K−a∗

xα dµ∗, ∀|α| = d(4.4)

∫

K−a∗

(1− g∗) dµ∗ = 0; µ∗(K− a∗) =
n

d

∫

Rn

exp(−g∗) dx.(4.5)

In particular, µ∗ is supported on the set V := {x ∈ K − a∗ : g∗(x) =
1} (= K ∩ Ga∗

1 ) and in fact, µ∗ can be substituted with another measure

ν∗ ∈ M(K − a∗)+ supported on at most
(
n+d−1

d

)
contact points of V with

same moments of order d.

The proof is postponed to §7.4

5. A computational procedure

Even though P in (3.1) is a finite-dimensional convex optimization prob-
lem, it is hard to solve for mainly two reasons:

• From Theorem 2.4, the gradient and Hessian of the (strictly) convex
objective function g 7→

∫
exp(−g) requires evaluating integrals of

the form
∫

Rn

xα exp(−g(x)) dx, ∀α ∈ N
n
d ,

a difficult and challenging problem. (And with α = 0 one obtains
the value of the objective function.)
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• The convex cone Cd(K) has no exact and tractable representation to
efficiently handle the constraint 1 − g ∈ Cd(K) in an algorithm for
solving problem (3.1).

However, below we outline a numerical scheme to approximate to any desired
ǫ-accuracy (with ǫ > 0):

- the optimal value ρ of (3.1),
- the unique optimal solution g∗ ∈ P[x]d of P obtained in Theorem 3.2.

5.1. Concerning gradient and Hessian evaluation. To approximate
the gradient and Hessian of the objective function we will use the following
result:

Lemma 5.1. Let g ∈ int(P[x]d) with G1 = {x : g(x) ≤ 1}. Then for all
α ∈ N

n

(5.1)

∫

Rn

xα exp(−g) dx = Γ

(

1 +
n+ |α|

d

)∫

G1

xα dx.

The proof being identical to that of Theorem 2.2 is omitted. So Lemma
5.1 relates in a very simple and explicit manner all moments of the Borel
measure with density exp(−g) on R

n with those of the Lebesgue measure
on the sublevel set G1.

It turns out that in Henrion et al. [21] we have provided a hierarchy
of semidefinite programs4 to approximate as closely as desired, any finite
moment sequence (zα), α ∈ N

n
ℓ , defined by

zα =

∫

Ω
xα dx, α ∈ N

n
ℓ .

where Ω is a compact basic semi-algebraic set of the form {x : gj(x) ≥
0, j = 1, . . . ,m} for some polynomials (gj) ⊂ R[x]. Let us briefly explain
how it works when Ω = G1 and G1 is bounded. Let B ⊃ G1 be a box that
contains G1 and let λ be the restriction of the Lebesgue measure on B of
which moments

λα =

∫

B

xα dx, α ∈ N
n,

are easy to compute. Write B as {x : θi(x) ≥ 0, i = 1, . . . , n } where
x 7→ θi(x) = (ai − xi)(xi − ai) for some scalars (ai, ai) that define the box
B. Then vol(G1) is the optimal value of the optimization problem:

(5.2) sup
µ,ν

{µ(Rn) : µ+ ν = λ; µ(B \G1) = 0, µ, ν ∈ M(B)+ },

4A semidefinite program is a finite-dimensional convex optimization problem which in
canonical form reads: minx{c

T
x : A0 +

∑t
k=1

Akxk � 0}, where c ∈ R
t and the Ak’s are

real symmetric matrices. Importantly, up to arbitrary fixed precision it can be solved in
time polynomial in the input size of the problem.
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where M(B)+ is the space of finite Borel measures on B. The dual of the
above problem reads:

(5.3) inf
p∈R[x]

{

∫

B

p(x)λ(dx) : p(x) ≥ 0 on B; p(x) ≥ 1 on G1 }.

In the dual a minimizing sequence (pk) ⊂ R[x], k ∈ N, approximates the
indicator function 1G1

of the set G1 by polynomials nonnegative on B and
of increasing degree. To approximate vol(G1) we proceed as in [21] and use
the following hierarchy of semidefinite relaxations of (5.2) indexed by k ∈ N:

(5.4)

ρk = sup
y,z

y0

s.t. yα + zα = λα, α ∈ N
n; |α| ≤ 2k

Mk(y),Mk(z) � 0
Mk−d/2(1− g y) � 0
Mk−1(θi z) � 0, i = 1, . . . , n,

where y = (yα) (resp. z = (zα)), α ∈ N
n, is a sequence that approximates

the moment sequences of µ (resp. ν). The matrix Mk(y) is the moment ma-
trix of order k associated with y, whereasMk−d/2(1−g y) (resp. Mk−1(θi y))
is the localizing matrix associated with y and 1− g (resp. θi); see e.g. [21].

For each k ∈ N, (5.4) is a semidefinite program and in [21] it is proved that
(ρk) is monotone nonincreasing and ρk → vol(G1) as k → ∞. In addition,
let yk = (ykα), α ∈ N

n
2k, be an optimal solution of (5.4). Then for each fixed

α ∈ N
n,

ykα →

∫

G1

xα dx, as k → ∞.

For more details, the interested reader is referred to [21]. Not surprisingly, it
is hard to approximate 1G1

by polynomials and in particular this is reflected
by the well-known Gibbs effect in the dual (5.3) (and hence in the dual of
(5.4)), which can make the convergence ρk → vol(G1) slow. Below we show
how one can drastically improve this convergence and fight the Gibbs effect.

Improving the above algorithm. Observe that in (5.4) we have not used
the fact that g is homogeneous of degree d. However from Lemma 1 in
Lasserre [32], for every k ∈ N one has:

(5.5)

∫

{x : g(x)≤1}
xα g(x)k dx =

n+ |α|

n+ kd+ |α|

∫

{x : g(x)≤1}
xα dx.

Therefore if we write g(x) =
∑

β gβx
β , then (5.5) with k = 1 translates into

the linear equality constraints

(5.6)
∑

|β|=d

gβ yα+β =
n+ |α|

n+ d+ |α|
yα, α ∈ N

n,

on the moments (yα) of the Lebesgue measure on G1. So we may and will
include the linear constraints (5.6) in the semidefinite program (5.4), which
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Table 1. Comparing ρk and ρ̃k for the interval [−1/2, 1/2].

k ρk ρ̃k
4 1.689 1.156
6 1.463 1.069
8 1.423 1.025
10 1.382 1.010
12 1.305 1.003
14 1.289 1.001
16 1.267 1.000
18 1.229 1.000
20 1.221 1.000

yields the resulting semidefinite program:

(5.7)

ρ̃k = sup
y,z

y0

s.t. yα + zα = λα, α ∈ N
n; |α| ≤ 2k

Mk(y),Mk(z) � 0
Mk−d/2(1− g y) � 0
Mk−1(θi z) � 0, i = 1, . . . , n
∑

|β|=d

gβ yα+β = n+|α|
n+d+|α|yα, |α| ≤ 2k − d,

and obviously vol(G1) ≤ ρ̃k ≤ ρk for all k. To appreciate how powerful can
be these additional constraints, consider the following two simple illustrative
examples:

Example 1. Let n = 1 and let G1 := {x : 4x2 ≤ 1} ⊂ B = [−1, 1]
so that vol(G1) = 1. Table 1 below displays results obtained by solving
(5.4) and (5.7) respectively. As one may see in Table 1, the convergence
ρk → 1 is rather slow (because of the Gibbs effect in the dual) whereas the
convergence ρ̃k → 1 is very fast. And indeed ρ̃k provides with a much better
approximation of vol(G1) than ρk; already with moments up to order 10
only, ρ̃5 provides with a very good approximation.

Example 2. Let n = 2 and let G1 = {x : ‖x‖2 ≤ 1} be the unit ball
with volume π. Table 1 below displays results obtained by solving (5.4) and
(5.7) respectively. Of course the precision also depends on the size of the
box B that contains G1. And so we have taken a box B = [−a, a]2 with
a ranging from 1 to 2. As one may see in Table 2, ρ̃k is a much better
approximation of π than ρk and already with moments up to order 8 only,
quite good approximations are obtained.

Hence in any minimization algorithm for solving P, and given a current
iterate g ∈ P[x]d, one may approximate as closely as desired the value at g
of the objective function as well as its gradient and Hessian by solving the
semidefinite program (5.7) for sufficiently large k.
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Table 2. Comparing ρk and ρ̃k for the unit sphere.

a \ ρk, ρ̃k ρ3 ρ̃3 ρ4 ρ̃4
2.0 7.63 4.99 7.58 4.01
1.5 6.12 3.72 5.60 3.35
1.4 5.71 3.55 5.38 3.27
1.3 5.38 3.41 5.04 3.21
1.2 5.02 3.31 4.70 3.17
1.1 4.56 3.36 4.32 3.15
1.0 3.91 3.20 3.87 3.144

5.2. Concerning the convex cone Cd(K). We here assume that the com-
pact (and non necessarily convex) set K ⊂ R

n is a basic semi-algebraic set
defined by

(5.8) K = {x ∈ R
n
+ : wj(x) ≥ 0, j = 1, . . . , s},

for some given polynomials (wj) ⊂ R[x]. Denote by Σk ⊂ R[x]2k the convex
cone of SOS (sum of squares) polynomials of degree at most 2k, and let w0

be the constant polynomial equal to 1, and vj := ⌈deg(wj)/2⌉, j = 0, . . . , s.
With k fixed, arbitrary, we now replace the condition 1− g ∈ Cd(K) with

the stronger condition 1− g ∈ Ck (⊂ Cd(K)) where

(5.9) Ck =







s∑

j=0

σj wj : σj ∈ Σk−vj , j = 0, 1, . . . , s






.

It turns out that membership in Ck translates into Linear Matrix Inequali-
ties5 (LMIs) on the coefficients of the polynomials g and the SOS σj’s; see
e.g. [31]. If K has nonempty interior then the convex cone Ck is closed.

Assumption 1 (Archimedean assumption). There exist M > 0 and k ∈ N

such that the quadratic polynomial x 7→M − ‖x‖2 belongs to Ck.

Notice that Assumption 1 is not restrictive. Indeed, K being compact,
if one knows an explicit value M > 0 such that K ⊂ {x : ‖x‖ < M}, then
its suffices to add to the definition of K the redundant quadratic constraint
ws+1(x) ≥ 0, where ws+1(x) :=M2 − ‖x‖2.

Under Assumption 1, Cd(K) =
∞⋃

k=0

Ck, that is, the family of convex cones

(Ck), k ∈ N, provide a converging sequence of (nested) inner approximations
of the larger convex cone Cd(K).

5A Linear Matrix Inequality (LMI) is a constraint of the form A(x) := A0 +
∑t

ℓ=1
Aℓxℓ � 0 where each Aℓ, ℓ = 0, . . . , t, is a real symmetric matrix; so each en-

try of the real symmetric matrix A(x) is affine in x ∈ R
t. An LMI always define a convex

set, i.e., the set {x ∈ R
t : A(x) � 0} is convex.
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5.3. A numerical scheme. In view of the above it is natural to consider
the following hierarchy of convex optimization problems (Pk), k ∈ N, where
for each fixed k:

(5.10)

ρk = min
g,σj

∫

Rn

exp(−g) dx

s.t. 1− g =

s∑

j=0

σjwj

gα = 0, ∀|α| < d
g ∈ R[x]d; σj ∈ Σk−vj , j = 0, . . . , s.

Of course the sequence (ρk), k ∈ N, is monotone non increasing and ρk ≥ ρ
for all k. Moreover, for each fixed k ∈ N, Pk is a convex optimization
problem which consists of minimizing a strictly convex function under LMI
constraints.

From Corollary 2.3,
∫

Rn exp(−g)dx < ∞ if and only if g ∈ P[x]d and
so the objective function also acts as a barrier for the convex cone P[x]d.
Therefore, to solve Pk one may use first-order or second-order (local min-
imization) algorithms, starting from an initial guess g0 ∈ P[x]d. At any
current iterate g ∈ P[x]d of such an algorithm one may use the methodol-
ogy described in §5.1 to approximate the objective function

∫
exp(−g) as

well as its gradient and Hessian. Of course as the gradient and Hessian are
only approximated, some care is needed to ensure convergence of such an
algorithm. For instance one might try to adapt ideas like the ones described
in d’Aspremont [2] where for certain optimization problems with noisy gra-
dient information, first-order algorithms with convergence guarantees have
been investigated in detail.

Theorem 5.2. Let K in (5.8) be compact with nonempty interior and let
Assumption 1 hold. Then there exists k0 such that for every k ≥ k0, problem
Pk in (5.10) has a unique optimal solution g∗k ∈ P[x]d.

Proof. Firstly, Pk has a feasible solution for sufficiently large k. Indeed
consider the polynomial x 7→ g0(x) =

∑n
i=1 x

d
i which belongs to P[x]d.

Then as K is compact, M − g0 > 0 on K for some M and so by Putinar’s
Positivstellensatz [38], 1−g0/M ∈ Ck for some k0 (and hence for all k ≥ k0).
Hence g0/M is a feasible solution for Pk for all k ≥ k0. Of course, as
Ck ⊂ Cd(K), every feasible solution g ∈ P[x]d satisfies 0 ≤ g ≤ 1 on K.
So proceeding as in the proof of Theorem 3.2 and using the fact that Ck is
closed, the set

{ g ∈ P[x]d ∩ Ck :

∫

Rn

exp(−g)dx ≤

∫

Rn

exp(−
g0
M

)dx },

is compact. And as the objective function is strictly convex, the optimal
solution g∗k ∈ P[x]d ∩Ck is unique (but the representation of 1− g∗k in (5.10)
is not unique in general). �
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We now consider the asymptotic behavior of the solution of (5.10) as
k → ∞.

Theorem 5.3. Let K in (5.8) be compact with nonempty interior and let
Assumption 1 hold. If ρ (resp. ρk) is the optimal value of P (resp. Pk)
then ρ = lim

k→∞
ρk. Moreover, for every k ≥ k0, let g

∗
k ∈ P[x]d be the unique

optimal solution of Pk. Then as k → ∞, g∗k → g∗ where g∗ is the unique
optimal solution of P.

Proof. By Theorem 3.2, P has a unique optimal solution g∗ ∈ P[x]d. Let
ǫ > 0 be fixed, arbitrary. As 1−g∗ ∈ Cd(K), the polynomial 1−g∗/(1+ǫ) is
strictly positive on K, and so by Putinar’s Positivstellensatz [38], 1−g∗/(1+
ǫ) belongs to Ck for all k ≥ kǫ for some integer kǫ. Hence the polynomial
g∗/(1 + ǫ) ∈ P[x]d is a feasible solution of Pk for all k ≥ kǫ. Moreover, by
homogeneity,

∫

Rn

exp(−
g∗

1 + ǫ
) dx = (1 + ǫ)n/d

∫

Rn

exp(−g∗) dx

= (1 + ǫ)n/dρ.

This shows that ρk ≤ (1+ ǫ)n/dρ for all k ≥ kǫ. Combining this with ρk ≥ ρ
and the fact that ǫ > 0 was arbitrary, yields the convergence ρk → ρ as
k → ∞.

Next, let y ∈ int(Cd(K)∗) be as in the proof of Theorem 3.2. From
1− g∗k ∈ Ck we also obtain 〈y, 1 − g∗k〉 ≥ 0, i.e.,

y0 ≥ 〈y, g∗k〉, ∀k ≥ k0,

Recall that the set {g ∈ Cd(K) : 〈y, g〉 ≤ y0} is compact. Therefore there
exists a subsequence (kℓ), ℓ ∈ N, and g̃ ∈ Cd(K) such that g∗kℓ → g̃ as

ℓ→ ∞. In particular, 1− g̃ ∈ Cd(K) and g̃α = 0 whenever |α| < d (i.e., g̃ is
homogeneous of degree d). Moreover, one also has the pointwise convergence
limℓ→∞ g∗kℓ(x) = g̃(x) for all x ∈ R

n. Hence by Fatou’s lemma,

ρ = lim
ℓ→∞

ρkℓ = lim
ℓ→∞

∫

Rn

exp(−g∗kℓ(x))dx

≥

∫

Rn

lim inf
ℓ→∞

exp(−g∗kℓ(x))dx

=

∫

Rn

exp(−g̃(x))dx ≥ ρ,

which proves that g̃ is an optimal solution of P, and by uniqueness of the
optimal solution, g̃ = g∗. As (gkℓ), ℓ ∈ N, was an arbitrary converging
subsequence, the whole sequence (g∗k) converges to g∗. �

Remark 5.4. If desired one may also impose g to be convex (so that G1

is also convex) by simply requiring zT∇2g(x)z ≥ 0 for all (x, z). Then one
may enforce such a condition by the stronger condition (x, z) 7→ zT∇2g(x)z
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is SOS (i.e., is in Σ[x, z]d+1). Alternatively, if one considers sets G1 ⊂ B

where B is some sufficient large box containing K, one may also use the
weaker convexity condition

z∇2g(x)z ≥ 0 for all (x, z) ∈ B× { z : ‖z‖2 = 1 }.

By using a Putinar positivity certificate the latter also amounts to adding
additional LMIs to problem (5.10) (which remains convex).

6. Conclusion

We have considered non convex generalizations P0 and P of the Löwner-
John ellipsoid problem where we now look for an homogeneous polynomial
g of (even) degree d > 2. Importantly, neither K not the sublevel set
G1 associated with g are required to be convex. However both P0 and P

have an optimal solution (unique for P0) and a characterization in terms
of contact points in K ∩ G1 is also obtained as in Löwner-John’s ellipsoid
Theorem. Crucial is the fact that the Lebesgue volume of G1 is a strictly
convex function of the coefficients of g. This latter fact also permits to define
a hierarchy of convex optimization problems to approximate as closely as
desired the optimal solution of P0.

Acknowledgement. This work was partially supported by a grant from
theGaspar Monge Program for Optimization and Operations Research (PGMO)
of the Fondation Mathématique Jacques Hadamard (France).

7. Appendix

7.1. First-order KKT-optimality conditions. Consider the finite di-
mensional optimization problem:

inf { f(x) : Ax = b; x ∈ C },

for some real matrix A ∈ R
m×n, vector b ∈ R

m, some closed convex cone
C ⊂ R

n (with dual cone C∗ = {y : yTx ≥ 0, ∀x ∈ C }) and some convex and
differentiable function f with domain D. Suppose that C has a nonempty
interior int(C) and Slater’s condition holds, that is, there exists x0 ∈ D ∩
int(C) such that Ax0 = b. The normal cone at a point 0 6= x ∈ C is the
set NC(x) = {y ∈ C∗ : 〈y,x〉 = 0} (see e.g. [25, p. 189]).

Then by Theorem 5.3.3, p. 188 in [26], x∗ ∈ C is an optimal solution if
and only if there exists (λ,y) ∈ R

m ×NC(x
∗) such that:

(7.1) Ax∗ = b; ∇f(x∗) +ATλ = y

and 〈x∗,y〉 = 0 follows because y ∈ NC(x
∗).
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7.2. Measures with finite support. We restate the following important
result stated in [29, Theorem 1] and [1, Theorem 2.1.1, p. 39].

Theorem 7.1 ([1, 29]). Let f1, . . . , fN be real-valued Borel measurable func-
tions on a measurable space Ω and let µ be a probability measure on Ω such
that each fi is integrable with respect to µ. Then there exists a probability ν
with finite support in Ω and such that:

∫

Ω
fi(x)µ(dx) =

∫

Ω
fi(x) ν(dx), i = 1 . . . , N.

One can even attain that the support of ν has at most N + 1 points.

In fact if M(Ω)+ denotes the space of probability measures on Ω, then
the moment space

YN := {y =

(∫

Ω
fk(x)dµ(x)

)

, k = 1, . . . , N, for some µ ∈ M(Ω)+}

is the convex hull of the set f(Ω) = {(f1(x), . . . , fN (x)) : x ∈ Ω} and each
point y ∈ YN can be represented as the convex hull of at most N + 1 point
f(xi), i = 1, . . . , N + 1. (See e.g. §3, p. 29 in Kemperman [28].)

In the proof of Theorem 3.2 one uses Theorem 7.1 with the fi’s being
all monomials (xα) of degree equal to d (and so N =

(n+d−1
d

)
). We could

also use Tchakaloff’s Theorem [8] but then we would potentially need
(n+d
d

)

points. An alternative would be to use Tchakaloff’s Theorem after “de-
homogenizing” the measure µ so that n-dimensional moments of order |α| =
d become (n − 1)-dimensional moments of order |α| ≤ d, and one retrieves

the bound
(n−1+d

d

)
.

7.3. Proof of Theorem 3.2.

Proof. (a) As P is a minimization problem, its feasible set { g ∈ H[x]d :
1− g ∈ Cd(K) } can be replaced by the smaller set

F :=






g ∈ H[x]d :

∫

Rn

exp(−g(x)) dx ≤

∫

Rn

exp(−g0(x)) dx

1− g ∈ Cd(K)






,

for some g0 ∈ P[x]d. Notice that F ⊂ P[x]d and F is a closed convex set
since the convex function g 7→

∫

Rn exp(−g)dx is continuous on the interior
of its domain.

Next, let z = (zα), α ∈ N
n
d , be a (fixed) element of int(Cd(K)∗) (hence

z0 > 0). By Lemma 2.6 such an element exists and 〈z,g〉 ≥ 0 (as g ∈ P[x]d is
nonnegative). Next there is some ǫ > 0 for which z±ǫ eα ∈ Cd(K)∗ for every
α with |α| ≤ d. Then the constraint 1−g ∈ Cd(K) implies 〈z±ǫ eα, 1−g〉 ≥ 0
(i.e. 〈z± ǫ eα, e0−g〉 ≥ 0). Equivalently z0−〈z,g〉 ≥ ǫ|gα| for every |α| = d,
i.e., g is bounded and therefore the set F is a compact convex set. Finally,
since g 7→

∫

Rn exp(−g(x))dx is strictly convex, it is continuous on the interior
of its domain and so it is continuous on F . Hence problem P has a unique
optimal solution g∗ ∈ P[x]d.
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(b) We may and will consider any homogeneous polynomial g as an ele-
ment of R[x]d whose coefficient vector g = (gα) is such that g∗α = 0 whenever
|α| < d. And so Problem P is equivalent to the problem

(7.2) P ′ :







ρ = inf
g∈R[x]d

∫

Rn

exp(−g(x)) dx

s.t. gα = 0, ∀α ∈ N
n
d ; |α| < d

1− g ∈ Cd(K),

where we replaced g ∈ P[x]d with the equivalent constraints g ∈ R[x]d and
gα := 0 for all α ∈ N

n
d with |α| < d. Next, doing the change of variable

h = 1− g, P’ reads:

(7.3) P ′ :







ρ = inf
h∈R[x]d

∫

Rn

exp(h(x) − 1) dx

s.t. hα = 0, ∀α ∈ N
n
d ; 0 < |α| < d

h0 = 1
h ∈ Cd(K),

As K is compact, there exists θ ∈ P[x]d such that 1 − θ ∈ int(Cd(K)),
i.e., Slater’s condition holds for the convex optimization problem P ′. Indeed,
choose x 7→ θ(x) :=M−1‖x‖d for M > 0 sufficiently large so that 1− θ > 0
on K. Hence with ‖g‖1 denoting the ℓ1-norm of the coefficient vector of g
(in R[x]d), there exists ǫ > 0 such that for every h ∈ B(θ, ǫ)(:= {h ∈ R[x]d :
‖θ − h‖1 < ǫ}), the polynomial 1− h is (strictly) positive on K.

Therefore, if g∗ ∈ int(P[x]d) the unique optimal solution (1− g∗) =: h∗ ∈
R[x]d of P’ in (7.3) satisfies the Karush-Kuhn-Tucker (KKT) optimality
conditions (7.1) which for problem (7.3) read:

∫

Rn

xα exp(h∗(x)− 1) dx = y∗α, ∀|α| = d(7.4)

∫

Rn

xα exp(h∗(x)− 1) dx + γα = y∗α, ∀ |α| < d(7.5)

〈h∗,y∗〉 = 0; h∗0 = 1; h∗α = 0, ∀ 0 < |α| < d(7.6)

for some y∗ = (y∗α), α ∈ N
n
d , in the dual cone Cd(K)∗ ⊂ R

s(d) of Cd(K), and
some vector γ = (γα), 0 < |α| < d. By Lemma 2.5,

Cd(K)∗ = {y ∈ R
s(d) : ∃µ ∈ M(K)+ s.t. yα =

∫

K

xα dµ, α ∈ N
n
d },

and so (3.2) is just (7.4) restated in terms of µ∗.
Next, the condition 〈h∗,y∗〉 = 0 (or equivalently, 〈1− g∗,y∗〉 = 0), reads:

∫

K

(1− g∗) dµ∗ = 0,

which combined with 1 − g∗ ∈ Cd(K) and µ∗ ∈ M(K)+, implies that µ∗ is
supported on K ∩ {x : g∗(x) = 1} = K ∩G∗

1.
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Next, let s :=
∑

|α|=d g
∗
αy

∗
α (= y∗0). From 〈1 − g∗, µ∗〉 = 0, the measure

s−1µ∗ =: ψ is a probability measure supported on K ∩ G∗
1, and satisfies

∫
xαdψ = s−1y∗α for all |α| = d (and 〈1− g∗, ψ〉 = 0).
Hence by Theorem 7.1 there exists an atomic probability measure ν∗ ∈

M(K ∩G∗
1)+ such that

∫

K∩G∗

1

xαdν∗(x) =

∫

K∩G∗

1

xαdψ(x) = s−1 y∗α, ∀ |α| = d.

In addition ν∗ may be chosen to be supported on at most N =
(n+d−1

d

)

points in K ∩G∗
1 and not N + 1 points as predicted by Theorem 7.1. This

is because one among the N conditions
∫

K∩G∗

1

xα dν∗ = s−1 yα, |α| = d,

is redundant as 〈g∗,y〉 = y0 and ν
∗ is supported on K∩G∗

1. In other words,
y is not in the interior of the moment space YN . Hence in (3.2) the measure
µ∗ can be substituted with the atomic measure s ν∗ supported on at most
(n+d−1

d

)
contact points in K ∩G∗

1.
To obtain µ∗(K) = n

d

∫

Rn exp(−g∗), multiply both sides of (7.4)-(7.5) by
h∗α for every α 6= 0, sum up and use 〈h∗,y∗〉 = 0 to obtain

−y∗0 =
∑

α6=0

h∗α y
∗
α =

∫

Rn

(h∗(x)− 1) exp(h∗(x)− 1) dx

= −

∫

Rn

g∗(x) exp(−g∗(x)) dx

= −
n

d

∫

exp(−g∗(x)) dx,

where we have also used (2.5).
(c) Let µ∗ :=

∑s
i=1 λiδxi where δxi is the Dirac measure at the point

xi ∈ K, i = 1, . . . , s. Next, let y∗α :=
∫
xαdµ∗ for all α ∈ N

n
d , so that

y∗ ∈ Cd(K)∗. In particular y∗ and g∗ satisfy

〈1− g∗,y∗〉 =

∫

K

(1− g∗)dµ∗ = 0,

because g∗(xi) = 1 for all i = 1, . . . , s. In other words, the pair (g∗,y∗) sat-
isfies the KKT-optimality conditions associated with the convex problem P.
But since Slater’s condition holds for P, those conditions are also sufficient
for g∗ to be an optimal solution of P, the desired result �

7.4. Proof of Theorem 4.1.

Proof. First observe that (4.2) reads

(7.7) P : min
a∈Rn

{

min
g∈P[x]d

{vol(Ga
1) : 1− ga ∈ Cd(K)}

}

,
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and notice that the constraint 1−ga ∈ C(K) is the same as 1−g ∈ C(K−a).
And so for every a ∈ R

n, the inner minimization problem

min
g∈P[x]d

{vol(Ga
1) : 1− ga ∈ Cd(K)}

of (7.7) reads

(7.8) ρa = min
g∈P[x]d

{vol(G1) : 1− g ∈ Cd(K− a)}.

From Theorem 3.2 (with K − a in lieu of K), problem (7.8) has a unique
minimizer ga ∈ P[x]d with value ρa =

∫

Rn exp(−ga)dx =
∫

Rn exp(−gaa)dx.

Therefore, in a minimizing sequence (aℓ, g
aℓ) ⊂ R

n × P[x]d, ℓ ∈ N, for
problem P in (4.2) with

ρ = lim
ℓ→∞

∫

Rn

exp(−gaℓ)dx,

we may and will consider that for every ℓ, the homogeneous polynomial
gaℓ ∈ P[x]d) solves the inner minimization problem (7.8) with aℓ fixed. For
simplicity of notation rename gaℓ as gℓ and gaℓ

aℓ
(= gaℓ(x− aℓ)) as g

ℓ
aℓ
.

As observed in the proof of Theorem 3.2, there is z ∈ int(Cd(K)∗) such
that 〈1 − gℓaℓ

, z〉 ≥ 0 and by Corollary I.1.6 in Faraut et Korányi [15], the
set {h ∈ Cd(K) : 〈z, h〉 ≤ z0} is compact.

Also, aℓ can be chosen with ‖aℓ‖ ≤M for all ℓ (and some M), otherwise
the constraint 1 − gaℓ

∈ Cd(K) would impose a much too large volume
vol(Gaℓ

1 ).
Therefore, there is a subsequence (ℓk), k ∈ N, and a point (a∗, θ∗) ∈

R
n × Cd(K) such that

lim
k→∞

aℓk = a∗; lim
k→∞

(gℓkaℓk
)α = θ∗α, ∀α ∈ N

n
d .

Recall the definition (4.1) of gℓaℓ
(x) = gℓ(x− aℓ) for the homogeneous poly-

nomial gℓ ∈ P[x]d with coefficient vector gℓ, i.e.,

(gℓaℓ
)α = pα(aℓ,g

ℓ), ∀α ∈ N
n
d ,

for some polynomials (pα) ⊂ R[x,g], α ∈ N
n
d . In particular, for every α ∈ N

n
d

with |α| = d, pα(aℓ,g
ℓ) = (gℓ)α. And so for every α ∈ N

n
d with |α| = d,

θ∗α = lim
k→∞

= (gℓk)α.

If we define the homogeneous polynomial g∗ of degree d by (g∗)α = θ∗α for
every α ∈ N

n
d with |α| = d, then

lim
k→∞

(gℓkaℓk
)α = lim

k→∞
pα(aℓk ,g

ℓk), = pα(a
∗,g∗), ∀α ∈ N

n
d .

This means that for every α ∈ N
n
d ,

θ∗(x) = g∗(x− a∗), x ∈ R
n.
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In addition, as gℓk → g∗ as k → ∞, one has the pointwise convergence
gℓk(x) → g∗(x) for all x ∈ R

n. Therefore, by Fatou’s Lemma (see e.g. Ash
[3]),

ρ = lim
k→∞

∫

Rn

exp(−gℓk) dx ≥

∫

Rn

lim inf
k→∞

exp(−gℓk) dx =

∫

Rn

exp(−g∗) dx,

which proves that (a∗, g∗) is an optimal solution of (4.2).
In addition g∗ ∈ P[x]d is an optimal solution of the inner minimization

problem in (7.8) with a := a∗. Otherwise an optimal solution h ∈ P[x]d
of (7.8) with a = a∗ would yield a solution (a∗, h) with associated cost
∫

Rn exp(−h) strictly smaller than ρ, a contradiction.
Hence by Theorem 3.2 (applied to problem (7.8)) there is a finite Borel

measure µ∗ ∈ M(K− a∗)+ such that
∫

Rn

xα exp(−g∗)dx =

∫

K−a∗

xα dµ∗, ∀|α| = d

∫

K−a∗

(1− g∗) dµ∗ = 0; µ(K− a∗) =
n

d

∫

Rn

exp(−g∗) dx.

And so µ∗ is supported on the set

V = {x ∈ K− a∗ : g∗(x) = 1} = {x ∈ K : g∗(x− a∗) = 1 } = K ∩Ga∗

1 .

Invoking again [1, Theorem 2.1.1, p. 39], there exists an atomic measure

ν∗ ∈ M(K − a∗)+ supported on at most
(n−1+d

d

)
of K − a∗ with same

moments of order d as µ∗. �
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