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Chapter 10

Exact Modal Methods

Boris Gralak

CNRS, Aix-Marseille Université, École Centrale Marseille, Institut Fresnel,
13397 Marseille Cedex 20, France
boris.gralak@fresnel.fr

10.1 Introduction

Exact modal method (EMM) has been proposed to take advantage of geometry of lamellar grat-
ings. These gratings are made of rectangular rods periodically spaced which can be considered
locally as periodic multilayered stacks (see figure 10.1). This simple geometry makes it possible
to expand the electromagnetic field on the basis of “exact modes”, and to obtain an exact rep-
resentation of the permittivity. In this particular case, EMM can be more efficient than similar
methods based on Fourier expansion (coupled-wave method [1] or Fourier modal method [2, 3])
which may lead to poor convergence due to the discontinuous nature of both electromagnetic
field and permittivity. This advantage of EMM becomes more important when the permittivity
contrast is high, e.g. for metallic lamellar gratings.

x3

0

h

substrate

vacuum (air)

. . . . . .

Figure 10.1: A lamellar grating made of a single lamellar layer on a substrate. The region cor-
responding to the lamellar layer, between the planes x3 = 0 and x3 = h, can be considered as the
multilayered stack on the left.

Exact modal method has been introduced in 1981 in order to solve Maxwell’s equations in
presence of lamellar gratings made of dielectrics [4] and metals [5, 6, 7]. Since these pioneering
works, a major contribution to this method is certainly its rigorous extension to conical mount-
ings [8], on which is based an EMM for three-dimensional woodpile structures [9]. Another
major development is the introduction of perfectly matched layers in order to model aperiodic
systems met in integrated optics [10] (information can be found on the website of CAMFR).

In this chapter, a rigorous formulation of the exact modal method for lamellar structures is
presented. In section 10.3, a special attention is paid to the continuation of the electromagnetic
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field inside a lamellar layer. In combination with the boundary conditions, this continuation
provides a large class of solutions of Maxwell’s equations in presence of lamellar gratings. In
section 10.4, it is shown that, in each lamellar layer, there is a decoupling of the vector field
equations into two independent scalar equations, which correspond to the ones of a multilayered
stack (see figure 10.1). Numerical stacking algorithms are presented in section 10.5 and a
numerical illustration of the EMM efficiency is proposed in section 10.6. Finally, the techniques
used for the calculation of the exact modes and the associated exact eigenvalues are reported in
the appendix (section 10.7).

Note that the important extensions to woodpile structures [9] and to lamellar gratings
including infinitely conducting metal [11] are not considered in this book chapter. These cases
will be however included in the next version.

10.2 Notations

Throughout this chapter an orthonormal basis (eee1,eee2,eee3) is used: every vector xxx in R3 is de-
scribed by its three components x1, x2 and x3. It is shown how to obtain in the presence of a
stack of lamellar layers, a large class of solutions EEE of the Helmholtz equation[

ω
2− ε

−1
∇∇∇×µ

−1
∇∇∇×

]
EEE = 000 , (10.1)

where ε is the permittivity, µ is the permeability, ω is the frequency and ∇∇∇× is the curl operator.
All the media considered in this chapter are isotropic, and thus the permittivity and permeability
reduce to scalar functions. The considered structure is independent of the variable x2, and x1-
periodic with spatial period ddd = deee1:

ε(xxx+ddd) = ε(xxx) = ε(x1,x3) , µ(xxx+ddd) = µ(xxx) = µ(x1,x3) , xxx ∈ R3 . (10.2)

The unit cell associated with this grating is [0,d] and the one-dimensional lattice is
{

nd
∣∣n∈ Z

}
.

Then, a lamellar grating is a stack in the direction x3 of lamellar layers where ε and µ are both
functions of the single variable x1 (figure 10.2). In practice, each lamellar layer is made of
infinite parallel rods with rectangular cross section (figure 10.2): the functions ε and µ are
piecewise constant of the solely variable x1.

x3

x1

x2d

Figure 10.2: A lamellar grating made of a single lamellar layer on a substrate.

In order to obtain a set of first order differential equations from (10.1) a second field is
defined:

HHH = (ωµ)−1
∇∇∇×EEE . (10.3)

Note that this quantity differs from the usual “harmonic HHH field” by the complex number i.
Solutions EEE, HHH are investigated in the space of fields whose restrictions in every horizontal



B. Gralak: Exact Modal Methods 10.3

plane (normal to eee3) are square integrable:∫
R2

∣∣FFF(x1,x2,x3)
∣∣2dx1dx2 < ∞ , x3 ∈ R , (10.4)

where FFF = EEE,HHH.
The first consequence of (10.4) is the possibility to perform a decomposition of the prob-

lem to take advantage of the spatial invariances of the system: a Fourier decomposition with
respect to the variable x2,

FFF −→ F̂FF(x1,k2,x3) =
1

2π

∫
R

exp[−ik2x2]FFF(x1,x2,x3)dx2 , (10.5)

and a Floquet-Bloch decomposition with respect to the variable x1,

F̂FF −→ F̃FF(k1,x1,k2,x3)
1

2π
∑

n∈Z
exp[−ik1nd]F̂FF(x1 + pd,k2,x3) , (10.6)

where k1 is the Bloch wave vector in the first Brillouin zone [−π/d,π/d]. Thus solutions ẼEE, H̃HH
satisfy ∫

[−π/d,π/d]

∣∣F̃FF(k1,x1,k2,x3)
∣∣2dx1 < ∞ , x1,k2,x3 ∈ R , (10.7)

with the partial Bloch boundary condition

F̃FF(k1,x1 +d,k2,x3) = exp[ik1d]F̃FF(k1,x1,k2,x3) , (10.8)

where k1 is fixed in [−π/d,π/d].
The second consequence of (10.4) [or (10.7)] is that the restrictions to every horizontal

plane of ∇∇∇×EEE and ∇∇∇×HHH are also locally square integrable [from (10.1,10.3)]. Then, for all
i, j = 1,2,3 and i 6= j, Ei and Hi are continuous functions of the variable x j. In particular, the
tangential components E1, E2, H1 and H2 of EEE and HHH are continuous functions of the variable
x3. It follows that it is possible to solve Maxwell’s equations in a stack of layers by the following
two steps: the first step consists in solving Maxwell’s equations in each layer independently and
then the second step consists in connecting each independent solution using the continuity of
E1, E2, H1 and H2.

With the definition (10.3), equation (10.1) is equivalent to the set of first order equations

EEE = (ωε)−1
∇∇∇×HHH , HHH = (ωµ)−1

∇∇∇×EEE . (10.9)

Let the 2×2 matrix σ and the two-components vector Fj defined by

σ = ω

[
0 µ

ε 0

]
, Fj =

[
Ẽ j
H̃ j

]
, j = 1,2,3 . (10.10)

Then, the first order equations (10.9) can be developed as

F1 = σ−1[∂2F3−∂3F2
]
,

F2 = σ−1[∂3F1−∂1F3
]
,

F3 = σ−1[∂1F2−∂2F1
]
,

(10.11)

where ∂ j is the partial derivative with respect to the variable x j ( j = 1,2,3). This last set of
equations is exactly the same as (10.9) and, with some abuse of notations, it can written in the
compact way FFF = σ−1∇∇∇×FFF , with FFF = (F1,F2,F3).



10.4 Gratings: Theory and Numeric Applications, 2012

10.3 Continuation of the electromagnetic field

In this section two different formulations are presented to solve the equation FFF = σ−1∇∇∇×FFF
in a lamellar layer located between the planes x3 = 0 and x3 = h. In practice, this solution is
expressed as a relationship between FFF(0) and FFF(h). Note that the formulations presented in this
section remain valid in the general case of cross gratings with two-dimensional periodicity [2].

10.3.1 Direct formulation: the transfer matrix

The starting point is the set of equations (10.11). Eliminating the components F3, one obtains

∂3F = iM F , F =
[

F1
F2

]
, M =−i

[
−∂1σ−1∂2 σ +∂1σ−1∂1
−σ −∂2σ−1∂2 ∂2σ−1∂1

]
. (10.12)

For a lamellar layer located between the planes x3 = 0 and x3 = h (see figure 10.1), the functions
ε and µ are x3-independent for x3 in [0,h]: then the matrix σ and the operator-valued matrix
M are also x3-independant for x3 in [0,h]. Let L be the x3-independant operator valued matrix
which coincides with M in this single layer:

L = M(x3) , x3 ∈ [0,h] . (10.13)

In a first step, it is assumed that (see the end of section 10.4 for a justification) the matrix L has
a diagonal form and can be written as

L = V λ V−1 , (10.14)

where the matrix V contains the eigenvectors V±,n of L, and λ is the diagonal matrix made of
the associated eigenvalues λ±,n:

LV±,n = λ±,nV±,n . (10.15)

The sets of eigenvectors and eigenvalues are split into two parts according to the sign of the
imaginary part of λ±,n: Imλ+,n > 0 and Imλ−,n < 0. Let λ+ (respectively λ−) be the diagonal
matrices containing the eigenvalues λ+,n > 0 of L (respectively λ−,n > 0): then

λ =
[

λ+ 0
0 λ−

]
, Imλ+ > 0 , Imλ− < 0 . (10.16)

This last condition on the imaginary part of eigenvalues is always realized if there is some
absorption, i.e. Imσ > 0, or if a small positive imaginary part is added to the frequency ω (in
the later case the limit ω = limη↓0(ω + iη) is considered [12, 13]). The combination of (10.12)
and (10.13) leads to the equation

∂3F(x3) = iLF(x3) , x3 ∈ [0,h] , (10.17)

where the dependence on other variables has been omitted. Since L is x3-independent, the
“formal” solution of this equation is just

F(x3) = exp[iLx3]F(0) , x3 ∈ [0,h] . (10.18)
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This solution is denominated by “formal” since, at this stage, it is still necessary to check if it
exists. Using the diagonal form (10.14) of the operator L, the expression (10.18) becomes

F(x3) = V exp[iλx3]V−1F(0) . (10.19)

Actually, the diagonal matrix exp[iλx3] is made of the two parts exp[iλ±x3] which have different
behaviour. From (10.16), the part exp[iλ+x3] is bounded by exp[−Imλ+x3] < 1. On the contrary,
the part exp[iλ−x3] is not bounded and, in general, the corresponding coefficients are growing
towards infinity like exponential functions. Consequently, the transfer matrix T (x3) defined by

F(x3) = T (x3)F(0) , T (x3) = V exp[iλx3]V−1 , (10.20)

has “infinite” coefficients and thus expressions like (10.18), (10.19) and (10.20) have to be
considered as purely “formal” and have to be handled cautiously. Numerically, the transfer
matrix is truncated and, because its coefficients tend to infinity like exponential functions, it
presents numerical instabilities which makes it difficult to use it. A numerical solution has been
found to solve this problem with the definition of the S- and R-algorithms [14] (see section 10.5
for the numerical solution in the present case).

Finally, notice that the transfer matrix is occasionally derived from the matrix L2 instead
of L. Indeed, the assumption (10.14) on the diagonal form of L might be too strong and not
rigorously true. According to notations (10.14), we denote by V and λ 2 the matrices containing
the eigenvectors and eigenvalues of L2:

L2 = V λ
2V−1 . (10.21)

In that case, it used that equations (10.12) and (10.13) imply

∂
2
3 F =−L2F , x3 ∈ [0,h] . (10.22)

The combination of the two last equations leads to

F(x3) = V cos[λx3]V−1F(0)+V λ
−1 sin[λx3

]
V−1(∂3F)(0) . (10.23)

Replacing (∂3F)(0) by iLF(0), one obtains for the transfer matrix the following “formal” ex-
pression

T (x3) = V cos[λx3]V−1 + iV λ
−1 sin[λx3]V−1L . (10.24)

This equation is not “formally” equivalent to the first expression (10.20) derived from L. This
equivalence requires the assumption (10.14) to become true, so that L can be replaced by V λV−1

above (and next the formal identity cos[λx3]+ isin[λx3] = exp[iλx3] has to be used).

10.3.2 Rigorous derivation of the continuation procedure

A rigorous formulation is based on the use of the Fourier transform with respect to the variable
x3 defined by

F [F ](k3) =
1

2π

∫
R

exp[−ik3x3]F(x3)dx3 . (10.25)

The function F is then deduced from its Fourier transform F [F ] by

F(x3) =
∫

R
exp[ik3x3]F [F ](k3)dk3 . (10.26)
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It is not suitable to perform directly the Fourier transform of the equation (10.12) since the
matrix σ (and then M) is not independent of x3 in R. However, if equation (10.12) is multiplied
by the characteristic function Ψ of the lamellar layer [so Ψ(x3) = 1 for x3 in [0,h] and vanishes
otherwise], then

Ψ(x3)∂3F(x3) = Ψ(x3)iM F(x3) = Ψ(x3)iLF(x3) = iLΨ(x3)F(x3) . (10.27)

After this multiplication, a partial differential equation with the x3-independent matrix L is
obtained. The Fourier transform (10.25) of Ψ∂3F is

F [Ψ∂3F ](k3) =
1

2π

∫
R

exp[−ik3x3]Ψ(x3)∂3F(x3)dx3

=
1

2π

∫ h

0
exp[−ik3x3]∂3F(x3)dx3

=
1

2π

{
exp[−ik3h]F(h)−F(0)

}
+ ik3F [ΨF ](k3) ,

(10.28)

where the last line comes from an integration by parts. After this Fourier transform, equation
(10.27) becomes

1
2π

{
exp[−ik3h]F(h)−F(0)

}
+ ik3F [ΨF ](k3) = iLF [ΨF ](k3) (10.29)

or [
k3−L

]
F [ΨF ](k3) =

1
2iπ

{
F(0)− exp[−ik3h]F(h)

}
. (10.30)

The operator
[
k3−L

]
is always invertible if there is some absorption, i.e. Imσ > 0, or if the

limit ω = limη↓0(ω + iη) is considered (see [12, 13], this is equivalent to the property (10.16)
on the eigenvalues λ since k3 is purely real). Hence it is possible to write

F [ΨF ](k3) =
1

2iπ
1

k3−L

{
F(0)− exp[−ik3h]F(h)

}
, (10.31)

The final step is to apply the inverse Fourier transform (10.26): for x3 in [0,h],

Ψ(x3)F(x3) =
1

2iπ

[∫
R

exp[ik3x3]
1

k3−L
dk3

]
F(0)

− 1
2iπ

[∫
R

exp[ik3(x3−h)]
1

k3−L
dk3

]
F(h) .

(10.32)

Again, it is assumed that the operator L can be written L = V λV−1 (10.14). Replacing the
matrix L by its diagonal form, the last expression becomes

Ψ(x3)F(x3) =
1

2iπ
V
[∫

R
exp[ik3x3]

1
k3−λ

dk3

]
V−1 F(0)

− 1
2iπ

V
[∫

R
exp[ik3(x3−h)]

1
k3−λ

dk3

]
V−1 F(h) .

(10.33)

The integrations above are performed by adding to the real axis of k3 a semi-circle with infinite
radius (in the complex plane of k3) on which the integrals vanish. For the first term with F(0),
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the complex number k3 must have positive imaginary part (x3 is positive), so that the real axis is
closed by a semi-circle in the upper half plane (see the red path on figure 10.3). In this case, the
solely eigenvalues contained in λ+ generate contributions in the integral. For the second term
with F(h), the complex number k3 must have negative imaginary part (x3− h is negative), so
that the real axis is closed by a semi-circle in the lower half plane (see the blue path on figure
10.3). Here, the integral is given by the eigenvalues contained in λ−. Let P± be the projectors

Re(k3)

Im(k3)

exp[ik3x3]→ 0

exp[ik3(x3−h)]→ 0

λ+

λ−

Figure 10.3: Integration in the complex plane of k3.

upon the spaces corresponding respectively to eigenvalues λ±:

P+λ =
[

λ+ 0
0 0

]
, P−λ =

[
0 0
0 λ−

]
. (10.34)

Then, after the integration over k3, expression (10.33) yields

Ψ(x3)F(x3) = V P+ exp[iλ+x3]V−1F(0)+V P− exp[iλ−(x3−h)
]
V−1F(h) . (10.35)

This expression is always well defined since the integration in the complex plane of k3 imposes
that all the complex exponential functions decrease:∥∥ exp[iλ+x3]

∥∥≤ 1 ,
∥∥ exp[iλ−(x3−h)]

∥∥≤ 1 . (10.36)

Considering the rigorous expression (10.35) at x3 = 0 and x3 = h and using that P−+P+ is the
identity, one obtains

V P−V−1F(0) = V P− exp[−iλ−h]V−1F(h) ,

V P+V−1F(h) = V P+ exp[iλ+h]V−1F(0) .
(10.37)

These two relationships provides a rigorous way to deduce F(0) from F(h) and conversely.
As in the previous section, the continuation procedure is also derived from the diagonal

form (10.21) of L2. Equation (10.22) is multiplied by Ψ(x3) to provide an expression similar to
(10.27)

Ψ(x3)∂3F(x3) =−L2
Ψ(x3)F(x3) . (10.38)
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Then, the Fourier transform (10.25) is applied to this equation. Using that

F [Ψ∂ 2
3 F ](k3) =

1
2π

∫
R

exp[−ik3x3]Ψ(x3)∂ 2
3 F(x3)dx3

=−k2
3F [ΨF ](k3)+ ik3

1
2π

{
exp[−ik3h]F(h)−F(0)

}
+

1
2π

{
exp[−ik3h](∂3F)(h)− (∂3F)(0)

}
,

(10.39)

and replacing (∂3F)(x3) by iLF(x3), equation (10.38) implies

F [ΨF ](k3) =
1

2iπ
1

k2
3−L2 k3

{
F(0)− exp[−ik3h]F(h)

}
=

1
2iπ

1
k2

3−L2

{
LF(0)− exp[−ik3h]LF(h)

}
.

(10.40)

Next, the inverse Fourier transform (10.26) is performed for x3 in [0,h] and the diagonal form
(10.21) is used:

Ψ(x3)F(x3) =
1

2iπ
V
∫

R

k3

k2
3−λ 2

{
exp[ik3x3]V−1F(0)− exp[ik3(x3−h)]V−1F(h)

}
dx3

+
1

2iπ
V
∫

R

1
k2

3−λ 2

{
exp[ik3x3]V−1LF(0)− exp[ik3(x3−h)]V−1LF(h)

}
dx3 .

(10.41)
Again, the integrations above are calculated by adding to the real axis of k3 a semi-circle with
infinite radius (in the complex plane of k3) on which the integrals vanish. Without loss of
generality, it is considered that the square root of the eigenvalues in λ 2 have non-zero imaginary
part: let

√
λ 2 be the square root of λ 2 with positive imaginary part. For the terms with F(0),

the real axis is closed by a semi-circle in the upper half plane, and the eigenvalues with positive
imaginary part

√
λ 2 lead to contributions in the integrals. For the terms with F(h), the real axis

is closed by a semi-circle in the lower half plane, and the integrals are given by the eigenvalues
with negative imaginary part, i.e. −

√
λ 2. Calculations of integrals over k3 lead to

Ψ(x3)F(x3) = V
1
2

exp[i
√

λ 2x3]V−1F(0)+V
1
2

exp[−i
√

λ 2(x3−h)]V−1F(h)

+ V
1

2
√

λ 2
exp[i
√

λ 2x3]V−1LF(0)−V
1

2
√

λ 2
exp[−i

√
λ 2(x3−h)]V−1LF(h) .

(10.42)
This equation is evaluated at x3 = 0 and x3 = h:

F(0) = V exp[i
√

λ 2h]V−1F(h)+V
1√
λ 2

V−1LF(0)−V
1√
λ 2

exp[i
√

λ 2h]V−1LF(h) ,

F(h) = V exp[i
√

λ 2h]V−1F(0)+V
1√
λ 2

exp[i
√

λ 2h]V−1LF(0)−V
1√
λ 2

V−1LF(h) .

(10.43)
Thanks to the technique based on the Fourier transform, all the exponential functions in these
expressions must be well-defined. Indeed, the imaginary part of

√
λ 2 is positive and all the

exponential functions decrease. Equations (10.43) will be used to construct a stable numerical
algorithm to stack several lamellar layers.
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10.4 Exact eigenmodes and eigenvalues method

The different solutions (10.20), (10.24, (10.37) and (10.43), established in the previous section,
are provided from the knowledge of the sets of eigenmodes and eigenvalues of the operator L
(or L2). In this section, it is shown how these eigenmodes V±,n and eigenvalues λ±,n of L can be
exactly determined in a lamellar layer located between the planes x = 0 and x3 = h. The starting
point is equation (10.17):

∂3F = iLF , L = M(x3) , x3 ∈ [0,h]. (10.44)

Let ε1, µ1 and σ1 be the functions which coincide with respectively ε , µ and σ in the considered
lamellar layer for x3 in [0,h]. In the considered lamellar layer, they are functions of the solely
variable x1 (see figure 10.2):

ε1(x1) = ε(x1,x3) , µ1(x1) = µ(x1,x3) , σ1(x1) = σ(x1,x3) , x3 ∈ [0,h]. (10.45)

According to expression (10.12), the operator L is now

L =−i
[
−∂1σ

−1
1 ∂2 σ1 +∂1σ

−1
1 ∂1

−σ1−∂2σ
−1
1 ∂2 ∂2σ

−1
1 ∂1

]
, (10.46)

and its square is

L2 =−
[
−σ2

1 −∂1σ
−1
1 ∂1σ1−σ1∂2σ

−1
1 ∂2 σ1∂2σ

−1
1 ∂1−∂1σ

−1
1 ∂2σ1

σ1∂1σ
−1
1 ∂2−∂2σ

−1
1 ∂1σ1 −σ2

1 −∂2σ
−1
1 ∂2σ1−σ1∂1σ

−1
1 ∂1

]
. (10.47)

Since the matrix σ1 is x2-independent, the equality σ1∂2σ
−1
1 = ∂2 = σ

−1
1 ∂2σ1 holds, and the

expression above becomes

L2 =
[

σ2
1 +∂ 2

2 +∂1σ
−1
1 ∂1σ1 0

∂2σ
−1
1 ∂1σ1−σ1∂1σ

−1
1 ∂2 σ2

1 +∂ 2
2 +σ1∂1σ

−1
1 ∂1

]
. (10.48)

This expression shows that the components F1 can be decoupled from the components F2 in the
lamellar layer. Indeed, it implies

∂
2
3 F1 =−KF1 , K = σ

2
1 +∂

2
2 +∂1σ

−1
1 ∂1σ1 . (10.49)

Moreover, each component of F1, i.e. E1 and H1, can be also decoupled since the operator K is
diagonal:

K =
[

Kε1 0
0 Kµ1

]
, (10.50)

where
Kε1 = ω2ε1µ1 +∂ 2

2 +∂1ε
−1
1 ∂1ε1 ,

Kµ1 = ω2ε1µ1 +∂ 2
2 +∂1µ

−1
1 ∂1µ1 .

(10.51)

Here, it is important to notice that the two operators Kε1 and Kµ1 correspond to the ones of a one-
dimensional multilayered stack for respectively p- and s-polarization. This makes it possible
to calculate the exact eigenmodes and eigenvalues of Kε1 and Kµ1 (see appendix) and thus
the ones of K. Thus the continuation procedure presented in section 10.3.2 can be applied to
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equation (10.49). It provides relationships between the fields F1(0), F1(h) and their derivative
with respect to x3, i.e. [∂3F1](0) and [∂3F1](h) (it is recalled that ∂3F = iLF in section 10.3.2).

To complete the derivation of the method, it is necessary to express the component F2 of
the field from F1 and ∂3F1. A starting relationship is obtained from (10.44) and (10.47):

∂3F1 =−∂1σ
−1
1 ∂2F1 +

[
σ1 +∂1σ

−1
1 ∂1

]
F2 . (10.52)

This equation is equivalent to[
1+∂1σ

−1
1 ∂1σ

−1
1
]
σ1F2 = ∂3F1 +∂1σ

−1
1 ∂2F1 . (10.53)

Here, it is remarked that the operator [1+∂1σ
−1
1 ∂1σ

−1
1 ] is invertible since it equals [K−∂ 2

2 ]σ−2
1

where σ1 is invertible as well as [K − ∂ 2
2 ] (eigenvalues of K have non-zero imaginary part).

Moreover, the operator [1+∂1σ
−1
1 ∂1σ

−1
1 ] commutes with ∂3, ∂2 and ∂1σ

−1
1 : hence

σ1F2 =
1

1+∂1σ
−1
1 ∂1σ

−1
1

∂3F1 +
1

1+∂1σ
−1
1 ∂1σ

−1
1

∂1σ
−1
1 ∂2F1

=
1

1+∂1σ
−1
1 ∂1σ

−1
1

∂3 F1 +∂2∂1σ
−1
1

1
1+∂1σ

−1
1 ∂1σ

−1
1

F1

= σ2
1

1
σ2

1 +∂1σ
−1
1 ∂1σ1

∂3 F1 +∂2∂1σ1
1

σ2
1 +∂1σ

−1
1 ∂1σ1

F1 .

(10.54)

After the Fourier decomposition with respect to the variable x2, the operator ∂2 becomes ik2.
Then, the inverse operator above is expressed using the diagonal form K = V λ 2V−1, and the
component F2 becomes

F2 = σ1V
1

λ 2 + k2
2

V−1
∂3F1 + ik2 σ

−1
1 ∂1σ1V

1
λ 2 + k2

2
V−1F1 . (10.55)

Finally, it is stressed that the coefficients of the operators σ1V and σ
−1
1 ∂1σ1V above can be

calculated exactly from the knowledge of the exact eigenmodes. Indeed, the technique pre-
sented in appendix shows that the determination of the eigenmodes φn lies on the calculations
of functions σ1φn and σ

−1
1 ∂1σ1φn. The final expression of F2 in terms of F1 and ∂3F1 is then

F2 = U
1

λ 2 + k2
2

V−1
∂3F1 + ik2W

1
λ 2 + k2

2
V−1F1 , U = σ1V , W = σ

−1
1 ∂1σ1V .

(10.56)
To conclude this section, it has been shown that the field components F1, ∂3F1 and F2 can

be expressed exactly in a lamellar layer: F1 and ∂3F1 are provided by equations (10.42) and
(10.43) (where F → F1, LF → −i∂3F1, and K = V λ 2V−1); F2 is given by equation (10.56).
These expressions are based on the knowledge of the eigenvectors V of K, the eigenvalues λ 2

of K and the operators U = σ1V and W = σ
−1
1 ∂1σ1V . All these quantities can be calculated

exactly, as shown in appendix.
Finally, it is stressed that the propagation constants inside the lamellar layer are the square

roots of the eigenvalues of the operator K, i.e. ±
√

λ 2. If there is some absorption, i.e. Imσ > 0,
or if a small positive imaginary part is added to the frequency ω (the limit ω = limη↓0(ω + iη)
is considered [12, 13]), the eigenvalues λ 2 of K cannot be purely real. It follows that the
propagation constants ±

√
λ 2 have non zero imaginary parts and, moreover, the half of them

(+
√

λ 2) have strictly positive imaginary part and the second half of them (−
√

λ 2) have strictly
negative imaginary part. In this case, the assumption (10.16) on the eigenvalues of L is well
justified.
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10.5 Numerical algorithm

A general solution for numerical algorithm has been proposed by L. Li in the case of modal
methods of gratings [3]. This solution is based on the definition of S or R matrices which are
well-conditioned.

10.5.1 R matrix for a single lamellar layer

In this section, the expression of a R matrix associated with a lamellar layer is established: it is
defined by the relationship [

F1(0)
F1(h)

]
= R

[
F2(0)
F2(h)

]
. (10.57)

First, equation (10.43) is used to provide an expression of the solution of (10.49):

F1(0)−V exp[i
√

λ 2h]V−1F1(h) = −iV
1√
λ 2

V−1
∂3F1(0)+ iV

1√
λ 2

exp[i
√

λ 2h]V−1
∂3F1(h) ,

F1(h)−V exp[i
√

λ 2h]V−1F1(0) = −iV
1√
λ 2

exp[i
√

λ 2h]V−1
∂3F1(0)+ iV

1√
λ 2

V−1
∂3F1(h) .

(10.58)
This set of equations is written using 2×2 matrices:

A
[

F1(0)
F1(h)

]
= B

[
∂3F1(0)
∂3F1(h)

]
, (10.59)

where

A =

[
1 −V exp[i

√
λ 2h]V−1

−V exp[i
√

λ 2h]V−1 1

]
(10.60)

and

B =

 −iV
1√
λ 2

V−1 iV
1√
λ 2

exp[i
√

λ 2h]V−1

−iV
1√
λ 2

exp[i
√

λ 2h]V−1 iV
1√
λ 2

V−1

 . (10.61)

Next, from (10.56), the field ∂3F1 is related to F1 and F2 from

∂3F1 =−ik2V [λ 2 + k2
2]U
−1W

1
λ 2 + k2

2
V−1 F1 +V [λ 2 + k2

2]U
−1 F2 . (10.62)

Defining the two matrices

C =

 −ik2V [λ 2 + k2
2]U
−1W

1
λ 2 + k2

2
V−1 0

0 −ik2V [λ 2 + k2
2]U
−1W

1
λ 2 + k2

2
V−1

 (10.63)

and

D =

[
V [λ 2 + k2

2]U
−1 0

0 V [λ 2 + k2
2]U

−1

]
, (10.64)
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the relationship (10.59) becomes

A
[

F1(0)
F1(h)

]
= BC

[
F1(0)
F1(h)

]
+BD

[
F2(0)
F2(h)

]
. (10.65)

Finally, according to the definition (10.57), the R matrix is given by

R =
1

A−BC
BD . (10.66)

It is stressed that the R matrix is numerically stable. Indeed, exponential functions always
have arguments such that they decrease and, when inverted, they are always added to well-
conditioned functions. For example, in the matrix [A−BC], one can check that the diagonal
blocs are well-conditioned since they do not contain any exponential function, while the off-
diagonal blocs decrease exponentially. When inverted, this matrix will have the same behaviour
with well-conditioned diagonal blocs and exponentially decreasing off-diagonal blocs.

10.5.2 R matrix for a stack of lamellar layers

Here, a system made of two lamellar layers is considered. The first layer is located between the
planes x3 = −h1 and x3 = 0, and the second layer between the planes x3 = 0 and x3 = h2. Let
R1 and R2 be the R matrices associated with these layers:[

F1(−h1)
F1(0)

]
= R1

[
F2(−h1)

F2(0)

]
,

[
F1(0)
F1(h2)

]
= R2

[
F2(0)
F2(h2)

]
. (10.67)

Then, the R matrix associated with the stack of the two layers is determined by eliminating the
components F1(0) and F2(0) in the equations above. Denoting by R1,i j and R2,i j (i, j = 1,2) the
blocs of R1 and R2,

R1 =
[

R1,11 R1,12
R1,21 R1,22

]
, R2 =

[
R2,11 R2,12
R2,21 R2,22

]
, (10.68)

the expression of R is given by

R =

 R1,11−R1,12
1

R1,22−R2,11
R1,21 R1,12

1
R1,22−R2,11

R2,12

−R2,21
1

R1,22−R2,11
R1,21 R2,22−R2,21

1
R1,22−R2,11

R2,12

 . (10.69)

Again, one can check that the algorithm is stable since the only inverted blocs are the diagonal
ones, which are well-conditioned.

10.6 Numerical application

A simple numerical example is considered to put the exact modal method to the test. The
structure is made of a set of rectangular rods with dielectric constant ε1,1/ε0 = 12.96 (cor-
responding to the index 3.6 of Si at optical wavelengths), width w1,1 = 0.28d and height
h = d/(2

√
2), where d is the spatial period of the grating (see figure 10.4). This lamellar grating
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x3

x1

ε1,1

w1,1w1,2

d
ε0, µ0

ε0, µ0

θ i
θ r

Figure 10.4: The considered structure for the numerical example: a single layer made of rectangular
rods.

is illuminated by a plane wave with an incident angle θ i = 45◦. The oscillating frequency is
ω = 2π/(d

√
ε0µ0), which corresponds to a wavelength equal to the spatial period d. The effi-

ciency diffracted in the order zero, i.e. at the reflected angle θ r = θ i = 45◦ is calculated for both
s and p-polarizations which correspond respectively to the electric and magnetic fields reduced
to a single component along the invariance axis x2. Each component of the electromagnetic field
is described by a finite number (2n + 1) of exact modes. Reflected efficiency in the order zero
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Figure 10.5: Efficiency in the zero order for s-polarization (left panel) and p-polarization (right
panel).

for different values of the number of exact modes (2n+1) is represented on figure 10.5. These
curves show that these efficiencies differ from their converged value with less than one percent
from (2n+1) = 7 in s-polarization and (2n+1) = 5 in p-polarization (the converged values are
respectively 0.7323 and 0.9487 in s and p polarizations). This convergence is found to be faster
than in the case of the modal method with Fourier basis [2] where an error smaller than one
percent is obtained from (2n+1) = 17 and (2n+1) = 27 in s and p polarizations respectively
(the method [2] contains all the techniques to improve the convergence of the truncated Fourier
series [15]). This improvement of the convergence resulting from the use of the exact modes
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becomes a significant advantage when three dimensional woodpile structures are considered [9]
(the total number of modes (2n+1)2 can be reduced by a factor of 10).

10.7 Appendix. Calculation of the exact modes and eigenvalues

It is shown here how to determine exactly the eigenvalues and the eigenfunctions of the operator
K associated with a lamellar layer in a very general case. An analogous reasoning provides the
ones of the operator associated with the others lamellar layers.

From the expression (10.50), every eigenvalue Λn of the operator K is either an eigenvalue
of Kε1 or Kµ1 . So, it is sufficient to determine the set of eigenvalues {Λν1,n |n ∈ N} associated
with the set of eigenfunctions {φν1,n |n∈N} of the scalar operator Kν1 , with ν1 = ε1 or ν1 = µ1.

10.7.1 The equation satisfied by the exact eigenvalues

From the expression (10.50), the operator Kν1 is the sum of ω2ε1µ1 + ∂1ν
−1
1 ∂1ν1 and ∂ 2

2 : the
first part is an operator of the single variable x1 and the second part is an operator of the single
variable x2. Thus, we can perform a variable separation: every eigenfunction of Lν1 can be
written

φν1,n(x1,x2) = φ
(1)
n1 (x1)φ

(2)
n2 (x2) n1,n2 ∈ N , (10.70)

where φ
(1)
n1 and φ

(2)
n2 are respectively eigenfunctions of the first and second operators which

constitute Lν1 .
In the case of a lamellar grating which is invariant in the direction x2, this direction of

invariance is considered using the Fourier decomposition (10.5). Thus the eigenfunction of ∂ 2
2

is just
φ

(2)
n2 (x2) = exp[ik2x2] k2 ∈ R , (10.71)

and the integer n2 plays no role (integer n will be simply n1). In the case of woodpile crystals,
it is easy to verify that the plane-wave

φ
(2)
n2 (x2) = exp{i[k2 +2π p(n2)/d2]x2/d2} p(n2) ∈ Z (10.72)

is an eigenfunction of the operator ∂ 2
2 and satisfies the partial Bloch boundary condition (10.8)

adapted for the variable x2. Let Λ
(2)
n2 be the associated eigenvalue. Then, from (10.71,10.72),

Λ
(2)
n2 =−[k2 +2πq(n2)/d2]2 . (10.73)

Note that, for lamellar gratings and eigenfunctions (10.71), the integer q(n2) is set to zero.
The x1-dependency of the eigenfunction (10.70) is determined using the usual transfer

matrix [16, 17, 18]. Let λ
(1)
n1 be the eigenvalue associated with φ

(1)
n1 :[

ω
2
ε1µ1 +∂1ν

−1
1 ∂1ν1

]
φ

(1)
n1 = Λ

(1)
n1 φ

(1)
n1 . (10.74)

In order to obtain a set of first order differential equations, the following column vector is
introduced

Fn1 =

[
ν1φ

(1)
n1

ν
−1
1 ∂1ν1φ

(1)
n1

]
. (10.75)
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Note that, from equation (10.74), the two components of this vector are continuous functions.
Now, suppose that the unit cell of the considered lamellar layer is made of J rods of width w1, j,
permittivity ε1, j and permeability µ1, j, j = 1,2, · · · ,J (figure 10.6): we denote by ν1, j the value

x3

x1

ν1,1 ν1,2 ν1,3 ν1 = ε1, µ1

w1,1 w1,2 w1,3

d

Figure 10.6: A layer made of three rods per unit cell (J = 3): the three rods have width w1, j,
permittivity ε1, j and permeability µ1, j, j = 1,2,3.

of the function ν1 in the rod j, j = 1,2, · · · ,J. Then, from equation (10.74), the vector (10.75)
satisfies [18]

Fn1(d) = T1
(
Λ

(1)
n1

)
Fn1(0) , (10.76)

where
T1(Λ) = T1,J(Λ) T1,J−1(Λ) · · · T1,1(Λ) , (10.77)

T1, j(Λ) = P1, j(Λ,w1, j) , (10.78)

P1, j(Λ,w) =

[
cos(β1, jw) ν1, jβ

−1
1, j sin(β1, jw)

−ν
−1
1, j β1, j sin(β1, jw) cos(β1, jw)

]
, (10.79)

β1, j =
√

ω2ε1, jµ1, j−Λ j = 1,2, · · · ,J . (10.80)

Note that the four elements of each matrix T1, j only depend on β 2
1, j: the expression (10.79)

is independent of the definition of the square root (10.80). In addition to (10.76), the vector
(10.75) has to satisfy the partial Bloch boundary condition (10.8) for the variable x1:

Fn1(d) = exp[ik1d]Fn1(0) . (10.81)

The combination of (10.76) and (10.81) implies that exp[ik1d] is an eigenvalue of the matrix
T1
(
Λ

(1)
n1

)
: the equation

det
{

T1
(
Λ

(1)
n1

)
− exp[ik1d]

}
= 0 (10.82)

determines the eigenvalues Λ
(1)
n1 . This last equation can be simplified using the fact that detT1 =

1 (since, from (10.78), detT1, j = 1, j = 1,2, · · · ,J): if exp[ik1d] is an eigenvalue of T1, then
exp[−ik1d] is also. Thus, the equation (10.82) is equivalent to

trT1
(
Λ

(1)
n1

)
−2cos[k1d] = 0 , (10.83)
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where trT1 is the trace of matrix T1. Once the eigenvalues Λ
(1)
n1 are determined from (10.83),

the associated eigenvectors φ
(1)
n1 are also obtained using the transfer matrix [17]: firstly, the

eigenvector Fn1(0) in C2 (associated with the eigenvalue exp[ik1d]) of the matrix T1
(
Λ

(1)
n1

)
is

determined; secondly, the expression of φ
(1)
n1 in the rod j can be deduced from

Fn1(x1) = P1, j
(
Λ

(1)
n1 ,x1− x1, j

)
Fn1(x1, j−1) , (10.84)

where

x1,0 = 0 , x1, j =
j

∑
q=1

w1,q j = 1,2, · · · ,J . (10.85)

Finally the eigenvalues of the operator Kν1 are

λν1,n = λ
(1)
n1 +λ

(2)
n2 , (10.86)

whose the two parts are respectively given by (10.83) and (10.73), and the expression of associ-
ated eigenvectors is (10.70) whose the two parts are respectively given by (10.84) and (10.72).
Concerning the functions of the operators U = σ1V and W = σ

−1
1 ∂1σ1V used in section 10.4

[see equation (10.56)], they are equal to the functions(
ν1φ

(1)
n1

)
(x1)φ

(2)
n2 (x2) ,

(
ν
−1
1 ∂1ν1φ

(1)
n1

)
(x1)φ

(2)
n2 (x2) , (10.87)

where n1 and n2 are in N, the expression of ν1φ
(1)
n1 and ν

−1
1 ∂1ν1φ

(1)
n1 in the rod j can be deduced

from (10.75,10.84) and the expression of φ
(2)
n2 is given by (10.72).

10.7.2 Real eigenvalues

Here, we suppose that the permittivity and permeability are real positive functions:

ε1(x1) ∈ R , ε+ > ε1(x1) > 0; µ1(x1) ∈ R , µ+ > µ1(x1) > 0 . (10.88)

Under these conditions, the operator Kν1 is selfadjoint and its eigenvalues are real when the
following inner product is used:

(φ ,ψ)−→ 1
d

∫ d

0
ν1(x1)φ(x1)ψ(x1)dx1 . (10.89)

The only difficulty in the numerical determination of the eigenvalues (10.86) is to find the real
numbers λ

(1)
n1 which satisfy the transcendental equation (10.83).

Since the numbers Λ
(1)
n1 are eigenvalues of the operator ω2ε1µ1 +∂1ν

−1
1 ∂1ν1 ≤ ω2ε+µ+,

these numbers are on the semi-axis (−∞,ω2ε+µ+]. This property makes their numerical deter-
mination easier and provides a way to number them:

ω
2
ε+µ+ ≥ Λν1,1 ≥ Λν1,2 · · · ≥ Λν1,n ≥ ·· · (10.90)

However, two difficulties can occur in this numerical determination. We give herein the solu-
tions we have adopted.
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The first difficulty comes from the possibility for two consecutive numbers Λ
(1)
n1 to be

very close to each other. Our solution is to use an algorithm which determines the zeros of
the function trT1(Λ)−2cos[k1d] on the left side of equation (10.83) by taking into account this
function together with its derivative with respect to Λ. If two numbers Λ

(1)
n1 are very close one

to each other, then the derivative is close to zero. Thus such algorithm needs to determine the
function

d
dΛ

{
trT1(Λ)−2cos[k1d]

}
= tr

dT1

dΛ
(λ ) . (10.91)

The expression of the derivative of the matrix T1 can be deduced from (10.77,10.78):

dT1

dΛ
=

dT1,J

dΛ
T1,J−1 · · · T1,1 +T1,J

dT1,J−1

dΛ
· · · T1,1 + · · ·+T1,J T1,J−1 · · ·

dT1,1

dΛ
, (10.92)

where, for j = 1,2, · · · ,J, the derivative of matrices

dT1, j

dΛ
=

1
2

[
a1, j b1, j

c1, j d1, j

]
(10.93)

is given by
a1, j = w1, jβ

−1
1, j sin[β1, jw1, j] ,

b1, j = ν1, jβ
−3
1, j sin[β1, jw1, j]−ν1, jw1, jβ

−2
1, j cos[β1, jw1, j] ,

c1, j = ν
−1
1, j β

−1
1, j sin[β1, jw1, j]+ν

−1
1, j w1, j cos[β1, jw1, j] ,

d1, j = w1, jβ
−1
1, j sin[β1, jw1, j] .

(10.94)

The second difficulty comes from the possibility of numerical instabilities in the expres-
sions (10.79,10.93) since the numbers β1, j (10.80) can have non-vanishing imaginary part. A
solution is to multiply the four coefficients of matrices T1, j and their derivative (10.93) by the
number

N j = exp
[
−| Im(β1, j)|w1, j

]
j = 1,2, · · · ,J , (10.95)

and the term 2cos[k1d] wich appears in (10.83) by the product

N = NJNJ−1 · · ·N1 . (10.96)

10.7.3 Complex eigenvalues

Here, the permittivity and permeability can take any complex value: ν1, j is in C, where ν1 =
ε1,µ1 and j = 1,2, · · · ,J. The operator Kν1 is not selfadjoint and then, its eigenvalues are, in
general, in the complex plane. The determination of these complex eigenvalues λ

(1)
n1 which

satisfy the equation (10.83) has been intensively studied using different methods [6, 7, 19].
We present here a method similar to the one presented in [7]: the complex eigenvalues

are deduced from the real eigenvalues by an analytic continuation. However, our method differs
from the one presented in [7] since we make varying the phase of the numbers ν1, j instead of
their imaginary part. We think that it is better to make varying the phase since, from that we
have observed, it leaves invariant the generalization to the complex case

Re(Λν1,1)≥ Re(Λν1,2) · · · ≥ Re(Λν1,p) · · · (10.97)
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of the numbering used when the eigenvalues are real (10.90).
We define for all t in [0,1] the functions

ν̃1, j(t) = |ν1, j|exp[it arg(ν1, j)] , (10.98)

where arg(ν1, j) is the phase of the complex number ν1, j, ν1 = ε1,µ1 and j = 1,2, · · · ,J. Sub-
stituting the numbers ν1, j (where ν1 = ε1,µ1) for ν̃1, j(t) in equations (10.77,10.78), we obtain
the matrix T̃1(Λ, t). For each value of t, we define the numbers Λ̃

(1)
n1 (t) which satisfy

trT̃1
[

Λ̃
(1)
n1 (t), t

]
−2cos[k1d] = 0 . (10.99)

Then, the numbers Λ̃
(1)
n1 (1) are the desired complex eigenvalues Λ

(1)
p1 and the numbers Λ̃

(1)
n1 (0)

are real eigenvalues which can be determined using the method presented in the previous section
10.7.2. Assuming that Λ̃

(1)
n1 (t) are continuous and differentiable functions of t, the complex

numbers Λ̃
(1)
n1 (1) can be estimated from the numbers Λ̃

(1)
n1 (0) by a numerical integration [7] of

dΛ̃
(1)
n1

dt
(t) =−

tr(∂ T̃1/∂Λ)
[

Λ̃
(1)
n1 (t), t

]
tr(∂ T̃1/∂ t)

[
Λ̃

(1)
n1 (t), t

] , (10.100)

where ∂ T̃1/∂Λ is given by substituting the numbers ν1, j for ν̃1, j(t) in equations (10.94,10.93)
and ∂ T̃1/∂ t is determined similarly. Finally the obtained estimates of numbers Λ̃

(1)
n1 (1) are used

to initiate any of the classical methods for the numerical solution of equations [7]. Then, one
obtains the desired complex eigenvalues.

In order to eliminate the numerical instabilities, one has to multiply each matrix T1, j and
their derivatives by the numbers N j (10.95) as in the previous section 10.7.2.

10.7.4 Eigenfunctions

From (10.84), the expression of each eigenfunction φ
(1)
n1 is given by the coefficients of the

column vectors Fn1(x1, j), j = 0,1, · · · ,J. On the numerical side, the only difficulty comes from
the fact that numerical instabilities in the expression of the transfer matrices (10.78,10.79).
A solution based on the R-matrix algorithm (or S-matrix) should consist in using the algorithm
presented in [20] to obtain the vector Fn1(x1,0) (and the vector Fn1(x1,J) = exp[k1d]Fn1(x1,0)) and
then, the algorithm presented in [21, section V] to obtain the vectors Fn1(x1, j), j = 1,2, · · · ,J−1.
However, we propose to use another solution which benefits of the fact that we deal with 2×2
matrices.

We define the following complex coefficients:[
T j

11 T j
12

T j
21 T j

22

]
= T1,J

(
Λ

(1)
n1

)
T1,J−1

(
Λ

(1)
n1

)
· · · T1, j

(
Λ

(1)
n1

)
, (10.101)

[
τ

j
11 τ

j
12

τ
j

21 τ
j

22

]
= T1, j

(
Λ

(1)
n1

)
T1, j−1

(
Λ

(1)
n1

)
· · · T1,1

(
Λ

(1)
n1

)
, (10.102)

[
F j

1
F j

2

]
= Fn1(x1, j) j = 0,1, · · · , J . (10.103)
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Since Fn1(x1,0) is an eigenvector of the matrix T1
(
Λ

(1)
n1

)
associated with the eigenvalue exp[k1d]),

its coefficients satisfy

F 0
2 =−

T J
11N− exp[k1d]N

T J
12N

F 0
1 , (10.104)

where the numbers T J
11N and T J

12N are obtained by multiplying each coefficient of matrices
T1, j
(
Λ

(1)
n1

)
by the number N j. The coefficients F J

1 and F J
2 are deduced from (10.81,10.104)

and then, one can obtain the other coefficients for j = 1,2, · · · ,J−1:

F j
1 =

T j+1
22 τ

j
11N

T j+1
21 τ

j
11N + τ

j
21T

j+1
22 N

(
F J

2

T j+1
22

−
F 0

2

τ
j

11

)
,

F j
2 =

T j+1
11 τ

j
22N

T j+1
11 τ

j
12N + τ

j
22T

j+1
12 N

(
F J

1

T j+1
11

−
F 0

1

τ
j

22

)
,

(10.105)

where, as in (10.104), the multiplication by the number N consists in multiplying each coeffi-
cient of matrices T1, j

(
Λ

(1)
n1

)
by the number N j.

Finally these functions have to be normalized. From the definition (10.89) of the inner
product, one has to compute

∥∥φ
(1)
n1

∥∥2
ν1

=
1
d

∫ d

0

∣∣φ (1)
n1 (x1)

∣∣2ν1(x1)dx1 (10.106)

when the functions ε1 and µ1 have the property (10.88). In the general case (where ε and µ

are complex valued functions), one has to use the formalism presented in [8, section 2.3]. It is
possible to compute analytically the expression (10.106):

∥∥φ
(1)
n1

∥∥2
ν1

=
1

2d

J

∑
j=1

w1, j

ν1, j

(∣∣F j−1
1

∣∣2 +β
−2
1, j ν

−2
1, j

∣∣F j−1
2

∣∣2)
−β
−2
1, j Re

(
iF j−1

1 F j−1
2 − iF j

1 F j
2

)
.

(10.107)

This expression allows to eliminate the numerical instabilities which can occur from the expo-
nential functions. Note that all the coefficients of matrices defined in sections 10.4 and 10.5
(matrices U , V and W ) can be also computed analytically in order to eliminate the numerical
instabilities.
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