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GratinGs: theory and numeric applications

Introduction

Exact modal method (EMM) has been proposed to take advantage of geometry of lamellar gratings. These gratings are made of rectangular rods periodically spaced which can be considered locally as periodic multilayered stacks (see figure 10.1). This simple geometry makes it possible to expand the electromagnetic field on the basis of "exact modes", and to obtain an exact representation of the permittivity. In this particular case, EMM can be more efficient than similar methods based on Fourier expansion (coupled-wave method [START_REF] Moharam | Rigorous coupled-waves analysis of metallic surfacerelief grating[END_REF] or Fourier modal method [START_REF] Li | New formulation of the Fourier modal method for crossed surface-relief gratings[END_REF][START_REF] Li | Justification of matrix truncation in the modal methods of diffraction gratings[END_REF]) which may lead to poor convergence due to the discontinuous nature of both electromagnetic field and permittivity. This advantage of EMM becomes more important when the permittivity contrast is high, e.g. for metallic lamellar gratings. . . . . . .

.1: A lamellar grating made of a single lamellar layer on a substrate. The region corresponding to the lamellar layer, between the planes x 3 = 0 and x 3 = h, can be considered as the multilayered stack on the left.

Exact modal method has been introduced in 1981 in order to solve Maxwell's equations in presence of lamellar gratings made of dielectrics [START_REF] Botten | The dielectric lamellar diffraction grating[END_REF] and metals [START_REF] Botten | The finitely conducting lamellar diffraction grating[END_REF][START_REF] Botten | Highly conducting lamellar diffraction grating[END_REF][START_REF] Tayeb | On the numerical study of deep conducting lamellar diffraction grating[END_REF]. Since these pioneering works, a major contribution to this method is certainly its rigorous extension to conical mountings [START_REF] Li | A modal analysis of lamellar diffraction gratings in conical mountings[END_REF], on which is based an EMM for three-dimensional woodpile structures [START_REF] Gralak | Theoretical study of photonic band gaps in woodpile crystals[END_REF]. Another major development is the introduction of perfectly matched layers in order to model aperiodic systems met in integrated optics [START_REF] Silberstein | Use of grating theories in integrated optics[END_REF] (information can be found on the website of CAMFR).

In this chapter, a rigorous formulation of the exact modal method for lamellar structures is presented. In section 10.3, a special attention is paid to the continuation of the electromagnetic field inside a lamellar layer. In combination with the boundary conditions, this continuation provides a large class of solutions of Maxwell's equations in presence of lamellar gratings. In section 10.4, it is shown that, in each lamellar layer, there is a decoupling of the vector field equations into two independent scalar equations, which correspond to the ones of a multilayered stack (see figure 10.1). Numerical stacking algorithms are presented in section 10.5 and a numerical illustration of the EMM efficiency is proposed in section 10.6. Finally, the techniques used for the calculation of the exact modes and the associated exact eigenvalues are reported in the appendix (section 10.7).

Note that the important extensions to woodpile structures [START_REF] Gralak | Theoretical study of photonic band gaps in woodpile crystals[END_REF] and to lamellar gratings including infinitely conducting metal [START_REF] Gralak | Solutions of Maxwell's equations in presence of lamellar gratings including infinitely conducting metal[END_REF] are not considered in this book chapter. These cases will be however included in the next version.

Notations

Throughout this chapter an orthonormal basis (e e e 1 , e e e 2 , e e e 3 ) is used: every vector x x x in R 3 is described by its three components x 1 , x 2 and x 3 . It is shown how to obtain in the presence of a stack of lamellar layers, a large class of solutions E E E of the Helmholtz equation

ω 2 -ε -1 ∇ ∇ ∇ × µ -1 ∇ ∇ ∇ × E E E = 0 0 0 , (10.1) 
where ε is the permittivity, µ is the permeability, ω is the frequency and ∇ ∇ ∇× is the curl operator.

All the media considered in this chapter are isotropic, and thus the permittivity and permeability reduce to scalar functions. The considered structure is independent of the variable x 2 , and x 1periodic with spatial period d d d = de e e 1 :

ε(x x x + d d d) = ε(x x x) = ε(x 1 , x 3 ) , µ(x x x + d d d) = µ(x x x) = µ(x 1 , x 3 ) , x x x ∈ R 3 . (10.
2)

The unit cell associated with this grating is [0, d] and the one-dimensional lattice is nd n ∈ Z . Then, a lamellar grating is a stack in the direction x 3 of lamellar layers where ε and µ are both functions of the single variable x 1 (figure 10.2). In practice, each lamellar layer is made of infinite parallel rods with rectangular cross section (figure 10.2): the functions ε and µ are piecewise constant of the solely variable x 1 .

x 3

x 1

x 2 d In order to obtain a set of first order differential equations from (10.1) a second field is defined:

H H H = (ω µ) -1 ∇ ∇ ∇ × E E E . (10.3) 
Note that this quantity differs from the usual "harmonic H H H field" by the complex number i.

Solutions E E E, H H H are investigated in the space of fields whose restrictions in every horizontal plane (normal to e e e 3 ) are square integrable:

R 2 F F F(x 1 , x 2 , x 3 ) 2 dx 1 dx 2 < ∞ , x 3 ∈ R , (10.4) 
where

F F F = E E E, H H H.
The first consequence of (10.4) is the possibility to perform a decomposition of the problem to take advantage of the spatial invariances of the system: a Fourier decomposition with respect to the variable x 2 ,

F F F -→ F F F(x 1 , k 2 , x 3 ) = 1 2π R exp[-ik 2 x 2 ]F F F(x 1 , x 2 , x 3 ) dx 2 , (10.5) 
and a Floquet-Bloch decomposition with respect to the variable x 1 ,

F F F -→ F F F(k 1 , x 1 , k 2 , x 3 ) 1 2π ∑ n∈Z exp[-ik 1 nd] F F F(x 1 + pd, k 2 , x 3 ) , (10.6) 
where k 1 is the Bloch wave vector in the first Brillouin zone

[-π/d, π/d]. Thus solutions Ẽ E E, H H H satisfy [-π/d,π/d] F F F(k 1 , x 1 , k 2 , x 3 ) 2 dx 1 < ∞ , x 1 , k 2 , x 3 ∈ R , (10.7) 
with the partial Bloch boundary condition

F F F(k 1 , x 1 + d, k 2 , x 3 ) = exp[ik 1 d] F F F(k 1 , x 1 , k 2 , x 3 ) , (10.8) 
where

k 1 is fixed in [-π/d, π/d].
The second consequence of (10.4) [or (10.7)] is that the restrictions to every horizontal plane of ∇ ∇ ∇ × E E E and ∇ ∇ ∇ × H H H are also locally square integrable [from (10.1,10.3)]. Then, for all i, j = 1, 2, 3 and i = j, E i and H i are continuous functions of the variable x j . In particular, the tangential components E 1 , E 2 , H 1 and H 2 of E E E and H H H are continuous functions of the variable x 3 . It follows that it is possible to solve Maxwell's equations in a stack of layers by the following two steps: the first step consists in solving Maxwell's equations in each layer independently and then the second step consists in connecting each independent solution using the continuity of

E 1 , E 2 , H 1 and H 2 .
With the definition (10.3), equation (10.1) is equivalent to the set of first order equations

E E E = (ωε) -1 ∇ ∇ ∇ × H H H , H H H = (ω µ) -1 ∇ ∇ ∇ × E E E . (10.9)
Let the 2 × 2 matrix σ and the two-components vector F j defined by

σ = ω 0 µ ε 0 , F j = Ẽ j Hj , j = 1, 2, 3 . (10.10)
Then, the first order equations (10.9) can be developed as

F 1 = σ -1 ∂ 2 F 3 -∂ 3 F 2 , F 2 = σ -1 ∂ 3 F 1 -∂ 1 F 3 , F 3 = σ -1 ∂ 1 F 2 -∂ 2 F 1 , (10.11) 
where ∂ j is the partial derivative with respect to the variable x j ( j = 1, 2, 3). This last set of equations is exactly the same as (10.9) and, with some abuse of notations, it can written in the compact way

F F F = σ -1 ∇ ∇ ∇ × F F F, with F F F = (F 1 , F 2 , F 3 ).

Continuation of the electromagnetic field

In this section two different formulations are presented to solve the equation F F F = σ -1 ∇ ∇ ∇ × F F F in a lamellar layer located between the planes x 3 = 0 and x 3 = h. In practice, this solution is expressed as a relationship between F F F(0) and F F F(h). Note that the formulations presented in this section remain valid in the general case of cross gratings with two-dimensional periodicity [START_REF] Li | New formulation of the Fourier modal method for crossed surface-relief gratings[END_REF].

Direct formulation: the transfer matrix

The starting point is the set of equations (10.11). Eliminating the components F 3 , one obtains

∂ 3 F = iM F , F = F 1 F 2 , M = -i -∂ 1 σ -1 ∂ 2 σ + ∂ 1 σ -1 ∂ 1 -σ -∂ 2 σ -1 ∂ 2 ∂ 2 σ -1 ∂ 1 . (10.12)
For a lamellar layer located between the planes x 3 = 0 and x 3 = h (see figure 10.1), the functions ε and µ are x 3 -independent for x 3 in [0, h]: then the matrix σ and the operator-valued matrix M are also x 3 -independant for x 3 in [0, h]. Let L be the x 3 -independant operator valued matrix which coincides with M in this single layer:

L = M(x 3 ) , x 3 ∈ [0, h] . (10.13) 
In a first step, it is assumed that (see the end of section 10.4 for a justification) the matrix L has a diagonal form and can be written as

L = V λ V -1 , (10.14) 
where the matrix V contains the eigenvectors V ±,n of L, and λ is the diagonal matrix made of the associated eigenvalues λ ±,n :

LV ±,n = λ ±,n V ±,n . (10.15) 
The sets of eigenvectors and eigenvalues are split into two parts according to the sign of the imaginary part of λ ±,n : Imλ +,n > 0 and Imλ -,n < 0. Let λ + (respectively λ -) be the diagonal matrices containing the eigenvalues λ +,n > 0 of L (respectively λ -,n > 0): then .16) This last condition on the imaginary part of eigenvalues is always realized if there is some absorption, i.e. Imσ > 0, or if a small positive imaginary part is added to the frequency ω (in the later case the limit ω = lim η↓0 (ω + iη) is considered [START_REF] Tip | Band structure of absorptive photonic crystals[END_REF][START_REF] Gralak | Transfer matrix method for point sources radiating in classes of negative refractive index materials with 2n-fold antisymmetry[END_REF]). The combination of (10.12) and (10.13) leads to the equation

λ = λ + 0 0 λ - , Imλ + > 0 , Imλ -< 0 . ( 10 
∂ 3 F(x 3 ) = iL F(x 3 ) , x 3 ∈ [0, h] , (10.17) 
where the dependence on other variables has been omitted. Since L is x 3 -independent, the "formal" solution of this equation is just .18) This solution is denominated by "formal" since, at this stage, it is still necessary to check if it exists. Using the diagonal form (10.14) of the operator L, the expression (10.18) becomes

F(x 3 ) = exp[iLx 3 ]F(0) , x 3 ∈ [0, h] . ( 10 
F(x 3 ) = V exp[iλ x 3 ]V -1 F(0) . (10.19)
Actually, the diagonal matrix exp[iλ x 3 ] is made of the two parts exp[iλ ± x 3 ] which have different behaviour. From (10.16), the part exp[iλ + x 3 ] is bounded by exp[-Imλ + x 3 ] < 1. On the contrary, the part exp[iλ -x 3 ] is not bounded and, in general, the corresponding coefficients are growing towards infinity like exponential functions. Consequently, the transfer matrix T (x 3 ) defined by

F(x 3 ) = T (x 3 )F(0) , T (x 3 ) = V exp[iλ x 3 ]V -1 , (10.20) 
has "infinite" coefficients and thus expressions like (10.18), (10.19) and (10.20) have to be considered as purely "formal" and have to be handled cautiously. Numerically, the transfer matrix is truncated and, because its coefficients tend to infinity like exponential functions, it presents numerical instabilities which makes it difficult to use it. A numerical solution has been found to solve this problem with the definition of the Sand R-algorithms [START_REF] Li | Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings[END_REF] (see section 10.5 for the numerical solution in the present case). Finally, notice that the transfer matrix is occasionally derived from the matrix L 2 instead of L. Indeed, the assumption (10.14) on the diagonal form of L might be too strong and not rigorously true. According to notations (10.14), we denote by V and λ 2 the matrices containing the eigenvectors and eigenvalues of L 2 :

L 2 = V λ 2 V -1 . (10.21) 
In that case, it used that equations (10.12) and (10.13) imply

∂ 2 3 F = -L 2 F , x 3 ∈ [0, h] . (10.22)
The combination of the two last equations leads to

F(x 3 ) = V cos[λ x 3 ]V -1 F(0) +V λ -1 sin[λ x 3 V -1 (∂ 3 F)(0) . (10.23) 
Replacing (∂ 3 F)(0) by iLF(0), one obtains for the transfer matrix the following "formal" expression

T (x 3 ) = V cos[λ x 3 ]V -1 + iV λ -1 sin[λ x 3 ]V -1 L . (10.24)
This equation is not "formally" equivalent to the first expression (10.20) derived from L. This equivalence requires the assumption (10.14) to become true, so that L can be replaced by V λV -1 above (and next the formal identity cos[λ

x 3 ] + i sin[λ x 3 ] = exp[iλ x 3 ]
has to be used).

Rigorous derivation of the continuation procedure

A rigorous formulation is based on the use of the Fourier transform with respect to the variable x 3 defined by

F [F](k 3 ) = 1 2π R exp[-ik 3 x 3 ]F(x 3 ) dx 3 . (10.25)
The function F is then deduced from its Fourier transform F [F] by

F(x 3 ) = R exp[ik 3 x 3 ]F [F](k 3 ) dk 3 . (10.26)
It is not suitable to perform directly the Fourier transform of the equation (10.12) since the matrix σ (and then M) is not independent of x 3 in R. However, if equation (10.12) is multiplied by the characteristic function Ψ of the lamellar layer [so Ψ(x 3 ) = 1 for x 3 in [0, h] and vanishes otherwise], then

Ψ(x 3 )∂ 3 F(x 3 ) = Ψ(x 3 )iM F(x 3 ) = Ψ(x 3 )iL F(x 3 ) = iL Ψ(x 3 )F(x 3 ) . (10.27)
After this multiplication, a partial differential equation with the x 3 -independent matrix L is obtained. The Fourier transform (10.25) of Ψ∂ 3 F is

F [Ψ∂ 3 F](k 3 ) = 1 2π R exp[-ik 3 x 3 ]Ψ(x 3 )∂ 3 F(x 3 ) dx 3 = 1 2π h 0 exp[-ik 3 x 3 ]∂ 3 F(x 3 ) dx 3 = 1 2π exp[-ik 3 h]F(h) -F(0) + ik 3 F [ΨF](k 3 ) , (10.28) 
where the last line comes from an integration by parts. After this Fourier transform, equation (10.27) becomes

1 2π exp[-ik 3 h]F(h) -F(0) + ik 3 F [ΨF](k 3 ) = iLF [ΨF](k 3 ) (10.29) or k 3 -L F [ΨF](k 3 ) = 1 2iπ F(0) -exp[-ik 3 h]F(h) . (10.30) 
The operator k 3 -L is always invertible if there is some absorption, i.e. Imσ > 0, or if the limit ω = lim η↓0 (ω + iη) is considered (see [START_REF] Tip | Band structure of absorptive photonic crystals[END_REF][START_REF] Gralak | Transfer matrix method for point sources radiating in classes of negative refractive index materials with 2n-fold antisymmetry[END_REF], this is equivalent to the property (10.16) on the eigenvalues λ since k 3 is purely real). Hence it is possible to write

F [ΨF](k 3 ) = 1 2iπ 1 k 3 -L F(0) -exp[-ik 3 h]F(h) , (10.31) 
The final step is to apply the inverse Fourier transform (10.26): for x 3 in [0, h],

Ψ(x 3 )F(x 3 ) = 1 2iπ R exp[ik 3 x 3 ] 1 k 3 -L dk 3 F(0) - 1 2iπ R exp[ik 3 (x 3 -h)] 1 k 3 -L dk 3 F(h) . (10.32)
Again, it is assumed that the operator L can be written L = V λV -1 (10.14). Replacing the matrix L by its diagonal form, the last expression becomes

Ψ(x 3 )F(x 3 ) = 1 2iπ V R exp[ik 3 x 3 ] 1 k 3 -λ dk 3 V -1 F(0) - 1 2iπ V R exp[ik 3 (x 3 -h)] 1 k 3 -λ dk 3 V -1 F(h) .
(10.33)

The integrations above are performed by adding to the real axis of k 3 a semi-circle with infinite radius (in the complex plane of k 3 ) on which the integrals vanish. For the first term with F(0), the complex number k 3 must have positive imaginary part (x 3 is positive), so that the real axis is closed by a semi-circle in the upper half plane (see the red path on figure 10.3). In this case, the solely eigenvalues contained in λ + generate contributions in the integral. For the second term with F(h), the complex number k 3 must have negative imaginary part (x 3h is negative), so that the real axis is closed by a semi-circle in the lower half plane (see the blue path on figure 10.3). Here, the integral is given by the eigenvalues contained in λ -. Let P ± be the projectors Re(k 3 ) upon the spaces corresponding respectively to eigenvalues λ ± :

Im(k 3 ) exp[ik 3 x 3 ] → 0 exp[ik 3 (x 3 -h)] → 0 λ + λ -
P + λ = λ + 0 0 0 , P -λ = 0 0 0 λ - . (10.34)
Then, after the integration over k 3 , expression (10.33) yields

Ψ(x 3 )F(x 3 ) = V P + exp[iλ + x 3 ]V -1 F(0) +V P -exp[iλ -(x 3 -h) V -1 F(h) . (10.35)
This expression is always well defined since the integration in the complex plane of k 3 imposes that all the complex exponential functions decrease:

exp[iλ + x 3 ] ≤ 1 , exp[iλ -(x 3 -h)] ≤ 1 . (10.36)
Considering the rigorous expression (10.35) at x 3 = 0 and x 3 = h and using that P -+ P + is the identity, one obtains

V P -V -1 F(0) = V P -exp[-iλ -h]V -1 F(h) , V P + V -1 F(h) = V P + exp[iλ + h]V -1 F(0) . (10.37)
These two relationships provides a rigorous way to deduce F(0) from F(h) and conversely. As in the previous section, the continuation procedure is also derived from the diagonal form (10.21) of L 2 . Equation (10.22) is multiplied by Ψ(x 3 ) to provide an expression similar to (10.27)

Ψ(x 3 )∂ 3 F(x 3 ) = -L 2 Ψ(x 3 )F(x 3 ) . (10.38)
Then, the Fourier transform (10.25) is applied to this equation. Using that

F [Ψ∂ 2 3 F](k 3 ) = 1 2π R exp[-ik 3 x 3 ]Ψ(x 3 )∂ 2 3 F(x 3 ) dx 3 = -k 2 3 F [ΨF](k 3 ) + ik 3 1 2π exp[-ik 3 h]F(h) -F(0) + 1 2π exp[-ik 3 h](∂ 3 F)(h) -(∂ 3 F)(0) , (10.39) 
and replacing (∂ 3 F)(x 3 ) by iLF(x 3 ), equation ( 10.38) implies

F [ΨF](k 3 ) = 1 2iπ 1 k 2 3 -L 2 k 3 F(0) -exp[-ik 3 h]F(h) = 1 2iπ 1 k 2 3 -L 2 LF(0) -exp[-ik 3 h]LF(h) .
(10.40)

Next, the inverse Fourier transform (10.26) is performed for x 3 in [0, h] and the diagonal form (10.21) is used:

Ψ(x 3 )F(x 3 ) = 1 2iπ V R k 3 k 2 3 -λ 2 exp[ik 3 x 3 ]V -1 F(0) -exp[ik 3 (x 3 -h)]V -1 F(h) dx 3 + 1 2iπ V R 1 k 2 3 -λ 2 exp[ik 3 x 3 ]V -1 LF(0) -exp[ik 3 (x 3 -h)]V -1 LF(h) dx 3 .
(10.41) Again, the integrations above are calculated by adding to the real axis of k 3 a semi-circle with infinite radius (in the complex plane of k 3 ) on which the integrals vanish. Without loss of generality, it is considered that the square root of the eigenvalues in λ 2 have non-zero imaginary part: let √ λ 2 be the square root of λ 2 with positive imaginary part. For the terms with F(0), the real axis is closed by a semi-circle in the upper half plane, and the eigenvalues with positive imaginary part √ λ 2 lead to contributions in the integrals. For the terms with F(h), the real axis is closed by a semi-circle in the lower half plane, and the integrals are given by the eigenvalues with negative imaginary part, i.e. -√ λ 2 . Calculations of integrals over k 3 lead to

Ψ(x 3 )F(x 3 ) = V 1 2 exp[i √ λ 2 x 3 ]V -1 F(0) +V 1 2 exp[-i √ λ 2 (x 3 -h)]V -1 F(h) + V 1 2 √ λ 2 exp[i √ λ 2 x 3 ]V -1 LF(0) -V 1 2 √ λ 2 exp[-i √ λ 2 (x 3 -h)]V -1 LF(h) .
(10.42) This equation is evaluated at x 3 = 0 and x 3 = h:

F(0) = V exp[i √ λ 2 h]V -1 F(h) +V 1 √ λ 2 V -1 LF(0) -V 1 √ λ 2 exp[i √ λ 2 h]V -1 LF(h) , F(h) = V exp[i √ λ 2 h]V -1 F(0) +V 1 √ λ 2 exp[i √ λ 2 h]V -1 LF(0) -V 1 √ λ 2
V -1 LF(h) .

(10.43) Thanks to the technique based on the Fourier transform, all the exponential functions in these expressions must be well-defined. Indeed, the imaginary part of √ λ 2 is positive and all the exponential functions decrease. Equations (10.43) will be used to construct a stable numerical algorithm to stack several lamellar layers.

Exact eigenmodes and eigenvalues method

The different solutions (10.20), (10.24, (10.37) and (10.43), established in the previous section, are provided from the knowledge of the sets of eigenmodes and eigenvalues of the operator L (or L 2 ). In this section, it is shown how these eigenmodes V ±,n and eigenvalues λ ±,n of L can be exactly determined in a lamellar layer located between the planes x = 0 and x 3 = h. The starting point is equation (10.17):

∂ 3 F = iLF , L = M(x 3 ) , x 3 ∈ [0, h]. (10.44) 
Let ε 1 , µ 1 and σ 1 be the functions which coincide with respectively ε, µ and σ in the considered lamellar layer for x 3 in [0, h]. In the considered lamellar layer, they are functions of the solely variable x 1 (see figure 10.2):

ε 1 (x 1 ) = ε(x 1 , x 3 ) , µ 1 (x 1 ) = µ(x 1 , x 3 ) , σ 1 (x 1 ) = σ (x 1 , x 3 ) , x 3 ∈ [0, h]. (10.45) 
According to expression (10.12), the operator L is now

L = -i -∂ 1 σ -1 1 ∂ 2 σ 1 + ∂ 1 σ -1 1 ∂ 1 -σ 1 -∂ 2 σ -1 1 ∂ 2 ∂ 2 σ -1 1 ∂ 1 , (10.46) 
and its square is

L 2 = - -σ 2 1 -∂ 1 σ -1 1 ∂ 1 σ 1 -σ 1 ∂ 2 σ -1 1 ∂ 2 σ 1 ∂ 2 σ -1 1 ∂ 1 -∂ 1 σ -1 1 ∂ 2 σ 1 σ 1 ∂ 1 σ -1 1 ∂ 2 -∂ 2 σ -1 1 ∂ 1 σ 1 -σ 2 1 -∂ 2 σ -1 1 ∂ 2 σ 1 -σ 1 ∂ 1 σ -1 1 ∂ 1 . (10.47) 
Since the matrix σ 1 is x 2 -independent, the equality

σ 1 ∂ 2 σ -1 1 = ∂ 2 = σ -1 1 ∂ 2 σ 1

holds, and the expression above becomes

L 2 = σ 2 1 + ∂ 2 2 + ∂ 1 σ -1 1 ∂ 1 σ 1 0 ∂ 2 σ -1 1 ∂ 1 σ 1 -σ 1 ∂ 1 σ -1 1 ∂ 2 σ 2 1 + ∂ 2 2 + σ 1 ∂ 1 σ -1 1 ∂ 1 . (10.48) 
This expression shows that the components F 1 can be decoupled from the components F 2 in the lamellar layer. Indeed, it implies

∂ 2 3 F 1 = -KF 1 , K = σ 2 1 + ∂ 2 2 + ∂ 1 σ -1 1 ∂ 1 σ 1 . (10.49)
Moreover, each component of F 1 , i.e. E 1 and H 1 , can be also decoupled since the operator K is diagonal:

K = K ε 1 0 0 K µ 1 , (10.50) 
where

K ε 1 = ω 2 ε 1 µ 1 + ∂ 2 2 + ∂ 1 ε -1 1 ∂ 1 ε 1 , K µ 1 = ω 2 ε 1 µ 1 + ∂ 2 2 + ∂ 1 µ -1 1 ∂ 1 µ 1 .
(10.51)

Here, it is important to notice that the two operators K ε 1 and K µ 1 correspond to the ones of a onedimensional multilayered stack for respectively pand s-polarization. This makes it possible to calculate the exact eigenmodes and eigenvalues of K ε 1 and K µ 1 (see appendix) and thus the ones of K. Thus the continuation procedure presented in section 10.3.2 can be applied to equation (10.49). It provides relationships between the fields F 1 (0), F 1 (h) and their derivative with respect to x 3 , i.e.

[∂ 3 F 1 ](0) and [∂ 3 F 1 ](h) (it is recalled that ∂ 3 F = iLF in section 10.3.2).
To complete the derivation of the method, it is necessary to express the component F 2 of the field from F 1 and ∂ 3 F 1 . A starting relationship is obtained from (10.44) and (10.47):

∂ 3 F 1 = -∂ 1 σ -1 1 ∂ 2 F 1 + σ 1 + ∂ 1 σ -1 1 ∂ 1 F 2 . (10.52)
This equation is equivalent to

1 + ∂ 1 σ -1 1 ∂ 1 σ -1 1 σ 1 F 2 = ∂ 3 F 1 + ∂ 1 σ -1 1 ∂ 2 F 1 . (10.53)
Here, it is remarked that the operator

[1 + ∂ 1 σ -1 1 ∂ 1 σ -1 1 ] is invertible since it equals [K -∂ 2 2 ]σ -2 1
where σ 1 is invertible as well as [K -∂ 2 2 ] (eigenvalues of K have non-zero imaginary part). Moreover, the operator

[1 + ∂ 1 σ -1 1 ∂ 1 σ -1 1 ] commutes with ∂ 3 , ∂ 2 and ∂ 1 σ -1 1 : hence σ 1 F 2 = 1 1 + ∂ 1 σ -1 1 ∂ 1 σ -1 1 ∂ 3 F 1 + 1 1 + ∂ 1 σ -1 1 ∂ 1 σ -1 1 ∂ 1 σ -1 1 ∂ 2 F 1 = 1 1 + ∂ 1 σ -1 1 ∂ 1 σ -1 1 ∂ 3 F 1 + ∂ 2 ∂ 1 σ -1 1 1 1 + ∂ 1 σ -1 1 ∂ 1 σ -1 1 F 1 = σ 2 1 1 σ 2 1 + ∂ 1 σ -1 1 ∂ 1 σ 1 ∂ 3 F 1 + ∂ 2 ∂ 1 σ 1 1 σ 2 1 + ∂ 1 σ -1 1 ∂ 1 σ 1 F 1 .
(10.54)

After the Fourier decomposition with respect to the variable x 2 , the operator ∂ 2 becomes ik 2 .

Then, the inverse operator above is expressed using the diagonal form K = V λ 2 V -1 , and the component F 2 becomes

F 2 = σ 1 V 1 λ 2 + k 2 2 V -1 ∂ 3 F 1 + ik 2 σ -1 1 ∂ 1 σ 1 V 1 λ 2 + k 2 2 V -1 F 1 . (10.55)
Finally, it is stressed that the coefficients of the operators σ 1 V and σ -1 1 ∂ 1 σ 1 V above can be calculated exactly from the knowledge of the exact eigenmodes. Indeed, the technique presented in appendix shows that the determination of the eigenmodes φ n lies on the calculations of functions σ 1 φ n and σ -1

1 ∂ 1 σ 1 φ n . The final expression of F 2 in terms of F 1 and ∂ 3 F 1 is then

F 2 = U 1 λ 2 + k 2 2 V -1 ∂ 3 F 1 + ik 2 W 1 λ 2 + k 2 2 V -1 F 1 , U = σ 1 V , W = σ -1 1 ∂ 1 σ 1 V . ( 10 
.56) To conclude this section, it has been shown that the field components F 1 , ∂ 3 F 1 and F 2 can be expressed exactly in a lamellar layer: F 1 and ∂ 3 F 1 are provided by equations (10.42) and (10.43) (where F → F 1 , LF → -i∂ 3 F 1 , and K = V λ 2 V -1 ); F 2 is given by equation (10.56). These expressions are based on the knowledge of the eigenvectors V of K, the eigenvalues λ 2 of K and the operators U = σ 1 V and W = σ -1 1 ∂ 1 σ 1 V . All these quantities can be calculated exactly, as shown in appendix.

Finally, it is stressed that the propagation constants inside the lamellar layer are the square roots of the eigenvalues of the operator K, i.e. ± √ λ 2 . If there is some absorption, i.e. Imσ > 0, or if a small positive imaginary part is added to the frequency ω (the limit ω = lim η↓0 (ω + iη) is considered [START_REF] Tip | Band structure of absorptive photonic crystals[END_REF][START_REF] Gralak | Transfer matrix method for point sources radiating in classes of negative refractive index materials with 2n-fold antisymmetry[END_REF]), the eigenvalues λ 2 of K cannot be purely real. It follows that the propagation constants ± √ λ 2 have non zero imaginary parts and, moreover, the half of them (+ √ λ 2 ) have strictly positive imaginary part and the second half of them (-√ λ 2 ) have strictly negative imaginary part. In this case, the assumption (10.16) on the eigenvalues of L is well justified.

Numerical algorithm

A general solution for numerical algorithm has been proposed by L. Li in the case of modal methods of gratings [START_REF] Li | Justification of matrix truncation in the modal methods of diffraction gratings[END_REF]. This solution is based on the definition of S or R matrices which are well-conditioned.

R matrix for a single lamellar layer

In this section, the expression of a R matrix associated with a lamellar layer is established: it is defined by the relationship

F 1 (0) F 1 (h) = R F 2 (0) F 2 (h) . (10.57)
First, equation ( 10.43) is used to provide an expression of the solution of (10.49):

F 1 (0) -V exp[i √ λ 2 h]V -1 F 1 (h) = -iV 1 √ λ 2 V -1 ∂ 3 F 1 (0) + iV 1 √ λ 2 exp[i √ λ 2 h]V -1 ∂ 3 F 1 (h) , F 1 (h) -V exp[i √ λ 2 h]V -1 F 1 (0) = -iV 1 √ λ 2 exp[i √ λ 2 h]V -1 ∂ 3 F 1 (0) + iV 1 √ λ 2 V -1 ∂ 3 F 1 (h) .
(10.58) This set of equations is written using 2 × 2 matrices:

A F 1 (0) F 1 (h) = B ∂ 3 F 1 (0) ∂ 3 F 1 (h) , (10.59) 
where

A = 1 -V exp[i √ λ 2 h]V -1 -V exp[i √ λ 2 h]V -1 1 (10.60) and B =     -iV 1 √ λ 2 V -1 iV 1 √ λ 2 exp[i √ λ 2 h]V -1 -iV 1 √ λ 2 exp[i √ λ 2 h]V -1 iV 1 √ λ 2 V -1     .
(10.61)

Next, from (10.56), the field ∂ 3 F 1 is related to F 1 and F 2 from

∂ 3 F 1 = -ik 2 V [λ 2 + k 2 2 ]U -1 W 1 λ 2 + k 2 2 V -1 F 1 +V [λ 2 + k 2 2 ]U -1 F 2 . (10.62)
Defining the two matrices the relationship (10.59) becomes

C =     -ik 2 V [λ 2 + k 2 2 ]U -1 W 1 λ 2 + k 2 2 V -1 0 0 -ik 2 V [λ 2 + k 2 2 ]U -1 W 1 λ 2 + k 2 2 V -1     (10.63) and D = V [λ 2 + k 2 2 ]U -1 0 0 V [λ 2 + k 2 2 ]U -1 , ( 10 
A F 1 (0) F 1 (h) = BC F 1 (0) F 1 (h) + BD F 2 (0) F 2 (h) . (10.65)
Finally, according to the definition (10.57), the R matrix is given by

R = 1 A -BC BD . (10.66)
It is stressed that the R matrix is numerically stable. Indeed, exponential functions always have arguments such that they decrease and, when inverted, they are always added to wellconditioned functions. For example, in the matrix [A -BC], one can check that the diagonal blocs are well-conditioned since they do not contain any exponential function, while the offdiagonal blocs decrease exponentially. When inverted, this matrix will have the same behaviour with well-conditioned diagonal blocs and exponentially decreasing off-diagonal blocs.

R matrix for a stack of lamellar layers

Here, a system made of two lamellar layers is considered. The first layer is located between the planes x 3 = -h 1 and x 3 = 0, and the second layer between the planes x 3 = 0 and x 3 = h 2 . Let R 1 and R 2 be the R matrices associated with these layers:

F 1 (-h 1 ) F 1 (0) = R 1 F 2 (-h 1 ) F 2 (0) , F 1 (0) F 1 (h 2 ) = R 2 F 2 (0) F 2 (h 2 ) . (10.67)
Then, the R matrix associated with the stack of the two layers is determined by eliminating the components F 1 (0) and F 2 (0) in the equations above. Denoting by R 1,i j and R 2,i j (i, j = 1, 2) the blocs of R 1 and R 2 ,

R 1 = R 1,11 R 1,12 R 1,21 R 1,22 , R 2 = R 2,11 R 2,12 R 2,21 R 2,22 , (10.68) 
the expression of R is given by

R =     R 1,11 -R 1,12 1 R 1,22 -R 2,11 R 1,21 R 1,12 1 R 1,22 -R 2,11 R 2,12 -R 2,21 1 R 1,22 -R 2,11 R 1,21 R 2,22 -R 2,21 1 R 1,22 -R 2,11 R 2,12     .
(10.69) Again, one can check that the algorithm is stable since the only inverted blocs are the diagonal ones, which are well-conditioned.

Numerical application

A simple numerical example is considered to put the exact modal method to the test. The structure is made of a set of rectangular rods with dielectric constant ε 1,1 /ε 0 = 12.96 (corresponding to the index 3.6 of Si at optical wavelengths), width w 1,1 = 0.28d and height

h = d/(2 √ 2)
, where d is the spatial period of the grating (see figure 10.4). This lamellar grating is illuminated by a plane wave with an incident angle θ i = 45 • . The oscillating frequency is ω = 2π/(d √ ε 0 µ 0 ), which corresponds to a wavelength equal to the spatial period d. The efficiency diffracted in the order zero, i.e. at the reflected angle θ r = θ i = 45 • is calculated for both s and p-polarizations which correspond respectively to the electric and magnetic fields reduced to a single component along the invariance axis x 2 . Each component of the electromagnetic field is described by a finite number (2n + 1) of exact modes. Reflected efficiency in the order zero for different values of the number of exact modes (2n + 1) is represented on figure 10.5. These curves show that these efficiencies differ from their converged value with less than one percent from (2n + 1) = 7 in s-polarization and (2n + 1) = 5 in p-polarization (the converged values are respectively 0.7323 and 0.9487 in s and p polarizations). This convergence is found to be faster than in the case of the modal method with Fourier basis [START_REF] Li | New formulation of the Fourier modal method for crossed surface-relief gratings[END_REF] where an error smaller than one percent is obtained from (2n + 1) = 17 and (2n + 1) = 27 in s and p polarizations respectively (the method [START_REF] Li | New formulation of the Fourier modal method for crossed surface-relief gratings[END_REF] contains all the techniques to improve the convergence of the truncated Fourier series [START_REF] Li | Use of Fourier series in the analysis of discontinuous periodic structures[END_REF]). This improvement of the convergence resulting from the use of the exact modes becomes a significant advantage when three dimensional woodpile structures are considered [START_REF] Gralak | Theoretical study of photonic band gaps in woodpile crystals[END_REF] (the total number of modes (2n + 1) 2 can be reduced by a factor of 10).

x 3 x 1 ε 1,1 w 1,1 w 1,2 d ε 0 , µ 0 ε 0 , µ 0 θ i θ r

Appendix. Calculation of the exact modes and eigenvalues

It is shown here how to determine exactly the eigenvalues and the eigenfunctions of the operator K associated with a lamellar layer in a very general case. An analogous reasoning provides the ones of the operator associated with the others lamellar layers.

From the expression (10.50), every eigenvalue Λ n of the operator K is either an eigenvalue of

K ε 1 or K µ 1 . So, it is sufficient to determine the set of eigenvalues {Λ ν 1 ,n | n ∈ N } associated with the set of eigenfunctions {φ ν 1 ,n | n ∈ N } of the scalar operator K ν 1 , with ν 1 = ε 1 or ν 1 = µ 1 .

The equation satisfied by the exact eigenvalues

From the expression (10.50), the operator

K ν 1 is the sum of ω 2 ε 1 µ 1 + ∂ 1 ν -1 1 ∂ 1 ν 1 and ∂ 2 2
: the first part is an operator of the single variable x 1 and the second part is an operator of the single variable x 2 . Thus, we can perform a variable separation: every eigenfunction of L ν 1 can be written

φ ν 1 ,n (x 1 , x 2 ) = φ (1) 
n 1 (x 1 ) φ (2) 
n 2 (x 2 ) n 1 , n 2 ∈ N , (10.70) where φ (1) 
n 1 and φ

n 2 are respectively eigenfunctions of the first and second operators which constitute L ν 1 .

In the case of a lamellar grating which is invariant in the direction x 2 , this direction of invariance is considered using the Fourier decomposition (10.5). Thus the eigenfunction of

∂ 2 2 is just φ (2) n 2 (x 2 ) = exp[ik 2 x 2 ] k 2 ∈ R , (10.71) 
and the integer n 2 plays no role (integer n will be simply n 1 ). In the case of woodpile crystals, it is easy to verify that the plane-wave φ

n 2 (x 2 ) = exp{i[k 2 + 2π p(n 2 )/d 2 ]x 2 /d 2 } p(n 2 ) ∈ Z (10.72) (2) 
is an eigenfunction of the operator ∂ 2 2 and satisfies the partial Bloch boundary condition (10.8) adapted for the variable

x 2 . Let Λ (2)
n 2 be the associated eigenvalue. Then, from (10.71,10.72), Λ

n 2 = -[k 2 + 2πq(n 2 )/d 2 ] 2 . (2) 
(10.73)

Note that, for lamellar gratings and eigenfunctions (10.71), the integer q(n 2 ) is set to zero. The x 1 -dependency of the eigenfunction (10.70) is determined using the usual transfer matrix [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF][START_REF] Figotin | Localized electromagnetic waves in a layered periodic dielectric medium with a defect[END_REF][START_REF] Felbacq | Wave propagation in one-dimensional photonic crystals[END_REF]. Let λ (1) n 1 be the eigenvalue associated with φ (1)

n 1 : ω 2 ε 1 µ 1 + ∂ 1 ν -1 1 ∂ 1 ν 1 φ (1) 
n 1 = Λ (1) 
n 1 φ (1) 
n 1 . (10.74) 
In order to obtain a set of first order differential equations, the following column vector is introduced

F n 1 = ν 1 φ (1) n 1 ν -1 1 ∂ 1 ν 1 φ (1) n 1 . 
(10.75) Note that, from equation (10.74), the two components of this vector are continuous functions. Now, suppose that the unit cell of the considered lamellar layer is made of J rods of width w 1, j , permittivity ε 1, j and permeability µ 1, j , j = 1, 2, • • • , J (figure 10.6): we denote by ν 1, j the value

x 3 x 1 ν 1,1 ν 1,2 ν 1,3 ν 1 = ε 1 , µ 1 w 1,1 w 1,2 w 1,3 d Figure 10
.6: A layer made of three rods per unit cell (J = 3): the three rods have width w 1, j , permittivity ε 1, j and permeability µ 1, j , j = 1, 2, 3.

of the function ν 1 in the rod j, j = 1, 2, • • • , J. Then, from equation (10.74), the vector (10.75) satisfies [START_REF] Felbacq | Wave propagation in one-dimensional photonic crystals[END_REF] F n 1 (d) = T 1 Λ

(1)

n 1 F n 1 (0) , (10.76) 
where

T 1 (Λ) = T 1,J (Λ) T 1,J-1 (Λ) • • • T 1,1 (Λ) , (10.77) 
T 1, j (Λ) = P 1, j (Λ, w 1, j ) , (10.78) P 1, j (Λ, w) = cos(β 1, j w) ν 1, j β -1 1, j sin(β 1, j w) -ν -1 1, j β 1, j sin(β 1, j w) cos(β 1, j w) , (10.79)

β 1, j = ω 2 ε 1, j µ 1, j -Λ j = 1, 2, • • • , J . (10.80) 
Note that the four elements of each matrix T 1, j only depend on β 2 1, j : the expression (10.79) is independent of the definition of the square root (10.80). In addition to (10.76), the vector (10.75) has to satisfy the partial Bloch boundary condition (10.8) for the variable x 1 :

F n 1 (d) = exp[ik 1 d]F n 1 (0) . (10.81)
The combination of (10.76) and (10.81) implies that exp[ik 1 d] is an eigenvalue of the matrix T 1 Λ

(1) 

n 1 : the equation det T 1 Λ (1) 
n 1 . This last equation can be simplified using the fact that det T 1 = 1 (since, from (10.78), det T 1, j = 1, j = 1, 2, • • • , J): if exp[ik 1 d] is an eigenvalue of T 1 , then exp[-ik 1 d] is also. Thus, the equation (10.82) is equivalent to

trT 1 Λ (1) n 1 -2 cos[k 1 d] = 0 , (10.83) 
where trT 1 is the trace of matrix T 1 . Once the eigenvalues Λ

n 1 are determined from (10.83), the associated eigenvectors φ (1) n 1 are also obtained using the transfer matrix [START_REF] Figotin | Localized electromagnetic waves in a layered periodic dielectric medium with a defect[END_REF]: firstly, the eigenvector F n 1 (0) in C 2 (associated with the eigenvalue exp[ik 1 d]) of the matrix T 1 Λ

(1) n 1 is determined; secondly, the expression of φ

(1)
n 1 in the rod j can be deduced from

F n 1 (x 1 ) = P 1, j Λ (1) n 1 , x 1 -x 1, j F n 1 (x 1, j-1 ) , (10.84) 
where

x 1,0 = 0 , x 1, j = j ∑ q=1 w 1,q j = 1, 2, • • • , J . (10.85)
Finally the eigenvalues of the operator K ν 1 are

λ ν 1 ,n = λ (1) 
n 1 + λ (2) n 2 , (10.86) 
whose the two parts are respectively given by (10.83) and (10.73), and the expression of associated eigenvectors is (10.70) whose the two parts are respectively given by (10.84) and (10.72).

Concerning the functions of the operators U = σ 1 V and W = σ -1 1 ∂ 1 σ 1 V used in section 10.4 [see equation (10.56)], they are equal to the functions

ν 1 φ (1) n 1 (x 1 ) φ (2) n 2 (x 2 ) , ν -1 1 ∂ 1 ν 1 φ (1) 
n 1 (x 1 ) φ (2) 
n 2 (x 2 ) , (10.87) 
where n 1 and n 2 are in N, the expression of ν 1 φ

(1)

n 1 and ν -1 1 ∂ 1 ν 1 φ (1) 
n 1 in the rod j can be deduced from (10.75,10.84) and the expression of φ (2) n 2 is given by (10.72).

Real eigenvalues

Here, we suppose that the permittivity and permeability are real positive functions:

ε 1 (x 1 ) ∈ R , ε + > ε 1 (x 1 ) > 0 ; µ 1 (x 1 ) ∈ R , µ + > µ 1 (x 1 ) > 0 . (10.88) 
Under these conditions, the operator K ν 1 is selfadjoint and its eigenvalues are real when the following inner product is used:

(φ , ψ) -→ 1 d d 0 ν 1 (x 1 )φ (x 1 )ψ(x 1 ) dx 1 . (10.89)
The only difficulty in the numerical determination of the eigenvalues (10.86) is to find the real numbers λ

n 1 which satisfy the transcendental equation (10.83). Since the numbers Λ (1)

n 1 are eigenvalues of the operator ω 2 ε 1 µ 1 + ∂ 1 ν -1 1 ∂ 1 ν 1 ≤ ω 2 ε + µ + ,
these numbers are on the semi-axis (-∞, ω 2 ε + µ + ]. This property makes their numerical determination easier and provides a way to number them:

ω 2 ε + µ + ≥ Λ ν 1 ,1 ≥ Λ ν 1 ,2 • • • ≥ Λ ν 1 ,n ≥ • • • (10.90)
However, two difficulties can occur in this numerical determination. We give herein the solutions we have adopted.

The first difficulty comes from the possibility for two consecutive numbers Λ The expression of the derivative of the matrix T 1 can be deduced from (10.77,10.78):

dT 1 dΛ = dT 1,J dΛ T 1,J-1 • • • T 1,1 + T 1,J dT 1,J-1 dΛ • • • T 1,1 + • • • + T 1,J T 1,J-1 • • • dT 1,1 dΛ , (10.92) 
where, for j = 1, 2, • • • , J, the derivative of matrices

dT 1, j dΛ = 1 2 a 1, j b 1, j c 1, j d 1, j (10.93) is given by a 1, j = w 1, j β -1 1, j sin[β 1, j w 1, j ] , b 1, j = ν 1, j β -3 1, j sin[β 1, j w 1, j ] -ν 1, j w 1, j β -2 1, j cos[β 1, j w 1, j ] , c 1, j = ν -1 1, j β -1 1, j sin[β 1, j w 1, j ] + ν -1 1, j w 1, j cos[β 1, j w 1, j ] , d 1, j = w 1, j β -1 1, j sin[β 1, j w 1, j ] . (10.94) 
The second difficulty comes from the possibility of numerical instabilities in the expressions (10.79,10.93) since the numbers β 1, j (10.80) can have non-vanishing imaginary part. A solution is to multiply the four coefficients of matrices T 1, j and their derivative (10.93) by the number

N j = exp -| Im(β 1, j )| w 1, j j = 1, 2, • • • , J , (10.95) 
and the term 2 cos[k 1 d] wich appears in (10.83) by the product

N = N J N J-1 • • • N 1 . ( 10 
.96)

Complex eigenvalues

Here, the permittivity and permeability can take any complex value: ν 1, j is in C, where ν 1 = ε 1 , µ 1 and j = 1, 2, • • • , J. The operator K ν 1 is not selfadjoint and then, its eigenvalues are, in general, in the complex plane. The determination of these complex eigenvalues λ

n 1 which satisfy the equation (10.83) has been intensively studied using different methods [START_REF] Botten | Highly conducting lamellar diffraction grating[END_REF][START_REF] Tayeb | On the numerical study of deep conducting lamellar diffraction grating[END_REF][START_REF] Sandström | Lossy multistep lamellar gratings in conical diffraction mountings: an exact eigenfunction solution[END_REF].

We present here a method similar to the one presented in [START_REF] Tayeb | On the numerical study of deep conducting lamellar diffraction grating[END_REF]: the complex eigenvalues are deduced from the real eigenvalues by an analytic continuation. However, our method differs from the one presented in [START_REF] Tayeb | On the numerical study of deep conducting lamellar diffraction grating[END_REF] since we make varying the phase of the numbers ν 1, j instead of their imaginary part. We think that it is better to make varying the phase since, from that we have observed, it leaves invariant the generalization to the complex case

Re(Λ ν 1 ,1 ) ≥ Re(Λ ν 1 ,2 ) • • • ≥ Re(Λ ν 1 ,p ) • • • (10.97)
of the numbering used when the eigenvalues are real (10.90).

We define for all t in [0, 1] the functions

ν 1, j (t) = |ν 1, j | exp[it arg(ν 1, j )] , (10.98) 
where arg(ν 1, j ) is the phase of the complex number ν 1, j , ν 1 = ε 1 , µ 1 and j = 1, 2, • • • , J. Substituting the numbers ν 1, j (where ν 1 = ε 1 , µ 1 ) for ν 1, j (t) in equations (10.77,10.78), we obtain the matrix T 1 (Λ,t). For each value of t, we define the numbers Λ

n 1 (t) which satisfy tr T 1 Λ

(1)

n 1 (t),t -2 cos[k 1 d] = 0 . (10.99)
Then, the numbers Λ

n 1 (1) are the desired complex eigenvalues Λ

p 1 and the numbers Λ

n 1 (0) are real eigenvalues which can be determined using the method presented in the previous section 10. [START_REF] Tayeb | On the numerical study of deep conducting lamellar diffraction grating[END_REF] where ∂ T 1 /∂ Λ is given by substituting the numbers ν 1, j for ν 1, j (t) in equations (10.94,10.93) and ∂ T 1 /∂t is determined similarly. Finally the obtained estimates of numbers Λ

n 1 (1) are used to initiate any of the classical methods for the numerical solution of equations [START_REF] Tayeb | On the numerical study of deep conducting lamellar diffraction grating[END_REF]. Then, one obtains the desired complex eigenvalues.

In order to eliminate the numerical instabilities, one has to multiply each matrix T 1, j and their derivatives by the numbers N j (10.95) as in the previous section 10.7.2.

Eigenfunctions

From (10.84), the expression of each eigenfunction φ (1) n 1 is given by the coefficients of the column vectors F n 1 (x 1, j ), j = 0, 1, • • • , J. On the numerical side, the only difficulty comes from the fact that numerical instabilities in the expression of the transfer matrices (10.78,10.79). A solution based on the R-matrix algorithm (or S-matrix) should consist in using the algorithm presented in [START_REF] Gralak | From scattering or impedance matrices to Bloch modes of photonic crystals[END_REF] to obtain the vector F n 1 (x 1,0 ) (and the vector F n 1 (x 1,J ) = exp[k 1 d]F n 1 (x 1,0 )) and then, the algorithm presented in [21, section V] to obtain the vectors F n 1 (x 1, j ), j = 1, 2, • • • , J -1. However, we propose to use another solution which benefits of the fact that we deal with 2 × 2 matrices.

We define the following complex coefficients: = T 1, j Λ

n 1 T 1,J-1 Λ (1) n 1 • • • T 1, j Λ (1)
(1) where, as in (10.104), the multiplication by the number N consists in multiplying each coefficient of matrices T 1, j Λ

n 1 T 1, j-1 Λ (1) 
n 1 • • • T 1,1 Λ (1) 
n 1 by the number N j . Finally these functions have to be normalized. From the definition (10.89) of the inner product, one has to compute (10.107)

This expression allows to eliminate the numerical instabilities which can occur from the exponential functions. Note that all the coefficients of matrices defined in sections 10.4 and 10.5 (matrices U, V and W ) can be also computed analytically in order to eliminate the numerical instabilities.
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 102 Figure 10.2: A lamellar grating made of a single lamellar layer on a substrate.
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 103 Figure 10.3: Integration in the complex plane of k 3 .
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 104 Figure 10.4: The considered structure for the numerical example: a single layer made of rectangular rods.
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 105 Figure 10.5: Efficiency in the zero order for s-polarization (left panel) and p-polarization (right panel).

n 1 -

 1 exp[ik 1 d] = 0 (10.82) determines the eigenvalues Λ

  be very close to each other. Our solution is to use an algorithm which determines the zeros of the function trT 1 (Λ) -2 cos[k 1 d] on the left side of equation (10.83) by taking into account this function together with its derivative with respect to Λ. If two numbers Λ (1) n 1 are very close one to each other, then the derivative is close to zero. Thus such algorithm needs to determine the function d dΛ trT 1 (Λ) -2 cos[k 1 d] = tr dT 1 dΛ (λ ) . (10.91)

1 F j 2 = 11 N

 1211 F n 1 (x 1, j ) j = 0, 1, • • • , J . (10.103) Since F n 1 (x 1,0) is an eigenvector of the matrix T 1 Λ(1)n 1 associated with the eigenvalue exp[k 1 d]), and T J 12 N are obtained by multiplying each coefficient of matrices T 1, j Λ(1) n 1 by the number N j . The coefficients F J 1 and F J 2 are deduced from (10.81,10.104) and then, one can obtain the other coefficients for j = 1, 2, • • • , J -1:

  φ

n 1 (x 1 ) 2 ν 1

 121 (x 1 ) dx 1(10.106) when the functions ε 1 and µ 1 have the property (10.88). In the general case (where ε and µ are complex valued functions), one has to use the formalism presented in [8, section 2.3]. It is possible to compute analytically the expression (10.106):
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  .2. Assuming that Λ

	(1) n 1 (t) are continuous and differentiable functions of t, the complex
	numbers Λ (1) n 1 (1) can be estimated from the numbers Λ (1) n 1 (0) by a numerical integration [7] of
	d Λ dt (1) n 1	(t) = -	tr(∂ T 1 /∂ Λ) Λ (1) n 1 (t),t tr(∂ T 1 /∂t) Λ n 1 (t),t (1)	,	(10.100)