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cLIMOS, CNRS UMR 6158 – Université Blaise Pascal, Clermont-Ferrand, Campus des
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Abstract

We propose a new lower bound on the independence number of a graph. We
show that our bound compares favorably to recent ones (e.g. [12]). We obtain
our bound by using the Bhatia-Davis inequality applied with analytical results
(minimum, maximum, expectation and variance) of an algorithm for the vertex
cover problem.
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1. Introduction

The independence number of a graph is one of the most fundamental and
well-studied graph parameters [14]. In view of its computational hardness [11],
various bounds have been proposed [5, 7, 8, 15, 16]. Obtaining such bounds is
an important and hard challenge. The first one was given independently by Y.

Caro and V. Wei [6, 17]. The most recent is due to J. Harant [12].
In this paper, we propose a new lower bound for this parameter. We prove

that our bound is often strictly better than the ones recently proposed in [13]
and [12]. To obtain it, we use the Bhatia-Davis inequality (see [4]) applied with
the parameters capturing the behavior of an algorithm to compute the well-
known vertex cover problem. Sect. 2 contains these preliminary analytical
results. In Sect. 3, we prove our lower bound and compare it.

Definitions, Notations, Problems

Graphs G = (V,E) considered throughout this paper are undirected, finite,
simple and unweighted. We denote by n the number of vertices (n = |V |). For
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any vertex u ∈ V , we denote by N(u) the set of neighbors of u (i.e. the set
of vertices sharing an edge with u), d(u) = |N(u)| the degree of vertex u and
∆ = max{d(u) | u ∈ V } the maximum degree of G.

The Vertex Cover Problem. The vertex cover problem is a well-known clas-
sical NP-complete optimization graph problem [10]. A cover C of G is a subset
of vertices such that every edge contains (or is covered by) at least one vertex
of C, that is C ⊆ V and ∀e = uv ∈ E, one has u ∈ C or v ∈ C (or both). The
vertex cover problem is to find a cover of minimum size.

The Independence Number of a Graph. A set of vertices I ⊆ V in a graph G

is called independent if the graph induced by vertices of I in G contains no
edge. The independence number α of G is the largest cardinality |I| among all
independent sets I of G.

2. Preliminary Results

We focus in this section on the vertex cover problem. More precisely,
we analyze a simple algorithm, that we call LL: for any graph G, we express
the size of the best and the worst solutions it can produce; we also express the
expectation and the variance of the sizes. These results will be used in Sect. 3
to express our main result, namely our lower bound on independence number
of any graph (thanks to the Bhatia-Davis inequality).

Labeling of Nodes, Left and Right Neighbors. In a labeled graph, denoted by
G = (V, L,E), the n vertices of G are labeled by a given function L (called
labeling) such that each vertex u ∈ V has a unique label L(u) ∈ {1, . . . , n} (L is
a bijection between V and {1, . . . , n}). We denote by L(G) the set of all possible
labelings L for a graph G = (V,E). Given a labeled graph G = (V, L,E) and a
vertex u ∈ V , v is called a right neighbor (resp. left neighbor) of u if v ∈ N(u)
and if v has a label larger (resp. smaller) than u.

The algorithm LL can be described as follows on any labeled graph G =
(V, L,E). For each vertex u ∈ V , u is added to the cover if it has at least one
right neighbor.

It is easy to see that LL constructs a cover for any graphG, given any labeling
L of G. Of course, the solution (and size) it returns strongly depends on L.

Property 1 ([2]). For any graph G:

1. There exists L∗ ∈ L(G) such that LL returns an optimal solution on G =
(V, L∗, E).

2. LL cannot construct a cover of size greater than n − c (where is c the
number of connected components of G).

3. With equiprobability on the labelings of G with n vertices, we have:

(a) The probability that a vertex u of G is in the solution is 1− 1
d(u)+1 .
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(b) The expected size of the solution produced by LL on G is

E [LL(G)] = n−
∑

u∈V

1

d(u) + 1
. (1)

All these properties are easy and are proved in [2]. To be complete, we recall
the ideas. Let L∗ labeling first the vertices of any optimal vertex cover C∗ and
after all the other vertices. Clearly LL applied on L∗ returns C∗. For the second
property, suppose that c = 1. In any labeling, the last labeled vertex will not
be chosen, producing a solution of size at most n− 1 (generalization to any c is
trivial).

The probability 1 − 1
d(u)+1 is the complement of the result shown in the

famous proof of Y. Caro and V. Wei for the Turan’s theorem (see [1]), since
the complement of any independent set is a vertex cover (and vice-versa). The
expectation E [LL(G)] is then easily obtained from the previous probability and
the linearity of the expectation.

We complete these results by the variance of LL in what follows.

Theorem 1. Let G = (V,E) be any graph. By considering the n! labelings of
L(G) with equiprobability assumption, the variance of LL is

V [LL(G)] =
∑

u∈V

d(u)

(d(u) + 1)2
− 2

∑

uv∈E

1

(d(u) + 1)(d(v) + 1)

+ 2
∑

uv 6∈E

duv

(d(u) + 1)(d(v) + 1)(2 + d(u) + d(v)− duv)
,

(2)

with duv = |{w ∈ V | uw ∈ E ∧wv ∈ E}|.

Proof. We can express V [LL(G)] by a sum of covariances (for more details,
see e.g. Chap. 9 of [9]). Let C be a cover returned by algorithm LL. For each
vertex u ∈ V , we associate a random variable 1u such that 1u = 1 if u ∈ C and
0 otherwise. Let X =

∑

u∈V 1u be the random variable giving the size of C.
We have

V [X ] =
∑

u∈V

Cov(1u,1u) + 2
∑

{u,v}⊆V
u<v

Cov(1u,1v) , (3)

where u < v means that we count only once Cov(1u,1v) in the sum;
Cov(1u,1v) = E [1u1v] − E [1u] · E [1v] is the covariance of random variables
1u and 1v. With Property 1, we get

E [1u] = 1−
1

d(u) + 1
. (4)

Now, by using (4), we can give closed formulas for each term of (3).
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First, as we have Cov(1u,1u) = E
[

1

2
u

]

− E [1u]
2
= E [1u] − E [1u]

2
, we

obtain

Cov(1u,1u) = 1−
1

d(u) + 1
−

(

1−
1

d(u) + 1

)2

=
d(u)

(d(u) + 1)2
. (5)

Now, for Cov(1u,1v), we distinguish the case where uv ∈ E and the one
where uv 6∈ E.

When uv ∈ E, at least u or v is in the solution. So 1u1v = 1 if the “second”
vertex is also in the solution. If L(u) < L(v) (resp. L(v) < L(u)) then u (resp.
v) is in the solution and v (resp. u) is not in the solution with probability

1
d(v)+1 (resp. 1

d(u)+1): see Property 1. Hence, both vertices u and v are in the

solution (and 1u1v = 1) with probability 1 − ( 1
d(u)+1 + 1

d(v)+1 ) (L(u) < L(v)

and L(v) < L(u) are two disjoints cases). As 1u1v = 0 or 1, we get

E [1u1v] = 1−
1

d(u) + 1
−

1

d(v) + 1
.

Thus, if uv ∈ E,

Cov(1u,1v) = 1−
1

d(u) + 1
−

1

d(v) + 1
−

(

1−
1

d(u) + 1

)(

1−
1

d(v) + 1

)

=
−1

(d(u) + 1)(d(v) + 1)
.

(6)
We treat now the case where uv 6∈ E. We prove later that

E [1u1v] = 1−
(d(u) + d(v) − duv + 1)(d(u) + d(v) + 2)

(d(u) + 1)(d(v) + 1)(d(u) + d(v)− duv + 2)
. (7)

Before making the proof of (7), suppose first that the result is correct. In
this case, when uv 6∈ E, we have

Cov(1u,1v) = 1−
(d(u) + d(v)− duv + 1)(d(u) + d(v) + 2)

(d(u) + 1)(d(v) + 1)(d(u) + d(v) − duv + 2)

−

(

1−
1

d(u) + 1

)(

1−
1

d(v) + 1

)

=
duv

(d(u) + 1)(d(v) + 1)(d(u) + d(v) − duv + 2)
.

(8)

Therefore, by replacing the expressions of covariances of (5), (6) and (8) in the
formula (3), we obtain (2).

Hence, to complete the proof of Theorem 1, we just need now to prove (7),
with the hypothesis that uv 6∈ E.

By definition here, E [1u1v] = P [u ∈ C ∧ v ∈ C] (where C designates a so-
lution produced by LL). By decomposing the sub-cases of the complementary
probability, this expectation is also equal to

1− (P [u 6∈ C] + P [v 6∈ C]− P [u 6∈ C ∧ v 6∈ C]) .
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We already saw that P [u 6∈ C] = 1
d(u)+1 and similarly P [v 6∈ C] = 1

d(v)+1 .

Let us compute now P [u 6∈ C ∧ v 6∈ C]. We consider the case where L(v) <
L(u) (the other is symmetric). To get the result, we just need to consider the
relative numberings of u, v and their d(u)+d(v)−duv neighbors (the labels of the
others vertices play no role here on the fact that u or v be in C). As L(v) < L(u),
u must have the highest of these d(u) + d(v) − duv + 2 labelings (otherwise, u
or v is in C). Choose d(v) + 1 of them, fix v at the first chosen position (i.e. it
gets the highest label), and assign the remaining d(v) neighbors of v arbitrarily
to the remaining d(v) chosen positions. Finally, assign the d(u) − duv vertices
(which are neighbors of u but not of v) arbitrarily in the remaining d(u)− duv
positions. This gives

(

d(u) + d(v)− duv + 1

d(v) + 1

)

· d(v)! · (d(u)− duv)! =
(d(u) + d(v) − duv + 1)!

d(v) + 1

cases. Replacing d(u) by d(v) gives the symmetric result when L(v) > L(u).
Hence, dividing by the (d(u) + d(v) − duv + 2)! possible (restricted) labelings,
we obtain

P [u 6∈ C ∧ v 6∈ C] =
1

(d(u) + d(v)− duv + 2)

(

1

d(u) + 1
+

1

d(v) + 1

)

=
d(u) + d(v) + 2

(d(u) + d(v)− duv + 2)(d(u) + 1)(d(v) + 1))
.

Combining all these results, we get E [1u1v] that is

1−
1

d(u) + 1
−

1

d(v) + 1
+

d(u) + d(v) + 2

(d(u) + d(v) − duv + 2)(d(u) + 1)(d(v) + 1))
.

Easy simplifications lead to (7) and ends the proof of Theorem 1. �

3. A New Lower Bound for the Independence Number

We can now use the result of R. Bhatia and C. Davis [4] linking the variance
ϑ, the expected value µ, the minimum m and the maximum M of any random
variable (with bounded distribution) by the formula ϑ ≤ (M − µ)(µ − m).
Transforming this formula we get m ≤ µ− ϑ

M−µ
. With the help of Property 1,

we replace ϑ by V [LL(G)], µ by E [LL(G)], m by OPT (the size of the optimal
vertex cover of G) and M by n− c to get

OPT ≤ E [LL(G)]−
V [LL(G)]

n− c− E [LL(G)]
.

Now, as algorithm LL constructs a cover C of G = (V,E), it is well known
(and not difficult to prove) that I = V − C is an independent set of G. Hence,
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α = n − OPT . Using this with the previous inequality, we obtain our lower
bound on α:

α ≥ n−

(

E [LL(G)]−
V [LL(G)]

n− c− E [LL(G)]

)

. (9)

Note that this bound can be calculated for any graph, except when n − c =
E [LL(G)]. In this case, this means that the average size of covers constructed by
LL is the worst one, of size n−c. As LL can construct the optimal one, this means
that OPT = E [LL(G)] = n − c (otherwise, we would have E [LL(G)] < n − c).
As α = n−OPT , and as OPT = n− c here, our lower bound becomes:

if E [LL(G)] = n− c then α ≥ n− (n− c) = c . (10)

With this additional case (10), our bound can be computed in polynomial time
for any graph G (c is the number of connected components of G and E [LL(G)]
can be computed with the formula of Property 1 and V [LL(G)] with the formula
of Theorem 1).

In the following of this section, we compare our lower bound to the recent
one of [12] by J. Harant and to a previous one [13] proposed by J. Harant and
I. Schiermeyer. We prove analytically in Sect. 3.1 that on at least one infinite
family of graphs (the wheel graphs with even number of vertices), the differ-
ence between our bound and the one of [12] tends to infinity when the number
of vertices grows, meaning that on this family our bound gets better when n

grows. In Sect. 3.2, we compare the bounds by calculating them numerically on
hundreds of graphs. We show that our bound is better on random graphs and
random bipartite graphs.

3.1. Comparison of Lower Bounds on Independence Number on Wheel Graphs

In this section, we compare our lower bound (9) to the one of Harant in [12]
in a family of graphs, namely the wheels. The wheel graph W (n) has n vertices
and is composed of a cycle of n− 1 vertices and an additional “central” vertex
directly connected to all the n − 1 other ones. We prove in this section that
when n (restricted here to even n for simplifications) tends to infinity, our lower
bound minus the Harant’s lower bounds tends to infinity, proving that our lower
bound is greater and thus better on these graphs.

To do that, we need the bound of J. Harant. Here is the exact formulation
of his theorem as it can be founded in [12].

Theorem 2 (Theorem 2 in [12]). Let G = (V,E) be a finite, simple, con-
nected and non-complete graph on n ≥ 3 vertices, where |E| ≥ n. Moreover, let
α ≤ n

2 be the independence number, ∆ be the maximum degree of G, nj be the
number of vertices of degree j in G and

x(j) =
j(j + 1)

j(j + 1)− 2

((

2

j + 1
− (∆− j)

)

n∆ + · · ·+

(

2

j + 1
− 1

)

nj+1

+
2nj

j + 1
+ · · ·+

2n1

2
− 2

)
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for j ∈ {2, . . . ,∆}. Then, there is a unique j0 ∈ {2, . . . ,∆} such that 0 ≤
x(j0) < n∆ + · · ·+ nj0 and

α ≥
x(j0) + nj0+1 + 2nj0+2 + · · ·+ (∆− j0)n∆

2
+ 1 .

To obtain the following results, we used Maple
c©software since these are

tedious elementary formal calculations that are done easily and safely by a
computer.

Calculation of the Bound of Harant H(2p) on W (2p). We can note that Theo-
rem 2 can be applied here since all the hypothesis are satisfied. To compute the
bound of Harant on W (n), that we note H(n), we need to detail parameters
used in the theorem. To simplify the calculations, we restrict ourselves to the
case where n in even, and we write n = 2p. In W (2p), ∆ = n−1 = 2p−1, there
are n− 1 vertices of degree 3 and one vertex of degree n− 1. Thus, n3 = 2p− 1,
n∆ = n2p−1 = 1 and all the other ni are 0.

The next step is to find the index j0. We claim that j0 = p + 2. To prove
that, we just have to show that 0 ≤ x(j0) < n∆ + · · ·+ nj0 . As j0 > 3 (when p

is large enough), n∆+ · · ·+nj0 = n∆ = 1. We get x(j0) =
1
2
(7+p)(p+2)
p2+5p+4 . Clearly,

x(j0) ≥ 0. We have to prove that x(j0) < 1. This is true iff (7 + p)(p + 2) −
2p2 − 10p− 8 < 0. After simplifications, this is equivalent to −p2 − p+ 6 < 0.
When p is large enough, this is clearly true.

Hence, the (unique) index j0 of Theorem 2 is p+ 2. We can now write the
formula of the lower bound H(2p) of Harant on W (2p):

H(2p) =
(x(j0) + 2p− 1− p− 2)

2
+ 1 =

1

4

7p+ 6 + 9p2 + 2p3

p2 + 5p+ 4
.

Calculation of our Bound U(2p). We do the same kind of work to get the
lower bound given by our method in (9). To do that, we need to calculate the
expectation E [LL(W (2P ))], noted here Exp(2p) to simplify, and the variance
on W (2p), noted here V ar(2p). We use here again the fact that ∆ = n − 1 =
2p− 1, and that there is one vertex of degree n− 1 and n− 1 vertices of degree
3. After calculations with (1) and Theorem 1 and reorganizations and several
simplifications (using Maple

c©again), we get

Exp(2p) =
3p

2
+

1

4
−

1

2p
and V ar(2p) =

(2p)2

112
+

2p

24
+

3

2(2p)
−

1

(2p)2
−

185

336
.

Using (9), we can now express our lower bound, noted U(2p):

U(2p) = 2p−

(

Exp(2p)−
V ar(2p)

n− 1− Exp(2p)

)

=
2

21

(6p− 11)p

p− 2
.

Comparison of the Two Bounds H(2p) and U(2p). After simplifications, we

obtain U(2p)−H(2p) = 1
84

6p4+47p3−17p2−184p+252
(p−2)(p2+5p+4) .

From that, we get limp→+∞(U(2p)−H(2p)) = +∞. This proves that there
is an infinite number of graphs for which our bound is better than Harant’s one
and that the difference increases.
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3.2. Numerical Comparisons of Lower Bounds on Independence Number on
Random Graphs

In Sect. 3.1, we proved by analytical arguments that our lower bound is
strictly better than the one of [12] and that the difference tends to infinity for
at least a particular family of graphs. On others graphs, like cycles, it can be
shown that the lower bound of Harant is better than ours.

As studying, even restricted class of graphs, is a long and hard analytical
task, we decided to compare the bounds numerically on several graphs.

Bounds Compared. We compared our bound with the ones of [12] (see Theo-
rem 2) and [13] that has an analytical expression similar to Theorem 2. We
do not include it here but we can note that the hypothesis given by the au-
thors to apply it is only that G must be connected and non-complete. No other
hypothesis is required. At the opposite, Theorem 2 is valid only if the indepen-
dence number α is less than or equal to n

2 . We must keep this point in mind
when we make calculations on random graphs, since we cannot be sure that this
constraint is satisfied a priori.

We programed these three bounds using Maple
c©. We calculated the integer

values of these bounds (for example, the bound of Theorem 2 calculated is
⌈

x(j0)+nj0+1+2nj0+2+···+(∆−j0)n∆

2 + 1
⌉

).

Results Obtained. We calculated the bounds on random graphs produced by
Maple

c©(library RandomGraphs) using the option connected to be sure to work
on connected graphs. As we cannot be sure that α ≤ n

2 , we computed The-
orem 2: if the index j0 exists then we calculated the final value; otherwise,
we cannot use the formula. Note that even if we obtain a result, we are not
sure that it is valid (because maybe α > n

2 and thus we are not in the validity
conditions).

For each experiment, we randomly generated an integer n in a range Rn

(typically [5, 250]) and a probability p in a range Rp (e.g. [0.05, 0.95]). Then
we generated a connected random graph G with n vertices and probability p for
each possible edge1. We computed the three bounds on G and compared them.

We evaluated more than 1500, with different ranges of vertices (but mostly
[5, 250]) and different ranges of probabilities Rp ([0.05, 0.95] but also “dense”
graphs [0.5, 0.95] and “sparse” graphs [0.05, 0.15]). On these 1500 calculations,
the bound of Theorem 2 “failed” 3 times (no parameter j0 found). In 561 cases,
our bound is the same than the best of [12] and [13]. In 935 cases, our bound
is better than the best of the two others by one unit and in 4 cases, our bound
is one unit worst than the best of the two others.

Thus, in 99.73% cases, our bound is at least as good as the others and in
62.33%, it is strictly better.

We describe now other numerical comparisons on random bipartite graphs.
For that, we generated randomly two integers a and b in a range [5, 125] and a

1Maple c©generates a random tree and then generates random edges with probability p.
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probability p in a given range. Then we generated random bipartite connected
graphs with one part V1 of the bi-partition having a vertices and the second
one V2 having b vertices (hence, the whole graphs contains between 10 and
250 vertices); edges (between V1 and V2 only) are randomly generated with
probability p. Here we only compared our bound with the one of [13] (in too
many cases, Theorem 2 could not be computed, probably because of the α

parameter). We did 200 comparisons here. In 100% of the cases, our bound
is at least as good as the other. In 89.5%, our bound is strictly better. The
maximum of difference between the two bounds is 63 units (on one experiment).
In average, our bound in better by 6.14 units.

We also made computations on wheel graphs analytically studied in Sect. 3.1.
They confirm our analysis (even on wheels with an odd number of vertices).

4. Conclusion

In a first part of this paper, we gave an analytical formula expressing the
variance of an algorithm (called LL) for the vertex cover problem. As the
others parameters (min., max. and average sizes) were already been calculated
in [2], we refine the knowledge of the behavior of LL. We can note that all these
bounds are exact and can be polynomially calculated on any graph G. It is an
important result in itself since we showed in [2] that LL is adapted to treat huge
graphs. We also experimented LL in [3] and shown that it is able to construct
a solution on graphs of up to 100.109 vertices and edges in around 7 hours on a
laptop. For such huge graphs, the precise knowledge of the statistical behavior
of the algorithm is important.

In a second part, we used these results to propose a new lower bound on the
independence number of a graph. We compared our bound to the recent ones
proposed in [13] and [12]. We showed that for an infinite number of graphs,
our bounds is strictly better. We also compared it numerically on hundreds of
random graphs.

From these results, we can conclude that: our bound can always be calcu-
lated, for any graph, without restrictions (this is not the case of the ones of [13]
and [12]); for many graphs, our bounds is at least as good as the two others and
often strictly better.

A future work is to improve our lower bound by applying the Bhatia-Davis

inequality with other algorithms for which we can express (exactly or approxi-
matively) min., max., average sizes and variance.

References

[1] N. Alon and J. H. Spencer. The Probabilistic Method, second edition. John
Wiley & Sons, Inc., New York, 2008.

[2] E. Angel, R. Campigotto, and C. Laforest. Analysis and Comparison of
Three Algorithms for the Vertex Cover Problem on Large Graphs with Low
Memory Capacities. Algorithmic Operations Research, 6(1):56–67, 2011.

9



[3] E. Angel, R. Campigotto, and C. Laforest. Implementation and Com-
parison of Heuristics for the Vertex Cover Problem on Huge Graphs. In
11th International Symposium on Experimental Algorithms (SEA), volume
LNCS 7276, pages 39–50, 2012.

[4] R. Bhatia and C. Davis. A Better Bound on the Variance. American
Mathematical Monthly (Math. Assoc. of America), 107(4):353–357, 2000.

[5] A. Bossecker and D. Rautenbach. Interpolating between Bounds on the In-
dependence Number. Discrete Mathematics, 310(17–18):2398–2403, 2010.

[6] Y. Caro. New Results on the Independence Number. Technical report,
Tel-Haviv University, 1979.

[7] D. A. Cartwright, M. A. Cueto, and E. A. Tobis. The Maximum Indepen-
dent Sets of de Bruijn Graphs of Diameter 3. The Electronic Journal of
Combinatorics, 18(1), 2011.

[8] F. R. K. Chung. The Average Distance and the Independence Number.
Journal of Graph Theory, (2):229–235, 1988.

[9] W. Feller. An Introduction to Probability Theory and its Applications, Vol.
1, third edition. John Wiley & Sons, Inc., 1968.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, 1979.

[11] J. H̊astad. Clique is Hard to Approximate Within n1−ǫ. In 37th Annual
Symposium on Foundations of Computer Science, pages 627–636, 1996.

[12] J. Harant. A Lower Bound on Independence in Terms of Degrees. Discrete
Applied Mathematics, 159:966–970, 2011.

[13] J. Harant and I. Schiermeyer. A Lower Bound on Independence Number of
a Graph in Terms of Degrees. Discussiones Mathematicae Graph Theory,
26:431–437, 2006.

[14] V. Lozin and D. de Werra. Foreword: Special Issue on Stability in Graphs
and Related Topics. Discrete Applied Mathematics, 132:1–2, 2003.

[15] D. Mubayi and J. Williford. On the Independence Number of the Erdős-
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