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Abstract

The purpose of this paper is to rigorously investigate the orbital magnetism of core elec-
trons in 3-dimensional crystalline ordered solids and in the zero-temperature regime. To
achieve that, we consider a non-interacting Fermi gas subjected to an external periodic poten-
tial within the framework of the tight-binding approximation (i.e. when the distance between
two consecutive ions is large). For a fixed number of particles in the Wigner-Seitz cell and in
the zero-temperature limit, we derive an asymptotic expansion for the bulk zero-field orbital
susceptibility. We prove that the leading term is the superposition of two terms: the Larmor
diamagnetic contribution, generated by the quadratic part of the Zeeman Hamiltonian, to-
gether with the ’complete’ orbital Van Vleck contribution, generated by the linear part of the
Zeeman Hamiltonian, and related to field-induced electronic transitions.

PACS-2010 number: 75.20.-g, 51.60.+a, 75.20.Ck, 75.30.Cr

MSC-2010 number: 81Q10, 82B10, 82B21, 82D05, 82D20, 82D40

Keywords: Orbital magnetism; Atomic magnetism; Zero-field susceptibility; Langevin formula;
Larmor diamagnetism; Van Vleck paramagnetism; Tight-binding approximation; Geometric per-
turbation theory; Gauge invariant magnetic perturbation theory.

Contents

1 Introduction & the main result. 2

1.1 An historical review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 What are the motivations of this paper? . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The setting and the main result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Outline of the proof of Theorem 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Discussion on the assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 An open problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 The content of the paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 An approximation of the resolvent via a geometric perturbation theory. 14

3 Proof of Theorem 1.1. 17

3.1 Proof of (i). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 The location of the Fermi energy. . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Isolating the main R-dependent contribution at zero-temperature. . . . . . 21
3.1.3 Isolating the main R-dependent contribution at zero-temperature - Contin-

uation and end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Proof of (ii). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Proof of (iii). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

∗Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, Building 1530, DK-8000 Aarhus

C, Denmark; e-mail: baptiste.savoie@gmail.com

1



4 Appendix. 28

4.1 Proof of Propositions 3.6 and 3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Proof of Propositions 3.9 and 3.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Proof of Lemma 3.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Proof of Lemmas 4.2-4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Acknowledgments. 39

1 Introduction & the main result.

1.1 An historical review.

The first important contribution to the understanding of diamagnetism of ions (we assimilate
an atom to an ion of charge zero) and molecules (including the polar ones) go back at least to
1905 with the three papers [36, 37, 38] of P. Langevin. We mention all the same that, in all likeli-
hood, W. Weber brought between 1852 and 1871 the pioneer ideas through his molecular theory
of magnetism in which he already introduced the idea that the magnetic effects are due to orbiting
motion of electric charges around fixed charges of opposite sign, see [4]. The Langevin’s micro-
scopic theory essentially leans on the classical Maxwell equations of electromagnetism. Putting
things back into context (the atomic structure was experimentally discovered in 1911), Langevin
considered that matter is formed by electrons in stable periodic motion; the mechanical stability
being ensured by the mutual actions between electrons. In particular, the molecules contain at
least one closed electron orbit with a fixed magnetic moment out of the field (electrons are assim-
ilated with particulate Ampère’s currents), and the different orbits in each molecule have such a
moment and such orientations that their resultant moment may vanish, or not. Starting with these
assumptions, Langevin calculated the mean variation of the magnetic moment (orthogonal to the
orbit) of electron moving in intramolecular closed orbits under the influence of an external con-
stant magnetic field. This led to the so-called Langevin formula for the diamagnetic susceptibility
per unit volume of n electrons, see [38, pp. 89]:

χdia
La = −n

e2

4mc2
〈r2〉, (1.1)

where r is the distance from the molecule’s centre of mass to the electron (considering its motion
in the projected orbit on the plane perpendicular to the magnetic field) and 〈r2〉 is the average
r2 over all the molecular electrons. Here and hereafter e,m, c are universal constants denoting
respectively the elementary charge, the electron rest mass and the speed of light in vacuum. Note
that (1.1) is independent of the temperature (provided that the orbits retain the same size) and
independent of whether or not the initial resultant magnetic moment of the molecule is null. For
completeness’ sake, we mention that Langevin derived also in [38] the analytic expression of the
Curie’s empirical law for molecules of paramagnetic substances: the paramagnetic susceptibility
per unit volume of N identical molecules with a non-zero resultant magnetic moment M reads as,
see [38, pp. 119]:

χpara
La (β) =

N

3
βM, β :=

1

kBT
, (1.2)

where T is the absolute temperature and kB denotes the Boltzmann constant. Note that in the
derivation of (1.2), Langevin used the Boltzmann factor to determine the spatial distribution of
the permanent magnetic moment.

In 1911, N. Bohr was the first one to point out that magnetism can not occur in classical
theory: the diamagnetic and paramagnetic contributions to the magnetic susceptibility exactly
cancel when classical dynamics and statistical mechanics are applied consistently. This was also
proved independently by J.H. van Leeuwen in 1919, see also [48], and is known as Bohr-Van
Leeuwen Theorem. This contradiction with Langevin’s results (stated within the classical theory)
will be removed by the development of quantum mechanics: the assumptions made by Langevin
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(stationary of the electron orbits and permanence of the magnetic moment) are actually of a
quantum nature.

In 1920, W. Pauli was interested in diamagnetism of monoatomic gases in [42]. Still within the
framework of the classical theory, his approach slightly differs from the one of Langevin in the sense
that it is based on Larmor precession theorem. It states that, when placed in an external constant
magnetic field with intensity B, an atom with any number of electron orbits precesses around
an axis through the nucleus and parallel to the magnetic field. It causes the angular velocity of
an electron in a periodic orbit to be increased by −Be/2mc without the orbit undergoing any
modification. This led to the formula for the diamagnetic susceptibility per unit volume of N
identical atoms supposed to have random orientations in the space, see [42, pp. 203]:

χdia
La∗ = −N

e2

6mc2

∑

i

r2i , (1.3)

where the sum is over all the electrons of a single atom, r2i is the square distance from the nuclei to

the i-th electron and r2i has to be understood as the time average of r2i . Note that the additional
2/3-factor (see (1.1)) comes from the statistical mean (the orientations of the atoms are random).
(1.3) is sometimes referred as the Langevin formula in the form given by Pauli.

In 1927–1928, J.H. Van Vleck revisited in a series of three papers [49, 50, 51] the Debye
theory on dielectric constant and Langevin theory on magnetic susceptibility of ions/molecules
within the framework of the quantum mechanics. In particular, he derived a general formula in
[49, Eq. (13)] for the total magnetic susceptibility per unit volume, at any ’temperature’ β > 0
and in the zero-field limit, of N non-interacting randomly oriented identical ions/molecules with
a non-zero (time-averaged) resultant magnetic moment. Only the contribution of electrons is
considered (the contribution of nuclei is assumed to be negligible), and the interactions between
electrons are neglected. The ’proof’ given by Van Vleck requires the assumption that the energy
intervals between the various component levels of the low-energy states of the ion/molecule are
small compared to 1/β, see [49, Sec. 2] and below pp. 4. This assumption implies that the
Van Vleck’s results do not cover the zero-temperature regime. The formula [49, Eq. (13)] is a
generalization of the complete classical Langevin formula (obtained by adding (1.3) and (1.2)) but
including quantum effects, and consists of the sum of two contributions:

• A β-dependent contribution (second term in the r.h.s. of [49, Eq. (13)]).

It is purely paramagnetic, depends linearly on β and arises from the presence of the non-zero
resultant magnetic moment. Van Vleck pointed out that this term vanishes when the total elec-
tronic orbital and spin angular momentum of ions both are null. Moreover, its classical equivalent
is (1.2).

• A β-independent contribution (first term in the r.h.s. of [49, Eq. (13)]).

It is assumed to represent the diamagnetic effect since experimentally in gases the diamagnetism
is independent of the temperature (at constant density). Denoted by Nα, it consists of the sum
of two terms, see [49, Eq. (15)]:

Nα = N(XvV + XLa). (1.4)

Here XLa is the so-called Larmor contribution which is purely diamagnetic, and NXLa reduces
to the Langevin formula in (1.3) in the classical limit. As for XvV, it is purely paramagnetic
and has no equivalent in the classical theory (it will bear the name of Van Vleck susceptibility
later on). Furthermore, Van Vleck analyzed the origin of each one of these two contributions, see
e.g. [52, Sec. VIII.49]. Restricting to the case of a single ion, he showed that XvV and XLa are
generated respectively by the the linear part and the quadratic part of the Zeeman Hamiltonian
of the electron gas which are defined by:

HZ,lin := µB(L+ g0S) ·B, HZ,qua :=
1

2m

∑

i

( e

2c
ri ×B

)2

, (1.5)
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in the case where the vector potential is chosen to be in the symmetric gauge. Here and hereafter,
L and S stand for the total electronic orbital and spin angular momentum respectively, g0 and µB

for the electronic g-factor and Bohr magneton respectively, B for the external constant magnetic
field and ri for the position vector of the i-th electron. From the foregoing, Van Vleck concluded
that XLa always exists and is in competition with the paramagnetic contribution XvV when the ion
has either its total electronic spin angular momentum or orbital angular momentum different from
zero in its low-energy states. Moreover, he claimed that XvV does not vanish in great generality in
the case of molecules, see [52, Sec. X.69]. Hence NXLa is an upper bound limit to the diamagnetism
of electrons in all cases (ions/molecules).

Let us outline the ’proof’ of [49, Eq. (13)]. Van Vleck took into account many degrees of
freedom of ions/molecules (such that the temperature rotation, the orientations relative to the
magnetic field, etc...). We simplify the model and restrict to the case of a single ion. Assume for
simplicity that the magnetic field B is constant and parallel to the k-th (k ∈ {1, 2, 3}) direction, i.e.
B = Bek. The derivation consists of three steps. Step 1: Expressing the average induced magnetic
moment with the Boltzmann distribution. Let Ej(B), j ≥ 0 be the energy levels in field of the

ion. Let Mk(j, B) := − dEj

dB
(B) be the induced magnetic moment per unit volume of the state of

energy Ej(B). The average value of the induced magnetic moment per unit volume 〈Mk(β,B)〉 at
’temperature’ β > 0 is defined as the thermal equilibrium average (by the Boltzmann distribution)
of the Mk(j, B)’s:

〈Mk(β,B)〉 := − 1∑
j≥0 e

−βEj(B)

∑

j≥0

dEj(B)

dB
e−βEj(B). (1.6)

Here the energy levels are assumed to be non-degenerate. Step 2: Expanding the Ej(B)’s in powers
of B. Provided that B is small enough, the asymptotic perturbation theory allows to compute
the changes in the energy levels by treating the magnetic field as a perturbation. Denoting by |j〉
the j-th state, one has up to the second order correction (in the absence of degeneracy):

Ej(B) = Ej(0) + 〈j|HZ,lin +HZ,qua|j〉+
∑

l 6=j

|〈j|HZ,lin +HZ,qua|l〉|2
Ej(0)− El(0)

+ · · · ,

where HZ,lin and HZ,qua are defined in (1.5). This leads to the expansion:

Ej(B) = Ej(0) +BE
(1)
j (0) +B2E

(2)
j (0) + · · · , with : (1.7)

E
(1)
j (0) := µB〈j|(L+ g0S) · ek|j〉, (1.8)

E
(2)
j (0) :=

e2

8mc2

∑

i

〈j|(ri × ek)
2|j〉+ µ2

B

∑

l 6=j

|〈j|(L + g0S) · ek|l〉|2
Ej(0)− El(0)

. (1.9)

Step 3: Deriving the zero-field magnetic susceptibility. The rest consists in substituting (1.7)
into (1.6), then expanding the Boltzmann factor e−βEj(B) (in the numerator and denominator) in
Taylor series in B. Assuming that the field-dependent corrections to the energy in (1.7) are smaller
than 1/β, an expansion in powers of B of 〈Mk(β,B)〉 is derived. Within the framework of the
linear response theory, the zero-field magnetic susceptibility per unit volume X (β, 0) corresponds
to the coefficient of the linear term in B. Since the induced magnetic moment is null in vanishing
field, X (β, 0) reduces to:

X (β, 0) =
1∑

j≥0 e
−βEj(0)

∑

j≥0

{β(E(1)
j (0))2 − 2E

(2)
j (0)}e−βEj(0). (1.10)

In the derivation of [49, Eq. (13)], the excited states (i.e. j ≥ 1) are assumed to be unoccupied.
Its counterpart for the particular case we consider here is:

X (β, 0) = β(E
(1)
0 (0))2 − 2E

(2)
0 (0). (1.11)
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The β-independent part in (1.11) can be identified from (1.9) and reads as:

− e2

4mc2

∑

i

〈0|(ri × ek)
2|0〉+ 2µ2

B

∑

l 6=0

|〈0|(L+ g0S) · ek|l〉|2
El(0)− E0(0)

. (1.12)

The first and second term are the Larmor and Van Vleck contributions respectively. If the ion
has its total electronic orbital and spin angular momentum both equal to zero, (1.12) reduces to
the Larmor contribution. As a result of the Hund’s rules, this is the case of an ion having all its
electron shells filled.

With regard to the magnetism of ions/molecules in the zero-temperature regime, another
approach is commonly encountered in Physics literature, see e.g. [3, Chap. 31]. Let us give the
main idea. Consider a system of N non-interacting identical ions subjected to a constant magnetic
field at thermal equilibrium. For simplicity, assume that the magnetic field is given by B = Bek,
k ∈ {1, 2, 3}. Let Ej(B), j ≥ 0 be the energy levels in field of a single ion. In the canonical
ensemble of the statistical mechanics, the zero-field magnetic susceptibility per unit volume at any
’temperature’ β > 0 is defined by:

X (β,N,B = 0) := −∂2F
∂B2

(β,N,B = 0), (1.13)

where F(β,N,B) stands for the Helmholtz free energy of the system in field:

F(β,N,B) := − 1

β
ln(

∑

j≥0

e−NβEj(B)). (1.14)

Based on the principle that only the ground-state of the system is occupied in the zero-temperature
regime for B small enough, then the Helmholtz free energy reduces to the ground-state energy
in field NE0(B). From (1.13) along with the expansion (1.7) obtained within the asymptotic
perturbation theory:

lim
β→∞

X (β, 0) = −2NE
(2)
0 (0),

which holds in the absence of degeneracy. If N = 1, this is nothing but the β-independent part of
the magnetic susceptibility derived in (1.12).

1.2 What are the motivations of this paper?

In the light of the works mentioned in Sec. 1.1, an expression for the magnetic susceptibility
of electrons of an ion in the low/high-temperature regime can be derived knowing the energy
levels (which may be occupied) and associated stationary states of the ion. We point out that
the stated results in the Van Vleck’s approach and the one in [3, Chap. 31] heavily rely on
some considerations of an Atomic Physics nature (e.g. the transition from the complete formula
(1.10) to (1.11)). The common point between these two approaches is to consider an ion as
a (semi)classical objet since the Boltzmann distribution is involved in the statistical quantities
of interest. The quantum mechanics is used only at the second stage in order to compute the
changes in the energy levels by treating the magnetic field as a perturbation. Treating the ion
as a whole and retaining only the energy levels which may be occupied, dodge the difficulty to
compute directly the magnetic susceptibility of the core electrons within the framework of the
quantum statistical mechanics whose an expression is delicate to derive. Indeed, for a wide class
of potentials (including Coulomb) used to model the interaction electron-nuclei, the counterpart
of the quantity (1.14) for the core electrons is divergent. A natural question arises: do the results
mentioned in Sec. 1.1 still hold true if one computes directly the magnetic susceptibility of core
electrons? Does the susceptibility representing the diamagnetic effect still consist of two terms
(Larmor, Van Vleck contributions)? This paper takes place in this direction.

The aim of this paper is to rigorously revisit the atomic orbital magnetism (i.e. we focus only
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on the magnetic effects which not arise from spin effects) in the zero-temperature regime (the most
complicated situation). Our approach is substantially different from the ones mentioned in Sec.
1.1. To model the core electrons of an ion, we consider a non-interacting Fermi gas subjected to
an external periodic potential (modeling an ideal lattice of fixed nuclei) within the tight-binding
approximation. Under this approximation, we suppose that the distance R > 0 between two
consecutive ions is sufficiently large so that the Fermi gas ’feels’ mainly the potential energy
generated by one single nucleus. To investigate the atomic orbital magnetism, our starting-point
is the expression derived in [12, Thm. 1.2] for the bulk zero-field orbital susceptibility of the Fermi
gas valid for any ’temperature’ β > 0 and R > 0. We emphasize that this expression is derived
from the usual rules of the quantum statistical mechanics. Our main result is Theorem 1.1, and
Remark 1.3 makes the connection with the works mentioned in Sec. 1.1.

In the framework of Mathematical-Physics, the rigorous study of orbital magnetism and more
generally of diamagnetism, have been the subject of numerous works. Let us list the main ones
among them. The first rigorous proof of the Landau susceptibility formula for free electron gases
came as late as 1975, due to Angelescu et al. in [1]. Then in 1990, Helffer et al. developed for the
first time in [30] a rigorous theory based on the Peierls substitution and considered the connection
with the diamagnetism of Bloch electrons and the de Haas-Van Alphen effect. These and many
more results were reviewed in 1991 by Nenciu in [40]. In 2001, Combescure et al. recovered in
[20] the Landau susceptibility formula in the semiclassical limit. In 2012, Briet et al. gave for the
first time in [11] a rigorous justification of the Landau-Peierls approximation for the susceptibility
of Bloch electron gases. Finally we mention the following papers [23, 24, 25] in connection with
atomic magnetism.

1.3 The setting and the main result.

Consider a 3-dimensional quantum gas composed of a large number of non-relativistic identical
particles, with charge q 6= 0 and mass m = 1, obeying the Fermi-Dirac statistics, and subjected to
an external constant magnetic field. The particles possess an orbital and spin magnetic moment.
Since we only are interested in orbital effects and we do not take into account the spin-orbit
coupling, then we disregard the spin of particles. Moreover, each particle interacts with an external
periodic electric potential modeling the ideal lattice of fixed ions in crystalline ordered solids.
Furthermore, the interactions between particles are neglected (strongly diluted gas assumption)
and the gas is at equilibrium with a thermal and particles bath.

Let us make our assumptions more precise. The gas is confined in a cubic box centered at the
origin of coordinates given by ΛL := (−L

2 ,
L
2 )

3 L > 0, with Lebesgue-measure |ΛL|. We consider
a uniform magnetic field B := Be3, e3 := (0, 0, 1) parallel to the third direction of the canonical
basis of R3, and we use the symmetric gauge, i.e. the magnetic vector potential is defined by
Ba(x) := B

2 e3 × x = B
2 (−x2, x1, 0). Hereafter we denote by b := q

c
B ∈ R the cyclotron frequency.

The potential energy modeling the interaction between each particle and the ideal lattice of fixed
nuclei is:

VR :=
∑

υ∈Z3

u(· −Rυ), R > 0, (1.15)

where the single-site potential u satisfies the following assumption:

(Ar) u ∈ C1(R3;R) is compactly supported.

We denote by ΩR the Wigner-Seitz cell of the RZ3-lattice centered at the origin of coordinates.
Introduce now the one-particle Hamiltonian. On C∞

0 (ΛL) define ∀R > 0:

HR,L(b) :=
1

2
(−i∇− ba)2 + VR, b ∈ R. (1.16)

It is well-known that ∀R > 0 and ∀b ∈ R, (1.16) extends to a family of self-adjoint and semi-
bounded operators for any L ∈ (0,∞), denoted again by HR,L(b), with domain H1

0(ΛL)∩H2(ΛL).
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This definition corresponds to choose Dirichlet boundary conditions on ∂ΛL. Moreover, by stan-
dard arguments HR,L(b) has compact resolvent, and its spectrum is purely discrete with an accu-

mulation point at infinity. We denote by {λ(j)
R,L(b)}j≥1 the set of eigenvalues of HR,L(b) counting

multiplicities and in increasing order. As well, ∀R > 0 and ∀b ∈ R denote by NR,L(E), E ∈ R the
number of eigenvalues (counting multiplicities) of the operator HR,L(b) in the interval (−∞, E).

When ΛL fills the whole space, on C∞
0 (R3) define ∀R > 0:

HR(b) :=
1

2
(−i∇− ba)2 + VR, b ∈ R. (1.17)

By [43, Thm. X.22], then ∀R > 0 and ∀b ∈ R (1.17) is essentially self-adjoint and its self-adjoint
extension, denoted again by HR(b), is bounded from below. Sometimes we will use the shortcut
notation HR = HR(b = 0). Moreover, the operator HR(b) only has essential spectrum since it
commutes with the usual magnetic translations. Further, ∀R > 0 and ∀b ∈ R the integrated
density of states of the operator HR(b) exists, see e.g. [32, Thm. 3.1]. For any E ∈ R, it is given
by the limit:

NR(E) := lim
L↑∞

NR,L(E)

|ΛL|
= lim

L↑∞

TrL2(R3){χΛL
P(−∞,E)(HR,L(b))χΛL

}
|ΛL|

, (1.18)

where χΛL
denotes the multiplication operator by the characteristic function of ΛL, and PI(HR,L(b))

the spectral projection of HR,L(b) corresponding to the interval I ⊂ R.

Let us now define some quantities related to the Fermi gas introduced above within the frame-
work of the quantum statistical mechanics. In the grand-canonical ensemble, let (β, z, |ΛL|) be the
fixed external parameters. Here β := (kBT )

−1 > 0 (kB stands for the Boltzmann constant) is the
’inverse’ temperature and z := eβµ > 0 (µ ∈ R stands for the chemical potential) is the fugacity.
For any β > 0, z > 0 and b ∈ R, the finite-volume pressure and density are respectively defined
∀R > 0 by, see e.g. [31, 2, 1]:

PR,L(β, z, b) :=
1

β|ΛL|
TrL2(ΛL){ln(1+ ze−βHR,L(b))} =

1

β|ΛL|

∞∑

j=1

ln(1 + ze−βλ
(j)
R,L

(b)), (1.19)

ρR,L(β, z, b) := βz
∂PR,L

∂z
(β, z, b) =

1

|ΛL|

∞∑

j=1

ze−βλ
(j)
R,L

(b)

1 + ze−βλ
(j)
R,L(b)

. (1.20)

Note that the series in (1.19)-(1.20) are absolutely convergent since ∀b ∈ R and ∀R > 0 the
semigroup {e−βHR,L(b), β > 0} is trace-class, see e.g. [10, Eq. (2.12)]. Moreover, from [10, Thm.
1.1], then ∀β > 0 and ∀R > 0 PR,L(β, · , · ) is jointly real analytic in (z, b) ∈ R∗

+ × R. This allows
us to define the finite-volume orbital susceptibility as the second derivative of the pressure w.r.t.
the intensity B of the magnetic field, see e.g. [2] and [1, Prop. 2]:

XR,L(β, z, b) :=

(
q

c

)2
∂2PR,L

∂b2
(β, z, b), β > 0, z > 0, b ∈ R, R > 0.

When ΛL fills the whole space, then the thermodynamic limits of the three grand-canonical quan-
tities defined above generically exist, see e.g. [12, Thms. 1.1 & 1.2] and [11, Sec. 3.1]. Denoting
∀β > 0, ∀z > 0, ∀b ∈ R and ∀R > 0 the bulk pressure by PR(β, z, b) := limL↑∞ PR,L(β, z, b), then
we have the following pointwise convergences:

ρR(β, z, b) := βz
∂PR

∂z
(β, z, b) = lim

L↑∞
βz

∂PR,L

∂z
(β, z, b), (1.21)

XR(β, z, b) :=

(
q

c

)2
∂2PR

∂b2
(β, z, b) = lim

L↑∞

(
q

c

)2
∂2PR,L

∂b2
(β, z, b), (1.22)
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and the limit commutes with the first derivative (resp. with the second derivative) of the pressure
w.r.t. the fugacity z (resp. w.r.t. the cyclotron frequency b). Moreover, ∀β > 0 and ∀R > 0
PR(β, · , · ) is jointly smooth in (z, b) ∈ R∗

+ × R, see e.g. [45].

Now assume that the density of particles ρ0 > 0 becomes, in addition with the inverse temper-
ature, a fixed external parameter (canonical conditions). Seeing the bulk density as a function of

the µ-variable, denote ∀R > 0 by µ
(0)
R (β, ρ0, b) ∈ R the unique solution of the equation:

ρR(β, µ, b) = ρ0, β > 0, b ∈ R, R > 0.

The inversion of the relation between the bulk density and the chemical potential is ensured by
the fact that ∀β > 0, ∀b ∈ R and ∀R > 0, µ 7→ ρR(β, µ, b) is a strictly increasing function on R,
and actually it defines a C∞-diffeomorphism of R into (0,∞), see e.g. [45, 11]. In the following
we consider the situation in which the density of particles is given by:

ρ0(R) =
n0

|ΩR|
, n0 ∈ N∗, R > 0. (1.23)

Let us note that in (1.23) n0 plays the role of the number of particles in the Wigner-Seitz cell.
Under the above conditions, seen as a function of the µ-variable, the bulk zero-field orbital sus-
ceptibility at fixed β > 0 and density of particles ρ0(R), R > 0 is defined by:

XR(β, ρ0(R), b = 0) := XR(β, µ
(0)
R (β, ρ0(R), b = 0), b = 0). (1.24)

Before giving our main result which is concerned with the quantity defined in (1.24), let us
introduce some more notation. On C∞

0 (R3) define the ’single atom’ Schrödinger operator:

HP :=
1

2
(−i∇)2 + u, (1.25)

where u is the function which appears in (1.15) and obeys assumption (Ar). Then HP is essentially
self-adjoint and its self-adjoint extension (denoted again by HP ) with domain H2(R3), is bounded
from below. Furthermore, σess(HP ) = [0,∞) is absolutely continuous, and HP has finitely many
eigenvalues in (−∞, 0) if any, see e.g. [44, Thm. XIII.15]. Throughout, we suppose:

(Am) HP has at least one eigenvalue in (−∞, 0),

together with the non-degeneracy assumption:

(And) All the eigenvalues of HP in (−∞, 0) are non-degenerate.

Then we denote by {λl}τl=1, τ ∈ N∗ the set of eigenvalues of HP in (−∞, 0) counting in increasing
order, and by {Φl}τl=1 the set of corresponding normalized eigenfunctions. As well, we denote by
Πl the orthogonal projection onto the eigenvector Φl and we define Π⊥

l := 1−Πl.
In the presence of the uniform magnetic field (as in (1.17)), define on C∞

0 (R3) the ’single atom’
magnetic Schrödinger operator:

HP (b) :=
1

2
(−i∇− ba)2 + u, b ∈ R. (1.26)

By [47, Thm. B.13.4], ∀b ∈ R (1.26) is essentially self-adjoint and its self-adjoint extension,
denoted again by HP (b), is bounded from below. The nature of the spectrum of HP (b) is not
known in general, except for b small enough. Indeed from [5, Thm. 6.1], the eigenvalues of HP in
(−∞, 0) are stable under the perturbation by the magnetic field provided that it is weak. From
the asymptotic perturbation theory in [35, Sec. VIII] and due to the assumption (And), then there
exists b > 0 s.t. ∀|b| ≤ b and any l ∈ {1, . . . , τ}, HP (b) has exactly one and only one eigenvalue
λl(b) near λl which reduces to λl in the limit b → 0. In particular, each eigenvalue λl(· ) can be
written in terms of an asymptotic power series in b, see e.g. [7, Thm. 1.2]. Hereafter we denote
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by {λl(b)}τl=1, τ ∈ N∗ and |b| ≤ b, the set of these eigenvalues for HP (b) counting in increasing
order.

We now formulate our main result. By [47, Thm. B.7.2], for any ξ ∈ C \ [inf σ(HP ),∞), the
resolvent operator (HP − ξ)−1 is an integral operator with integral kernel (HP − ξ)−1(· , · ) jointly
continuous on R6 \ D, D := {(x,y) ∈ R6 : x = y}. Introduce on L2(R3) the operators TP,j(ξ),
j = 1, 2 generated via their kernel respectively defined on R6 \D as:

TP,1(x,y; ξ) := a(x− y) · (i∇x)(HP − ξ)−1(x,y), (1.27)

TP,2(x,y; ξ) :=
1

2
a2(x− y)(HP − ξ)−1(x,y). (1.28)

Our main result provides an asymptotic expansion in the tight-binding situation (i.e. when
the distance R between two consecutive ions is large) of the bulk zero-field orbital susceptibility
defined in (1.24) when the number of particles in ΩR is fixed and in the zero-temperature limit:

Theorem 1.1. Suppose (Ar), (Am) and (And). Assume that the number of particles n0 ∈ N∗ in
the Wigner-Seitz cell is fixed and satisfies n0 ≤ τ , while the density is given by (1.23). Then:
(i). For any 0 < α < 1 there exists a R-independent constant c > 0 s.t.

XR(ρ0(R)) := lim
β↑∞

XR(β, ρ0(R), b = 0) =
1

|ΩR|
XP (n0) +O(e−cRα

), (1.29)

with:

XP (n0) := −
(
q

c

)2
i

π
TrL2(R3)

{∫

Γn0

dξ ξ(HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]

}
, (1.30)

where Γn0 is any positively oriented simple closed contour enclosing the n0 smallest eigenvalues of
HP while letting the rest of the spectrum outside.
(ii). The R-independent quantity in (1.30) can be identified with:

XP (n0) = −
(
q

c

)2 n0∑

l=1

d2λl

db2
(b = 0). (1.31)

(iii). (1.30) can be rewritten as a sum of two contributions:

1

|ΩR|
XP (n0) =

1

|ΩR|
XLa(n0) +

1

|ΩR|
XvV (n0), (1.32)

with:

1

|ΩR|
XLa(n0) := −

(
q

c

)2
1

4|ΩR|

n0∑

l=1

〈Φl, (X
2
1 +X2

2 )Φl〉L2(R3), (1.33)

1

|ΩR|
XvV (n0) :=

(
q

c

)2
1

2|ΩR|

n0∑

l=1

〈L3Φl, {Π⊥
l (HP − λl)Π

⊥
l }−1L3Φl〉L2(R3). (1.34)

Here Xk := X · ek, k ∈ {1, 2, 3} stands for the position operator projected in the k-th direction,
and Lk := L · ek the k-th component of the orbital angular momentum operator L := X× (−i∇).

Remark 1.2. The leading term in (1.29) decreases as 1/R3, the remainder (explicitly identified
in the proof) decreases exponentially in Rα, 0 < α < 1.

Remark 1.3. Under the condition of large separation of ions and in the zero-temperature limit,
the leading term of the bulk zero-field orbital susceptibility consists of the superposition of two
contributions, see (1.32).
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• Contribution in (1.33).

It is purely diamagnetic and generated by the quadratic part of the Zeeman Hamiltonian. Still
assuming one single ion in the Wigner-Seitz cell, it reduces in the classical limit to the Langevin
formula, see (1.1):

−
(
q

c

)2
1

4|ΩR|

n0∑

l=1

r2l , (1.35)

where rl is the distance from the origin to the l-th particle in the plane orthogonal to e3 (as a rule
the center of mass of the ion nucleus is at the origin and the fixed axis passing through it is taken
parallel to the magnetic field).

• Contribution in (1.34).

It is generated by the linear part of the Zeeman Hamiltonian, and is related to field-induced elec-
tronic transitions. Arising from the quantum description, it has no classical equivalent. Moreover,
if n0 = 1 it is purely paramagnetic, otherwise it can be written as a sum of a positive and a
negative term. Let us turn to the comparison with the Van Vleck’s results in Sect. 1.1. (1.33) has
exactly the same features than XLa in (1.4) and its counterpart is the first term in (1.12). This is
the Larmor contribution. (1.34) has the features of XvV in (1.4), with the only difference that it is
not always paramagnetic. Looking at the second term in the r.h.s. of (1.12), only the corrections
to the ground state of the ion involving the excited states are considered (the corrections coming
from the mixing between the excited states are discarded). At the contrary, (1.34) contains all the
corrections, even the ones coming from the mixing between the isolated eigenvalues and the essen-
tial spectrum. Due to this feature, (1.34) represents the ’complete’ Van Vleck orbital contribution.
In that sense, Theorem 1.1 is a generalization of the Van Vleck’s results.

1.4 Outline of the proof of Theorem 1.1.

The starting-point is the expression (3.9) for the bulk zero-field orbital susceptibility (under the
grand-canonical conditions) valid for any β > 0 and R > 0. The derivation of such an expression
is the main subject of [12]. The proof relies on the gauge invariant magnetic perturbation theory
applied on the magnetic resolvent operator. This allows to keep a good control on the linear
growth of the potential vector, see below fur further details.

The difficulties coming up when proving Theorem 1.1 are three-folds:
(1). Isolating the main R-dependent contribution (decaying polynomially in R) and a remainder
term (decaying exponentially in Rα) from (3.9) under the canonical conditions (density of particles
fixed). (2). Performing the zero-temperature limit taking into account the location of the Fermi
energy defined in (3.1). (3). Identifying the leading term of the asymptotic expansion in the
zero-temperature regime with the counterpart physical quantities.

• Outline of the proof of (i).

The proof of the asymptotic expansion in (1.29) requires three steps.
Step 1: Isolating the main R-dependent contribution - Part 1. The formula in (3.9) involves the
trace per unit volume:

|ΩR|−1TrL2(R3){χΩR
(HR − ξ)−1[TR,1(ξ)TR,1(ξ)− TR,2(ξ)]χΩR

}, (1.36)

where χΩR
is the characteristic function of the Wigner-Seitz cell ΩR, and TR,j(ξ), j = 1, 2 involves

the resolvent operator (HR − ξ)−1, see (3.10)-(3.11). In the tight-binding situation, we naturally
expect the error made in replacing each resolvent (HR − ξ)−1 with (HP − ξ)−1 (HP is the ’single
atom’ operator in (1.25)) inside (1.36) to be ’small’ for large R. Arising from this approximation,
the ’corrective term’ (3.14) of (3.13) involves the trace per unit volume:

|ΩR|−1TrL2(R3){χΩR

[
(HR − ξ)−1[TR,1(ξ)TR,1(ξ) − TR,2(ξ)]

− (HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]χΩR
}, (1.37)
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where TP,j(ξ), j = 1, 2 involves the resolvent (HP −ξ)−1, see (1.27)-(1.28). In view of the operators
entering in the trace, to control the R-behavior of (1.37) it is enough to control for large values
of R the error made in approximating χΩR

(HR − ξ)−1 by χΩR
(HP − ξ)−1 (or with χΩR

from the
right) in the Hilbert-Schmidt sense. To that purpose, we use a geometric perturbation theory in
Sec. 2. The key-idea consists in isolating in the Wigner-Seitz cell a region close to the boundary:
ΘR(κ) := {x ∈ ΩR : dist(x, ∂ΩR) ≤ κRα} for some κ > 0 and 0 < α < 1, from the bulk where
only the ’single atom’ operator HP will act. It comes down to approximate (HR − ξ)−1 with the
operator:

ĝR(HP − ξ)−1gR + ˆ̂gR(HR − ξ)−1(1− gR),

where gR, ĝR and ˆ̂gR are smooth cut-off functions; gR, ĝR are supported in the bulk and satisfy
(2.2)-(2.3) and ˆ̂gR is supported outside and satisfies (2.4)-(2.5). Starting with this approximation,
we arrive at (2.13). From the exponential decay of the resolvent’s kernel along with the properties
(2.3)-(2.5) on the cut-off functions, then provided that the single-site potential u is compactly
supported one gets that the Hilbert-Schmidt norm of:

χΩR
{(HR − ξ)−1 − (HP − ξ)−1}, {(HR − ξ)−1 − (HP − ξ)−1}χΩR

,

are exponentially small in Rα, 0 < α < 1. We emphasize that the assumption u is compactly
supported in (Ar) is essential to get the exponential decay in Rα of the norms. Indeed (2.13)

involves the operator defined in (2.10), and the support of χΩR
ˆ̂gR (or (1−gR)χΩR

) is disjoint from
the one of V̆R only if u is compactly supported. Based on the foregoing, we prove that the trace
in (1.37) is exponentially small in Rα, 0 < α < 1, see Lemmas 4.2-4.5.

Step 2: Switching to the canonical conditions and performing the zero-temperature limit. Re-
mind that under the assumptions (Am)-(And), {λl}τl=1, τ ∈ N∗ denotes the set of eigenvalues of
HP in (−∞, 0) counting in increasing order. Now we switch to the canonical conditions. We
assume that the number of particles in the Wigner-Seitz cell n0 ∈ N∗ is fixed and obeys n0 ≤ τ ,
while the density is given by (1.23). (The reason why will become clear below). The starting-point

is (3.16) corresponding to the sum of (3.13) with (3.14), but with µ
(0)
R (β, ρ0(R), b = 0) instead of

µ, see (1.24). With the aim of performing the zero-temperature limit in (3.16), let us beforehand
turn to the location for large values of R of the Fermi energy defined as the limit:

EF,R(ρ0(R)) := lim
β→∞

µ
(0)
R (β, ρ0(R), b = 0).

Recall that σ(HR) is absolutely continuous, consisting of the union of compact intervals ER,l (Bloch
bands): σ(HR) = ∪∞

l=1ER,l, with min ER,l ≤ min ER,l+1, max ER,l ≤ max ER,l+1 (we refer to Sec.
3.1.1 for the definition of ER,l’s within the Bloch-Floquet theory). If max ER,l < min ER,l+1 for
some l ≥ 1 then we have a spectral gap. Under (Ar) the Fermi energy always exists, see [11, Thm.
1.1]. Moreover, only two situations can occur: either the Fermi energy lies in the middle of a
spectral gap (semiconducting/isolating situation if max ER,s < min ER,s+1, semimetal situation if
max ER,s = min ER,s+1), or in the interior of a Bloch band (metallic situation). In Proposition 3.1,
we state that for large values of R our assumptions (Am)-(And) along with the fact that ρ0(R)
obeys (1.23) automatically lead to the semiconducting situation:

ER,F (ρ0(R)) = (max ER,n0 +min ER,n0+1)/2 < 0. (1.38)

The proof leans on two ingredients. The first one concerns the location of the negative Bloch bands
of HR at negative eigenvalues of HP for large R, see Lemma 3.4. Since the λl’s (l = 1, . . . , τ) are
simple, then for R sufficiently large, the first τ Bloch bands ER,l’s are simple, isolated from each
other and from the rest of the spectrum. Moreover ER,l, l = 1, . . . , τ , is localized in a neighborhood
of λl, and reduces to λl when R → ∞. The second one is a relation between the I.D.S. of HR and
the zero-temperature limit of the grand-canonical density expressed in terms of the eigenvalues of
the Bloch Hamiltonian, see Lemma 3.3. It remains to use the criterion in [11, Thm 1.1].
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Let us get back to the zero-temperature limit. Performing it needs special attention. In (3.13)
and (3.14), the dependence in β is contained in

β−1f(β, µ
(0)
R (β, ρ0(R), b = 0); ξ), f(β, µ; ξ) := ln(1 + eβ(µ−ξ)),

and ∀µ ∈ R, f(β, µ; · ) is holomorphic on {ζ ∈ C : ℑζ ∈ (−π/β, π/β)}. The difficulty encountered
is that the contours involved in the integration w.r.t. ξ in (3.13)-(3.14) depend on β, see (3.15)-
(3.4). When β → ∞, they reduce to a half-line covering the spectrums. Here the semiconducting
situation in (1.38) plays a crucial role allowing to dodge this difficulty. Actually our assumptions
have been chosen to force this situation. Indeed, for R sufficiently large, EF,R(ρ0(R)) lies in the
interior of an open set In0 containing (λn0 + λn0+1)/2 (with λτ+1 := 0) and s.t. In0 ∩ σ(HR) = ∅
and In0 ∩ σ(HP ) = ∅. Then we can decompose the contour (3.15) into 3 parts: the first one
enclosing the first n0 eigenvalues of HP , the second one enclosing In0 but no eigenvalue, and the
third one enclosing the rest of σ(HP ), see (4.1). Note that for R large enough, these contours do
not intersect σ(HR). Since the second contour lies in the holomorphic domain of the integrand,
the integral is null. Since for a given µ0 ∈ R, f(β, µ0; · ) is holomorphic on {ζ ∈ C : ℜζ 6= µ0},
then the first and third contours can be deformed in some β-independent contours. It remains to
use the Lebesgue’s dominated theorem knowing (4.4). From (3.16), Propositions 3.6-3.7 together
lead to (3.18). The behavior for large R of the remainder in (3.18) follows from the one of (1.37)
discussed in Step 1.

Step 3: Isolating the main R-dependent contribution - Part 2. We start by removing the R-
dependence arising from the indicator functions χΩR

inside the trace of (3.19). Getting the trace
out the integration w.r.t. the ξ-variable, it remains to control the R-behavior of the error made
in extending the trace to the whole space. In Proposition 3.9, we state that it is exponentially
small in R. To do so, the crucial ingredient is the exponential localization of the eigenfunctions
associated with the eigenvalues of HP in (−∞, 0). Nest the Fermi energy can be removed from
(3.22) without changing the value of the trace, see Proposition 3.10. Thus the main R-dependent
term behaves like 1/R3.

• Outline of the proof of (ii) and (iii).

The proves heavily relies on the stability of the eigenvalues {λl}τl=1, τ ∈ N∗ of HP in (−∞, 0)
under the perturbation W (b) := HP (b)−HP .

Outline of the proof of (ii). For b small enough, the key-idea consists in expressing the sum
over the n0 eigenvalues λl(b) by means of the Riesz integral formula for orthogonal projections, see
(3.23). In the rest of the proof, we show that the second derivative w.r.t. b at b = 0 of the r.h.s.
of (3.23) is nothing but (1.30), see Proposition 3.11. From the rewriting of the trace in (3.23)
as the integral of the diagonal kernel (3.34), it comes down to proving that the integral kernel of
(HP (b)−ξ)−1 far away the diagonal is twice differentiable in a neighborhood of b = 0 and to writing
down a formula for its second derivative, see Lemma 3.13. To that purpose, the crucial ingredient
is the so-called gauge invariant magnetic perturbation theory, see e.g. [41, 7, 18, 11, 12, 46].
The idea behind is to isolate the singularity of the magnetic perturbation (arising from the linear
growth of the vector potential) via an exponential factor involving the magnetic phase in (3.26).
Then (HP (b) − ξ)−1 can be approximated by R̃P (b, 0, ξ) generated by the kernel in (4.19) while
the ’corrective term’ behaves like O(|b|), see (4.25). Iterating twice (4.25) in the kernels sense then
expanding the exponential factor in Taylor series, one obtains the beginning of an expansion in
powers of b for the kernel of (HP (b)− ξ)−1. We mention that the exponential localization of the
eigenfunctions associated with the λj(b)’s for b small enough (see Lemma 3.14) plays a crucial role
to control the involved quantities, see Corollary 3.15.

Outline of the proof of (iii). From (1.31), the aim is to derive an expression for the second
derivative w.r.t. b at b = 0 of the perturbed eigenvalue λl(b), l ∈ {1, . . . , n0}. To do that, we use
the Feshbach formula to write down ’the corrections’ to the unperturbed eigenvalue λl under the
perturbation W (b) = ba · (−i∇) + b2a2/2 for small values of b, see (3.38). Here the exponential
localization of the eigenfunction associated to λl allows to control the linear growth of a. Iterating
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(3.38), we obtain the beginning of an expansion in powers of b for λl(· ), see (3.39). To conclude,
it remains to use that λl(· ) has an asymptotic expansion series, see e.g. [7, Thm. 1.2]. Note that
the asymptotic perturbation theory and the gauge-invariant magnetic perturbation theory both
are used to control the b-behavior of the remainder in (3.39).

1.5 Discussion on the assumptions.

Let us first discuss the assumption (Ar) on the single-site potential u. The physical modeling
requires that the ’single atom’ operator HP possesses finitely many eigenvalues (at least one)
below the essential spectrum, then u has to be chosen accordingly. As emphasized in Sec. 1.4,
choosing u compactly supported plays an important role in our analysis since it gives rise to the
exponentially decreasing behavior in Rα, 0 < α < 1 of the remainder in (1.29), see Proposition 3.7.
However, we believe that the optimal α is α = 1, i.e. the remainder should behave like O(e−cR),
c > 0. We think that it could be obtained from our analysis by using a more refined geometric
perturbation theory to approximate the resolvent (HR − ξ)−1. Furthermore, we point out that
the leading term in the asymptotic expansion (1.29) is unchanged if the single-site potential is not
compactly supported. Consider the assumption:

(Ar∗) u ∈ C1(R3;R) with u = O(|x|−(3+ǫ)) for |x| sufficiently large.

From [44, Thm. XIII.6], σess(HP ) = [0,∞) and HP has a finite number of bound states in
(−∞, 0). Replacing (Ar) with (Ar∗) in Theorem 1.1, then under the same conditions, one may
expect the behavior of the remainder to be only polynomially decreasing with R owing to the ’tail’
of the potential. Finally, let us mention that u is chosen continuously differentiable to ensure some
regularities for the eigenvectors of HP , see (4.16) and Lemma 3.14.

Let us discuss the non-degeneracy assumption (And). Our analysis is based on the insulating
situation which occurs when the Fermi energy lies in the middle of a spectral gap of HR, see [11,
Thm 1.1]. When the number of particles n0 in the Wigner-Seitz cell is any integer lesser than
the number of negative eigenvalues of HP while the density is given by (1.23), this together with
(And) automatically lead to the insulating situation for R sufficiently large, see Proposition 3.1.
Nonetheless, we stress the point that when getting rid of the assumption (And), then the insulating
condition can still occur for R sufficiently large provided that one sets some restrictions on the
n0’s in (1.23). It has to obey (see proof of Proposition 3.1 and Remark 3.5):

n0 ≤ τ and ∃κ ∈ {1, . . . , ν} s.t. n0 = dimE1 + · · ·+ dimEκ . (1.39)

Here τ is the number of eigenvalues of HP in (−∞, 0) counting multiplicities, ν ≤ τ is the number
of distinct eigenvalues and El, l ∈ {1, . . . , ν} stands for the eigenspace associated with the (possibly

degenerate) eigenvalue λl of HP , λl = {λ(m)
l }dimEl

m=1 . Supposing (Ar)-(Am), and that the number of
particles n0 in the Wigner-Seitz cell is fixed and obeys (1.39), while the density is given by (1.23),
then the formulae in Theorem 1.1 (ii)-(iii) have to me modified accordingly (the statement in (i)
is unchanged). Thus (1.31) becomes:

XP (n0) = −
(
q

c

)2 κ∑

l=1

dimEl∑

m=1

d2λ
(m)
l

db2
(b = 0);

and (1.33)-(1.34) respectively become (with intuitive notations):

1

|ΩR|
XLa(n0) := −

(
q

c

)2
1

4|ΩR|

κ∑

l=1

dimEl∑

m=1

〈Φ(m)
l , (X2

1 +X2
2 )Φ

(m)
l 〉L2(R3),

1

|ΩR|
XvV (n0) :=

(
q

c

)2
1

2|ΩR|
κ∑

l=1

dimEl∑

m=1

〈L3Φ
(m)
l , {Π(m),⊥

l (HP − λ
(m)
l )Π

(m),⊥
l }−1L3Φ

(m)
l 〉L2(R3).

13



In a way, the condition (1.39) is related to the one concerning the filling of the electron shells
mentioned in Sec. 1.1 when dealing with the susceptibility of an ion, see below (1.12). When all
its electron shells are fulfilled, it is found that the zero-field orbital susceptibility reduces to the
diamagnetic Larmor contribution. But this result leans on the Hund’s rules stating that such an
ion has necessarily its total electronic orbital angular momentum null in its ground state. Putting
aside these considerations of an atomic nature, then the orbital Van-Vleck contribution has to be
taken into account.

1.6 An open problem.

From the foregoing, a natural question arises: does the insulator condition occur when n0 is
any integer less than the number of negative eigenvalues of HP , counting multiplicities if some
of the eigenvalues are degenerate, while the density is given by (1.23)? Such a problem comes
up when the single-site potential is chosen spherically symmetric. To tackle it we need to know
precisely the behavior of the negative spectral bands of HR near the degenerate eigenvalues of
HP in (−∞, 0) for large values of R. For instance suppose that one of the negative eigenvalue of
HP , say λc, is two-fold degenerate. For R sufficiently large, it is well-known that the spectrum
of HR in a neighborhood of λc consists of the union of two Bloch bands, see Lemma 3.4 and also
[21, Thm. 2.1]. But we need to know much more; in particular we need to control how the Bloch
bands behave the one relative to the other. Especially, do they always overlap for R sufficiently
large or do they overlap only in the limit R ↑ ∞? How fast each of the Bloch bands reduce to the
λc’s? This remains a challenging spectral problem.

1.7 The content of the paper.

Our current paper is organized as follows. In Sec. 2, we use a geometric perturbation theory to
approximate the resolvent operator (HR−ξ)−1 in the tight-binding situation. Sec. 3 is devoted to
the proof of Theorem 1.1. In Sec. 3.1.1, we show that under our assumptions only the insulating
situation can occur in the tight-binding situation. Subsequently, in Sec. 3.1.2-3.1.3 we prove the
asymptotic expansion in (1.29). In Sec. 3.2, we prove the identity (1.31). In Sec. 3.3 we prove the
formula (1.32). In Sec. 4, we have gathered together all the proves of the technical intermediary
results needed in Sec. 3.

2 An approximation of the resolvent via a geometric per-

turbation theory.

The method we use below is borrowed from [18, 16].
For any 0 < α < 1, 0 < κ ≤ 3 and R > 0 define:

ΘR(κ) := {x ∈ ΩR : dist(x, ∂ΩR) ≤ κRα}.

Hence for R sufficiently large, ΘR(κ) models a ’thin’ compact subset of ΩR near the boundary
with Lebesgue-measure |ΘR(κ)| of order O(R2+α).
Let 0 < α < 1 be fixed. Below by R sufficiently large we mean:

R ≥ R0 with R0 = R0(α) ≥ 1 s.t. ΘR0(
5

2
) ( ΩR0 . (2.1)

Let us introduce some well-chosen family of smooth cutoff functions.
Let gR and ĝR, R ≥ R0 satisfying:

Supp(gR) ⊂ (ΩR \ΘR(1)), 0 ≤ gR ≤ 1;

Supp(ĝR) ⊂ (ΩR \ΘR(1/2)), ĝR = 1 if x ∈ (ΩR \ΘR(1)), 0 ≤ ĝR ≤ 1.
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Moreover there exists a constant C > 0 s.t.

∀R ≥ R0, max{‖DsgR‖∞, ‖DsĝR‖∞} ≤ CR−|s|α, ∀|s| ≤ 2, |s| =
3∑

j=1

sj .

With these properties, one straightforwardly gets:

ĝRgR = gR, (2.2)

dist(Supp(DsĝR), Supp(gR)) ≥ CRα, ∀1 ≤ |s| ≤ 2, (2.3)

for another R-independent constant C > 0. Also let ˆ̂gR, R ≥ R0 satisfying:

Supp(ˆ̂gR) ⊂ (ΩR \ΘR(3/2))
∁, ˆ̂gR = 1 if x ∈ (ΩR \ΘR(1))

∁,

0 ≤ ˆ̂gR ≤ 1; ‖Ds ˆ̂gR‖∞ ≤ CR−|s|α, ∀|s| ≤ 2,

for another R-independent constant C > 0. Note that with these properties:

ˆ̂gR(1− gR) = (1 − gR), (2.4)

dist(Supp(Ds ˆ̂gR), Supp(1− gR)) ≥ CRα, ∀1 ≤ |s| ≤ 2. (2.5)

Let us now define a series of operators. At first, introduce ∀R ≥ R0 and ∀ξ ∈ ̺(HR) ∩ ̺(HP )
(here ̺(· ) denotes the resolvent set) on L2(R3):

RR(ξ) := ĝR(HP − ξ)−1gR + ˆ̂gR(HR − ξ)−1(1− gR). (2.6)

In virtue of the support of cutoff functions, one has:

(HR − ξ)ĝR = (HP − ξ)ĝR.

Using that Ran(RR(ξ)) ⊂ Dom(HR), then from (2.2) along with (2.4):

(HR − ξ)RR(ξ) = 1+WR(ξ),

where, ∀R ≥ R0 and ∀ξ ∈ ̺(HR) ∩ ̺(HP ):

WR(ξ) := {−1

2
(∆ĝR)− (∇ĝR) · ∇}(HP − ξ)−1gR + {−1

2
(∆ˆ̂gR)− (∇ˆ̂gR) · ∇}(HR − ξ)−1(1− gR).

Since WR(ξ) is bounded on L2(R3), see e.g. [12, Lem. 5.1], this means that:

(HR − ξ)−1 = RR(ξ)− (HR − ξ)−1WR(ξ). (2.7)

Next, RR(ξ) in (2.6) can be rewritten by the second resolvent equation as:

RR(ξ) = RR(ξ) − WR(ξ), (2.8)

where, ∀R ≥ R0 and ∀ξ ∈ ̺(HR) ∩ ̺(HP ):

RR(ξ) := ĝR(HP − ξ)−1gR + ˆ̂gR(HP − ξ)−1(1 − gR), (2.9)

WR(ξ) := ˆ̂gR(HR − ξ)−1V̆R(HP − ξ)−1(1− gR), (2.10)

with:
V̆R :=

∑

υ∈Z3\{0}

u(· −Rυ). (2.11)

Finally, RR(ξ) in (2.9) can be rewritten:

RR(ξ) = (HP − ξ)−1 +WR(ξ), (2.12)
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where, ∀R ≥ R0 and ∀ξ ∈ ̺(HR) ∩ ̺(HP ):

WR(ξ) := (HP − ξ)−1{−1

2
(∆ĝR)− (∇ĝR) · ∇}(HP − ξ)−1gR

+ (HP − ξ)−1{−1

2
(∆ˆ̂gR)− (∇ˆ̂gR) · ∇}(HP − ξ)−1(1 − gR).

Gathering (2.7), (2.8) and (2.12) together, one obtains in the bounded operators sense on L2(R3):

(HR − ξ)−1 = (HP − ξ)−1 +WR(ξ)− WR(ξ)− (HR − ξ)−1WR(ξ). (2.13)

From the identity in (2.13) and taking into account the assumption (Ar), let us now prove that
for R ≥ R0 sufficiently large the error made in approximating χΩR

(HR−ξ)−1 with χΩR
(HP −ξ)−1

(or with the indicator function χΩR
from the right) is exponentially small in Rα, 0 < α < 1 in the

Hilbert-Schmidt norm sense. To do that define R1 ≥ 1 so that:

Supp(u) ⊂ (ΩR1 \ΘR1(2)). (2.14)

Such R1 exists since the support of u is compact, see assumption (Ar). Now look at the r.h.s. of
(2.13). ∀R ≥ R0 the operators (HR − ξ)−1WR(ξ) and WR(ξ) have their operator norm exponen-
tially small in Rα, see (2.24)-(2.23) below. However, this is not the case for the operator norm of
WR(ξ) even for R ≥ R0 and large enough, see (2.23). This comes from the fact that the support

of ˆ̂gR (or (1 − gR)) and the support of V̆R in (2.11) are not disjoint. But ∀R ≥ max{R0, R1} the
Hilbert-Schmidt norm of WR(ξ) when multiplied by the indicator function χΩR

from the left or
from the right is exponentially small in Rα, see (2.26). The same holds true for the Hilbert-Schmidt
norms of (HR − ξ)−1WR(ξ) and WR(ξ) when multiplied by χΩR

from the left or from the right,
see (2.25). This last feature, which results from the fact that u is compactly supported, will turn
out to be decisive to get the exponential decay of the remainder in the asymptotic expansion (1.29).

We end this paragraph by giving a series of estimates we will throughout. For any ξ ∈ C and
real number ℓ > 0, we use the shorthand notation:

ℓξ := ℓ(1 + |ξ|)−1. (2.15)

Lemma 2.1. Let Ξ = P or R. For every η > 0 (and ∀R > 0 when Ξ = R) there exists a constant
ϑ = ϑ(η) > 0 and a polynomial p(· ) s.t. ∀ξ ∈ C satisfying dist(ξ, σ(HΞ)) ≥ η and ∀(x,y) ∈ R6\D:

|(HΞ − ξ)−1(x,y)| ≤ p(|ξ|)e
−ϑξ|x−y|

|x− y| , (2.16)

|∇x(HΞ − ξ)−1(x,y)| ≤ p(|ξ|)e
−ϑξ|x−y|

|x− y|2 . (2.17)

Proof. See [47, Thm. B.7.2] and [12, Lem. 2.4] respectively. �

Lemma 2.2. Let 0 < α < 1 and R0 = R0(α) ≥ 1 as in (2.1). Then for every η > 0 there exists
a constant ϑ = ϑ(η) > 0 and a polynomial p(· ) s.t.
(i). ∀R ≥ R0, ∀ξ ∈ C obeying dist(ξ, σ(HR) ∩ σ(HP )) ≥ η, ∀(x,y) ∈ R6 \D:

max{|(RR(ξ))(x,y)|, |(RR(ξ))(x,y)|} ≤ p(|ξ|)e
−ϑξ|x−y|

|x− y| , (2.18)

max{|∇x(RR(ξ))(x,y)|, |∇x(RR(ξ))(x,y)|} ≤ p(|ξ|)e
−ϑξ|x−y|

|x− y|2 . (2.19)

(ii). ∀R ≥ R0, ∀ξ ∈ C obeying dist(ξ, σ(HR) ∩ σ(HP )) ≥ η and ∀(x,y) ∈ R6:

|(WR(ξ))(x,y)| ≤ p(|ξ|)e−ϑξ|x−y|, (2.20)

max{|(WR(ξ))(x,y)|, |(WR(ξ))(x,y)|, |∇x(WR(ξ))(x,y)|} ≤ p(|ξ|)e−ϑξR
α

e−ϑξ|x−y|. (2.21)
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(iii). ∀R ≥ max{R0, R1} (see (2.14)), ∀ξ ∈ C obeying dist(ξ, σ(HR) ∩ σ(HP )) ≥ η and ∀(x,y) ∈
R6:

max{|(χΩR
ˆ̂gR)(x)(HR − ξ)−1(x,y)V̆R(y)|, |V̆R(x)(HP − ξ)−1(x,y)(χΩR

(1 − gR))(y)|}
≤ p(|ξ|)e−ϑξR

α

e−ϑξ|x−y|.

Proof. Let us prove (i). (2.18) directly follows from (2.16). On the other hand:

∇x(RR(ξ))(x,y) = {(∇ĝR)(x)(HP − ξ)−1(x,y) + ĝR(x)∇x(HP − ξ)−1(x,y)}gR(y)
+ {(∇ˆ̂gR)(x)(HR − ξ)−1(x,y) + ˆ̂gR(x)∇x(HR − ξ)−1(x,y)}(1 − gR(y)),

and by replacing (HR− ξ)−1 with (HP − ξ)−1 above, we get ∇x(RR(ξ))(· , · ). Then (2.19) follows
from the properties (2.3)-(2.5) together with the estimates (2.16)-(2.17). Let us prove (ii). The
first estimate results from the assumption (Ar) and (2.16), see [12, Lem. A.2]. Due to (2.3)-(2.5)
again together with (2.16), then under the conditions of the lemma (below Ξ = P or R):

max{|(∆ˆ̂gR)(x)(HΞ − ξ)−1(x,y)(1 − gR)(y)|, |(∇ˆ̂gR)(x)∇x(HΞ − ξ)−1(x,y)(1 − gR)(y)|,
|(∆ĝR)(x)(HΞ−ξ)−1(x,y)gR(y)|, |(∇ĝR)(x)∇x(HΞ−ξ)−1(x,y)gR(y)|} ≤ p(|ξ|)e−ϑξR

α

e−ϑξ|x−y|,
(2.22)

for another R-independent ϑ > 0 and polynomial p(· ). This leads to (2.21) for the kernels of
WR(ξ) and WR(ξ). As for ∇x(WR(ξ))(· , · ), it is enough to use (2.22), (2.17) along with [12, Eq.

(A.12)]. Finally (iii) follows from (2.14) ensuring that dist(Supp(u), Supp(χΩR
ˆ̂gR)) ≥ Rα/2. �

Remark 2.3. (i). From Lemma 2.1 and Lemma 2.2 (i)-(ii), together with the Shur-Holmgren
criterion, one has ∀R ≥ R0:

max{‖(HR − ξ)−1‖, ‖RR(ξ)‖, ‖RR(ξ)‖, ‖∇RR(ξ)‖, ‖∇RR(ξ)‖, ‖WR(ξ)‖} ≤ p(|ξ|), (2.23)

max{‖WR(ξ)‖, ‖WR(ξ)‖ ‖∇WR(ξ)‖} ≤ p(|ξ|)e−ϑξR
α

, (2.24)

for another R-independent constant ϑ > 0 and polynomial p(· ).
(ii). Let (I2(L

2(R3)), ‖ · ‖I2) be the Banach space of Hilbert-Schmidt operators. By using the
∗-ideal property of I2(L

2(R3)), then from Lemma 2.2 (ii) one has ∀R ≥ R0:

max{‖χΩR
WR(ξ)‖I2 , ‖χΩR

(HR − ξ)−1WR(ξ)‖I2 ,

‖WR(ξ)χΩR
‖I2 , ‖(HR − ξ)−1WR(ξ)χΩR

‖I2} ≤ p(|ξ|)e−ϑξR
α

, (2.25)

and from Lemma 2.2 (iii) one has ∀R ≥ max{R0, R1}:

max{‖χΩR
WR(ξ)‖I2 , ‖WR(ξ)χΩR

‖I2} ≤ p(|ξ|)e−ϑξR
α

, (2.26)

for another R-independent constant ϑ > 0 and polynomial p(· ).

3 Proof of Theorem 1.1.

This section is organized as follows. The first part is devoted to the proof of the asymptotic
expansion (1.29) in the tight-binding situation and in the zero-temperature limit. The second and
third part are respectively concerned with the proof of (1.31) and (1.32). For reader’s convenience,
the proof of technical intermediary results are collected in Appendix, see Sec. 4.
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3.1 Proof of (i).

3.1.1 The location of the Fermi energy.

Here we are interested in the location of the Fermi energy in the tight-binding situation when
the number of particles n0 ∈ N∗ in the Wigner-Setz is fixed, while the density is given by (1.23).
Recall that under our conditions, ∀R > 0 the Fermi energy:

ER,F (ρ0(R)) := lim
β↑∞

µ
(0)
R (β, ρ0(R), b = 0), (3.1)

always exists, see [11, Thm 1.1].

Before giving the main result of this paragraph, let us introduce some notations within the
framework of the Bloch-Floquet theory. For details, we refer to [6, Sec. 3.5] and [53]. The results
we give below hold true for any R > 0. Denote by Ω∗

R the unit cell of the dual lattice (2π/R)Z3

(the so-called first Brillouin zone) of the Bravais-lattice RZ3. With S(R3) denoting the Schwartz
space of rapidly decreasing functions on R3, consider the Bloch-Floquet(-Zak) transformation:

U : S(R3) 7→ L2(Ω∗
R, L

2(ΩR)) ∼=
∫ ⊕

Ω∗

R

dkL2(ΩR)

(Uφ)(x;k) = 1√
|Ω∗

R|
∑

υ∈RZ3

e−ik·(x+υ)φ(x + υ), k ∈ Ω∗
R, x ∈ ΩR,

which can be continued in a unitary operator on L2(R3). The unitary transformation of HR is

decomposable into a direct integral UHRU∗ =
∫ ⊕

Ω∗

R

dkhR(k), where:

hR(k) :=
1

2
(−i∇+ k)2 + VR,

lives in L2(R3/RZ3). By standard arguments, hR is essentially self-adjoint on C∞(R3/RZ3); the
domain of its closure is the Sobolev space H2(R3/RZ3). For each k ∈ Ω∗

R, hR(k) has purely
discrete spectrum with an accumulation point at infinity. Then we denote by {ER,l(k)}l≥1 the
set of eigenvalues counting multiplicities and in increasing order. Due to this choice of labeling,
the ER,l’s are periodic and Lipschitz continuous on Ω∗

R. Indeed they are not differentiable on a
zero Lebesgue-measure subset of Ω∗

R corresponding to crossing-points. If l ≥ 1, the l-th Bloch
band function is defined by ER,l := [mink∈Ω∗

R
ER,l(k),maxk∈Ω∗

R
ER,l(k)]. The spectrum of HR is

absolutely continuous and given (as a set of points) by σ(HR) =
⋃∞

l=1 ER,l. Note that the sets
ER,l can overlap each other in many ways, and some of them can even coincide. The energy bands
are disjoint unions of ER,l’s. Moreover, if max ER,l < min ER,l+1 for some l ≥ 1 then we have a
spectral gap. Since the Bethe-Sommerfeld conjecture holds true under our conditions, see e.g. [28,
Coro. 2.3], then the number of spectral gaps is finite, if not zero.

Our main result below states that, under our conditions and in the tight-binding situation, the
Fermi energy always lies in the middle of a spectral gap of HR (i.e. only the insulating situation
can occur), and moreover, it provides an asymptotic expansion of the Fermi energy:

Proposition 3.1. Suppose (Ar), (Am) and (And). Assume that the number of particles n0 ∈ N∗

in the Wigner-Seitz cell is fixed and satisfies n0 ≤ τ , while the density is given by (1.23). Then:

(i). For any β > 0, let µ
(0)
R (β, ρ0(R), b = 0) ∈ R be the unique solution of the equation ρR(β, µ, b =

0) = ρ0(R). Then for R sufficiently large, the Fermi energy satisfies:

ER,F (ρ0(R)) := lim
β↑∞

µ
(0)
R (β, ρ0(R), b = 0) =

max ER,n0 +min ER,n0+1

2
< 0. (3.2)

(ii). Let us define:

EP,F (n0) :=

{
(λn0 + λn0+1)/2 when n0 < τ,
λτ/2 when n0 = τ .

(3.3)
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Then under the additional assumption that n0 < τ , one has:

ER,F (ρ0(R)) = EP,F (n0) +O(e−
√

|λn0+1|R).

Remark 3.2. (i). We stress the point that the non-degeneracy assumption (And) along with the
fact that ρ0(R) is given as in (1.23), together imply the insulating situation for R sufficiently large.
(ii). We will see in Proposition 3.10 that the Fermi energy actually plays any role for the statements
of Theorem 1.1 since it can be remove of the main quantities without changing their values.

The rest of this paragraph is devoted to the proof of Proposition 3.1.
Let us start by writing down an expression for the bulk density of particles. Under the grand-

canonical conditions, let β > 0 and µ ∈ R. For any R > 0, let C
(R)
β be the counter-clockwise

oriented simple contour around the interval [inf σ(HR),∞) defined by:

C
(R)
β := {ℜξ ∈ [δR,∞), ℑξ = ± π

2β
} ∪ {ℜξ = δR, ℑξ ∈ [− π

2β
,
π

2β
]}, δR := inf σ(HR)− 1. (3.4)

Let us note that for any R > 0, the closed subset surrounding by C
(R)
β is a strict subset of the

holomorphic domain D := {ζ ∈ C : ℑζ ∈ (−π/β, π/β)} of the Fermi-Dirac distribution function
fFD(β, µ; ξ) := eβ(µ−ξ)(1 + eβ(µ−ξ))−1. From (1.21) and seen as a function of the µ-variable, the
bulk zero-field density of particles reads ∀β > 0, ∀µ ∈ R, ∀R > 0 as, see e.g. [12, Eq. (6.3)]:

ρR(β, µ, b = 0) :=
1

|ΩR|
i

2π
TrL2(R3)

{
χΩR

(∫

C
(R)
β

dξ fFD(β, µ; ξ)(HR − ξ)−1

)
χΩR

}
. (3.5)

We mention that another way to express the bulk zero-field density consists in bringing into play
the integrated density of states of the operator HR. Under the conditions of (3.5),

ρR(β, µ, b = 0) = −
∫ ∞

−∞

dt
∂fFD

∂t
(t)NR(t),

where NR(· ) denotes here the integrated density of states of HR = HR(b = 0) defined in (1.18).
We recall that when the magnetic field vanishes, NR is a positive, continuous and non-decreasing
function, and it is piecewise constant when the energy parameter belongs to a spectral gap.
In order to write down an expression for the bulk zero-field density in the zero-temperature limit,
we need to rewrite (3.5) by the use of the Bloch-Floquet decomposition, see e.g. [11, Sec. 2]. In
view of our notations introduced above, we collect in the following lemma all the needed results:

Lemma 3.3. (i). Let β > 0 and µ ∈ R. Then for any R > 0:

ρR(β, µ, b = 0) =
1

|ΩR||Ω∗
R|

∞∑

j=1

∫

Ω∗

R

dk fFD(β, µ;ER,j(k)).

(ii). For any R > 0, let µ ≥ inf σ(HR) be fixed. We have the identity:

lim
β↑∞

ρR(β, µ, b = 0) =
1

|ΩR||Ω∗
R|

∞∑

j=1

∫

Ω∗

R

dkχ[inf σ(HR),µ](ER,j(k)) = NR(µ), (3.6)

where χ[inf σ(HR),µ](·) denotes the indicator function of the compact interval [inf σ(HR), µ] and NR

the integrated density of states of the operator HR.

Now let us get back to the location of the Fermi energy in the tight-binding situation when
the density is given by (1.23). We need first to know how the negative spectral bands of the
operator HR are localized at negative eigenvalues of the operator HP for large values of the R-
parameter. For completeness’ sake, in the below lemma we discard assumption (And) and we allow
the negative eigenvalues of HP in (−∞, 0) to have some degeneracies:
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Lemma 3.4. Let τ ∈ N∗ be the number of the eigenvalues of HP in (−∞, 0) counting multiplicities.
Denote by {λl}νl=1 with ν ≤ τ the set of distinct eigenvalues counting in increasing order. Then
for R sufficiently large, there exist real numbers −λ1 − 1

2 < cR,l, dR,l < 0, l = 1, . . . , ν and CR,ν+1

satisfying cR,1 < dR,1 < · · · < cR,ν < dR,ν < CR,ν+1 s.t.

(i) σ(HR)↾(−∞,0) ⊂
⋃ν

l=1[cR,l, dR,l],

(ii) [cR,l, dR,l] ∩ [cR,m, dR,m] = ∅ for l 6= m,

(iii) λl ∈ (cR,l, dR,l),

(iv) dR,ν + CR,ν+1 < 0,

together with the properties that cR,l, dR,l → λl and CR,ν+1 → 0 when R ↑ ∞.
Furthermore we have the following relation with the Bloch bands of HR:

[cR,l, dR,l] ∩ σ(HR) =

dimEl⋃

m=1

ER,m, l = 1, . . . , ν,

CR,ν+1 = min ER,τ+1,

with El the eigenspace associated with the possibly degenerate eigenvalue λl.

Proof. These statements directly follow from [21, Thm. 2.1] taking into account our choice of
labeling for the ER,l’s (i.e. increasing order). Note that Theorem 2.1 in [21] is established under
the assumptions that VR is smooth and sufficiently fast decaying at infinity. But the statements
still hold true under our conditions on VR, see [27, Thm. 2]. �

Now we are ready to prove Proposition 3.1:
Proof of Proposition 3.1. Let us first prove (i). Consider the equation:

1

|Ω∗
R|

∑

l≥1

∫

Ω∗

R

dkχ[inf σ(HR),E](ER,l(k)) = n0.

Due to the non-degeneracy assumption (And), Lemma 3.4 ensures that the Bloch bands ER,l, l =
1, . . . , τ are simple, isolated from each other and from the rest of the spectrum for large values of R.
Hence if n0 ∈ N∗ satisfies n0 ≤ τ , then E must belong to [maxk∈Ω∗

R
ER,n0(k),mink∈Ω∗

R
ER,n0+1(k)].

This comes from the fact that the Lebesgue-measure of the set {k ∈ Ω∗
R : El(k) ≤ E} equals |Ω∗

R|
if and only if E ≥ maxk∈Ω∗

R
El(k). Getting back to (3.6), this means that for large values of R:

ρ0(R) = NR(E) ∀E ∈ [max ER,n0 ,min ER,n0+1]. (3.7)

Then (3.2) follows from [11, Thm. 1.1]. Let us turn to (ii). Suppose that n0 < τ . It is enough to
use that:

ER,F (ρ0(R))− EP,F (n0) =
max ER,n0 − λn0

2
+

min ER,n0+1 − λn0+1

2
,

together with the following estimate which holds uniformly in k ∈ Ω∗
R, see e.g. [27, Thm. 2]:

|
√
|ER,l(k)| −

√
|λl|| = O(R−1e−

√
|λl|R), l = 1, . . . , τ. �

Remark 3.5. Let us give a sufficient condition ensuring the insulator condition when considering
some degeneracies for the eigenvalues of HP in (−∞, 0). From Lemma 3.4, then for R sufficiently
large (3.7) holds ∀E belonging to a spectral gap of HR provided that:

∃κ ∈ {1, . . . , ν} s.t. n0 =

κ∑

l=1

dimEl.
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3.1.2 Isolating the main R-dependent contribution at zero-temperature.

We start by writing down an expression for the bulk zero-field orbital susceptibility. Under

the grand-canonical conditions, let β > 0 and µ ∈ R. For any R > 0 let C
(R)
β be the positively

oriented simple contour around the interval [inf σ(HR),∞) in (3.4). Then ∀R > 0 the closed

subset surrounding by C
(R)
β is a strict subset of the holomorphic domain D := {ζ ∈ C : ℑζ ∈

(−π/β, π/β)} of ξ 7→ f(β, µ; ξ) := ln(1+eβ(µ−ξ)). Note that f(β, µ; · ) admits an exponential decay

on C
(R)
β , i.e. there exists a β-independent constant c > 0 s.t.

∀ξ ∈ C
(R)
β , |f(β, µ; ξ)| ≤ ceβµe−βℜξ. (3.8)

From (1.22) and seen as a function of the µ-variable, the bulk zero-field orbital susceptibility reads
∀β > 0, ∀µ ∈ R and ∀R > 0 as, see e.g. [12, Eq. (1.21)]:

XR(β, µ, b = 0) :=

(
q

c

)2
2

β|ΩR|
i

2π

∫

C
(R)
β

dξ f(β, µ; ξ)×

× TrL2(R3){χΩR
(HR − ξ)−1[TR,1(ξ)TR,1(ξ)− TR,2(ξ)]χΩR

}, (3.9)

where TR,j(ξ), j = 1, 2 are bounded operators generated via their kernel respectively defined on
R6 \D as:

TR,1(x,y; ξ) := a(x− y) · (i∇x)(HR − ξ)−1(x,y), (3.10)

TR,2(x,y; ξ) :=
1

2
a2(x− y)(HR − ξ)−1(x,y). (3.11)

Recall that we have introduced the operators TP,j(ξ), j = 1, 2 via their kernel defined similarly to
(3.10)-(3.11) but with (HP −ξ)−1 instead of (HR−ξ)−1, see (1.27)-(1.28). Since |a(x−y)| ≤ |x−y|
then under the conditions of Lemma 2.1 (below Ξ := R or P ), one has on R6 \D:

|TΞ,j(x,y; ξ)| ≤ p(|ξ|)e
−ϑξ|x−y|

|x− y| , ϑξ :=
ϑ

1 + |ξ| , j = 1, 2, (3.12)

for another constant ϑ > 0 and polynomial p(· ). Due to the estimates (3.12) and (2.16), the op-
erators (HΞ − ξ)−1TΞ,1(ξ)TΞ,1(ξ) and (HΞ − ξ)−1TΞ,2(ξ), Ξ = R or P both are locally trace class
on L2(R3). Furthermore, both are integral operators with a jointly continuous integral kernel on
R6, whose diagonal part is bounded above by some polynomial in |ξ| uniformly in the spacial vari-
able, see e.g. [12, Lem. A.1]. This along with (3.8) ensure that the quantity in (3.9) is well-defined.

Now let us turn to the actual proof of (1.29). We point out that the main difficulty consists
in isolating the main R-dependent contribution from (3.9) in the tight-binding situation, while
keeping a good control on the behavior of the ’remainder’ term, even in the zero-temperature
limit.

The starting point is the approximation of the resolvent operator (HR − ξ)−1 derived in Sec.
2. By replacing in (3.9) each resolvent (HR − ξ)−1 (look at the definitions (3.10)-(3.11)) with the
r.h.s. of (2.13), and taking into account the features of the three last operators of the r.h.s. of
(2.13) we discussed in Sec. 2, we naturally expect the main R-dependent contribution from (3.9)
to be obtained by replacing each operator (HR−ξ)−1 with (HP −ξ)−1. In this way define, ∀β > 0,
∀µ ∈ R and ∀R > 0 the following quantities,

X̃R(β, µ, b = 0) :=

(
q

c

)2
1

β

1

|ΩR|
i

π

∫

C
(P )
β

dξ f(β, µ; ξ)×

× TrL2(R3){χΩR
(HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]χΩR

}, (3.13)
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∆R(β, µ) := XR(β, µ, b = 0)− X̃R(β, µ, b = 0), (3.14)

where C
(P )
β in (3.13) denotes the counter-clockwise oriented simple contour around the interval

[inf σ(HP ),∞) defined by:

C
(P )
β := {ℜξ ∈ [δP ,∞), ℑξ = ± π

2β
}∪{ℜξ = δP , ℑξ ∈ [− π

2β
,
π

2β
]}, δP := inf σ(HP )−1. (3.15)

Now consider the canonical conditions. Suppose that the number of particles in the Wigner-

Seitz cell n0 ∈ N∗ is fixed and obeys n0 ≤ τ , while the density is given by (1.23). Let µ
(0)
R (β, ρ0(R), b =

0) ∈ R be the unique solution of the equation ρR(β, e
βµ, b = 0) = ρ0(R). Then from (1.24) together

with (3.13)-(3.14), one has ∀β > 0 and ∀R > 0:

XR(β, ρ0(R), b = 0) = X̃R(β, µ
(0)
R (β, ρ0(R), b = 0), b = 0) + ∆R(β, µ

(0)
R (β, ρ0(R), b = 0)). (3.16)

The next step of the proof consists in performing the zero-temperature limit in (3.16) in the tight-
binding situation. Here the crucial point is the insulator situation: for R sufficiently large, the
Fermi energy lies outside the spectrum of HR and is located in a neighborhood of the middle of
the interval (λn0 , λn0+1) if n0 < τ , (λτ , 0) otherwise; see Proposition 3.1 along with Lemma 3.4.
Remind that the insulator condition results from the non-degeneracy assumption (And) together
with the condition (1.23). To perform the zero-temperature limit in (3.16), we need the two
following results whose proves can be found in Appendix, see Sec. 4.1. Recall that {λl}τl=1,
τ ∈ N∗ denotes the set of eigenvalues of HP in (−∞, 0) counting in increasing order.

Proposition 3.6. Let Iς , ς ∈ {1, . . . , τ} be an open interval s.t. Iς ( (λς , λς+1) and (λς +
λς+1)/2 ∈ Iς when ς < τ ; otherwise Iτ ( (λτ , 0) and λτ/2 ∈ Iτ . Then ∀R > 0 and for any
compact subset K ⊂ Iς :

lim
β↑∞

X̃R(β, µ, b = 0) =
1

|ΩR|
X̂R(µ, b = 0),

uniformly in µ ∈ K, with:

X̂R(µ, b = 0) :=

(
q

c

)2
i

π

∫

Γς

dξ (µ− ξ)TrL2(R3){χΩR
(HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]χΩR

},

where Γς stands for any positively oriented simple closed contour surrounding the ς smallest eigen-
values of HP in (−∞, 0) while letting outside the rest of the spectrum of HP .

Proposition 3.7. Let Iς , ς ∈ {1, . . . , τ} be an open interval as above. Then for R sufficiently large,
limβ↑∞ ∆R(β, µ) exists uniformly on compact subsets K ⊂ Iς . Denote it by ∆R(µ). Furthermore
∀0 < α < 1 there exist two constants c, C > 0 s.t. ∀µ ∈ Iς and for R sufficiently large:

|∆R(µ)| ≤ C(1 + |µ|)e−cRα

. (3.17)

Let us emphasize that the exponentially decaying estimate appearing in (3.17) arises from the
fact that u is compactly supported, see assumption (Ar). The proof of Proposition 3.7 essentially
is based on the features of the three last operators in the r.h.s. of (2.13) we mentioned in Sec. 2.

Subsequently to Propositions 3.6 and 3.7, we are in a position to isolate a first main R-
dependent contribution from (3.16) in the tight-binding situation and in the zero-temperature
regime. Under the conditions of (3.16), we show that ∀0 < α < 1 there exists a R-independent
constant c > 0 s.t.

lim
β↑∞

XR(β, ρ0, b = 0) =
1

|ΩR|
X̂R(ER,F (ρ0(R)), b = 0) +O(e−cRα

), (3.18)

with:

X̂R(ER,F (ρ0(R)), b = 0) :=

(
q

c

)2
i

π

∫

Γn0

dξ (ER,F (ρ0(R))− ξ)

× TrL2(R3){χΩR
(HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]χΩR

}. (3.19)
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To achieve that, let In0 be an open interval s.t. In0 ( (λn0 , λn0+1) and (λn0 + λn0+1)/2 ∈ In0

when n0 < τ ; otherwise In0 ( (λτ , 0) and λτ/2 ∈ In0 . From Lemma 3.4 and Proposition 3.1,
it follows that for R sufficiently large In0 ∩ σ(HR) = ∅ and the Fermi energy ER,F (ρ0(R)) :=

limβ↑∞ µ
(0)
R (β, ρ0(R), b = 0) ∈ In0 . Then (3.18) follows from Propositions 3.6 and 3.7 together.

Remark 3.8. In the case of n0 < τ , by virtue of the asymptotic expansion in Lemma 3.1 (ii)
along with (3.17), then one obtains instead of (3.19):

lim
β↑∞

XR(β, ρ0(R), b = 0) =
1

|ΩR|
X̂R(EP,F (n0), b = 0) +O(e−cRα

),

with X̂R(EP,F (n0), b = 0) as in (3.19) but with EP,F (n0) defined in (3.3), instead of ER,F (ρ0(R)).

3.1.3 Isolating the main R-dependent contribution at zero-temperature - Continua-

tion and end.

The continuation of the proof of (1.29) consists in removing the R-dependance arising from
the indicator functions χΩR

inside the trace of (3.19). Here the exponential localization of the
eigenfunctions associated with the eigenvalues of HP in (−∞, 0) plays a crucial role.

Let us introduce the families {gθ,w, θ ∈ C}, w = 0, 1 where gθ,w : C → C are defined by:

gθ,1(ξ) := θ − ξ, gθ,0(ξ) := θ. (3.20)

Next we need the following technical result whose proof can be found in Appendix, see Sec.
4.2.

Proposition 3.9. ∀θ ∈ C, ∀w ∈ {0, 1} and ∀ς ∈ {1, . . . , τ} there exist two constants C = C(θ) >
0, c > 0 s.t. ∀x ∈ R3 and for j = 1, 2:

max{
∣∣∣∣
i

2π

∫

Γς

dξ gθ,w(ξ){(HP − ξ)−1TP,1(ξ)TP,1(ξ)}(x,x)
∣∣∣∣,

∣∣∣∣
i

2π

∫

Γς

dξ gθ,w(ξ){(HP − ξ)−1TP,j(ξ)}(x,x)
∣∣∣∣} ≤ Cςe−c|x|, (3.21)

where gθ,w are the maps defined in (3.20), and Γς is any positively oriented simple closed contour
surrounding the ς smallest eigenvalues of HP in (−∞, 0) while letting outside the rest of the
spectrum.

As a result of Proposition 3.9, the error made in getting the trace out the integration w.r.t. ξ
in (3.19) and extending the trace to the whole space behaves like O(e−cR) for some R-independent
constant c > 0. In other words, under the conditions of (3.19) there exists a R-independent c > 0
s.t.:

X̂R(ER,F (ρ0(R)), b = 0) =

(
q

c

)2
i

π
TrL2(R3){

∫

Γn0

dξ (ER,F (ρ0(R))− ξ)×

× (HP − ξ)−1[TP,1(ξ)TP,1(ξ) − TP,2(ξ)]} +O(e−cR). (3.22)

Due to (3.21), the leading term in the r.h.s. behaves like O(n0) as expected.

Gathering (3.18), (3.19) and (3.22) together, then to complete the proof of (1.29)-(1.30), it
remains to show that the quantity containing the Fermi energy inside the trace of the leading term
in the r.h.s. of (3.22) plays any role (i.e. we can get rid of it without changing the value of the
trace). This is contained in the below result, whose proof lies in Appendix, see Sec. 4.2:

Proposition 3.10. With the notations of Proposition 3.9, one has:

i

2π
TrL2(R3)

{∫

Γς

dξ (HP − ξ)−1[TP,1(ξ)TP,1(ξ) − TP,2(ξ)]
}
= 0.
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3.2 Proof of (ii).

Before starting, let us recall and introduce some notations. Under the assumptions (Ar)-(Am)-
(And), let {λl}τl=1, τ ∈ N∗ be the set of eigenvalues of HP in (−∞, 0) counting in increasing
order. Let γl, l = 1, . . . , τ be positively oriented simple closed contours assumed to be two by
two disjoint, chosen in such a way that γl surrounds the eigenvalue λl while letting outside the
rest of the spectrum of HP . Let HP (b), b ∈ R be the magnetic ’single atom’ operator in (1.26).
From [7, Thm. 1.1] (see also [39, 29]), there exists b0 > 0 s.t. ∀|b| ≤ b0, ∪τ

l=1γl ∈ ̺(HP (b)) (the
resolvent set). Moreover, by virtue of [5, Thm. 6.1], the eigenvalues λl, l = 1, . . . , τ are stable
under the perturbation HP (b) −HP for small values of the b-parameter. Due to the assumption
(And), then there exists b1 > 0 s.t. ∀|b| ≤ b1, HP (b) has exactly one and only one eigenvalue
λl(b) near λl, l = 1, . . . , τ which in the first order are given by λl(b) = λl + bel + o(b), see [35,
Thm. 2.6 in Sec. VIII]. Actually each eigenvalue λl(· ) can be written in terms of an asymptotic
power series in b, see e.g. [7, Thm. 1.2]. We denote by Πl(b) the orthogonal projection onto
the eigenvector corresponding to the eigenvalue λl(b). Gathering all together, then there exists
0 < b ≤ min{b0, b1} s.t. ∀|b| ≤ b each λl(b) lies inside the closed contour γl introduced above.

We start the proof of (1.31) with the following remark. From the Riesz integral formula:

∀|b| ≤ b, λl(b)Πl(b) = HP (b)Πl(b) =
i

2π

∫

γl

dξ ξ(HP (b)− ξ)−1, l = 1, . . . , τ.

Since dimRan(Πl(b)) = 1, l = 1, . . . , τ by stability of the λl’s, then for any n0 ∈ {1, . . . , τ}:

∀|b| ≤ b,

n0∑

l=1

λl(b) =

n0∑

l=1

TrL2(R3){HP (b)Πl(b)} =
i

2π
TrL2(R3){

∫

∪
n0
l=1γl

dξ ξ(HP (b)− ξ)−1}.

(3.23)
The following result is concerned with the quantity in the r.h.s. of (3.23) seen as a function of

the b-variable. Recall that for θ ∈ C, gθ,w with w = 0, 1 are the maps defined in (3.20).

Proposition 3.11. There exists a neighborhood I of b = 0 s.t. ∀θ ∈ C and ∀w ∈ {0, 1} the map:

b 7→ Fθ,w(b) :=
i

2π
TrL2(R3){

∫

∪
n0
l=1γl

dξ gθ,w(ξ)(HP (b)− ξ)−1}, (3.24)

is twice differentiable on I. Moreover, its second derivative at b = 0 read as:

d2Fθ,w

db2
(b = 0) :=

i

π
TrL2(R3){

∫

∪
n0
l=1γl

dξ gθ,w(ξ)(HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]}. (3.25)

From (3.23), then the identity (1.31) straightforwardly follows from the above proposition,
together with the fact that each of the λl(· )’s is twice differentiable in a neighborhood of b = 0.

The rest of this section is devoted to the proof of Proposition 3.11. It is essentially based on
the so-called gauge invariant magnetic perturbation theory, see [13, 17, 14, 41, 7, 8, 19, 9, 18, 15,
11, 12, 46] and references therein for further applications.

Before starting, let us introduce some notations. Define ∀(x,y) ∈ R6 the magnetic phase φ as:

φ(x,y) :=
1

2
e3 · (y ∧ x) = −φ(y,x), e3 := (0, 0, 1). (3.26)

By [47, Thm. B.7.2], ∀b ∈ R and ∀ξ ∈ ̺(HP (b)) the resolvent (HP (b)−ξ)−1 is an integral operator
with integral kernel (HP (b)− ξ)−1(· , · ) jointly continuous on R6 \D, D := {(x,y) ∈ R6 : x = y}.
Introduce on L2(R3) the operators TP,j(b, ξ), j = 1, 2 via their kernel respectively defined on R6\D
by:

TP,1(x,y; b, ξ) := a(x− y) · (i∇x + ba(x))(HP (b)− ξ)−1(x,y),

TP,2(x,y; b, ξ) :=
1

2
a2(x− y)(HP (b)− ξ)−1(x,y).
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From [12, Eq. (2.9)] together with [12, Lem. 2.4], ∀η > 0 there exists a constant ϑ = ϑ(η) > 0
and a polynomial p(· ) s.t. ∀b ∈ R, ∀ξ ∈ C satisfying dist(ξ, σ(HP (b))) ≥ η and ∀(x,y) ∈ R6 \D:

|(HP (b)− ξ)−1(x,y)| ≤ p(|ξ|)e
−ϑξ|x−y|

|x− y| , ϑξ :=
ϑ

1 + |ξ| , (3.27)

|TP,j(x,y; b, ξ)| ≤ p(|ξ|)(1 + |b|)3 e
−ϑξ|x−y|

|x− y| , j = 1, 2. (3.28)

Hence by the Shur-Holmgren criterion the operators TP,j(ξ), j = 1, 2 are bounded on L2(R3):

‖(HP (b)− ξ)−1‖ ≤ p(|ξ|), ‖TP,j(b, ξ)‖ ≤ p(|ξ|)(1 + |b|)3, (3.29)

for another polynomial p(· ). For k ∈ {1, 2}, m ∈ {0, 1}, b ∈ R define on R6:

Tm
P,k(x,y; b, ξ) :=

k∑

j=1

(−1)j
∑

i∈{1,2}j

χk
j (i)

∫

R3

dz1 · · ·
∫

R3

dzj(iφ(zj ,y)− iφ(zj ,x))
m×

× (HP (b)− ξ)−1(x, z1)TP,i1(z1, z2; b, ξ) · · ·TP,ij (zj ,y; b, ξ), (3.30)

where by convention, we set 00 = 1. Here i = {i1, . . . , ij} ∈ {1, 2}j, 1 ≤ j ≤ k and χk
j denotes the

characteristic function defined as:

χk
j (i) :=

{
1 if i1 + · · ·+ ij = k
0 otherwise

, 1 ≤ j ≤ k.

Let us note that due to the antisymmetry of φ in (3.26), the terms in the r.h.s. of (3.30) containing
the magnetic phases identically vanish when x = y. Moreover ∀η > 0, ∀b ∈ R and ∀ξ ∈ C satisfying
dist(ξ, σ(HP (b))) ≥ η, Tm

P,k(· , · ; b, ξ) is jointly continuous on R6. This follows by applying j-times
[12, Lem. A.1] together with (3.27)-(3.28). Furthermore from (3.26), (3.27)-(3.28) along with [12,
Lem. A.2 (ii)], there exists a b-independent polynomial s.t. for any k ∈ {1, 2}, m ∈ {0, 1} and
∀(x,y) ∈ R6:

|Tm
P,k(x,y; b, ξ)| ≤ p(|ξ|)(1 + |b|)6 ×

{
(|x|m + |y|m) if x 6= y

1 if x = y
, (3.31)

where, in the case of x 6= y we have used the rough estimate:

∀(x,y) ∈ R6, |φ(x,y)| ≤ |y||x − y|.

Remark 3.12. In view of (3.30), we have on R3:

T0
P,1(x,x; b, ξ) = −

∫

R3

dz (HP (b)− ξ)−1(x, z)TP,1(z,x; b, ξ),

2∑

k=1

T2−k
P,k (x,x; b, ξ) = T0

P,2(x,x; b, ξ) = −
∫

R3

dz (HP (b)− ξ)−1(x, z)TP,2(z,x; b, ξ)+

+

∫

R3

dz1

∫

R3

dz2 (HP (b)− ξ)−1(x, z1)TP,1(z1, z2; b, ξ)TP,1(z2,x; b, ξ).

Now let us turn to the proof of Proposition 3.11. It requires two technical intermediary results.
The first one deals with the regularity of the integral kernel of the resolvent operator (HP (b)−ξ)−1,
seen as a function of the b-variable, in a neighborhood of b = 0:
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Lemma 3.13. Let K ⊂
(
̺(HP ) ∩ {ζ ∈ C : ℜζ < 0}

)
be a compact subset. Let bK > 0 s.t.

∀|b| ≤ bK, K ⊂
(
̺(HP (b)) ∩ {ζ ∈ C : ℜζ < 0}

)
. Then ∀ξ ∈ K and ∀(x,y) ∈ R6 \D, the map

b 7→ (HP (b) − ξ)−1(x,y) is twice differentiable on the interval (−bK , bK). Furthermore, its first
two derivatives at b0 ∈ (−bK , bK) read as:

∂s

∂bs
(HP (b)− ξ)−1(x,y)

∣∣∣∣
b=b0

= (iφ(x,y))s(HP (b0)− ξ)−1(x,y)+ s

s∑

k=1

Ts−k
P,k (x,y; b0, ξ), s = 1, 2,

where the functions Tm
P,k(· , · ; b0, ξ), k = 1, 2, m = 0, 1 are defined in (3.30).

The proof of the above lemma can be found in Appendix, see Sec. 4.3. The second result
deals with the ’uniform’ exponential localization of the eigenfunctions associated with the λl(b)’s,
l = 1, . . . , τ for small values of the b-parameter:

Lemma 3.14. Let λl, l ∈ {1, . . . , τ} be a simple eigenvalue of HP in (−∞, 0). Let b sufficiently
small s.t. HP (b) has exactly one and only one eigenvalue λl(b) near λl. Denote by Φl(· ; b) the
associated (normalized) eigenfunction. Then there exists b > 0 and two constants c, C > 0 s.t.

∀|b| ≤ b, ∀x ∈ R3, max{|Φl(x; b)|, |∂xk
Φl(x; b)|} ≤ Ce−c|x|, k = 1, 2, 3. (3.32)

The exponential decay for the Φl(· ; b)’s is a well-known result, see e.g. [33, Thm. 4.4] and
also [34, Thm. 1.10], [26, Sec. 7.2]. For b sufficiently small, all the constants can be chosen
b-independent.

As a result of Lemma 3.14, one straightforwardly gets as a corollary of Proposition 3.9:

Corollary 3.15. Let {λl}τl=1 be the set of eigenvalues of HP in (−∞, 0). Let b > 0 s.t. ∀|b| ≤ b:
(i). HP (b) has exactly one and only one eigenvalue λl(b) located nearby λl, l = 1, . . . , τ .
(ii). The (normalized) eigenfunction associated with each λl(b) obeys the estimate (3.32).
Then ∀θ ∈ C, ∀w ∈ {0, 1} and ∀ς ∈ {1, . . . , τ} there exist two constants C = C(θ) > 0, c > 0 s.t.
∀|b| ≤ b, ∀x ∈ R3 and for j = 1, 2:

max{
∣∣∣∣
i

2π

∫

Γς

dξ gθ,w(ξ){(HP (b)− ξ)−1TP,1(b, ξ)TP,1(b, ξ)}(x,x)
∣∣∣∣,

∣∣∣∣
i

2π

∫

Γς

dξ gθ,w(ξ){(HP (b)− ξ)−1TP,j(b, ξ)}(x,x)
∣∣∣∣} ≤ Cς(1 + |b|)6e−c|x|, (3.33)

where gθ,w are the maps in (3.20) and Γς the contour as in Proposition 3.9.

Let us note that the presence of the factor (1+ |b|)6 in the above upper bound comes from the
estimate (3.28) (we recall that the estimate in (3.27) is b-independent).

We are now ready for:

Proof of Proposition 3.11. Let θ ∈ C and w ∈ {0, 1}. Let b > 0 s.t. ∀|b| ≤ b, (3.23) holds. We
first prove that:

∀|b| ≤ b, Fθ,w(b) :=
i

2π

∫

∪
n0
l=1γl

dξ gθ,w(ξ)(HP (b)− ξ)−1,

has an integral kernel jointly continuous on R6. Note that Fθ,w(b) is an integral operator since
(HP (b) − ξ)−1 is bounded from L2(R3) to L∞(R3) by some polynomial in |ξ|, see (3.27). Let
ξ0 < inf σ(HP ) and large enough s.t. ξ0 < min1≤l≤τ{γl ∩R}. By the first resolvent equation:

Fθ,w(b) =
i

2π

(∫

∪
n0
l=1γl

dξ gθ,w(ξ)

)
(HP (b)− ξ0)

−1+

+
i

2π

∫

∪
n0
l=1γl

dξ gθ,w(ξ)(ξ − ξ0)(HP (b)− ξ)−1(HP (b)− ξ0)
−1.
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By virtue of the Cauchy-Goursat theorem, the first term in the above r.h.s. is identically zero.
The second term has a jointly continuous integral kernel on R6 by virtue of [12, Lem. A.1] along
with (3.27). Denoting by Fθ,w(· , · ; b) the kernel of Fθ,w(b), its diagonal part reads on (−b, b) as:

∀x ∈ R3, Fθ,w(x; b) := Fθ,w(x,x; b) =
i

2π

(∫

∪
n0
l=1

γl

dξ gθ,w(ξ)(HP (b)− ξ)−1(x,y)

)∣∣∣∣
y=x

. (3.34)

Next from Lemma 3.13 together with (3.31), one can prove that the map b 7→ Fθ,w(x; b) is twice
differentiable on (−b, b) ∀x ∈ R3. Moreover its first two derivatives at b0 ∈ (−b, b) satisfy:

∀x ∈ R3,
∂sFθ,w

∂bs
(x; b0) := s

i

2π

∫

∪
n0
l=1γl

dξ gθ,w(ξ)

s∑

k=1

Ts−k
P,k (x,x; b0, ξ), s = 1, 2.

Here we used that φ(x,x) = 0. Finally let 0 < b̂ ≤ b s.t. ∀|b| ≤ b̂ and for any l ∈ {1, . . . , n0}
the (normalized) eigenfunction associated with λl(b) obeys an estimate of type (3.32). From the
explicit expressions in Remark 3.12 together with the estimate (3.33), then for any compact subset

K ⊂ (−b̂, b̂) there exist two constants c > 0 and C = C(n0, θ,K) > 0 s.t.

∀x ∈ R3, sup
b∈K

∣∣∣∣
∂sFθ,w

∂bs
(x; b)

∣∣∣∣ ≤ Ce−c|x|, s = 1, 2.

The upper bound belonging to L1(R3), the proposition follows by standard arguments. �

3.3 Proof of (iii).

Let us recall some notations. Under the assumptions (Ar)-(Am)-(And), let {λl}τl=1 be the set of
eigenvalues ofHP in (−∞, 0) counting in increasing order. For any l ∈ {1, . . . , τ}, denote by Φl the
normalized eigenfunction associated with λl, and by Πl = |Φl〉〈Φl| the orthogonal projection onto
the eigenvector Φl. We define Π⊥

l := 1−Πl. From [5, Thm. 6.1], we know that there exists b1 > 0
s.t. ∀|b| ≤ b1, each λl is stable under the perturbation W (b) := HP (b)−HP = ba · (−i∇)+ 1

2b
2a2.

This means that ∀|b| ≤ b1, HP (b) has exactly one and only one eigenvalue λl(b) near λl which
reduces to λl in the limit b → 0. For such b’s and any l ∈ {1, . . . , τ} denote by Φl(b) the normalized
eigenfunction associated with λl(b), and by Πl(b) = |Φl(b)〉〈Φl(b)| the orthogonal projection onto
the eigenvector Φl(b). We define Π⊥

l (b) := 1−Πl(b).

Let us turn to the proof of (iii). Let l ∈ {1, . . . , τ} and K be a compact neighborhood of λl.
Let 0 < b ≤ b1 s.t. ∀|b| ≤ b, λl(b) ∈ K and K∩

(
σ(HP (b))\λl(b)

)
= ∅. According to the Feshbach

formula in [22] and under our conditions, ∀|b| ≤ b λl(b) is the unique number ζ near λl for which:

(λl − ζ)Πl +ΠlW (b)Πl −ΠlW (b){Π⊥
l (HP +W (b)− ζ)Π⊥

l }−1W (b)Πl, (3.35)

is not invertible. Note that W (b)Πl is bounded on L2(R3), and its operator norm behaves like
O(|b|). This follows from the exponential localization of Φl and ∇Φl in (4.16). We mention that
W (b)Πl remains bounded even with an exponential weight. More precisely, there exists ε0 > 0
and a C > 0 s.t.

∀0 < ε ≤ ε0, ‖W (b)Πle
ε〈· 〉‖ ≤ C|b|, 〈· 〉 :=

√
1 + | · |2. (3.36)

Now let us justify that the operator Π⊥
l (HP (b) − ξ)Π⊥

l is invertible ∀|b| ≤ b, ∀ξ ∈ K. To
achieve that, introduce the Sz-Nagy transformation in [35, Sec. I.4.6] corresponding to the pair of
projections Πl(b), Πl:

U(b) = (1 − (Πl(b)−Πl)
2)−

1
2 {Πl(b)Πl +Π⊥

l (b)Π
⊥
l },

where Πl(b)Πl−Π⊥
l (b)Π

⊥
l : ΠlL

2(R3) → Πl(b)L
2(R3). Since Πl(b) converges to Πl in norm by the

asymptotic perturbation theory in [35], then the above square-root is well-defined by a binomial
series. U(b) is a unitary operator, and it intertwines both projections:

Πl(b) = U(b)ΠlU
∗(b).
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Note that Π⊥
l (b) = U(b)Π⊥

l U
∗(b) what implies U∗(b)Π⊥

l (b) = Π⊥
l U

∗(b). As a result, for any
|b| ≤ b and ξ ∈ K:

U(b)Π⊥
l (HP (b)− ξ)Π⊥

l U
∗(b) = Π⊥

l (b)U(b)(HP (b)− ξ)U∗(b)Π⊥
l (b), (3.37)

i.e. Π⊥
l (HP (b)− ξ)Π⊥

l is unitary equivalent with the operator in the r.h.s. of (3.37). Next we use
some results from the asymptotic perturbation theory, see [35, Sec. VIII.2.4]:

U(b) = 1+ {ΠlW (b)(HP − ξ)−1(1−Πl)− (1 −Πl)(HP − ξ)−1W (b)Πl}+ u1(b),

U∗(b) = 1+ {(1−Πl)(HP − ξ)−1W (b)Πl −ΠlW (b)(HP − ξ)−1(1−Πl)}+ u2(b),

where the uj(b)’s, j = 1, 2 are operators satisfying b−1uj(b) → 0 in the strong sense. Putting these
asymptotic expansions into (3.37), then we obtain:

U(b)Π⊥
l (HP (b)− ξ)Π⊥

l U
∗(b) = Π⊥

l (b)(HP (b)− ξ)Π⊥
l (b)[1+Υ(ξ, b)],

where Υ(ξ, b) is an operator s.t. ‖Υ(ξ, b)‖ = O(|b|) uniformly in ξ ∈ K. Ergo we conclude that
Π⊥

l (HP (b)− ξ)Π⊥
l is invertible ∀|b| ≤ b and ∀ξ ∈ K.

Let us get back to the quantity in (3.35). By the use of scalar products, the λl(b)’s has to obey
the equation:

∀|b| ≤ b, λl(b) = λl + 〈Φl,W (b)Φl〉 − 〈W (b)Φl, {Π⊥
l [HP (b)− λl(b)]Π

⊥
l }−1W (b)Φl〉. (3.38)

By iterating the identity in (3.38), one obtains:

∀|b| ≤ b, λl(b) = λl + 〈Φl,W (b)Φl〉 − 〈W (b)Φl, {Π⊥
l (HP − λl)Π

⊥
l }−1W (b)Φl〉+O(|b|3). (3.39)

To control the behavior in b of the remainder term, we used that:

‖e−ε〈· 〉{Π⊥
l (HP (b)− λl(b))Π

⊥
l }−1 − {Π⊥

l (HP − λl)Π
⊥
l }−1e−ε〈· 〉‖ = O(|b|), (3.40)

with 0 < ε ≤ ε0 as in (3.36). (3.40) can be proved by using an asymptotic expansion for the
projection Πl(b) together with the application of the gauge invariant magnetic perturbation theory
for the kernel of the unperturbed projector as we did for the kernel of the resolvent in Sec. 3.2.
Note that the fourth term involved in the expansion (3.39) can be identified with:

− 〈Φl,W (b)Φl〉〈W (b)Φl, {Π⊥
l (HP − λl)Π

⊥
l }−2W (b)Φl〉+

+ 〈W (b)Φl, {Π⊥
l (HP − λl)Π

⊥
l }−1W (b){Π⊥

l (HP − λl)Π
⊥
l }−1W (b)Φl〉.

Since for b sufficiently small λl(· ) has an asymptotic series expansion, then from (3.39) one obtains:

d2λl

db2
(b = 0) = 〈Φl, a

2Φl〉 − 2〈a · (−i∇)Φl, {Π⊥
l (HP − λl)Π

⊥
l }−1a · (−i∇)Φl〉. (3.41)

From (3.41), the proof of (1.32) directly follows from (1.31).

4 Appendix.

4.1 Proof of Propositions 3.6 and 3.7.

We start by introducing some notations. Recall that under the assumptions (Ar)-(Am)-(And),
{λl}τl=1 with τ ∈ N∗ denotes the set of eigenvalues of HP in (−∞, 0) counting in increasing order.
For the sake of simplicity, we set λτ+1 := 0. Let Iς , ς ∈ {1, . . . , τ} be an open interval s.t.
Iς ( (λς , λς+1) and (λς +λς+1)/2 ∈ Iς . Without loss of generality, we give an explicit form for Iς ,
for instance:

Iς := (
2λς + λς+1

3
,
λς + 2λς+1

3
) with the convention λτ+1 := 0.
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For any ς ∈ {1, . . . , τ}, introduce the following decomposition of the contour C
(P )
β in (3.15):

C
(P )
β = γ

(1)
ς,β ∪ γ

(2)
ς,β ∪ Γ̂ς,β , (4.1)

γ
(1)
ς,β := {ℜξ ∈ [ω+

ς ,∞), ℑξ = ± π

2β
} ∪ {ℜξ = ω+

ς , ℑξ ∈ [− π

2β
,
π

2β
]},

γ
(2)
ς,β := {ℜξ ∈ [ω−

ς , ω
+
ς ], ℑξ = ± π

2β
} ∪ {ℜξ = ω±

ς , ℑξ ∈ [− π

2β
,
π

2β
]},

Γ̂ς,β := {ℜξ ∈ [δP , ω
−
ς ], ℑξ = ± π

2β
} ∪ {ℜξ = δP , ℑξ ∈ [− π

2β
,
π

2β
]} ∪ {ℜξ = ω−

ς , ℑξ ∈ [− π

2β
,
π

2β
]},

where ω−
ς := (19λς + 5λς+1)/24 and ω+

ς := (5λς + 19λς+1)/24; with the convention λτ+1 := 0.

Let us start with the proof of Proposition 3.6:

Proof of Proposition 3.6. Let ς ∈ {1, . . . , τ}. From (3.13) and (4.1), ∀µ ∈ Iς and ∀R > 0:

X̃R(β, µ, b = 0) =

(
q

c

)2
1

β

1

|ΩR|
i

π

∫

γ
(1)
ς,β

∪γ
(2)
ς,β

∪Γ̂ς,β

dξ f(β, µ; ξ)×

× TrL2(R3){χΩR
(HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]χΩR

}. (4.2)

Since [ω−
ς , ω

+
ς ] ∩ σ(HP ) = ∅, then ∀µ ∈ Iς the closed subset surrounding by γ

(2)
ς,β is a strict subset

of the holomorphic domain of the integrand in (4.2). Ergo the Cauchy-Goursat theorem yields:

∫

γ
(2)
ς,β

dξ f(β, µ; ξ)TrL2(R3){χΩR
(HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]χΩR

} = 0.

Now the contours γ
(1)
ς,β and Γ̂ς,β can be deformed respectively in γ

(1)
ς,1 and Γ̂ς,1 (set β = 1 in their

definition) due to the location of the interval Iς . In the wake of the deformation of contours, then
under the conditions of Lemma 2.1, from (2.16) and (3.12) with Ξ = P and by setting η = 1, there
exists a polynomial p(· ) independent of β (and R) s.t.:

|ΩR|−1|TrL2(R3){χΩR
(HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]χΩR

}| ≤ p(|ξ|). (4.3)

Afterwards it remains to use the Lebesgue’s dominated convergence theorem which provides:

lim
β↑∞

1

β

∫

γ
(1)
ς,1

dξ f(β, µ; ξ)TrL2(R3){χΩR
(HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]χΩR

} = 0,

lim
β↑∞

1

β

∫

Γ̂ς,1

dξ f(β, µ; ξ)TrL2(R3){χΩR
(HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]χΩR

}

=

∫

Γ̂ς,1

dξ (µ− ξ)TrL2(R3){χΩR
(HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]χΩR

}.

Here we used the pointwise convergence: for any fixed µ ≥ λ1 = inf σ(HP ),

lim
β↑∞

1

β
f(β, µ; ξ) = (µ− ξ)χ[λ1,µ](ξ). (4.4)

The uniform convergence on compact subsets K ⊂ Iς is straightforward. �

Remark 4.1. We emphasize that the deformation of contours γ
(1)
ς,β and Γ̂ς,β in some β-independent

contours is crucial in order to make the estimate in (4.3) β-independent.
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Next let us turn to the proof of Proposition 3.7. To do that, introduce some new operators.
Recall that RR(ξ) and RR(ξ), R ≥ R0 are respectively defined in (2.6) and (2.12). Introduce
∀R ≥ R0 the bounded operators TR,j(ξ) and TR,j(ξ), j = 1, 2 on L2(R3) generated via their
kernel respectively defined on R6 \D by:

TR,1(x,y; ξ) := a(x − y) · (i∇x)(RR(ξ))(x,y),

TR,2(x,y; ξ) :=
1

2
a2(x− y)(RR(ξ))(x,y),

TR,1(x,y; ξ) := a(x − y) · (i∇x)(RR(ξ))(x,y),

TR,2(x,y; ξ) :=
1

2
a2(x− y)(RR(ξ))(x,y).

To prove Proposition 3.7, we need the following four lemmas whose proves can be found in Sec.
4.4. Recall that R0, R1 ≥ 1 are respectively defined through (2.1)-(2.14). With the shorthand
notation introduced in (2.15):

Lemma 4.2. Let 0 < α < 1 be fixed. Then for every η > 0 there exists a constant ϑ = ϑ(η) > 0
and a polynomial p(· ) s.t. ∀R ≥ R0 and ∀ξ ∈ C obeying dist(ξ, σ(HR) ∩ σ(HP )) ≥ η:

1

|ΩR|
∣∣∣TrL2(R3){χΩR

(HR − ξ)−1[TR,1(ξ)TR,1(ξ)− TR,2(ξ)]χΩR
}

− TrL2(R3){χΩR
RR(ξ)[TR,1(ξ)TR,1(ξ)− TR,2(ξ)]χΩR

}
∣∣∣ ≤ p(|ξ|)e−ϑξR

α

. (4.5)

Lemma 4.3. Let 0 < α < 1 be fixed. Then for every η > 0 there exists a constant ϑ = ϑ(η) > 0
and a polynomial p(· ) s.t. ∀R ≥ max{R0, R1} and ∀ξ ∈ C obeying dist(ξ, σ(HR) ∩ σ(HP )) ≥ η:

1

|ΩR|
∣∣∣TrL2(R3){χΩR

RR(ξ)TR,2(ξ)χΩR
} − TrL2(R3){χΩR

RR(ξ)TR,2(ξ)χΩR
}
∣∣∣ ≤ p(|ξ|)e−ϑξR

α

. (4.6)

Lemma 4.4. Let 0 < α < 1 be fixed. Then for every η > 0 there exists a constant ϑ = ϑ(η) > 0
and a polynomial p(· ) s.t. ∀R ≥ max{R0, R1} and ∀ξ ∈ C obeying dist(ξ, σ(HR) ∩ σ(HP )) ≥ η:

1

|ΩR|
∣∣∣TrL2(R3){χΩR

RR(ξ)TR,1(ξ)TR,1(ξ)χΩR
}

− TrL2(R3){χΩR
RR(ξ)TR,1(ξ)TR,1(ξ)χΩR

}
∣∣∣ ≤ p(|ξ|)e−ϑξR

α

. (4.7)

Lemma 4.5. Let 0 < α < 1 be fixed. Then for every η > 0 there exists a constant ϑ = ϑ(η) > 0
and a polynomial p(· ) s.t. ∀R ≥ R0 and ∀ξ ∈ C satisfying dist(ξ, σ(HR) ∩ σ(HP )) ≥ η:

1

|ΩR|
∣∣∣TrL2(R3){χΩR

RR(ξ)[TR,1(ξ)TR,1(ξ)− TR,2(ξ)]χΩR
}

− TrL2(R3){χΩR
(HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]χΩR

}
∣∣∣ ≤ p(|ξ|)e−ϑξR

α

. (4.8)

Now we are ready to prove:

Proof of Proposition 3.7. Let R2 ≥ 1 s.t. ∀R ≥ R2, inf σ(HR) ≥ λ1 − 1
2 . A such R2’s exists

since inf σ(HR) has to coincide with inf σ(HP ) when R ↑ ∞, see Lemma 3.4. In view of (3.9) and
(3.13), then ∀β > 0 and ∀µ ∈ R the quantity ∆R(β, µ) in (3.14) can be rewritten ∀R ≥ R2 as:

∆R(β, µ) =

(
q

c

)2
1

β

1

|ΩR|
i

π

∫

C
(P )
β

dξ f(β, µ; ξ)KR(ξ), (4.9)
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with:

KR(ξ) := TrL2(R3)

{
χΩR

{(HR − ξ)−1[TR,1(ξ)TR,1(ξ)− TR,2(ξ)]

− (HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]}χΩR

}
. (4.10)

Let us estimate (4.10). In view of the definition of the C
(P )
β -contour, set η := min{1/2, π/(2β)} >

0. Let 0 < α < 1 be fixed and define R3 := max{R0, R1, R2} ≥ 1. From Lemmas 4.2-4.5, there
exists a constant ϑ = ϑ(η) > 0 and a polynomial p(· ) s.t. for any R ≥ R3:

∀ξ ∈ C
(P )
β ,

1

|ΩR|
|KR(ξ)| ≤ p(|ξ|)e−ϑξR

α

, ϑξ :=
ϑ

1 + |ξ| . (4.11)

Note that the ϑ’s and the p(· )’s in (4.11) are β-dependent (at least for β large enough). From now
on we limit in (4.9) the µ-domain to the interval Iς , ς ∈ {1, . . . , τ}, and we suppose that R ≥ R3

and large enough so that [(5λς + λς+1)/6, (λς + 5λς+1)/6] ∩ σ(HR) = ∅ (with the convention
λτ+1 := 0). Due to the inclusions Iς ⊂ [ω+

ς , ω
−
ς ] ⊂ [(5λς + λς+1)/6, (λς + 5λς+1)/6], it is obvious

that ∀R ≥ R3 and large enough, Iς ∩ σ(HR) = ∅ as well as γ
(1)
ς,β , Γ̂ς,β ∩ σ(HR) = ∅, where γ

(1)
ς,β and

Γ̂ς,β are the contours coming from the decomposition of the C
(P )
β -contour in (4.1).

Afterwards by mimicking the proof of Proposition 3.6, then for any compact subset K ⊂ Iς :

∆R(µ) := lim
β↑∞

∆R(β, µ) =

(
q

c

)2
1

|ΩR|
i

π

∫

Γ̂ς,1

dξ (µ− ξ)KR(ξ),

uniformly in µ ∈ K. We emphasize that, as in the proof of Proposition 3.6, the deformation of

γ
(1)
ς,β and Γ̂ς,β in some β-independent contours makes the estimate in (4.11) β-independent on these

contours, see above the definition of the η’s. Finally it remains to use (4.5)-(4.8) along with (4.11)
which lead to the existence of two constants c, C > 0 s.t. ∀R ≥ R3 and large enough:

∀µ ∈ Iς , |∆R(µ)| ≤ C(1 + |µ|)e−cRα

. �

4.2 Proof of Propositions 3.9 and 3.10.

Proof of Proposition 3.9. For any l ∈ {1, . . . , ς}, let Πl be the orthogonal projection onto the
eigenvector corresponding to the eigenvalue λl. Recall that it is given by a Riesz integral:

Πl =
i

2π

∫

γl

dξ (HP − ξ)−1, l = 1, . . . , ς,

where γl is any positively oriented closed simple contour surrounding λl but no other eigenvalue.
Denote by Πℵ :=

∑ς
l=1 Πl. Let us now introduce the following decomposition of the resolvent:

∀ξ ∈ ̺(HP ), (HP − ξ)−1 = (HP − ξ)−1
ℵ + (HP − ξ)−1

⊥ , (4.12)

with:

(HP − ξ)−1
ℵ := Πℵ(HP − ξ)−1 =

ς∑

l=1

1

λl − ξ
Πl, (4.13)

(HP − ξ)−1
⊥ := (1−Πℵ)(HP − ξ)−1 = − i

2π

∫

γ1∪···∪γς

dζ
1

ζ − ξ
(HP − ζ)−1. (4.14)

Due to (4.13), we have in the kernel sense on R6:

(HP − ξ)−1
ℵ (x,y) =

ς∑

l=1

1

λl − ξ
Φl(x)Φl(y), (4.15)
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where Φl denotes the normalized eigenfunction associated with the eigenvalue λl, l = 1, . . . , ς .
Note that under our conditions, the Φl’s with l = 1, . . . , ς satisfy the following, see e.g. [21, Eq.
(5.8)]. There exists a constant C > 0 s.t. ∀x ∈ R3:

max{|Φl(x)|, |∂xk
Φl(x)|} ≤ Ce−

√
|λl||x| ≤ Ce−

√
|λς ||x|, k = 1, 2, 3. (4.16)

Moreover denote by T℘
P,j(ξ), j = 1, 2 and ℘ = ℵ,⊥ the bounded operators on L2(R3) defined via

their kernel as in (1.27)-(1.28) but with (HP − ξ)−1
℘ instead of (HP − ξ)−1. Note that due to

(4.14), the kernel of T⊥
P,j(ξ), j = 1, 2 still obey the estimate (3.12).

We are now ready for the actual proof. Under the conditions of the proposition, the first part
of the proof consists in showing the existence of two constants c > 0 and C = C(θ) > 0 s.t.

∀x ∈ R3,

∣∣∣∣
i

2π

∫

Γς

dξ gθ,w(ξ){(HP − ξ)−1TP,j(ξ)}(x,x)
∣∣∣∣ ≤ Cςe−c|x|, j = 1, 2.

Let θ ∈ C. From the decomposition (4.12), introduce on L2(R3) (below ℘ = ℵ,⊥):

M
(j),℘,℘
θ,w :=

i

2π

∫

Γς

dξ gθ,w(ξ)(HP − ξ)−1
℘ T℘

P,j(ξ), j = 1, 2, w = 0, 1.

Note that they are integral operators with integral kernel M
(j),℘,℘
θ,w (· , · ) jointly continuous on R6.

At first, due to the location of the Γς -contour M
(j),⊥,⊥
θ,w = 0, j = 1, 2, w = 0, 1 by virtue of

the Cauchy-Goursat theorem. Secondly let us look at the diagonal part of the integral kernel of

M
(j),ℵ,⊥
θ,w . From (4.15) followed by the residue theorem, it holds for any j = 1, 2, w = 0, 1:

∀x ∈ R3, M
(j),ℵ,⊥
θ,w (x,x) =

ς∑

l=1

gθ,w(λl)Φl(x)

∫

R3

dzΦl(z)T
⊥
P,j(z,x).

Due to (4.16) and (3.12), use now that there exists a constant C > 0 s.t.

∀1 ≤ l ≤ ς, sup
x∈R3

∫

R3

dz |Φl(z)||T⊥
P,j(z,x)| ≤ C, j = 1, 2.

Then the l-independent estimate in (4.16) leads on R3 to: |M (j),ℵ,⊥
θ,w (x,x)| ≤ Cςe−c|x|, j = 1, 2,

w = 0, 1 for another C = C(θ) > 0 and c > 0. Also one has by similar arguments on R3:

|M (j),⊥,ℵ
θ,w (x,x)| ≤ Cςe−c|x|, j = 1, 2, w = 0, 1. Finally, the last terms we have to treat read as:

∀x ∈ R3, M
(1),ℵ,ℵ
θ,1 (x,x) :=

ς∑

l1,l2=1

Φl1(x)

∫

R3

dzΦl1(z)a(z − x) · (i∇zΦl2)(z)Φl2 (x),

M
(2),ℵ,ℵ
θ,1 (x,x) :=

ς∑

l1,l2=1

Φl1(x)

∫

R3

dzΦl1(z)
1

2
a2(z − x)Φl2(z)Φl2(x),

and
M

(j),ℵ,ℵ
θ,0 (x,x) = 0, j = 1, 2,

where we have used the following identity provided by the residue theorem:

ς∑

l1,l2=1

∫

Γς

dξ
gθ,w(ξ)

(λl1 − ξ)(λl2 − ξ)
=

{ −2iπ
∑ς

l1,l2=1 if w = 1

0 if w = 0
.

It remains to use the rough estimate |a(x − y)| ≤ (|x|+ |y|) together with the l-independent one

in (4.16) ensuring that ∀x ∈ R3, |M (j),ℵ,ℵ
θ,1 (x,x)| ≤ Cςe−c|x|, j = 1, 2 for another C = C(θ) > 0

and c > 0. Note that the crucial ingredient involved here is the following estimate:

∀ν ≥ 0, ∀µ > 0, tνe−µt ≤ Ce−
µ
2 t, t ≥ 0, (4.17)
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for another constant C = C(ν, µ) > 0.
The second part of the proof consists in showing the existence of two other constants c > 0

and C = C(θ) > 0 s.t.

∀x ∈ R3,

∣∣∣∣
i

2π

∫

Γς

dξ gθ,w(ξ){(HP − ξ)−1TP,1(ξ)TP,1(ξ)}(x,x)
∣∣∣∣ ≤ Cςe−c|x|.

Let θ ∈ C. By virtue of the decomposition (4.12), introduce the bounded operator on L2(R3):

N
℘,℘,℘

θ,w :=
i

2π

∫

Γς

dξ gθ,w(ξ)(HP − ξ)−1
℘ T℘

P,1(ξ)T
℘
P,1(ξ), ℘ = ℵ,⊥, w = 0, 1.

Note that it is an integral operator with integral kernel M
(j),℘,℘
θ,w (· , · ) jointly continuous on R6. At

first N
⊥,⊥,⊥
θ,w = 0, w = 0, 1 by virtue of the Cauchy-Goursat theorem. Also, by a straightforward

calculation N
ℵ,ℵ,ℵ
θ,w = 0, w = 0, 1 since the residue theorem provides us with the identity:

ς∑

l1,l2,l3=1

∫

Γς

dξ
gθ,w(ξ)

(λl1 − ξ)(λl2 − ξ)(λl3 − ξ)
= 0, w = 0, 1.

It remains to treat six terms. Let us treat the trickiest one (we make it clear hereafter), that

is N
⊥,ℵ,⊥
θ,w , w = 0, 1. From the residue theorem, the diagonal part of its integral kernel reads

∀x ∈ R3 as:

N
⊥,ℵ,⊥
θ,w (x,x) =

ς∑

l=1

gθ,w(λl)

∫

R3

dz1

∫

R3

dz2 (HP − λl)
−1
⊥ (x, z1)×

× a(z1 − z2) · (i∇z1Φl)(z1)Φl(z2)T
⊥
P,1(z2,x;λl), w = 0, 1.

Let us define ∀1 ≤ l ≤ ς , k = 1, 2 and ∀(x, z1, z2) ∈ R9 with x 6= z1 6= z2:

J (k)
l (x, z1, z2) := |(HP − λl)

−1
⊥ (x, z1)(i∇z1Φl)(z1)||zk||Φl(z2)T

⊥
P,1(z2,x;λl)|.

Start with k = 1. From (2.16), (3.12) and (4.16) there exist two constants C, c > 0 s.t. for any
1 ≤ l ≤ ς :

J (1)
l (x, z1, z2) ≤ C

e−c|x−z1|

|x− z1|
|z1|e−

√
|λς ||z1|e−

√
|λς ||z2|e−

c
2 |z2−x| e

− c
2 |z2−x|

|z2 − x| .

Using the obvious inequality: e−min{ c
2 ,
√

|λς |}(|z2|+|z2−x|) ≤ e−min{ c
2 ,
√

|λς |}|x| ∀x ∈ R3, along with

the uniform estimate obtained from (4.17): ∀z1 ∈ R3, |z1|e−
√

|λς ||z1| ≤ |λς |− 1
2 , then there exist

another constant C > 0 s.t.

∀1 ≤ l ≤ ς, ∀x ∈ R3,

∫

R3

dz1

∫

R3

dz2 J (1)
l (x, z1, z2) ≤ Ce−min{ c

2 ,
√

|λς |}|x|. (4.18)

Here we used that:

sup
x∈R3

∫

R3

dz1
e−

c
2 |x−z1|

|x− z1|
× sup

x∈R3

∫

R3

dz2
e−

c
2 |z2−x|

|z2 − x| ≤ cste.

By similar arguments, the upper bound in (4.18) still holds true when replacing J (1)
l with J (2)

l .

Hence one concludes that ∀x ∈ R3, |N ⊥,ℵ,⊥
θ,w (x,x)| ≤ Cςe−c|x|, w = 0, 1 for another C = C(θ) > 0

and c > 0. We do not treat the other terms which are simpler. Indeed, they all come from
operators having the form N

ℵ,℘,℘
θ,w or N

℘,℘,ℵ
θ,w , ℘ =⊥,ℵ and w = 0, 1 which have the peculiarity

that the diagonal part of their integral kernel can always be written on R3, via the residue theorem,
as

∑ς
l=1 Φl(x)Al(x) with supx∈R3 |Al(x)| ≤ c for some constant c > 0 uniformly in l. Thus the

expected exponential decay in |x| only comes from the l-independent estimate in (4.16). �
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Proof of Proposition 3.10. The proof we give requires the notations introduced in Sec. 3.2. We
do not recall them, and refer to the beginning of Sec. 3.2. Let ς ∈ {1, . . . , τ}. From the Riesz
integral formula for orthogonal projections together with the definition (3.24), one has:

∀|b| ≤ b,

ς∑

l=1

TrL2(R3){Πl(b)} =
i

2π
TrL2(R3){

∫

∪ς
l=1γl

dξ (HP (b)− ξ)−1} =: F1,0(b).

Here the b’s and the γl’s are the same as the ones appearing in (3.23). Since the map b 7→ F1,0(b) is
twice differentiable in a neighborhood of b = 0 (see Proposition 3.11), then by using the expression
for the second derivative at b = 0 given in (3.25) (with θ = 1 and w = 0), one gets the identity:

d2

db2

( ς∑

l=1

TrL2(R3){Πl(b)}
)∣∣∣∣

b=0

=
i

π
TrL2(R3){

∫

∪ς
l=1

γl

dξ (HP − ξ)−1[TP,1(ξ)TP,1(ξ)− TP,2(ξ)]}.

But the quantity in the above l.h.s. is identically zero. Indeed by stability of the eigenvalues of
HP in (−∞, 0), one has dimRanΠl(b) = 1 and thus the sum is a b-independent quantity (equals
to ς). �

4.3 Proof of Lemma 3.13.

Let b0 ∈ R. On L2(R3) introduce ∀b ∈ R and ∀ξ ∈ ̺(HP (b0)) the operators R̃P (b, b0, ξ) and
T̃P,j(b, b0, ξ), j = 1, 2 via their kernel respectively defined on R6 \D by:

R̃P (x,y; b, b0, ξ) := eiδbφ(x,y)(HP (b0)− ξ)−1(x,y), (4.19)

T̃P,j(x,y; b, b0, ξ) := eiδbφ(x,y)TP,j(x,y; b0, ξ), δb := b − b0, (4.20)

where φ stands for the magnetic phase defined in (3.26). Set also:

T̃P (b, b0, ξ) := δbT̃P,1(b, b0, ξ) + (δb)2T̃P,2(b, b0, ξ). (4.21)

Except for a gauge phase factor, the kernel of R̃P (b, b0, ξ) and T̃P,j(b, b0, ξ), j = 1, 2 is the same
as the one of (HP (b0)− ξ)−1 and TP,j(b0, ξ) respectively. Therefore ∀η > 0 and ∀ξ ∈ C satisfying

dist(ξ, σ(HP (b0))) ≥ η, then ∀b ∈ R R̃P (b, b0, ξ) and T̃P,j(b, b0, ξ) are bounded with operator norm
obeying (3.29) (with b0 instead of b). Under the same conditions, introduce on L2(R3):

T̃
(1)
P (b, b0, ξ) := −R̃P (b, b0, ξ)T̃P,1(b, b0, ξ), (4.22)

T̃
(2)
P (b, b0, ξ) := R̃P (b, b0, ξ){T̃P,1(b, b0, ξ)T̃P,1(b, b0, ξ)− T̃P,2(b, b0, ξ)}, (4.23)

as well as, with the additional condition ξ ∈ ̺(HP (b)) ∩ ̺(HP (b0)):

T̃
(3)
P (b, b0, ξ) := (δb)3

1∑

k=0

(δb)k
∑

i∈{1,2}2

χ3+k
2 (i)R̃P (b, b0, ξ)T̃P,i1(b, b0, ξ)T̃P,i2(b, b0, ξ)

− (HP (b)− ξ)−1(T̃P (b, b0, ξ))
3. (4.24)

Now we are ready for the proof. Let K ⊂
(
̺(HP )∩{ζ ∈ C : ℜζ < 0}

)
be a compact subset. From

[7, Thm. 1.1], then there exists bK > 0 s.t. ∀|b| ≤ bK , K ⊂
(
̺(HP (b)) ∩ {ζ ∈ C : ℜζ < 0}

)
.

From now on, let b0 ∈ (−bK , bK) be fixed. The starting point of the so-called gauge invariant
magnetic perturbation theory is the following identity which holds in the bounded operators sense
on L2(R3), see [18, Proof of Prop. 3.2] and also [12, Lem. 3.2]:

∀|b| ≤ bK , ∀ξ ∈ K, (HP (b)− ξ)−1 = R̃P (b, b0, ξ)− (HP (b)− ξ)−1T̃P (b, b0, ξ). (4.25)
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This means that for b sufficiently close to b0, (HP (b)− ξ)−1 can be approximated by R̃P (b, b0, ξ)
since the operator norm of the second term in the r.h.s. of (4.25) behaves like O(|δb|). This comes
from (4.21), the definitions (4.19)-(4.20) and the estimates (3.27)-(3.28) yielding:

∀|b| ≤ bK , max{sup
ξ∈K

‖R̃P (b, b0, ξ)‖, sup
ξ∈K

‖T̃P,j(b, b0, ξ)‖} ≤ C, j = 1, 2,

for some constant C = C(|b0|,K) > 0. Now by iterating twice (4.25) and in view of (4.22)-(4.24),
one has ∀|b| ≤ bK and ∀ξ ∈ K:

(HP (b)− ξ)−1 = R̃P (b, b0, ξ) +

2∑

k=1

(δb)kT̃
(k)
P (b, b0, ξ) + T̃

(3)
P (b, b0, ξ). (4.26)

Afterwards, by rewriting (4.26) in terms of corresponding integral kernels, one has on R6 \D:

(HP (b)− ξ)−1(x,y) = R̃P (x,y; b, b0, ξ) +
2∑

k=1

(δb)kT̃
(k)
P (x,y; b, b0, ξ) + T̃

(3)
P (x,y; b, b0, ξ), (4.27)

where, for all integer k ∈ {1, 2}, for any (x,y) ∈ R6 and |b| ≤ bK :

T̃
(k)
P (x,y; b, b0, ξ) :=

k∑

j=1

(−1)j
∑

i∈{1,2}j

χk
j (i)

∫

R3

dz1 · · ·
∫

R3

dzj e
iδb(φ(x,z1)+···+φ(zj ,y))×

× (HP (b0)− ξ)−1(x, z1)TP,i1(z1, z2; b0, ξ) · · ·TP,ij (zj ,y; b0, ξ), (4.28)

and T̃
(3)
P (· , · ; b, b0, ξ) stands for the kernel of T̃

(3)
P (b, b0, ξ). Let us note that in view of (4.24),

along with (4.19)-(4.20) and the estimates (3.27)-(3.28), the kernel T̃
(3)
P (· , · ; b, b0, ξ) behaves like

O(|δb|3) uniformly in ξ ∈ K. Next we remove the b-dependence in the first two terms of the
r.h.s. of (4.27). To achieve that, we expand in Taylor power series the exponential phase factor
appearing in (4.19) and (4.28) up to the second order in δb. Thus ∀|b| ≤ bK , one gets on R3 \D:

R̃P (x,y; b, b0, ξ) +
2∑

k=1

(δb)kT̃
(k)
P (x,y; b, b0, ξ) =

2∑

k=0

(δb)k
(iφ(x,y))k

k!
(HP (b0)− ξ)−1(x,y)+

+

2∑

k=1

(δb)k
k∑

m=1

Tk−m
P,m (x,y; b0, ξ) + T

(4)
P (x,y; b, b0, ξ), (4.29)

where the function Tk−m
P,m (· , · ; b0, ξ) is defined in (3.30), and the last term stands for the remainder

term. We mention that we have used the explicit expressions in Remark 3.12 to rewrite the second

term in the r.h.s. of (4.29) coming from (4.28). Note also that by construction, T
(4)
P (· , · ; b, b0, ξ)

satisfies the property that its first two derivatives at b0 are identically zero.
Next from the expansion (4.29), for b ∈ [−bK , bK ] sufficiently close to b0, it holds on R3 \D:

(HP (b)− ξ)−1(x,y) − (HP (b0)− ξ)−1(x,y) =

δb{iφ(x,y)(HP (b0)− ξ)−1(x,y) − ((HP (b0)− ξ)−1TP,1(b0, ξ))(x,y)} + o(δb).

Performing the limit b → b0, then the map b 7→ (HP (b)− ξ)−1(x,y) is differentiable at b0 with:

∂

∂b
(HP (b)− ξ)−1(x,y)

∣∣∣∣
b=b0

:= iφ(x,y)(HP (b0)− ξ)−1(x,y) − ((HP (b0)− ξ)−1TP,1(b0, ξ))(x,y).

This result can be extended to the whole of (−bK , bK). The lemma follows by iterating this
procedure once again. �
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4.4 Proof of Lemmas 4.2-4.5.

Throughout this section, we denote respectively by ‖ · ‖I2 and ‖ · ‖I1 the Hilbert-Schmidt
(H-S) norm in I2(L

2(R3)) and the trace norm in I1(L
2(R3)).

Proof of Lemma 4.2. Let us denote:

YR,2(ξ) := |ΩR|−1TrL2(R3){χΩR
(HR − ξ)−1TR,2(ξ)χΩR

},
YR,1(ξ) := |ΩR|−1TrL2(R3){χΩR

(HR − ξ)−1TR,1(ξ)TR,1(ξ)χΩR
}.

By replacing (HR − ξ)−1 with the r.h.s. of (2.7) in YR,j(ξ), j = 1, 2 then:

YR,1(ξ) = |ΩR|−1TrL2(R3){χΩR
RR(ξ)TR,1(ξ)TR,1(ξ)χΩR

}+QR,1(ξ),

YR,2(ξ) = |ΩR|−1TrL2(R3){χΩR
RR(ξ)TR,2(ξ)χΩR

}+QR,2(ξ),

where QR,1(ξ) and QR,2(ξ) consist of seven and three terms respectively. Let η > 0 be fixed.
Let us show that there exists a constant ϑ > 0 and a polynomial p(· ) s.t. ∀R ≥ R0 and ∀ξ ∈ C

satisfying dist(ξ, σ(HR) ∩ σ(HP )) ≥ η, |QR,j(ξ)| ≤ p(|ξ|)e−ϑξR
α

j = 1, 2. To do that, take some
generical terms:

qR,1(ξ) :=
1

|ΩR|

∫

ΩR

dx

∫

R3

dz1

∫

R3

dz2 (RR(ξ))(x, z1)a(z1 − z2)×

×∇z1(RR(ξ))(z1, z2)a(z2 − x) · ∇z2{(HR − ξ)−1WR(ξ)}(z2,x),

qR,2(ξ) := − 1

|ΩR|

∫

ΩR

dx

∫

R3

dz (RR(ξ))(x, z)
1

2
a2(z − x){(HR − ξ)−1WR(ξ)}(z,x).

Now we need the following estimates. From (2.16), (2.17) and (2.21), there exists a constant ϑ > 0
and a polynomial p(· ) s.t. ∀R ≥ R0 and ∀ξ ∈ C satisfying dist(ξ, σ(HR) ∩ σ(HP )) ≥ η:

∣∣∣∣
∫

R3

dz (HR − ξ)−1(x, z)(WR(ξ))(z,y)

∣∣∣∣ ≤ p(|ξ|)e−ϑξR
α

e−ϑξ|x−y|, (4.30)

∣∣∣∣
∫

R3

dz∇x(HR − ξ)−1(x, z)(WR(ξ))(z,y)

∣∣∣∣ ≤ p(|ξ|)e−ϑξR
α e−ϑξ|x−y|

|x− y| . (4.31)

Then from (2.18), (2.19) and (4.30)-(4.31) together with [12, Lem. A.2 (ii)], max{|qR,1(ξ)|, |qR,2(ξ)|} ≤
p(|ξ|)e−ϑξR

α

for another constant ϑ > 0 and polynomial p(· ) both R-independent.
The others terms coming from QR,j(ξ), j = 1, 2 can be treated by using similar arguments. �

Proof of Lemma 4.3. Let us consider:

YR,2(ξ) := |ΩR|−1TrL2(R3){χΩR
RR(ξ)TR,2(ξ)χΩR

}.

By replacing RR(ξ) with the r.h.s. of (2.8) in YR,2(ξ), then we have:

YR,2(ξ) = |ΩR|−1TrL2(R3){χΩR
RR(ξ)TR,2(ξ)χΩR

}+ QR,2(ξ),

where QR,2(ξ) consists of three terms. Let η > 0 be fixed. Let us show that there exists a constant
ϑ > 0 and a polynomial p(· ) s.t. ∀R ≥ max{R0, R1} and ∀ξ ∈ C satisfying dist(ξ, σ(HR) ∩
σ(HP )) ≥ η, |QR,2(ξ)| ≤ p(|ξ|)e−ϑξR

α

. To do that let us take a generical term of QR,2(ξ):

qR,2(ξ) := − 1

|ΩR|

∫

ΩR

dx

∫

R3

dz (RR(ξ))(x, z)
1

2
a2(z − x)(WR(ξ))(z,x).
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Let us introduce the operators ZR(ξ), T
(1)
Ξ (ξ) and T

(2)
Ξ (ξ) = TΞ,2(ξ), with Ξ := R or P and

R ≥ R0 generated via their kernel respectively defined by:

∀(x,y) ∈ R6, ZR(x,y; ξ) :=
1

2
a2(x− y)(WR(ξ))(x,y),

∀(x,y) ∈ R6 \D, T
(1)
Ξ (x,y; ξ) := a(x − y)(HΞ − ξ)−1(x,y), (4.32)

T
(2)
Ξ (x,y; ξ) = TΞ,2(x,y; ξ) :=

1

2
a2(x− y)(HΞ − ξ)−1(x,y). (4.33)

Due to the estimates (2.20) and (2.16), all these operators are bounded on L2(R3). Moreover
from (2.18) and (2.20), the operator RR(ξ)ZR(ξ) has a jointly continuous kernel on R6, see [12,
Lem. A.1]. Let us now prove the existence of a constant ϑ > 0 and a polynomial p(· ) s.t.
∀R ≥ max{R0, R1} and ∀ξ ∈ C satisfying dist(ξ, σ(HR) ∩ σ(HP )) ≥ η:

‖χΩR
RR(ξ)ZR(ξ)χΩR

‖I1 ≤ p(|ξ|)e−ϑξR
α

. (4.34)

To do that, use that ZR(ξ) can be rewritten as:

ZR(ξ) = ˆ̂gR{T (2)
R (ξ)V̆R(HP − ξ)−1 + (HR − ξ)−1V̆RT

(2)
P (ξ) + T

(1)
R (ξ)V̆RT

(1)
P (ξ)}(1 − gR),

where we used that a2(x − y) = {a(x − z) + a(z − y)}2 for any x,y, z ∈ R3. Now it remains to
use these estimates on H-S norms which hold for any R ≥ max{R0, R1}:

max{‖χΩR
ĝR(HΞ − ξ)−1‖I2 , ‖χΩR

ˆ̂gR(HΞ − ξ)−1‖I2} ≤ p(|ξ|)R 3
2 , (4.35)

max{‖V̆R(HΞ − ξ)−1(1− gR)χΩR
‖I2 , ‖V̆RT

(j)
Ξ (ξ)(1 − gR)χΩR

‖I2} ≤ p(|ξ|)R 3
2 e−ϑξR

α

, (4.36)

with Ξ = R or P and for another R-independent polynomial p(· ). (4.35)-(4.36) are obtained
from the definitions (4.32)-(4.33) together with (2.16) and Lemma 2.2 (iii). Thus |qR,2(ξ)| ≤
p(|ξ|)e−ϑξR

α

. The two others terms of QR,2(ξ) can be treated by using similar arguments. �

Proof of Lemma 4.4. Let us denote:

YR,1(ξ) := |ΩR|−1TrL2(R3){χΩR
RR(ξ)TR,1(ξ)TR,1(ξ)χΩR

}

By replacing RR(ξ) with the r.h.s. of (2.8) in YR,1(ξ), then we have:

YR,1(ξ) = |ΩR|−1TrL2(R3){χΩR
RR(ξ)TR,1(ξ)TR,1(ξ)χΩR

}+ QR,1(ξ),

where QR,1(ξ) consists of seven terms. Let η > 0 be fixed. Let us show that there exists a constant
ϑ > 0 and a polynomial p(· ) s.t. ∀R ≥ max{R0, R1} and ∀ξ ∈ C satisfying dist(ξ, σ(HR) ∩
σ(HP )) ≥ η, |QR,1(ξ)| ≤ p(|ξ|)e−ϑξR

α

. To do that, take a generical term from QR,1(ξ):

qR,1(ξ) :=
1

|ΩR|

∫

ΩR

dx

∫

R3

dz1

∫

R3

dz2 (RR(ξ))(x, z1)×

× a(z1 − z2) · ∇z1(RR(ξ))(z1, z2)a(z2 − x) · ∇z2(WR(ξ))(z2,x).

Let us note that from (2.9) and (2.10):

∇RR(ξ) = [(∇ĝR)(HP − ξ)−1 + ĝR∇(HP − ξ)−1]gR + [(∇ˆ̂gR)(HP − ξ)−1 + ˆ̂gR∇(HP − ξ)−1](1− gR),

∇WR(ξ) = [(∇ˆ̂gR)(HR − ξ)−1V̆R(HP − ξ)−1 + ˆ̂gR∇(HR − ξ)−1V̆R(HP − ξ)−1](1− gR).

By using the definitions (4.32), the quantity qR,1(ξ) can be rewritten as:

qR,1(ξ) = q
(1)
R,1(ξ) + q

(2)
R,1(ξ), where:
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q
(1)
R,1(ξ) :=

1

|ΩR|

∫

ΩR

dx

∫

R3

dz1

∫

R3

dz2 (RR(ξ))(x, z1)×

×{(∇ĝR)(z1)T
(1)
P (z1, z2; ξ)gR(z2)+(∇ˆ̂gR)(z1)T

(1)
P (z1, z2; ξ)(1−gR)(z2)}a(z2−x)·∇z2 (WR(ξ))(z2,x),

q
(2)
R,1(ξ) :=

1

|ΩR|
TrL2(R3)

{
χΩR

RR(ξ)[ĝRTP,1(ξ)gR + ˆ̂gRTP,1(ξ)(1 − gR)]×

× {(∇ˆ̂gR)[T
(1)
R (ξ)V̆R(HP − ξ)−1 + (HR − ξ)−1V̆RT

(1)
P (ξ)]

+ ˆ̂gR[TR,1(ξ)V̆R(HP − ξ)−1 +∇(HR − ξ)−1V̆RT
(1)
P (ξ)]}(1 − gR)χΩR

}
. (4.37)

On the one hand due to (2.3) and (2.5), by mimicking the proof of (2.22), there exists a constant
ϑ > 0 and a polynomial p(· ) s.t. ∀R ≥ R0 and ∀ξ ∈ C satisfying dist(ξ, σ(HR) ∩ σ(HP )) ≥ η,

max{|(∇ĝR)(x)T
(1)
P (x,y; ξ)gR(y)|, |(∇ˆ̂gR)(x)T

(1)
P (x,y; ξ)(1 − gR)(y)|} ≤ p(|ξ|)e−ϑξR

α

e−ϑξ|x−y|.

On the other hand, from (2.16), (2.17) and our assumption on u:

∀R ≥ R0, ∀(x,y) ∈ R6 \D, |∇x(WR(ξ))(x,y)| ≤ p(|ξ|)e
−ϑξ|x−y|

|x− y| ,

for another R-independent ϑ > 0 and p(· ). Hence (2.18) along with the two above estimates

lead ∀R ≥ R0 to |q(1)R,1(ξ)| ≤ p(|ξ|)e−ϑξR
α

, see e.g. [12, Lem. A.2]. Moreover, by mimicking the
proof of (4.34), the trace norm of the operator inside the braces in (4.37) is bounded above by
polynomial×R3e−ϑξR

α ∀R ≥ max{R0, R1} due to the H-S norms (4.35)-(4.36) and the operator

norms in (2.23)-(2.24). It follows that ∀R ≥ max{R0, R1}, |q(2)R,1(ξ)| ≤ p(|ξ|)e−ϑξR
α

for another

R-independent ϑ > 0 and polynomial p(· ). Hence |qR,1(ξ)| ≤ p(|ξ|)e−ϑξR
α

. The others terms
coming from QR,1(ξ) can be treated by using similar arguments. �

Proof of Lemma 4.5. Let us denote:

YR,1(ξ) := |ΩR|−1TrL2(R3){χΩR
RR(ξ)TR,1(ξ)TR,1(ξ)χΩR

},
YR,2(ξ) := |ΩR|−1TrL2(R3){χΩR

RR(ξ)TR,2(ξ)χΩR
}.

By replacing RR(ξ) with the r.h.s. of (2.12) in YR,j(ξ), j = 1, 2 then:

YR,1(ξ) = |ΩR|−1TrL2(R3){χΩR
(HP − ξ)−1TP,1(ξ)TP,1(ξ)χΩR

}+QR,1(ξ),

YR,2(ξ) = |ΩR|−1TrL2(R3){χΩR
(HP − ξ)−1TP,2(ξ)χΩR

}+QR,2(ξ),

where QR,1(ξ) and QR,2(ξ) consist of seven and three terms respectively. Let η > 0 be fixed.
Let us show that there exists a constant ϑ > 0 and a polynomial p(· ) s.t. ∀R ≥ R0 and ∀ξ ∈ C

satisfying dist(ξ, σ(HR) ∩ σ(HP )) ≥ η, |QR,j(ξ)| ≤ p(|ξ|)e−ϑξR
α

j = 1, 2. To do that, take some
generical terms:

qR,2(ξ) :=
1

|ΩR|

∫

ΩR

dx

∫

R3

dz (HP − ξ)−1(x, z)
1

2
a2(z− x)(WR(ξ))(z,x),

qR,1(ξ) := − 1

|ΩR|

∫

ΩR

dx

∫

R3

dz1

∫

R3

dz2 (HP − ξ)−1(x, z1)a(z1 − z2)×

×∇z1 (HP − ξ)−1(z1, z2)a(z2 − x) · ∇z2(WR(ξ))(z2,x).

From (2.16), (2.17), (2.21) together with [12, Lem. A.2 (ii)], then we straightforwardly get the
existence of a constant ϑ > 0 and a polynomial p(· ) s.t. ∀R ≥ R0 and ∀ξ ∈ C satisfying
dist(ξ, σ(HR) ∩ σ(HP )) ≥ η, |qR,j(ξ)| ≤ p(|ξ|)e−ϑξR

α

j = 1, 2. The other terms coming from
QR,j(ξ), j = 1, 2 can be treated by using similar arguments. �
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