
HAL Id: hal-00785097
https://hal.science/hal-00785097

Submitted on 5 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defining and Executing Bigraphical Model in Maude
Manel Amel Djenouhat, Taha Abdelmotaleb Cherfia, Faiza Belala

To cite this version:
Manel Amel Djenouhat, Taha Abdelmotaleb Cherfia, Faiza Belala. Defining and Executing Bigraphi-
cal Model in Maude. 5th International Conference on Communications, Computers and Applications
(MIC-CCA2012), Oct 2012, Istanbul, Turkey. �hal-00785097�

https://hal.science/hal-00785097
https://hal.archives-ouvertes.fr

��

��� �

�

ABSTRACT

Software architectures can help in specification,

formal analysis and manipulation of complex and
adaptive systems. Many languages and formalisms
have been proposed for these tasks, especially those
based on graph model. Bigraphical Reactive Systems
(BRS) are an emerging graphical framework for
specifying ubiquitous dynamic architectural systems.

In this work, we propose using the K semantic

framework, a provably sound and complete modeling
methodology, to integrate BRS into rewriting logic.
This approach offers a high level specification of
bigraphical systems without any encoding or
translation process. Moreover, we are also able to
formally reason on it.

Finally, we illustrate the use of the K-Maude tool
through a simple example of a packet transport.

General Terms
Software engineering, Software architecture systems,
Formal methods.

Keywords
Software Architecture, Bigraph, Rewriting Logic, K-
Maude

I. INTRODUCTION

Complex and adaptive systems challenge

software engineering to deal with issues like
scalability, dynamicity and openness at the right level
of abstraction. In this context, software architectures
can help in the specification, formalization and
manipulation of such systems by restricting and
disciplining the admissible shapes and patterns to be
considered. Many languages and formalisms have
been proposed for these tasks, such as graph-based
models which represent a strong and rigorous
approach to software architecture design. Indeed,
graphs are a very useful means to describe complex
structures and systems and to model concepts and
ideas in a direct and intuitive way. In particular, they
provide a simple and powerful approach to a variety
of problems that are typical to software architecture.
Besides, if graphs define the structure of such

models, graph transformation can be exploited to
specify both how they should be built and how they
can evolve.

Among these graphical mathematical
formalisms, Bigraphical Reactive System (BRS) is an
emerging framework, proposed by Milner and others
[1], [2] as a unifying theory of process models for
distributed, concurrent and ubiquitous computing. A
bigraphical reactive system consists of a category of
bigraphs (usually generated over a given signature of
controls) and a set of reaction rules. Bigraphs can be
seen as representations of the possible system
configurations, and the reaction rules specify how
these configurations may evolve (i.e. the relations
between bigraphs). Bigraphs, in addition to their wide
use in modeling various systems (λ-calculus systems
[3], CCS [4], Petri nets [5] and ambient calculus
systems [6]) have been recently shown as an efficient
framework for specifying architectural systems [14],
[15], [16].

However, formal specifications based on
Bigraphs would be a mere luxury, so that their
execution and analysis must be accomplished in
isolation. Therefore, they can be proved to be correct
or will do what they are supposed to do, but
involving other approaches with additional
formalisms and formal tools. The goal in this regard
is to express as faithfully as possible a bigraphical
system in rewriting logic avoiding thus, any encoding
or translation process. Hence, this will allow the
combination of the attractive advantages of the two
models. Bringing different models under a common
semantic framework makes easier to understand what
different models have in common and how they
differ, to find deep connections between them and to
reason across their different formalisms.
Furthermore, rewriting logic (RWL) has shown to be
a good framework in which other logics and a very
wide range of concurrency models and programming
languages can be represented, such as Petri nets [5],
E-LOTOS [10], CCS [4], π-calculus [11] and so on.
Computationally, it supports also the execution of
specified models, their prototyping and analysis
thanks to many operational environments developed
around its theoretical concepts, Maude [7], Elan [8],
Cafe-OBJ [9]. Many different system styles, and
models of concurrent computation and many
different languages can be naturally expressed
without any distorting encodings.

DEFINING AND EXECUTING BIGRAPHICAL MODEL IN MAUDE

Manel DJENOUHAT 1, Taha Abdelmoutaleb CHERFIA 2 and Faïza BELALA 3
Computer Science Department, University Mentouri of Constantine,

Algeria.
1 djenouhat_manel@msn.com, 2 taha.cherfia@gmail.com , 3 belalafaiza@hotmail.com

The main objective of our contribution is to
achieve, in a rigorous way, the integration and
interoperation of BRS in K-Maude [12] which is an
effective computational framework for systems
definition and formal analysis. This allows to define
executable and analyzable formal specifications of
ubiquitous dynamic architectural systems.

The remainder of the paper is organized as
follows. We start by introducing the Bigraphical
Reaction Systems (or BRS) in section two. In section
three, we recall fundamental elements of K language
and their integration in Maude system. In section four
we present our approach. The proposed solution of
specifying a BRS with K annotations and the
possibility of analyzing the result on K-Maude is
given. Then, we demonstrate our contribution
through the design of an illustrative example. Finally,
we conclude the paper in section five.

II. SPECIFYING WITH BRS

The Bigraphical Reaction System or BRS in

short, due to Milner and co-workers [1] is a graphical
model in which both locality and connectivity of
distributed systems are prominent.

Informally, a bigraph consists of two
independent structures (see figure 2), a place graph
(topograph) expressing the physical location of nodes
(vi) and a link graph (monograph) representing the
interconnection (ei) between these nodes.

Moreover, bigraphs are equipped with a set of
reaction rules to form BRS these rules may be
applied to rewrite bigraphs. Thus, reaction rules
define the dynamics of bigraphs where two
transformations are possible, nesting and linkage.
BRS allow the specification of both structural and
behavioral aspects of architectural systems.

II.1 Structure aspect

A bigraph is a structure that enables the
description of both the location of the architectural
system entities and their interaction. Within BRS,
these entities are represented by nodes and the
interaction between them is represented by edges as
shown in figure 1 below:

Figure 1. The bigraph’s anatomy

On the basis of a common set of nodes, a bigraph
is formed of two independent structures (see figure

2): the places graph, having the structure of a forest
that shows the spatial distribution of the application,
the links graph is a hypergraph establishing the
model of connectivity between different nodes.

Figure 2. Places graph and link graph

While an arc in the places graph shows the

relationship of spaces between the nested elements of
the application, an arc in the graph links establishes a
connection between the ports of these elements. The
two structures are orthogonal, so links between nodes
can cross locality boundaries. Each tree in the places
graph represents a region (0 or 1 in figure2) of space
that can contain sites, corresponding to the leaves of
the tree, and where other bigraphs can be hosted.

A bigraph can interact with the environment
through its interfaces (xi, yi). These interfaces are
known as inner face and outer face where sites and
inner names make up the bigraph’s inner face, while
roots and outer names model the outer face.

The inner faces of a bigraph indicate the holes
into which other bigraphs can be inserted. On the
other hand, the outer faces allow a bigraph to be
combined with other ones.

Figure 3 shows a bigraph which classifies nodes
as computers (PCi), packets (P), networks (NET) and
represents a system state which may change because
of the transport of packets.

Figure 3. Bigraph structure aspect

II.2 Dynamic aspect

Within BRS, the dynamic behavior of the
architectural system is modeled based on reaction
rules which express how the system can reconfigure
itself.

Figure 4. Bigraph dynamic aspect

Each reaction rule consists of a redex which may
be transformed to a reactum to rewrite the bigraph.

For example in figure 4, the reaction rule represents a
one-way packet transport where P transports from the
source computer (PC1) in the network (NETA)
through the destination computer (PC2) in a different
network (NETB). The hyper-arcs e1 and e2 model the
path of the packet traffic. Thus, this reaction rule is
purely a nesting transformation.

Some works in literature have shown that

bigraphs form an unifying framework for
concurrency and mobile models, such as CCS, π-
calculus, ubiquitous systems or Petri-nets [13].
Recently, authors respectively in [14] and [15] show
that BRS constitute a suitable mathematical
framework for modeling both architectural
application and their possible execution platform.
BRS gives a high-level modeling of architectural
systems in terms of graphical representation which
contains both the information about the architectural
entities hierarchies and the interaction between them.

 Furthermore, authors illustrate in [14], [16], how

BRS can be used to formalize the architectural
deployment and dynamic reconfiguration of AADL
systems.

III. K-MAUDE: A REWRITING BASED TOOL FOR

COMPUTATIONS

K is an executable semantic framework in which
programming languages, calculi, as well as type
systems or formal analysis tools can be defined,
making use of configurations, computations and
rules.

Configurations organize the system/program

state in units called cells, which are labeled and can
be nested. Computations carry ``computational
meaning'' as special nested list structures
sequentializing computational tasks, such as
fragments of program; in particular, computations
extend the original language or calculus syntax.

K rules generalize conventional rewrite rules by

making explicit which parts of the term they read,
write, or do not care about.

This distinction makes K a suitable framework
for defining truly concurrent languages or calculi,
even in the presence of sharing and control-intensive
language features such as abrupt termination,
exceptions, or call/cc (call with current continuation
function).

K-Maude is the tool implementing K on the top

of Maude. It fully extends Maude, while adding

specific K constructs to facilitate design of
programming and domain specific languages.

III.1 Maude Overview

Maude [7] is a high-level language and a high-
performance system supporting executable
specification and declarative programming in
rewriting logic. It is based on rewriting logic where
the systems, from simple to more complex, are
specified easily by the use of the functional,
concurrent or object oriented theories. Thus, Maude
regroups three types of modules mainly: functional
modules to define the static aspects of a system,
system modules to specify the dynamic aspect of the
system using rewriting rules, while object oriented
modules allow the modeling of the objects oriented
systems.

Maude supports in a systematic and efficient way
logical reflection. This makes it remarkably
extensible and powerful, it supports an extensible
algebra of module composition operations, allows
many advanced meta programming and meta
language applications.

III.2 K Basic Concepts

K language definitions are represented as K-
modules, fully inspired from Maude modules. Each K
module imbricates two sub-modules: k-syntax-
module and k-module. This separation reduces
ambiguities in the parser and therefore might be able
to parse a large variety of programs.

K-syntax-module is introduced by kmod <name
module>-SYNTAX …endkm, it represents the
grammar of the specified language (see example of
figure 5)���

�

kmod EXP−SYNTAX
//@ Arithmetics Syntax
syntax Exp ::= #Int
| Exp "+" Exp [strict] //addition
| Exp "*" Exp [strict] //multipl
| Exp "/" Exp [strict] //division
| Exp "?" Exp ":" Exp [strict(1)]
| Exp ";" Exp [seqstrict]
 //@ Input / Output Syntax
 syntax Exp ::= "read"
| "print" Exp [strict]
//@ Concurrency features
syntax Exp ::= "spawn" Exp
| "rendezvous" Exp [strict]
endkm

Figure 5. K-syntax module of a calculator language with I/O

Figure 6. K-Maude Architecture

k-module is introduced by kmod<name module>

…endkm (figure 7) and represents the semantic of
the grammar quoted previously. It contains three
principal parts: Evaluation strategies (Strictness)
which represent the link between syntax and semantic
and the order in which the arguments of a
construction must be estimated, Configurations
representing the state of a system during its
execution, Rules describing how a current
configuration evolves.

kmod EXP
imports EXP−SYNTAX
syntax KResult ::= #Int
configuration
<k color="green" multiplicity="*"> $PGM:K </k>
<streams>
<in color="magenta" stream="stdin"> .List </in>
<out color="Fuchsia" stream="stdout"> .List </out>
</streams>
//@ Arithmetics Semantics
rule I1:#Int + I2:#Int => I1 +Int I2
rule I1:#Int * I2:#Int => I1 _Int I2
rule I1:#Int / I2:#Int => I1 /Int I2
when I2 =/=Bool 0
rule 0 ? _ : E:Exp => E
rule I:#Int ? E:Exp : _ => E when I =/=Bool 0
rule _:#Int ; I2:#Int => I2
//@ Input / Output Semantics
rule <k> read => I:#Int · ··</k>
<in> ListItem(I) => . · ··</in>
rule <k> print I:#Int => I · ··</k>
<out>··· . => ListItem(I) </out>
//@ Concurrency Semantics
rule <k> spawn E => 0 ···</k>
(. => <k> E </k>)
rule <k> rendezvous I => 0 ···</k>
<k> rendezvous I => 0 ···</k>
endkm

Figure 7. K- module of a calculator language with I/O

Examples in figures 5 and 7 show the global k

module of the simple calculator language with input
and output (the whole explanation of the example is
included in [17]).

III.3 Application of K-Maude tool

K-Maude is an integrated toolkit on the top of
Maude system. Figure 6 shows its architecture [12].
The gray arrows represent translators implemented as
part of the toolkit. The K core contains the
ingredients of the K technique that are handy in most
language definitions, such as ones for defining
computations, configurations, etc. The K-Maude
interface is what the user typically sees: besides usual
Maude modules (K-Maude fully extends Maude), one
can also include K-Maude files (with extension
.kmaude or .k) containing modules using the K
specialized notation.

A first component of K-Maude translates K
modules to Maude modules. The resulting Maude
modules encode K-specific features as meta-data
attributes and serve as an intermediate representation
of K-Maude definitions. This intermediate
representation can be further translated to different
back-ends. We provide two such translators, one to
executable/analyzable Maude module results which
can serve as interpreters for the defined languages or
as a basis for formal analysis and one to LATEX for
documentation purposes.
 Indeed, we believe that K can be used by ordinary
language designers as a formal notation for
rigorously specifying the semantics and grammars
(syntax) of their languages.In the same way context-
free, we present a novel approach based on the use of
K techniques, we propose an inductive proving
method which tends to provide a full specification for
bigraphical reactive systems.
Our modeling process is as follows: Starting from
writing K specifications of the BRS system using the
proposed model we obtain a comprehensive K model
of this one. Then, we may transform it into Maude
theories, the intermediate Maude representation
resulting can be analyzed and executed using the
Rewriting logic framework, this gives us the
possibility to determine whether the bigraphical
model of system is correct and satisfies different
properties in all its possible executions.

IV. OUR IMPLEMENTATION APPROACH

 In this section we present our adopted method to
represent Bigraphical architecture systems by using
K-Maude.First, we give K definitions of a bigraph ,
this aim at defining a specification language using
one’s favorite semantic style. Once the K model
obtained, we may execute, explore or model check
any bigraphical system example thanks to Maude
system.

IV.1 Our contributions

 Knowing that K is specially introduced to describe
programming languages, as result, we define an
appropriate grammar for bigraphs and adapted it to K
framework. We are also inspired by the BigMC
model checker [18]. The full grammar for bigraph
terms is given in figure 8, where a bigraph is
represented as a list of expressions.
module BIGRAPH-SYNTAX
imports BUILTIN-SYNTAX-HOOKS
syntax Bigraph ::= List{Exp,","}
syntax Exp ::= Exp "." Exp
 | Exp "|" Exp
 | Exp "||" Exp [strict (1)]
 | "(" Exp ")" [bracket]
 | "[" Exp "]" [bracket]
 |"Nil"
 | "passive" Exp ":" Int
 | "active" Exp ":" Int
 | "name" Id
syntax Redex ::= Bigraph
syntax Reactum ::= Bigraph
syntax Reactrule ::= Redex "->" Reactum
endmodule

Figure 8. Full syntax module of a bigraph in K

We used the term Expression to specify globally all
terms used for describing a bigraphical system such
as: nodes, links and also controls which are pre-
defined by the declaration of the bigraph signature
using active and passive commands defining the
arity of a given control as well as it’s a passive or
active state. On the other hand, we have also give
syntax of reaction rules by introducing redex and
reactum bigraphs (the left and the right parts of the
rule) then, we complete our defined syntax by
introducing its semantic in the main module
BIGRAPH.k. Figure 9 gives the complete semantic
of our Bigraphical specification, the configuration
provides the new state after each execution, as
mentioning in KResult, each new bigraph resulting a
new bigraph from the application of K rewriting
rules allowing us to guide the execution.

module BIGRAPH imports BIGRAPH-SYNTAX
configuration

 < T color ="yellow">
 <k color="green">.K </k>
 <state color ="red">.Bigraph </state>
 </T>

syntax KResult ::= Bigraph
rule [terms] : T1:Exp . T2:Exp => T1 . T2
rule [juxtaposition] : T1:Exp | T2:Exp => T1 | T2
rule [sameregion] : T1:Exp || T2: Exp => T1 || T2
rule [reactrules]: T1:Exp.(T2:Exp|T3:Exp)|| T4:Exp .(T5:Exp) =>
T1:Exp.(T2:Exp)|| T4:Exp .(T5:Exp|T3:Exp)
endmodule

Figure 9. Global K module BIGRAPH for Bigraphs
systems

After defining the Main specification module we
may compile it with the compiler Kompile(see figure
10), thus, we obtain its equivalent Maude module.
The resulting Maude module encodes K-specific
features of bigraphs as meta-data attributes.

/home/tools/k-tool/core/kompile BIGRAPH.k -l BIGRAPH

Compiled version written in BIGRAPH-compiled.maude.

Figure 10. Compiling BIGRAPH.k module

Once the program (the bigraphical model) is compiled, we
can run it easily on Maude using the Krun tool. We may
also use Latex transformer to get the PDF version of the
program.

IV.2 Example

We illustrate our approach by introducing the
previous bigraph example of transferring packets
between computers nested in two different networks.

module BIGRAPH-PROGRAMS imports BIGRAPH
syntax Id ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|$0|$1|e1|e2

//nodes and links

syntax Exp::= active NETA:1
 |active NETB :1
 |active PC1:2
 |active PC2:2
 |active P :2
 |name x
 |name y
 |name e1
 |name e2

syntax Bigraph ::=BigNet

// packet-Transport Model

BigNet::= NETA[x].(PC1[x,e1]|P[e1,e2])|NETB[y].PC2[y,e2]

//reaction rule

Redex ::= NETA [x] .($0|PC1[x,e1]|P[e1,e2]) ||
NETB[y].($1|PC2[y,e2])

Reactum::=NETA[x].($0|PC1[x,e1])||NETB[y].($1|PC2[y,e2]|P[e1
,e2])

endmodule

Figure 11. K representation of Packet transport model

According to the proposed model we obtain the
Bigraph BigNet representing the two networks and
also the applied reaction rule. Running this example
on K-Maude, we get the following displayed on the
console:

rewrite in BIGRAPH : [['BigNet]] .
rewrites: 799 in 0ms cpu (1ms real) (~ rewrites/second)
result Bigraph:
<T>
 <k>
 .
 </k>
 <state>
BigNet |->
Redex::=
NETA[x].(PC1[x,e1].Nil| P[e1,e2].Nil) |NETB[y].(PC2[y,e2].Nil
Reactum::=
NETA[x].(PC1[x,e1].Nil)|NETB[y].(PC2[y,e2].Nil|P[e1,e2].Nil)
 </state>
</T>

Figure 12. The K running of the Packet transport example

This shows that PC2 in the network NETB receives
the transferred packet P from PC1 in the network
NETA.

V. CONCLUSION

Recently, the complexity and the size of software

systems have increased substantially. Thus, software
architecture is the needed solution to deal with these
issues. In this context, many modeling formalisms
and languages have been proposed to represent
software architectures such as graph-based
formalisms. In the same context, BRS represents a
high-level modeling graph-based formalism in terms
of graphical representation whereas it lacks at present
a complete formal execution framework.

Hence, this paper presents a new modeling
methodology based on K-Maude to integrate BRS
model into rewriting logic. Indeed, the main issue
with the proposed methodology is to define a
semantic execution environment for BRS models on
the basis of Maude language. Looking ahead, we
intend to exploit this new semantic model of bigraphs
for executing architecture and verifying the
correctness of some properties inherent to dynamicity
and reconfiguration of these systems. Also, we shall
present more examples and comparisons to other
related works.

REFERENCES

[1] R. Milner. “Bigraphical Reactive Systems”. In

Larsen and Nielsen (eds.), Proc. 12th CONCURS.
Lecture Notes in Computer Science 2154, pp.
16–35. Springer, 2001.

[2] R. Milner. “Pure bigraphs: Structure and
dynamics”. Information and Computation
204(1):60–122, 2006.

[3] G. Michaelson, “An Introduction to Functional
Programming through Lambda Calculus”,
Addison-Wesley, Wokingham, 1988.

[4] R. Milner “Calculus of Communicating
Systems”,1989

[5] J. J. Leifer, R. Milner. “Transition systems, link
graphs and Petri nets”. Mathematical

[6] Cardelli, L., G. Ghelli and A. D. Gordon, “Types
for the ambient calculus”, Information and
Computation (2002), to appear. Special issue on
TCS’2000.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N.
Martí-Oliet, J. Meseguer, and C. L. Talcott. “All
About Maude”, A High-Performance Logical
Framework, volume 4350 of Lecture Notes in
Computer Science. Springer, 2007.

[8] P. Borovanský, C. Kirchner, H. Kirchner, P. E.
Moreau, and C. Ringeissen. “An overview of
ELAN”. Electr. Notes Theor. Comput. Sci., 15,
1998.

[9] R. Diaconescu and K. Futatsugi. “Logical
foundations of CafeOBJ”. TCS, 285(2) :289-
318, 2002.

[10] J. Quemada, editor. “Working Draft on
Enhancements to LOTOS”. Draft International
Standard, ISO/IEC JTC1/SC21/WG7 Project
1.21.20.2.3, January 1997.

[11] M. Bundgaard, V. Sassone. “Typed polyadic pi-
calculus in bigraphs”. In Bossi and Maher
(eds.), Proc. PPDP. Pp. 1–12. ACM, 2006.

[12] ��T. Serbanuta, G. Rosu “K-Maude: A Rewriting
Based Tool for Semantics of Programming
Languags”, WRLA'10, LNCS 6381, pp 104-122.
2010.

[13] R. Milner, “Bigraphs and Their Algebra”.
Electr. Notes Theor. Comput. Sci. 209: 5-19
(2008).

[14] N. Benlahrache, F. Belala, K. Barkaoui,
“Description formelle du déploiement
d’architectures AADL basée sur les systèmes
réactifs bigraphiques (BRS)”, CALL’2011, 5ème
Conférence Francophone sur les Architectures
Logicielles, Lille, France, 2011, pp. 65-75.

[15] Z. Chang, X. Mao, Z. Qi “An Approach based
on Bigraphical Reactive Systems to Check
Architectural Instance Conforming to its Style”,
First Joint IEEE/IFIP Symposium on Theoretical
Aspects of Software Engineering (TASE'07),
pages 57-66. IEEE Computer Society

[16] T. Cherfia, F. Belala, N. Benlahrache
“Modeling of Architectural Reconfiguration
Case Study: Automated Teller Machine”,
IWAISE’12.

[17] T. Serbanuta, A. Arusoaie, D. Lazar, C. Ellison,
D. Lucanu, G. Rosu. “The K Primer (version
2.5)” , Technical Report, 2012.

