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ABSTRACT 

 
Software architectures can help in specification, 

formal analysis and manipulation of complex and 
adaptive systems. Many languages and formalisms 
have been proposed for these tasks, especially those 
based on graph model. Bigraphical Reactive Systems 
(BRS) are an emerging graphical framework for 
specifying ubiquitous dynamic architectural systems. 

 
In this work, we propose using the K semantic 

framework, a provably sound and complete modeling 
methodology, to integrate BRS into rewriting logic. 
This approach offers a high level specification of 
bigraphical systems without any encoding or 
translation process. Moreover, we are also able to 
formally reason on it. 
 
Finally, we illustrate the use of the K-Maude tool 
through a simple example of a packet transport. 

 
General Terms 
Software engineering, Software architecture systems, 
Formal methods. 

 
Keywords 
Software Architecture, Bigraph, Rewriting Logic, K-
Maude  

 
I. INTRODUCTION 

 
Complex and adaptive systems challenge 

software engineering to deal with issues like 
scalability, dynamicity and openness at the right level 
of abstraction. In this context, software architectures 
can help in the specification, formalization and 
manipulation of such systems by restricting and 
disciplining the admissible shapes and patterns to be 
considered. Many languages and formalisms have 
been proposed for these tasks, such as graph-based 
models which represent a strong and rigorous 
approach to software architecture design. Indeed, 
graphs are a very useful means to describe complex 
structures and systems and to model concepts and 
ideas in a direct and intuitive way. In particular, they 
provide a simple and powerful approach to a variety 
of problems that are typical to software architecture. 
Besides, if graphs define the structure of such 

models, graph transformation can be exploited to 
specify both how they should be built and how they 
can evolve.  

Among these graphical mathematical 
formalisms, Bigraphical Reactive System (BRS) is an 
emerging framework, proposed by Milner and others 
[1], [2] as a unifying theory of process models for 
distributed, concurrent and ubiquitous computing. A 
bigraphical reactive system consists of a category of 
bigraphs (usually generated over a given signature of 
controls) and a set of reaction rules. Bigraphs can be 
seen as representations of the possible system 
configurations, and the reaction rules specify how 
these configurations may evolve (i.e. the relations 
between bigraphs). Bigraphs, in addition to their wide 
use in modeling various systems (λ-calculus systems 
[3], CCS [4], Petri nets [5] and ambient calculus 
systems [6]) have been recently shown as an efficient 
framework for specifying architectural systems [14], 
[15], [16].  

However, formal specifications based on 
Bigraphs would be a mere luxury, so that their 
execution and analysis must be accomplished in 
isolation. Therefore, they can be proved to be correct 
or will do what they are supposed to do, but 
involving other approaches with additional 
formalisms and formal tools. The goal in this regard 
is to express as faithfully as possible a bigraphical 
system in rewriting logic avoiding thus, any encoding 
or translation process. Hence, this will allow the 
combination of the attractive advantages of the two 
models. Bringing different models under a common 
semantic framework makes easier to understand what 
different models have in common and how they 
differ, to find deep connections between them and to 
reason across their different formalisms. 
Furthermore, rewriting logic (RWL) has shown to be 
a good framework in which other logics and a very 
wide range of concurrency models and programming 
languages can be represented, such as  Petri nets [5],  
E-LOTOS [10], CCS [4], π-calculus [11] and so on. 
Computationally, it supports also the execution of 
specified models, their prototyping and analysis 
thanks to many operational environments developed 
around its theoretical concepts, Maude [7], Elan [8], 
Cafe-OBJ [9]. Many different system styles, and 
models of concurrent computation and many 
different languages can be naturally expressed 
without any distorting encodings.  
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The main objective of our contribution is to 
achieve, in a rigorous way, the integration and 
interoperation of BRS in K-Maude [12] which is an 
effective computational framework for systems 
definition and formal analysis. This allows to define 
executable and analyzable formal specifications of 
ubiquitous dynamic architectural systems. 

The remainder of the paper is organized as 
follows. We start by introducing the Bigraphical 
Reaction Systems (or BRS) in section two. In section 
three, we recall fundamental elements of K language 
and their integration in Maude system. In section four 
we present our approach. The proposed solution of 
specifying a BRS with K annotations and the 
possibility of analyzing the result on K-Maude is 
given.  Then, we demonstrate our contribution 
through the design of an illustrative example. Finally, 
we conclude the paper in section five. 

 
II. SPECIFYING WITH BRS 

 
The Bigraphical Reaction System or BRS in 

short, due to Milner and co-workers [1] is a graphical 
model in which both locality and connectivity of 
distributed systems are prominent. 

Informally, a bigraph consists of two 
independent structures (see figure 2), a place graph 
(topograph) expressing the physical location of nodes 
(vi) and a link graph (monograph) representing the 
interconnection (ei) between these nodes. 

Moreover, bigraphs are equipped with a set of 
reaction rules to form BRS these rules may be 
applied to rewrite bigraphs. Thus, reaction rules 
define the dynamics of bigraphs where two 
transformations are possible, nesting and linkage.  
BRS allow the specification of both structural and 
behavioral aspects of architectural systems. 

 
II.1 Structure aspect 
 

A bigraph is a structure that enables the 
description of both the location of the architectural 
system entities and their interaction. Within BRS, 
these entities are represented by nodes and the 
interaction between them is represented by edges as 
shown in figure 1 below: 

 
Figure 1. The bigraph’s anatomy 

On the basis of a common set of nodes, a bigraph 
is formed of two independent structures (see figure 

2): the places graph, having the structure of a forest 
that shows the spatial distribution of the application, 
the links graph is a hypergraph establishing the 
model of connectivity between different nodes. 

 
 

Figure 2. Places graph and link graph 
 
While an arc in the places graph shows the 

relationship of spaces between the nested elements of 
the application, an arc in the graph links establishes a 
connection between the ports of these elements. The 
two structures are orthogonal, so links between nodes 
can cross locality boundaries. Each tree in the places 
graph represents a region (0 or 1 in figure2) of  space 
that can contain sites, corresponding to the leaves of 
the tree, and where other bigraphs can be hosted. 

A bigraph can interact with the environment 
through its interfaces (xi, yi). These interfaces are 
known as inner face and outer face where sites and 
inner names make up the bigraph’s inner face, while 
roots and outer names model the outer face. 

The inner faces of a bigraph indicate the holes 
into which other bigraphs can be inserted. On the 
other hand, the outer faces allow a bigraph to be 
combined with other ones. 

Figure 3 shows a bigraph which classifies nodes 
as computers (PCi), packets (P), networks (NET) and 
represents a system state which may change because 
of the transport of packets.   

 

Figure 3. Bigraph structure aspect 
 

II.2 Dynamic aspect 
 

Within BRS, the dynamic behavior of the 
architectural system is modeled based on reaction 
rules which express how the system can reconfigure 
itself. 

 
Figure 4. Bigraph dynamic aspect 

Each reaction rule consists of a redex which may 
be transformed to a reactum to rewrite the bigraph. 



For example in figure 4, the reaction rule represents a 
one-way packet transport where P transports from the 
source computer (PC1) in the network (NETA) 
through the destination computer (PC2) in a different 
network (NETB). The hyper-arcs e1 and e2 model the 
path of the packet traffic. Thus, this reaction rule is 
purely a nesting transformation. 

 
Some works in literature have shown that 

bigraphs form an unifying framework for 
concurrency and mobile models, such as CCS, π-
calculus, ubiquitous systems or Petri-nets [13]. 
Recently, authors respectively in [14] and [15] show 
that BRS constitute a suitable mathematical 
framework for modeling both architectural 
application and their possible execution platform. 
BRS gives a high-level modeling of architectural 
systems in terms of graphical representation which 
contains both the information about the architectural 
entities hierarchies and the interaction between them. 

 
 Furthermore, authors illustrate in [14], [16], how 

BRS can be used to formalize the architectural 
deployment and dynamic reconfiguration of AADL 
systems. 

 
III. K-MAUDE: A REWRITING BASED TOOL FOR 

COMPUTATIONS 
 

K is an executable semantic framework in which 
programming languages, calculi, as well as type 
systems or formal analysis tools can be defined, 
making use of configurations, computations and 
rules. 

 
Configurations organize the system/program 

state in units called cells, which are labeled and can 
be nested. Computations carry ``computational 
meaning'' as special nested list structures 
sequentializing computational tasks, such as 
fragments of program; in particular, computations 
extend the original language or calculus syntax.  

 
K rules generalize conventional rewrite rules by 

making explicit which parts of the term they read, 
write, or do not care about.  

This distinction makes K a suitable framework 
for defining truly concurrent languages or calculi, 
even in the presence of sharing and control-intensive 
language features such as abrupt termination, 
exceptions, or call/cc (call with current continuation 
function). 

 
 
K-Maude is the tool implementing K on the top 

of Maude. It fully extends Maude, while adding 

specific K constructs to facilitate design of 
programming and domain specific languages. 

 
III.1        Maude Overview  
 

Maude [7] is a high-level language and a high-
performance system supporting executable 
specification and declarative programming in 
rewriting logic. It is based on rewriting logic where 
the systems, from simple to more complex, are 
specified easily by the use of the functional, 
concurrent or object oriented theories. Thus, Maude 
regroups three types of modules mainly: functional 
modules to define the static aspects of a system, 
system modules to specify the dynamic aspect of the 
system using rewriting rules, while object oriented 
modules allow the modeling of the objects oriented 
systems. 

Maude supports in a systematic and efficient way 
logical reflection. This makes it remarkably 
extensible and powerful, it supports an extensible 
algebra of module composition operations, allows 
many advanced meta programming and meta 
language applications. 
 
III.2        K Basic Concepts 
 

K language definitions are represented as K-
modules, fully inspired from Maude modules. Each K 
module imbricates two sub-modules:  k-syntax-
module and k-module. This separation reduces 
ambiguities in the parser and therefore might be able 
to parse a large variety of programs. 

K-syntax-module is introduced by kmod <name 
module>-SYNTAX …endkm, it represents the 
grammar of the specified language (see example of 
figure 5)���

�

kmod EXP−SYNTAX 
//@ Arithmetics Syntax 
syntax Exp ::= #Int 
| Exp "+" Exp [strict] //addition 
| Exp "*" Exp [strict] //multipl 
| Exp "/" Exp [strict] //division 
| Exp "?" Exp ":" Exp [strict(1)] 
| Exp ";" Exp [seqstrict] 
 //@ Input / Output Syntax 
 syntax Exp ::= "read" 
| "print" Exp [strict] 
//@ Concurrency features 
syntax Exp ::= "spawn" Exp 
| "rendezvous" Exp [strict] 
endkm  

 
 

Figure 5. K-syntax module of a calculator language with I/O 
 



 

Figure 6. K-Maude Architecture 
 
k-module is introduced by kmod<name module> 

…endkm (figure 7) and represents the semantic of 
the grammar quoted previously. It contains three 
principal parts: Evaluation strategies (Strictness) 
which represent the link between syntax and semantic 
and the order in which the arguments of a 
construction must be estimated, Configurations 
representing the state of a system during its 
execution, Rules describing how a current 
configuration evolves. 

 
kmod  EXP 
imports EXP−SYNTAX 
syntax KResult ::= #Int 
configuration 
<k color="green" multiplicity="*"> $PGM:K </k> 
<streams> 
<in color="magenta" stream="stdin"> .List </in> 
<out color="Fuchsia" stream="stdout"> .List </out> 
</streams> 
//@ Arithmetics Semantics 
rule I1:#Int + I2:#Int => I1 +Int I2 
rule I1:#Int * I2:#Int => I1 _Int I2 
rule I1:#Int / I2:#Int => I1 /Int I2 
when I2 =/=Bool 0 
rule 0 ? _ : E:Exp => E 
rule I:#Int ? E:Exp : _ => E when I =/=Bool 0 
rule _:#Int ; I2:#Int => I2 
//@ Input / Output Semantics 
rule <k> read => I:#Int · ··</k> 
<in> ListItem(I) => . · ··</in> 
rule <k> print I:#Int => I · ··</k> 
<out>···  . => ListItem(I) </out> 
//@ Concurrency Semantics 
rule <k> spawn E => 0 ···</k> 
(. => <k> E </k>) 
rule <k> rendezvous I => 0 ···</k> 
<k> rendezvous I => 0 ···</k> 
endkm 

 
 

Figure 7. K- module of a calculator language with I/O 

 
Examples in figures 5 and 7 show the global k 

module of the simple calculator language with input 
and output (the whole explanation of the example is 
included in [17]). 

III.3        Application of K-Maude tool 
 

K-Maude is an integrated toolkit on the top of 
Maude system. Figure 6 shows its architecture [12]. 
The gray arrows represent translators implemented as 
part of the toolkit. The K core contains the 
ingredients of the K technique that are handy in most 
language definitions, such as ones for defining 
computations, configurations, etc. The K-Maude 
interface is what the user typically sees: besides usual 
Maude modules (K-Maude fully extends Maude), one 
can also include K-Maude files (with extension 
.kmaude or .k) containing modules using the K 
specialized notation. 

A first component of K-Maude translates K 
modules to Maude modules. The resulting Maude 
modules encode K-specific features as meta-data 
attributes and serve as an intermediate representation 
of K-Maude definitions. This intermediate 
representation can be further translated to different 
back-ends. We provide two such translators, one to 
executable/analyzable Maude module results which 
can serve as interpreters for the defined languages or 
as a basis for formal analysis and one to LATEX for 
documentation purposes. 
      Indeed, we believe that K can be used by ordinary 
language designers as a formal notation for 
rigorously specifying the semantics and grammars 
(syntax) of their languages.In the same way context-
free, we present a novel approach based on the use of 
K techniques, we propose an inductive proving 
method which tends to provide a full specification for 
bigraphical reactive systems. 
Our modeling process is as follows:  Starting from 
writing K specifications of the BRS system using the 
proposed model we obtain a comprehensive K model 
of this one.  Then, we may transform it into Maude 
theories, the intermediate Maude representation 
resulting can be analyzed and executed using the 
Rewriting logic framework, this gives us the 
possibility to determine whether the bigraphical 
model of system  is correct and  satisfies different 
properties in all its possible executions. 

 
IV. OUR IMPLEMENTATION APPROACH 
 
      In this section we present our adopted method to 
represent Bigraphical architecture systems by using 
K-Maude.First, we give K definitions of a bigraph , 
this aim at defining a specification language using 
one’s favorite semantic style. Once the K model 
obtained, we may execute, explore or model check 
any bigraphical system example thanks to Maude 
system. 
 
 



IV.1 Our contributions 
 
    Knowing that K is specially introduced to describe 
programming languages, as result, we define an 
appropriate grammar for bigraphs and adapted it to K 
framework. We are also inspired by the BigMC 
model checker [18]. The full grammar for bigraph 
terms is given in figure 8, where a bigraph is 
represented as a list of expressions. 
module BIGRAPH-SYNTAX 
imports BUILTIN-SYNTAX-HOOKS 
syntax Bigraph ::= List{Exp,","} 
syntax Exp ::=    Exp "." Exp  
                 | Exp "|" Exp   
                 | Exp "||" Exp [strict (1)] 
                 | "(" Exp ")"        [bracket] 
                 | "[" Exp "]"        [bracket] 
                 |"Nil"  
                 | "passive" Exp ":" Int 
                 | "active" Exp ":" Int 
                 | "name" Id         
syntax Redex ::= Bigraph 
syntax Reactum ::= Bigraph 
syntax Reactrule ::= Redex "->" Reactum   
endmodule 

Figure 8. Full syntax module of a bigraph in K 
 
We used the term Expression to specify globally all 
terms used for describing a bigraphical system such 
as: nodes, links and also controls which are pre-
defined by the declaration of the bigraph signature 
using active and passive commands defining the 
arity of a given control as well as it’s a passive or 
active state. On the other hand, we have also give 
syntax of reaction rules by introducing redex and 
reactum bigraphs (the left and the right parts of the 
rule) then, we complete our defined syntax by 
introducing its semantic in the main module 
BIGRAPH.k. Figure 9  gives the complete semantic 
of our Bigraphical specification, the   configuration 
provides the new state after each execution, as 
mentioning in KResult, each new bigraph resulting  a 
new bigraph from the application of K  rewriting 
rules    allowing  us to guide the execution. 
 
module BIGRAPH imports BIGRAPH-SYNTAX 
configuration  

              < T color ="yellow"> 
              <k color="green">.K </k> 
              <state color ="red">.Bigraph </state> 
              </T> 

syntax KResult ::= Bigraph 
rule  [terms] : T1:Exp . T2:Exp => T1 . T2  
rule  [juxtaposition] : T1:Exp | T2:Exp  => T1 | T2  
rule [sameregion] : T1:Exp || T2: Exp => T1 || T2  
rule [reactrules]:  T1:Exp.(T2:Exp|T3:Exp)|| T4:Exp .(T5:Exp) => 
T1:Exp.(T2:Exp)|| T4:Exp .(T5:Exp|T3:Exp) 
endmodule 

Figure 9. Global  K module BIGRAPH  for  Bigraphs   
systems 

After defining the Main specification module we 
may compile it with the compiler Kompile(see figure 
10), thus, we obtain its equivalent Maude module. 
The resulting Maude module encodes K-specific 
features of bigraphs as meta-data attributes. 

 

/home/tools/k-tool/core/kompile BIGRAPH.k  -l  BIGRAPH 
 
Compiled version written in BIGRAPH-compiled.maude. 

Figure 10. Compiling BIGRAPH.k module 
 
Once the program (the bigraphical model) is compiled, we 
can run it easily on Maude using the Krun tool. We may 
also use Latex transformer to get the PDF version of the 
program. 
 
IV.2 Example 
 

We illustrate our approach by introducing the 
previous bigraph example of transferring packets 
between computers nested in two different networks.  

 
module BIGRAPH-PROGRAMS imports BIGRAPH 
syntax Id ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|$0|$1|e1|e2 

 
//nodes and links 
 
syntax Exp::= active NETA:1 
             |active NETB :1 
             |active PC1:2  
             |active PC2:2 
             |active P :2 
             |name x 
             |name y 
             |name e1 
             |name e2 
 
syntax Bigraph ::=BigNet 
 
// packet-Transport Model 
 
BigNet::= NETA[x].(PC1[x,e1]|P[e1,e2])|NETB[y].PC2[y,e2] 
 
//reaction rule 
 
Redex ::= NETA [x] .($0|PC1[x,e1]|P[e1,e2]) || 
NETB[y].($1|PC2[y,e2]) 
 
Reactum::=NETA[x].($0|PC1[x,e1])||NETB[y].($1|PC2[y,e2]|P[e1
,e2]) 

 
endmodule  

Figure 11. K representation of Packet transport model 
 

According to the proposed model we obtain the 
Bigraph BigNet representing the two networks and 
also the applied reaction rule. Running this example 
on K-Maude, we get the following displayed on the 
console: 
 



rewrite in BIGRAPH : [['BigNet]] . 
rewrites: 799  in 0ms cpu (1ms real) (~ rewrites/second) 
result Bigraph:  
<T> 
  <k> 
    . 
  </k> 
  <state> 
BigNet |-> 
Redex::= 
NETA[x].(PC1[x,e1].Nil| P[e1,e2].Nil) |NETB[y ].(PC2[y,e2].Nil 
Reactum::= 
NETA[x].(PC1[x,e1].Nil)|NETB[y ].(PC2[y,e2].Nil|P[e1,e2].Nil) 
  </state> 
</T> 
 

Figure 12. The K running of the Packet transport example 
 
This shows that PC2 in the network NETB receives 
the transferred packet P from PC1 in the network 
NETA.  

V. CONCLUSION 
 
Recently, the complexity and the size of software 

systems have increased substantially. Thus, software 
architecture is the needed solution to deal with these 
issues. In this context, many modeling formalisms 
and languages have been proposed to represent 
software architectures such as graph-based 
formalisms. In the same context, BRS represents a 
high-level modeling graph-based formalism in terms 
of graphical representation whereas it lacks at present 
a complete formal execution framework. 

Hence, this paper presents a new modeling 
methodology based on K-Maude to integrate BRS 
model into rewriting logic. Indeed, the main issue 
with the proposed methodology is to define a 
semantic execution environment for BRS models on 
the basis of Maude language. Looking ahead, we 
intend to exploit this new semantic model of bigraphs 
for executing architecture and verifying the 
correctness of some properties inherent to dynamicity 
and reconfiguration of these systems. Also, we shall 
present more examples and comparisons to other 
related works. 
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