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A transition in hydraulically induced granular displacement patterns is studied by the means of
discrete numerical molecular dynamics simulations. During this transition the patterns change from
fractures and fingers to finely dispersed bubbles. The dynamics of the displacement patterns are
studied in a rectangular Hele-Shaw cell filled with a dense but permeable two-dimensional (2D)
granular layer. At one side of the cell the pressure of the compressible interstitial gas is increased.
At the opposite side from the inlet only the gas phase can leave the cell and the grains are stopped
by a semipermeable boundary. This imposed pressure gradient causes the grains to compact. In the
progress we can identify and describe a mechanism which controls the transition of the emerging
displacement patterns from fractures and fingers to finely dispersed bubbles as a function of the
interstitial gas’ properties and the characteristics of the granular phase.

INTRODUCTION

Hydraulic fractures occur when diverse materials
break under the stress induced by fluids or gases.
Understanding how hydraulic fracturing is initiated
and progresses is of fundamental importance whenever
safe dams are constructed, super-critical CO2 stored or
sustainable wells drilled. Volcanic dikes and sills arise
naturally by hydraulic fracturing processes. Just as we
learn to protect ourselves from the unwanted effects of
hydraulic fractures it has been proven to be a useful
technology to fracture the reservoir rock formations
around a well-bore to enhance the recovery of mineral
oil and natural gas.
In previous studies [1–4, 6–15] experiments have been
conducted in circular and rectangular Hele-Shaw cells
filled with small grains. Under air injection in the
center of the circular cell, multiple fingers of low particle
density emerged from the inlet [1, 2].
For the rectangular cell it was observed that a de-
compaction front travels first from the outlet to the
inlet before few fingers of low particle density grow
from the air inlet [3, 4]. Furthermore, in a recent
work, the coarsening of such fingers was studied [5]. In
[6] loosely compacted grains have been exposed to a
pressure gradient. In the progress of these simulations
and experiments a spinodal like instability was observed
which displays emerging and growing dispersed bubbles
of low particle density.
Considering this background various dynamics and
structures have been observed and described. However
a theory to explain the transition from dynamics which
display dispersed bubbles to dynamics that display
fractures and finger like patterns has not been presented.
In this article we will study and explain the mechanism
that controls the transition between this two types of
emerging structures during the compaction of a granular
layer.
After a number of experiments have been performed

in a rectangular cell [16], we chose to perform numer-
ical simulation. Using a discrete numerical molecular
dynamic model we have thereby the possibility to
systematically and independently vary the viscosity of
the interstitial fluid. Effectively this corresponds to
changing the size of the system, as we will discuss in the
following. This approach allows to study system sizes
which experimentally would be extremely complicated
and dangerous to achieve. In the following section we
will briefly discuss the parameters and the setup used
for the numerical model.

SETUP OF THE NUMERICAL MODEL

The setup is illustrated in Fig. 1. Two glass plates
are separated by 1 mm. The space in between the glass
plates is filled with dense grains. The gas phase injected
at the inlet following the increase of pressure is identical
to the gas saturating initially the porous packing. The

solid volume fraction of the grains is ρ
(0)
s = 0.42 which

is less than the maximum of ρ
(max)
s = 0.60 to allow

compaction of the grains. The pressure at the inlet
is set to a constant value of PI = 2.5 · 105 Pa. The
outlet is located on the opposite side of the cell. Here, a
semi permeable boundary stops the grains from leaving
the cell but is open towards the gas phase. Apart
from the semi permeable boundary at the outlet all
other three boundaries are fully sealed. At the fully
sealed boundaries gas or particle exchange is impossible.
Around 200 000 grains of 140±10% µm in diameter are
simulated. The size distribution of 10% is set to suppress
the formation of a triangular grain packing. Initially the
particles are inserted into the cell each with a random
velocity. Shortly after the friction between particles
and the plates and energy dissipation during particles
collisions is activated and the particles build up a fixed
random packing. At the start of the simulations the
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FIG. 1: (Color online) The setup of the system. (a) cross
section. (b) top view. Compressed air is injected at the inlet.
The outlet is semipermeable: Open towards the gas phase
and closed for the granular phase.

pressure at the inlet is increased. Just after the pressure
was increased a pressure front starts to propagate
through the cell and compacts the particles. The length
of the pressure front skin depth is adjusted and varied
by changing the gas viscosity.

THEORY AND SIMULATIONS

The numerical model employed is a 2D hybrid model.
It uses a continuum description for the gas phase and
a discrete description of the granular phase. Friction
between particles and the top and bottom plates is
included. It was compared to well matched experiments
and shown to reproduce closely the dynamics of granular
flows at low Reynolds numbers [17–19] and under con-
ditions similar to those assumed in the present article [1].

DYNAMICS OF THE GAS PHASE:

The equations ruling the evolution of the pressure P =
P̃ + P0, where P0 is the atmospheric pressure and P̃
local pressure fluctuations, are derived in detail in Ref.
[1, 17, 18, 20–23]. We calculate P according to:

φ

[

∂P

∂t
+ u · ∇P

]

= ∇ ·
[

P
κ

µf

∇P

]

− P∇ · u. (1)

This equation basically describes how the divergence
of the local granular velocity u leads to local pressure
changes according to the gas displacement by the grains
and between them. The viscosity µf of the gas deter-
mines how fast the gas diffuses through the permeable
grains to equalize the pressure fluctuations. φ = 1 − ρs

is the local porosity and the local permeability κ is

calculated by the Carman-Kozeny relation [20, 25].

DYNAMICS OF THE PARTICLES

The dynamics of each individual particle with the ve-
locity vp, particle mass m = ρmπa2h, particle mass den-
sity ρm, volume Va = πa2h in a cell with a plate spacing
of h and the number density defined as ρn = ρsρm/m is
described by:

m
dvp

dt
= FI + Fd + Fa − ∇P

ρn

. (2)

FI are linear inter-particle solid contact forces. The
third term on the right hand side of Eq.(2) arises from
the momentum exchange between the gas and granular
phase. Fd is a viscous force accounting for energy dissi-
pation during particle collisions. More details are given
in [17, 18].
In the granular packing we assume that the normal stress

P⊥
g is proportional to the in-plane stress P

||
g by a factor λ.

This relation is known as the Janssen hypothesis [1, 17].
Considering also a Coulomb friction model we get that
the frictional force Fa per particle with the glass plates is
proportional to the normal stress by a friction coefficient
γ:

Fa ≤ γSa(2P⊥
g + ρmgh) = γSa(2λP ||

g + ρmgh). (3)

The factor 2 in the first term accounts for the two
glass plates on each side of the particle. Sa = πa2 is
the contact area of the particles with the plates. The
second term is a contribution due to the gravitational
acceleration g on the grains which leads to additional
friction between the bottom plate and the particles. This
term is included for completeness but has a negligible
effect on the following results. Finally, the particle prop-
agation is modeled by the velocity Verlet scheme [26, 27].

RESULTS

The coefficients that determine the friction with the
glass plates are set to γλ = 4.0, a rather high value.
Lower values have also been tested and resulted in less
branched fractures. The pressure at the inlet is increased
as a steep ramp, fast enough that the maximum pressure
at the inlet of PI = 2.5 ·105 Pa is reached before particles
significantly start to move. The injected gas is consid-
ered as an ideal gas and has the compressibility of air
βT = 1/P0. The compressibility is kept constant. The
gas viscosity however is increased gradually in different

simulations, from the value of air µ
(air)
f = 0.018 mPa·s

by a factor of 1000 up to µf = 18.0 mPa·s. The results
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FIG. 2: Snapshots during the simulations of the particle den-
sity in the Hele-Shaw cell. Displayed for decreasing gas viscos-
ity from top to bottom and for increasing time (left to right).
Low particle density appears brighter in the snapshots. Un-
der air injection, fractures, fingers and dispersed bubbles of
low particle density emerge and propagate in time towards
the outlet of the cell. x- and y-axis units are given in cm.
The y-axis specifies the distance from the inlet. The maximal
density is normalized to one.

of the simulations for the particle density are shown in
Fig. 2. Dark regions correspond to a high particle den-
sity while brighter areas represent low particle density.
The gas viscosity decreases from top to bottom while
time progresses from left to right. In the time sequences
the emerging structures change drastically as a function
of the gas viscosity. In the simulation with the lowest
gas viscosity dispersed bubbles of reduced particle den-
sity appear in the whole cell apart from a darker region
at the outlet, where particles get compacted at the semi-
permeable boundary (see Fig. 2 for: µf = (0.18 − 0.018)
mPa·s; t = (0.004 − 0.01) s or Fig. 3(b) for a zoom
in). Increasing the viscosity, structures change from dis-
persed bubbles to fractures. Furthermore compaction of
the grains occurs here at the inlet and in front of the fin-
gers instead of at the outlet. Taking a close look at the
simulations at high viscosity in Fig. 2, this is indicated by
a dark region in front of the fractures and fingers which
were absent for the low viscous cases (see also Fig. 3(a)
for a zoom in).
For a better quantification the solid volume fraction is
averaged along the x-direction and plotted as a function
in the y-direction for three time steps in the Figs. 4(a)-
4(c). In these figures compaction of the grains is defined

(a) (b)

FIG. 3: Zoom in on snapshots of the particle density in the
Hele-Shaw cell during the simulations at t =0.003 s. The
snapshots correspond to the plots 4(a), 4(d) and 4(g). In (a)
µf = 1.8 mPa·s and in (b) µf = 0.018 mPa·s. The density is
normalized to one and the colorbar range is chosen from 0-0.5
to enhance the density contrast. In the plots the darker areas
represent higher grain density. In (a) a compaction front at
the inlet around the finger tips has emerged. In (b) grains
get compacted at the outlet of the cell which corresponds to
a darker stripe at the outlet (for y >6 cm).

by values of the averaged solid volume fraction higher
than 0.45. The inlet side of the cell is just like before lo-
cated at a y-position close to zero. The outlet is located
at y = 6.9 cm. At the first time step in Fig. 4(a) we
notice that compaction fronts arise at the inlet side for
viscosity values of µf < 0.018 mPa·s and at the outlet
side of the cell for the lowest gas viscosity of µf = 0.018
mPa·s. During the next time steps in Figs. 4(b)-4(c) the
compaction fronts at the inlet progress towards the out-
let. At the outlet compaction of grains now also appears
for simulations with gas viscosity values up to µf = 0.9
mPa·s. The zone of particle compaction at the outlet
grows and expands in time towards the inlet.
To understand how the grain compaction depends on the
gas viscosity we will have to take the pressure evolution
in the cell into account. In Fig. 5 the gas pressure in the
cell is displayed for time steps and gas viscosity values
corresponding to Fig. 2. The bottom row, where the
gas viscosity has the smallest value in this figure, shows
that the pressure decays continuously towards the out-
let. Alternatively we can take look at Fig. 4(d) where
the pressure average in x-direction is plotted as a func-
tion of the y-direction. Confirming our observation from
above the Fig. 4(d) shows a linear pressure profile in
y-direction for the lowest viscosity right at the start of
the simulation. In this regime the pressure gradient acts
as a body force displacing all particles in the cell simul-
taneously and homogeneously and therefore preventing
particles from jamming. Furthermore, the homogeneous
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FIG. 4: Several quantities have been averaged along the x-direction and plotted rows from top to bottom: solid volume fraction
ρs ((a)-(c)), Pressure P ((d)-(f)) and y-component of the grain velocity uy ((g)-(i)). From left to right the three figures in each
row correspond to the times t =0.003, 0.007 and 0.011 s after the start of the injection. Legends are consistent in all plots and
only displayed in the first row.

grain motion is also confirmed for the low viscosity value
in Fig. 4(g). Here uy, the y-component of the particle
velocity averaged along the x-direction, is constant as a
function of y.
The appearance of low particle density bubbles under
these conditions has previously been reported and de-
scribed in [6]. However in the present setup the semi-
permeable boundary at the outlet interferes with the oth-
erwise uniform particle motion. This results in the pre-

viously mentioned compaction layer at the outlet.
The pressure decay in Fig. 5 becomes more localized if
the viscosity is increased. Now the pressure drops rapidly
at the interface between the granular phase and the grow-
ing particle free region at the inlet side of the cell. Alter-
natively we can confirm this localized pressure decay in
the Figs. 4(d)-4(f) where the pressure is averaged along
the x-direction and plotted as a function of y. This time
sequence of plots shows that increasing the viscosity re-
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FIG. 5: (Color online) The snapshots show the pressure evo-
lution for decreasing gas viscosity (top to bottom) and as a
function of time (left to right). High pressure appears yellow
(brighter) in the snapshots. The dashed (red) line between
the snapshots shows the time tf (see Eq.(7). In the snapshots
above this dashed (red) line the compaction front thickness is
greater then the skin depth of the pressure s defined in Eq.
(5). Below the black line, the skin depth s has reached half
of the system size in a theoretical system where particles do
not move. x- and y-axis units are given in cm. The maximal
pressure is normalized to one.

sults in an increasingly steep pressure decay at the in-
terface. Further inside the granular packing towards the
outlet the pressure remains initially unchanged. In this
regime the pressure gradient acts as a surface force on the
particles at the interface between granular and gas phase.
Due to the localized pressure gradient particles at the in-
terface close to the pressure inlet are initially stronger
accelerated than the particles close to the outlet. This
leads to particle collisions and jamming in the granular
packing at the interface where a compaction front builds
up.
Where the grains are compacted the solid stress increases
as displayed in Fig. 6. The solid stress is shown to in-
creases first at the outlet for the least viscous gas. For
higher viscosity values the solid stress is localized around
the finger tips. Here the solid stress decays inside the
granular packing over a certain distance which is of the
size as the compaction front. This distance can be larger
than the distance over which the pressure gradient de-
cays from the interface into the granular packing. In
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FIG. 6: (Color online) Snapshots of the normal solid in-plane
stress between the particles for decreasing gas viscosity (top
to bottom) and as a function of time (left to right). High
stress appears yellow (brighter) in the snapshots. x- and y-
axis units are given in cm. The maximal normal solid in-plane
stress is normalized to one.

this regime the particles further inside the packing are
accelerated through solid contacts rather than by the
pressure gradient of the fluid. Such solid contacts in a
compacted granular medium transmit the stress localized
along distinct force chains. This causes a heterogeneous
acceleration of the particles and the particle velocity in
y-direction is increased along certain localized paths, as
shown in Fig. 7. Local noise and disturbance are now
affecting the evolution of the interface directly and frac-
tures appear.
In this situation local particle rearrangement and jam-

ming results in the observed fracture pattern. To quan-
tify the transition between the two regimes we will briefly
define the characteristics of the pressure diffusion, as
done in detail in [18]. We neglect the motion of the
granular phase and consider a standard diffusion equa-
tion for the pressure evolution within the granular phase.
This approach allows to define a diffusion constant for the
pressure

D =
κ

(1 − ρs)βT µf

. (4)

Furthermore we define a skin depth

s =
√

4Dt. (5)
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FIG. 7: (Color online) Snapshots of uy, the y-component of
the particle velocity for decreasing gas viscosity (top to bot-
tom) and as a function of time (left to right). High velocity
appears yellow (brighter) in the snapshots. x- and y-axis units
are given in cm. uy is normalized to one.

s is the distance from the gas/particle interface over
which the pressure has decayed by P (s) = 1

e
PI [28]. The

diffusion constant in Eq. (4) specifies how fast the fluid
flow can equalize pressure changes at given gas properties
and characteristics of the porous medium.
We can compare how well this assumed pressure evolu-
tion fits to the simulations. For this purpose we aver-
age the pressure in x-direction and calculate the max-
imum gradient in y-direction of this pressure average:
max(∂y〈P 〉x) as a function in time (see Fig. 8(b) for all
viscosity values). The y-position of max(∂y〈P 〉x) prop-
agates from the inlet towards the outlet as time passes
as shown in Fig. 8(a). At low viscosity the position
of the maximum gradient reaches the outlet almost im-
mediately after the simulation has started while at high
viscosity values this maximum gradient never reaches the
outlet during the simulated time.
In Fig. 8(a) the y-position of max(∂y〈P 〉x) depends on
the combined position of the skin depth and the position
of the gas/particle interface. To study the pressure evo-
lution relative to the gas/particle interface at the finger
tip in a Lagrangian reference frame it is more useful to
calculate max(∂y〈P 〉x) as a function in time. If the as-
sumed propagation of the skin depth for the pressure as a
square root in time relative to the interface is correct we
should be able to rescale max(∂y〈P 〉x) by multiplication
with the skin depth s(t) defined in Eq. (5). The rescaling

is done in Fig. 8(c). The rescaled graphs are constant in
time. This supports the proposed diffusive pressure be-
havior relative to the particle motion. For low viscosity
values the rescaling does not result in a constant behav-
ior because of the limiting finite size of the cell. Further
more we observe that the plots do not fall directly above
each other. For increasing viscosity values the graphs
are shifted downwards by a constant. This effect is not
captured in our explanation and is most likely due to
rearrangements and motion of the particles. In the fol-
lowing the skin depth is used as a measure of how steep
and how far the pressure decays into the granular phase
in the cell.
We notice in Eq. (4 and 5) that increasing the viscosity
reduces the skin depth. Using Eq. (5) the calculated
time for the skin depth to propagate through the cell
in y-direction is 0.0009 s at the lowest viscosity value.
This is faster than the time needed to notice a significant
movement of the grains. For the highest viscosity value
in the simulations the calculated time is 0.9 s until the
skin depth has grown to the size of the cell assuming a
fixed granular packing.
At the very start of the simulations the evolution of
the system is controlled by two length scales. The first
length scale is the length of the skin depth. The second
length scale is the thickness of the compaction front at
the gas/particle interface at the inlet. Before fractures
appear the thickness of this compaction front is related
to the growth of the particle free zone at the inlet. When
the particle free zone at the inlet of the cell grows to a
certain length of Yt in y-direction from the inlet the dis-
placement of the particles leads to a compaction front
with a minimal thickness of

dc =
Ytρ

(0)
s

ρmax
s − ρ

(0)
s

. (6)

Where dc depends on the initial solid volume ρ
(0)
s fraction

and the possible maximal volume fraction ρmax
s of the

grains. Before fractures appear Yt is equivalent to the
position of the most advanced finger tip which is plotted
in Fig. 9. The figure shows that the particle free zone
at the inlet progresses linearly in time for all viscosity
values with constant velocity Ẏt until complete particle
compaction occurs at t > 0.01s. For the viscosity value
of µf = (0.18) mPa·s distinct fingers and fractures are
yet not formed. Nevertheless, the figure shows that the
growing particle free zone at the pressure inlet already
progresses linearly in time before fingers form. According
to Eq. (6) this also implies a linear growth in time for the
thickness of the compaction front. However, the pressure
skin depth increases proportionally to the square root in
time as shown in Eq. (5). At a certain transition time

tf =
4D

ḋ2
c

(7)
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FIG. 8: (a) shows the y-position of the maximum gradient in y-direction of the in x-direction averaged pressure 〈P 〉x as a
function in time. Fig. (b) shows the maximum value of the pressure gradient in y-direction of ∂y〈P 〉x the in x-direction

averaged pressure. In Fig. (c) this maximum derivative is rescaled by the skin depth s =
√

4Dt. Legends are consistent in all
plots and only displayed in the middle figure.

the thickness of the compaction front dc will therefore
overtake the skin depth s.
At time tf we expect the transition from a body force to
a surface force and the appearance of fractures instead of
dispersed bubbles. For a direct comparison we visualized
the transition time tf in Fig. 5 by a dashed (red) line.
Above this line the thickness of the compaction front is
larger than the skin depth. When the compaction front
is ahead of the skin depth fractures were predicted in the
previous discussion. The fractures in the Figs. 2 and
5 emerge at the predicted time and thus demonstrate a
good agreement between the analytical prediction and
the simulations.
After fingers emerge in the regime of high gas viscosity
(µf > 0.9 mPa·s) the compaction front propagates at a
constant speed through the cell. This is shown in Fig.
10(a) where the y-position of the maximum solid volume
fraction averaged in x-direction max(〈ρs〉x) is plotted in
time.
In Fig. 10(b) we plotted the thickness of the particle com-
paction front in time. Although the data is very noisy
it can be seen that the thickness of the compaction front
for all tested viscosity values initially grows in time. The
compaction front for a gas viscosity µf < 0.9 mPa·s is
located at the outlet of the cell and the thickness grows
until complete compaction of the grains. The more in-
teresting values are found for a gas viscosity of µf > 1.8
mPa·s. Because here the compaction front is located at
the gas/particle interface and the thickness is measured
during the fracturing of the granular packing takes place.
In this regime for the two highest viscosity values an ini-
tial increase of the compaction front thickness occurs.
After a time of approximately t = 0.002s the growth of
the compaction front thickness slows down and appears
to stay rather constant during the further propagation
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FIG. 9: (Color online) The position of the most advanced
finger tip Yt as a function in time and for different viscosity
values. The position of the most advanced finger was found
by normalizing the particle density by its maximum value
and averaging in x-direction. If this averaged particle density
drops to a value of 0.85, approaching from the outlet side of
the cell, we define the corresponding y-position: Yt as the
position of the most advanced finger tip.

of the fractures until boundary effects start to play a
role and the grains get completely compacted. This hap-
pens at t ≈ 0.01s for the gas of highest viscosity and at
t ≈ 0.007s for the gas with viscosity of µf = 1.8 mPa·s.
Reducing the skin depth by increasing the viscosity has

the same effect on the pressure evolution as increasing the
system size instead. We can demonstrate this in the fol-
lowing discussion by non-dimensionalize Eq.(1). We have
previously shown that when the gas viscosity is increased
the pressure drop gets more and more localized along the
interface between the gas and the grains. Thus contin-
uously a limit is approached where only the outermost
particles at the interface are accelerated by the pressure
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FIG. 10: In (a) the y-position of the maximum solid volume fraction max(〈ρs〉x) in time is plotted. Before the position of the
maximum is calculated the solid volume fraction is the cell was averaged along the x-direction. In (b) ∆Y C

〈ρs〉x
a measure of

the compaction front thickness is plotted. It is the distance in y-direction over which the 〈ρs〉x value lies above a threshold of
0.47 as a function in time.

gradient. The presented simulations approach this limit
of a pure surface force. As a consequence the velocity
of the finger tip in Fig. 9 reaches a maximal value for
a gas viscosity above µf = (0.9) mPa·s. This maximal
characteristic velocity for the finger tips in the plots is
measured to be around U0 = 470 cm/s and stays con-
stant for t < 0.01 s. Further increase of the gas viscosity
will not significantly increase the maximal velocity of the
finger tips. In the limit of a pure surface force this maxi-
mal velocity is now primarily dependent on the injection
pressure and on the properties of the granular phase.
To non-dimensionalize Eq.(1) we use this characteristic
velocity U0 to define a dimensionless velocity u = U0u

′

and introduce κ0 = a2/9K as the characteristic magni-
tude of the permeability. To define further dimension-
less variables we use the system size l as a characteristic
length scale with x = lx′ and y = ly′. The atmospheric
pressure P0 is used as a the characteristic pressure to
define P = P0P

′. From these quantities follows a char-
acteristic time scale τ = l/U0 and t = τt′ [20]. The
resulting non-dimensionalized equation is:

φ

[

∂P ′

∂t′
+ u

′ · ∇′P ′

]

=
1

Pe
∇′·

[

P ′ (1 − ρs)
3

ρ2
s

∇′P ′

]

−P ′∇′·u′.

(8)
In this equation the Peclet number was defined as

Pe =
U0µf l

P0κ0
. (9)

This analysis shows that alternatively changing the
viscosity, the length scale or the inverse permeability
has the same effect on Eq. 8 that describes the pressure
evolution. Increasing the gas viscosity is equivalent as
using a larger system or reducing the permeability.

CONCLUSION:

The emerging structures sensitively depend on whether
the particles are accelerated primarily by solid contacts
or by the imposed pressure gradient. We could show
that the evolving structures depend on a characteristic
length scale which is given by the skin depth s. For a
skin depth larger than the system size, large scale ho-
mogeneous motion and the formations of dispersed bub-
bles are the results. For a short skin depth compared
to the system size a compaction front builds up that al-
lows fracturing. Hence, controlling the time dependence
of the injection pressure should in principle allow one to
control the pressure response in the packing, and tran-
sit from fracturing to diffusely compacting regimes. It
should also in principle enable to fracture a porous rock
at adjustable distances from the inlet.
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