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We study the simplification of simplicial complexes by repeated edge contractions. First,
we extend to arbitrary simplicial complexes the statement that edges satisfying the link

condition can be contracted while preserving the homotopy type. Our primary interest is
to simplify flag complexes such as Rips complexes for which it was proved recently that

they can provide topologically correct reconstructions of shapes. Flag complexes (some-
times called clique complexes) enjoy the nice property of being completely determined
by the graph of their edges. But, as we simplify a flag complex by repeated edge contrac-
tions, the property that it is a flag complex is likely to be lost. Our second contribution
is to propose a new representation for simplicial complexes particularly well adapted for
complexes close to flag complexes. The idea is to encode a simplicial complex K by the
graph G of its edges together with the inclusion-minimal simplices in the set difference
Flag(G) \K. We call these minimal simplices blockers. We prove that the link condition
translates nicely in terms of blockers and give formulae for updating our data structure
after an edge contraction. Finally, we observe in some simple cases that few blockers
appear during the simplification of Rips complexes, demonstrating the efficiency of our

representation in this context.

Keywords: Simplicial complexes; data structure; flag complexes; clique complexes;
Vietoris-Rips complexes; shape reconstruction; shape simplification; edge contraction;
collapse; homotopy equivalence; high dimensions.

1. Introduction

As datasets are growing larger in size and in dimension, simplicial complexes built

upon these data become gigantic, challenging our ability to extract useful and con-

cise information. In particular, storing all simplices becomes prohibitive. A way
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to overcome this difficulty is reducing the size of the simplicial complex prior to

analysis. During that process, it is desirable to preserve the homotopy type.

In this work, we focus on the simplification of a particular class of simplicial

complexes, likely to be encountered in high dimensional data analysis and mani-

fold learning. Specifically, we are interested in flag complexes also known as clique

complexes that have the property of containing simplices wherever the adjacency

of vertices permits one. Precisely, the flag complex of a graph G is the largest sim-

plicial complex whose 1-skeleton is G. Obviously, flag complexes are completely

determined by their 1-skeletons, which provide a concise form of storage. A stan-

dard way of building the 1-skeleton of a flag complex is to consider the proximity

graph of a point cloud. The flag complex of such a graph is called a Rips complex. In

the light of recent results,1,3 Rips complexes seem to be good candidates for repro-

ducing the homotopy type of the shape sampled by the point cloud. In this context,

simplification can be used as a preprocessing phase for reducing, for instance, the

cost of computing topological invariants such as Betti numbers.9,16)

Following what has been done within the computer graphics and visualization

communities, one can consider several elementary operations for simplifying a sim-

plicial complex: vertex removal,18 vertex clustering,17 triangle contraction.11 We

primarily concentrate here on edge contraction, the operation that consists in merg-

ing two vertices. It was used in the pioneering work of Hoppe et al.12 for generating

progressive meshes and has been intensively studied ever since. Garland and Heck-

bert10 proposed an elegant way of prioritizing edge contractions for surface sim-

plification. Dey et al.7 introduced a local condition called the link condition that

characterizes edge contractions that permit a homeomorphic modification of 2- and

3-manifolds.

It would be tempting as we repeatedly apply edge contractions on a flag complex

to keep its nature of flag complex, thus preserving its light form of storage along the

simplification process. As already observed by Zomorodian in Ref. 22 and confirmed

by our first experiments, this seems to be “almost” possible. Indeed, Zomorodian

uses a representation by simplicial sets that allows him to collapse any edge while

keeping the homotopy type unchanged. He observed that, along the simplification

process, most cells remain regular simplices. We suggest here another strategy that

preserves the representation by simplicial complexes along the simplification.

Our first contribution is the proof that the link condition introduced in Ref. 7

can also be used to guarantee homotopy-preserving edge contractions in arbitrary

simplicial complexes. Our second contribution is a new data structure for encoding

arbitrarily simplicial complexes. This data structure is particularly well-adapted for

high-dimensional simplicial complexes which are “almost” flag complexes. Besides

the 1-skeleton, we encode parsimoniously how the complex differs from the flag

complex of its 1-skeleton. Precisely, we represent any simplicial complex K by its 1-

skeleton G together with the set of inclusion-minimal simplices in the set difference

Flag(G) \ K. These minimal simplices are called blockers. The intuition is that

simplicial complexes “close” to flag complexes will have a small amount of blockers.



March 9, 2012 16:44 Preprint submitted to IJCGA

3

We show that the link condition translates nicely in terms of blockers in our new

data structure and give an explicit expression of the blockers created (and destroyed)

during an edge contraction. We have implemented the data structure and the edge

contraction operation. Our first experiments indicate that the simplification of Rips

complexes in some simple cases and using a reasonable strategy for prioritizing edge

contractions leads to the apparition of very few blockers. This seems to make the

proposed representation efficient in practice.

When drawing simplicial complexes in the figures, we adopt the convention that

besides drawing 1-skeletons, either we shade inclusion-maximal simplices or hatch

blockers. When no triangles are shaded or hatched, the convention is that the blocker

set is empty or equivalently that the simplicial complex is a flag complex.

2. Basic definitions

In this section, we recall standard definitions and notations that can be found in

textbooks.14 The cardinality of a set X will be denoted ♯X. We will use the notation

A ⊂ B to indicate that A is a subset of B and A ( B to indicate that A is a proper

subset of B.

2.1. Abstract simplicial complexes

An abstract simplex is any finite non-empty set. The dimension of a simplex σ is

one less than its cardinality, dimσ = ♯σ − 1. A k-simplex designates a simplex of

dimension k. If τ ⊂ σ is a non-empty subset, we call τ a face of σ and σ a coface

of τ . If in addition τ ( σ, we say that τ is a proper face and σ is a proper coface. An

abstract simplicial complex is a collection of simplices, K, that contains, with every

simplex, the faces of that simplex. The dimension of K is the largest dimension of

one of its simplices. The closure of a set of simplices Σ, denoted Cl(Σ), is the smallest

simplicial complex containing Σ. The closure of a simplex σ is Cl(σ) =
⋃

∅6=τ⊂σ{τ}.

The vertex set of the abstract simplicial complex K is the union of its elements,

Vert(K) =
⋃

σ∈K σ. A subcomplex of K is a simplicial complex L ⊂ K. A particular

subcomplex is the i-skeleton consisting of all simplices of dimension i or less, which

we denote by K(i). The 0-skeleton is the set of inclusion-minimal simplices. Besides

classical definitions, the following concept will be useful:

Definition 1. Let K be a simplicial complex whose dimension is k. The expansion

of K, denoted Expand (K), is the largest simplicial complex having K as a k-

skeleton. In particular, the expansion of a graph G is the flag complex of G and is

denoted Flag(G).

Throughout the paper, we will restrict ourselves to finite simplicial complexes.

Note that the expansion of the 0-skeleton K(0) is the power set of the vertex set

Vert(K) minus the empty set, Expand
(

K(0)
)

= 2Vert(K) \ {∅} and consists of all

simplices σ ⊂ Vert(K) spanned by vertices in K. In particular, it has a unique
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inclusion-maximal simplex which is Vert(K). In Section 4, we will be interested by

expansions of i-skeletons, Expand
(

K(i)
)

, which form for increasing values of i an

inclusion-decreasing sequence of simplicial complexes all containing K; see Figure

3 for a schematic drawing of K and the expansion of its 0- and 1-skeletons.

2.2. Intersection and union

Two abstract simplices τ and σ are disjoint if they have no vertices in common or

equivalently if τ ∩σ = ∅. It will be convenient to denote the union of two simplices σ

and τ simply στ instead of σ∪τ . In the same spirit, we shall use indifferently one of

the two notations {v0, v1, . . . , vk} or v0v1 . . . vk to designate the k-simplex spanned

by vertices v0, v1, . . . , vk. In particular, we shall make no distinction between the

vertex v of K and the 0-simplex {v} ∈ K. We shall also use the notation ab instead

of {a, b} to designate the edge connecting vertex a and vertex b.

2.3. Underlying space

Let π : Vert(K) → Rn be an injective map that sends the n vertices of K to n

affinely independent points of Rn, such as for instance the n vectors of the standard

basis of Rn. The underlying space of K is the point set |K| =
⋃

σ∈K Hullπ(σ) and

is defined up to a homeomorphism. We shall say that a transformation f between

two simplicial complexes K and K ′ preserves the topological type if the underlying

spaces of K and K ′ are homeomorphic, |K| ≈ |K ′| and we say that f preserves the

homotopy type if the underlying spaces are homotopy equivalent, |K| ≃ |K ′|.

3. Homotopy-preserving edge contraction

In this section, we give a local condition on the link of an edge ab in a simplicial

complex K under which the contraction of the edge ab preserves the homotopy type

of K. This condition, called the link condition, was introduced in Ref. 7 to character-

ize edge contractions that permit a homeomorphic modification when the simplicial

complex K is the triangulation of a 2-manifold or a 3-manifold. Unlike previous

works,7,19 we make no assumptions on the simplicial complex K. In particular, we

do not require that K triangulates a manifold.

3.1. Edge contraction

Recall that Vert(K) designates the set of vertices of K and consider a, b ∈ Vert(K)

and c 6∈ Vert(K). To describe the edge contraction ab 7→ c, we define a vertex map

f that takes vertices a and b to c and takes all other vertices to themselves:

f(v) =

{

c if v ∈ {a, b},

v if v 6∈ {a, b}.
(1)

We then extend f to all simplices σ = {v0, . . . , vk} of K, setting f(σ) =

{f(v0), . . . , f(vk)}. The edge contraction ab 7→ c is the operation that changes
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K to K ′ = {f(σ) | σ ∈ K}. By construction f is surjective and K ′ is a simplicial

complex. Note that the edge contraction ab 7→ c is well defined even when ab does

not belong to K.

3.2. Link condition

Let σ be a simplex of the simplicial complex K. The link of σ in K is the simplicial

complex

LkK(σ) = {τ ∈ K | τ ∪ σ ∈ K, τ ∩ σ = ∅}.

When K is clear from the context, we will drop it and denote the link of σ in K

simply by Lk(σ). In particular, whenever we contract an edge ab ∈ K to a new

vertex c ∈ K ′, it is unambiguous to write Lk(a), Lk(b), Lk(ab) for the links of a, b

and ab in K and Lk(c) for the link of c in K ′. We are now ready to state our main

result (see Figure 1).

Theorem 1 (Link condition theorem). Let K be a simplicial complex. The

contraction of the edge ab ∈ K preserves the homotopy type whenever Lk(ab) =

Lk(a) ∩ Lk(b).

An example of edge ab satisfying the link condition Lk(ab) = Lk(a) ∩ Lk(b)

is given in Figure 1, where simplicial complexes are depicted with the convention

adopted at the end of the introduction. Note that the converse of Theorem 1 is in

general not true (see Figure 2). The end of the section is devoted to the proof of

Theorem 1. First, we review the Nerve Theorem on which rests our proof. We then

give the proof before finishing the section with two technical lemmas about links.

a b a b a b

x y

v

x y

v

x
y

v

c

x y

v

Fig. 1. Form left to right: link of a, link of b, link of ab and simplicial complex after contraction of
the edge ab. One can check that ab satisfies the link condition. Equivalently, no blocker contains

ab (see Section 4.3). As a consequence, the contraction of ab preserves the homotopy type. Note
that the edge contraction ab 7→ c creates the blocker cxy and α = x and β = y satisfy (i) and (ii)
in Lemma 4. The contraction of any of the edges cv, xv and yv removes blocker cxy.

Recall that the nerve of a finite collection of sets, F is the simplicial complex

that consists of all non-empty subcollections whose sets have a non-empty common

intersection,

NrvF = {G ⊂ F |
⋂

G 6= ∅}
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c

c

zz

baa b

Fig. 2. Left and middle: two 2-dimensional simplicial complexes with a blocker through ab. Right:
The edge contraction ab 7→ c may (top) or may not (bottom) preserves the homotopy type.

The Nerve Theorem has several versions,5 one of the earliest being due to Leray.13

For the proof of Theorem 1, we shall use the following form:

Theorem 2 (Nerve Theorem). Consider a triangulable space X which is the

union of a finite collection of closed sets F , i.e. X =
⋃

F . If for every subcollection

G ∈ NrvF , the intersection
⋂

G is contractible, then the underlying space of NrvF

is homotopy equivalent to X.

Proof of Theorem 1. Suppose ab ∈ K satisfies the link condition Lk(ab) =

Lk(a)∩Lk(b) and let K ′ be the complex obtained after the edge contraction ab 7→ c.

The proof considers two coverings, one for |K| and one for |K ′|, whose nerves N

and N ′ are proved to be isomorphic and for which we establish that |K| ≃ |N | and

|N ′| ≃ |K ′|. By abuse of language, we will write |σ| for the underlying space of the

closure of σ.

Consider first the collection of sets {|σ′|, σ′ ∈ K ′} which covers |K ′| and let N ′

denote its nerve. Clearly, for any non-empty subcollection Σ′ ⊂ K ′, the intersection
⋂

σ′∈Σ′ σ′ is either empty or a simplex of K ′ and therefore the common intersection
⋂

σ′∈Σ′ |σ′| of sets in the subcollection {|σ′|, σ′ ∈ Σ′} is either empty or contractible.

The Nerve Theorem then implies that |K ′| ≃ |N ′|. Let f̄ : |K| → |K ′| be the

simplicial map induced by the vertex map f : Vert(K) → Vert(K ′) defined in

Eq. (1). Consider the collection of sets {f̄−1[|σ′|], σ′ ∈ K ′} obtained by taking the

preimages of sets in the first collection. This collection covers |K| and we denote its

nerve by N . The two nerves N and N ′ are isomorphic because the surjectivity of f̄

implies that for all Σ′ ⊂ K ′, we have the equivalence:

⋂

σ′∈Σ′

f̄−1[|σ′|] = f̄−1

[

⋂

σ′∈Σ′

|σ′|

]

6= ∅ ⇐⇒
⋂

σ′∈Σ′

|σ′| 6= ∅.

Furthermore, if the intersection on the right-hand side
⋂

σ′∈Σ′ |σ′| is non-empty,
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then there exists a simplex τ ′ ∈ K ′ such that τ ′ =
⋂

σ′∈Σ′ σ′ and by Lemma 2

which is proved below, the intersection on the left-hand side
⋂

σ′∈Σ′ f̄−1[|σ′|] =

f̄−1[|τ ′|] = |f−1[Cl(τ ′)]| is contractible. To summarize, we established that |K| ≃

|N | ≈ |N ′| ≃ |K ′|, showing that |K| and |K ′| have same homotopy type.

The proof of Theorem 1 requires to establish that |f−1[Cl(τ)]| is contractible for

all simplices τ in K ′ = f(K) under the condition that Lk(ab) = Lk(a) ∩ Lk(b). We

will prove a stronger result, namely that |f−1[Cl(τ)]| is collapsible. Recall that the

star of a simplex σ in K, denoted StK(σ), is the collection of simplices of K having

σ as a face. Provided that there is a unique inclusion-maximal simplex η 6= σ in the

star of σ, it is well-known that |K| deformation retracts to |K \ StK(σ)| and the

operation that removes StK(σ) is then called a collapse.8 A simplicial complex is

said to be collapsible if it can be reduced to a single vertex by a finite sequence of

collapses. In particular, the underlying space of a collapsible complex is contractible.

We start with a technical lemma.

Lemma 1. Let σ ⊂ Vert(K) \ {a, b} be a simplex spanned by vertices of K disjoint

from a and b. The simplex cσ belongs to K ′ if and only if either aσ or bσ belongs

to K. Equivalently, σ ∈ Lk(c) if and only if σ ∈ Lk(a) ∪ Lk(b).

Proof. Using f−1[{cσ}] = {aσ, bσ, abσ} ∩K and the surjectivity of f , we get that

cσ ∈ K ′ ⇐⇒ f−1[{cσ}] 6= ∅ ⇐⇒ {aσ, bσ, abσ} ∩ K 6= ∅ ⇐⇒ {aσ, bσ} ∩ K 6=

∅ ⇐⇒ aσ ∈ K or bσ ∈ K.

Lemma 2. Suppose ab ∈ K satisfies Lk(ab) = Lk(a)∩Lk(b) and let K ′ be the sim-

plicial complex obtained after the edge contraction ab 7→ c. The preimage f−1[Cl(σ)]

of the closure of any simplex σ ∈ K ′ is non-empty and collapsible.

Proof. For all σ ∈ K ′, we give an expression of the preimage f−1[Cl(σ)] which en-

tails its collapsibility. Recalling that the closure of a simplex is Cl(σ) =
⋃

∅6=τ⊂σ{τ}

and noting that the preimage of a union is the union of the preimages, we consider

three cases:

Case 1: f−1[Cl(c)] = f−1[{c}] = {a, b, ab} is collapsible.

Case 2: If σ ∩ c = ∅, then for all faces τ of σ, we also have τ ∩ c = ∅ and therefore

f−1[{τ}] = {τ}. It follows that

f−1[Cl(σ)] =
⋃

∅6=τ⊂σ

f−1[{τ}] =
⋃

∅6=τ⊂σ

{τ} = Cl(σ).

Case 3: If σ belongs to the link of c in K ′, then σ ∈ Lk(a)∪Lk(b) by Lemma 1. If

in addition ab satisfies the link condition Lk(ab) = Lk(a) ∩ Lk(b), this implies that

σ belongs either to Lk(ab) or to Lk(a) \Lk(ab) or to Lk(b) \Lk(ab). Observing that
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the same is true for all faces τ of σ, we deduce immediately that for all ∅ 6= τ ⊂ σ

f−1[{cτ}] =















{aτ, bτ, abτ} if τ ∈ Lk(ab),

{aτ} if τ ∈ Lk(a) \ Lk(ab),

{bτ} if τ ∈ Lk(b) \ Lk(ab).

Since Cl(cσ) = {c} ∪ Cl(σ) ∪
⋃

∅6=τ⊂σ{cτ}, we obtain that

f−1[Cl(cσ)] = {a, b, ab} ∪ Cl(σ) ∪
⋃

∅6=τ⊂σ

f−1[{cτ}].

Writing Σ · Σ′ = {σσ′ | σ ∈ Σ, σ′ ∈ Σ} and setting L = Cl(σ) ∩ Lk(ab) we get that

f−1[Cl(cσ)] =















Cl(abσ) if σ ∈ Lk(ab),

Cl(aσ) ∪ {b, ab} ∪ {b, ab} · L if σ ∈ Lk(a) \ Lk(ab),

Cl(bσ) ∪ {a, ab} ∪ {a, ab} · L if σ ∈ Lk(b) \ Lk(ab).

Hence, if σ ∈ Lk(ab), the preimage f−1[Cl(cσ)] is clearly collapsible. If σ ∈ Lk(a) \

Lk(ab), we can always find a set of simplices λ1, . . . , λk whose closure is equal to

the simplicial complex L = Cl(σ) ∩ Lk(ab) and such that, for all 1 ≤ i, j ≤ k, the

simplex λi is neither a face nor a coface of the simplex λj . In other words, the set of

simplices λ1, . . . , λk are the inclusion-maximal simplices of L. By construction, abλi

is the only proper coface of bλi in f−1[Cl(cσ)]. After a sequence of k elementary

collapses consisting in removing pairs of simplices (bλi, abλi), we are left with the

simplicial complex Cl(aσ)∪{b, ab} which is collapsible. The case σ ∈ Lk(b)\Lk(ab)

is done similarly.

4. Encoding complexes with their skeletons and blocker sets

It is common to represent a simplicial complex K of small dimension by the subset

L ⊂ K of simplices that are inclusion-maximal, that is, the set of simplices of K

which have no proper cofaces in K (see Figure 4, top left). The simplicial complex

K can then be recovered from L by taking the closure, K = Cl(L). In this section,

we introduce a new way of representing simplicial complexes (see Figures 4 to 5).

Roughly, we store the 1-skeleton G of K together with a minimal set of simplices

called blockers that indicates how much K differs from the flag complex of G. First,

we describe our data structure for encoding simplicial complexes. Then, we explain

how to check the link condition and how to maintain the data structure as we

contract edges. Pseudo-codes and time complexities are given in Appendix A.

4.1. Data structure

Definition 2. Let i ≥ 0. We say that a simplex σ ⊂ Vert(K) is an order-i blocker of

K if it satisfies the following three conditions (1) dimσ > i; (2) σ does not belong
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to K; (3) all proper faces of σ belong to K. The set of order-i blockers of K is

denoted Blockersi(K).

Equivalently, the order-i blockers of K are the inclusion-minimal simplices of

Expand
(

K(i)
)

\ K for all i ≥ 0; see Figures 3 and 4. A key consequence is that

the pair (K(i),Blockersi(K)) encodes entirely the simplicial complex K. Indeed, the

simplicial complex whose i-skeleton is S and whose order-i blocker set is B can be

retrieved from the pair (S,B) using the formula

K = {σ ∈ Expand (S) | σ has no face in B}. (2)

∅

Vert(K)

K(0)

K(1) \K(0)

K

Expand
(

K(1)
)

Expand
(

K(0)
)

order 1 blocker

order 0 blocker

Fig. 3. Hasse diagram of K.

a b c d e f

abc abd acd bcd cdf ecf

b

c

d

e

f

a

b

c

d

e

f

a ab ac ad bc bd cd df fc fe ec

abcd

Fig. 4. Left: simplicial complex consisting of six vertices, ten edges and four non-overlapping shaded
triangles. Middle: same simplicial complex represented by its 1-skeleton and order-1 blocker set

{cdf, bcd}. Right: Hasse diagram of the expansion of the 1-skeleton. Nodes in dark gray are in the
simplicial complex. Blockers and inclusion-maximal simplices are shown as framed nodes.
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In this paper, we are primarily interested in simplicial complexes K “close” to

flag complexes with a “small” 1-skeleton and therefore choose to represent them by

the pair (K(1),Blockers1(K)). Indeed, if K = Flag(G) is a flag complex, then its

blocker set is empty and K can be represented by the pair (G, ∅). As we simplify the

simplicial complex by edge contractions, we hope that the blocker set will remain

small. This intuition is sustained by experiments we make in Section 5 in which K

is the Rips complex of a point set that samples a shape. Hereafter, blockers will

always refer to order-1 blockers.

Let N (v) = NK(v) be the set of vertices w 6= v such that vw ∈ K and

write B(v) = BK(v) for the set of blockers that contain v. Clearly, encoding the

pair (K(1),Blockers1(K)) boils down to encoding for each vertex v of K the pair

(N (v),B(v)). Precisely, our data structure consists of a linear array V for the ver-

tices and records for each vertex v the set of neighbors N (v) and a set of pointers

to blockers in B(v) as illustrated in Figure 5. It follows that the size of our data

structure is a constant times
∑

v∈Vert(K)(1 + ♯N (v) + 2♯B(v)). To see this, charge

each vertex in a blocker to its corresponding vertex in V . During the operation,

each vertex in V is charged at most ♯B(v) times.

To conclude this section, we give a crude upper bound on the dimension and

number of blockers in a simplicial complex with n vertices. Consider a blocker σ

passing through a vertex v. Since σ ⊂ {v} ∪ N (v), we get ♯σ ≤ 1 + ♯N (v) and

therefore dimσ ≤ maxv∈σ ♯N (v). It follows that Nmax = maxv∈Vert(K) ♯N (v) is an

upper bound on the dimension of the blockers and O(2Nmax) is an upper bound

on the number of blockers through v. The total number of blockers in our data

structure is O(n2Nmax).

a b c d e f

b
c
d

a
c
d

a
b
d
e
f

a
b
c
f

f
c

f
e

b c d c d f

Neighbors

Blockers

Fig. 5. Data structure representing the simplicial complex in Figure 4.
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4.2. Testing whether a simplex belongs to the complex

Recall that a simplex σ belongs to K if and only if σ belongs to Expand
(

K(i)
)

and σ

has no face in Blockersi(K) (see Eq. (2)). It will be convenient to use this equivalence

with i = 0 for the proofs and i = 1 for computations. Precisely, in the proofs, we

will use that for all σ ⊂ Vert(K), we have the equivalence: σ ∈ K ⇐⇒ σ has

no face in Blockers0(K). For the computations, we will set i = 1 and test whether

σ ⊂ Vert(K) belongs to K by checking whether its edges belong to the 1-skeleton

and σ contains no order-1 blocker; see Algorithm 4 in Appendix A for the details.

4.3. Checking the Link Condition

The next lemma formulates the link condition in terms of blockers.

Lemma 3. Let K be a simplicial complex. The edge ab ∈ K satisfies the link

condition Lk(ab) = Lk(a) ∩ Lk(b) if and only if no blocker of K contains ab.

Proof. It is not difficult to see that for all simplicial complexes K and for all

edges ab ∈ K, we have the inclusion Lk(ab) ⊂ Lk(a) ∩ Lk(b). Let us prove that

Lk(ab) = Lk(a) ∩ Lk(b) implies that no blocker of K contains ab. Suppose for a

contradiction that the simplex abτ is a blocker of K for some simplex τ such that

ab ∩ τ = ∅. By definition of a blocker, all proper faces of abτ belong to K and

in particular aτ ∈ K and bτ ∈ K. On the other hand, abτ does not belong to

K. It follows that τ ∈ Lk(a), τ ∈ Lk(b) and τ 6∈ Lk(ab), implying that Lk(ab) 6=

Lk(a) ∩ Lk(b). Conversely, suppose no blocker of K contains ab and let us prove

that Lk(a) ∩ Lk(b) ⊂ Lk(ab). Consider a simplex σ ∈ Lk(a) ∩ Lk(b). By definition,

aσ ∈ K, bσ ∈ K and ab ∩ σ = ∅. We claim that abσ belongs to K and therefore

σ ∈ Lk(ab). Let us prove the claim by contradiction. Suppose some of the faces of

abσ do not belong to K and let τmin be an inclusion-minimal face among them.

In other words, τmin is an order-0 blocker. Since τmin ⊂ abσ, τmin /∈ K, aσ ∈ K

and bσ ∈ K, we must have ab ⊂ τmin which contradicts the assumption that no

(order-1) blocker of K contains ab.

Testing whether an edge ab ∈ K satisfies the link condition can be done by

traversing the blockers through a and testing for each blocker whether it contains b.

See Algorithm 1 in Appendix A for the pseudo-code and a discussion of its time

complexity.

4.4. Updating the data structure after an edge contraction

In this section, we describe how to update the data structure after an edge contrac-

tion. More precisely, we consider a simplicial complex K and let K ′ be the simplicial

complex obtained after the edge contraction ab 7→ c. Our goal is to compute the pair

(NK′(c),BK′(c)). Clearly, NK′(c) = (N (a) \ {b}) ∪ (N (b) \ {a}). The next lemma

prepares the computation of BK′(c) by characterizing blockers through c.
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Lemma 4. Let K ′ be the simplicial complex obtained after the edge contraction

ab 7→ c. Suppose σ ⊂ Vert(K) \ {a, b} is a simplex with dimσ ≥ 1. The simplex cσ

belongs to Blockers1(K
′) if and only if the following two conditions are fulfilled:

(i) σ ∈ K; every proper face of σ belongs to Lk(a) ∪ Lk(b);

(ii) σ = αβ with aβ ∈ Blockers0(K) and bα ∈ Blockers0(K).

Proof. First, note that the proper faces of cσ belong to K ′ if and only if (i) is

satisfied. Indeed, using Lemma 1, (i) is equivalent to σ ∈ K ′ and cτ ∈ K ′ for

all proper faces τ ( σ. Hence, cσ ∈ Blockers1(K
′) =⇒ (i). Let us prove that

cσ ∈ Blockers1(K
′) =⇒ (ii). Since cσ 6∈ K ′, neither aσ nor bσ belongs to K. It

follows that aσ has a face in Blockers0(K) and since σ ∈ K, this face must contain

a. Let us denote this face aβ with β ⊂ σ. Similarly, since bσ 6∈ K, there exists a

face α ⊂ σ such that bα ∈ Blockers0(K). Let us prove that αβ = σ. Suppose for

a contradiction that αβ is a proper face of σ. (i) implies that αβ ∈ Lk(a) ∪ Lk(b).

If αβ belongs to Lk(a), then β being a face of αβ must also belong to Lk(a) which

contradicts aβ ∈ Blockers0(K). Similarly, if αβ belongs to Lk(b), we also get a

contradiction.

Conversely, let us prove that (i) and (ii) =⇒ cσ ∈ Blockers (K ′). We have seen

that (i) implies that all proper faces of cσ belong to K ′. To prove that cσ 6∈ K ′,

we note that neither aσ nor bσ belongs to K. Indeed, aσ = aαβ 6∈ K since its face

aβ ∈ Blockers0(K) and bσ = bαβ 6∈ K since its face bα ∈ Blockers0(K).

x

y

a
b

z
x

y

z

c

Fig. 6. Triangle ayz is a 2-blocker. We have that Lk(a) = {x, y, z, xy, xz, b, by, bz}, Lk(b) =
{y, z, yz, a, ay, az}, Lk(ab) = {y, z}. Note that σ = αβ with α = x and β = yz fulfills (i) and

(ii) in Lemma 4. Therefore, the edge contraction ab 7→ c leads to the creation of the 3-blocker
cxyz and the destruction of the 2-blocker ayz.

A few remarks. Suppose σ = αβ with dimσ ≥ 1 and ab∩ σ = ∅ satisfies (i) and

(ii) in Lemma 4. Because order-0 blockers have dimension 1 or more, the two sets

α and β are non-empty. Writing di(v) for the largest dimension of order-i blockers

through v, it follows directly from the lemma that the largest dimension of order-1

blockers through c satisfies d1(c) ≤ d0(a) + d0(b) (see Figure 6 for an example in

which equality is attained). Finally, we show that if α is a vertex, then α ∈ N (a).
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Suppose α is a vertex. Because dimσ ≥ 1, α is a proper face of σ. Thus, (i) implies

α ∈ Lk(a) ∪ Lk(b) and (ii) implies α 6∈ Lk(b), yielding α ∈ Lk(a).

We are now ready to derive an expression for the set of blockers through c. First,

note that

Blockers0(K) = Blockers1(K) ∪ {xy | x ∈ K(0), y ∈ K(0), xy 6∈ K(1)}.

Hence, bα ∈ Blockers0(K) if and only if bα ∈ Blockers1(K) or α ∈ K(0) \ N (b).

Thus, to exhaust simplices σ = αβ with dimσ ≥ 1, ab ∩ σ = ∅ that satisfy (i) and

(ii), it suffices to take α in the set of simplices

Za(b) = {α | bα ∈ B(b), ab ∩ α = ∅} ∪ (N (a) \ (N (b) ∪ {b})) .

Switching a and b, we define Zb(a) similarly and obtain

BK′(c) = { cαβ | α ∈ Za(b), β ∈ Zb(a), αβ ∈ K, ∀τ ( αβ, τ ∈ Lk(a) ∪ Lk(b) }.

From this formula, we derive immediately an algorithm for computing BK′(c) whose

pseudo-code is given in Algorithm 5 of Appendix A. The only piece that we still

need to explain is how to compute the link of a vertex. This is done in the next

section, where more generally we compute the link of a simplex.

Let Nσ = maxv∈σ ♯N (v). Overall, updating the data structure after the edge

contraction ab 7→ c has a cost which increases with the number and dimen-

sion of blockers in a neighborhood of a and b and can be done efficiently in

O( NaNb logNN (a) ) assuming there are no blockers in a neighborhood of a and b

(see Appendix A for the details).

4.5. Computing the link of a simplex

Since the link of a simplex α ∈ K is a simplicial complex, we can also represent

it by a pair consisting of its 1-skeleton and its order-1 blocker set. We give below

formulas expressing each element in the pair. Let N (α) =
⋂

u∈αN (u).

Lemma 5. For every simplex α in the simplicial complex K, we have:

Lk(α)(1) = {σ ⊂ N (α) | dimσ ≤ 1, ασ ∈ K},

Blockers1(Lk(α)) = {σ ⊂ N (α) | dimσ ≥ 2, ασ 6∈ K, ∀σ′ ( σ, ασ′ ∈ K}.

Proof. By definition, σ is a vertex or an edge of the link of α if and only if dimσ ≤ 1,

α ∩ σ = ∅ and ασ ∈ K, yielding the first formula.

By definition, σ is a blocker of the link of α if and only if dimσ ≥ 2, σ 6∈ Lk(α)

and for all proper faces ∅ 6= σ′ ( σ, we have that σ′ ∈ Lk(α), yielding the second

formula.

Below, we give a characterization of the blockers in the link of a simplex from

which we derive an algorithm for computing the link; See Algorithm 3 in Appendix

A for the pseudo-code and a discussion of its time complexity.
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Lemma 6. Let α ∈ K. The simplex σ is a blocker of the link of α if and only if

σ ⊂ Vert(Lk(α)), dimσ ≥ 2, there exists β ∈ Blockers1(K) such that σ = β \α and

there exists no blocker of K of the form α′σ′ with ∅ 6= α′ ⊂ α and σ′ ( σ.

Proof. Suppose σ is a blocker in the link of α. By Lemma 5, we have that dimσ ≥ 2,

σ ⊂ N (α), ασ 6∈ K and ∀σ′ ( σ, ασ′ ∈ K. In particular, it is easy to check that

all vertices and all edges of σ belong to K and α ∩ σ = ∅. Therefore, the condition

ασ 6∈ K implies that there exists a blocker β of K such that β ⊂ ασ. The condition

∀σ′ ( σ, ασ′ ∈ K implies that the blocker β contains σ and therefore σ = β \ α.

Furthermore, no blocker of K has the form α′σ′ with α′ ⊂ α and σ′ ( σ.

Conversely, consider σ = β \ α ⊂ Vert(Lk(α)) such that dimσ ≥ 2, β is a

blocker of K and there exists no blocker α′σ′ of K with ∅ 6= α′ ⊂ α and σ′ ( σ.

Since β ⊂ ασ, this means that ασ is a coface of the blocker β and therefore does

not belong to K. On the other hand, for all ∅ 6= σ′ ( σ, the simplex σ′ is a proper

face of the blocker β and therefore belongs to K. One can check that for all σ′ ( σ,

the simplex ασ′ belongs to K since all its edges belong to K and none of its faces

are blockers of K. By Lemma 5, σ ∈ Blockers1(Lk(α)).

As an immediate corollary, we get that if K is a flag complex, so is the link of

any of its vertices. Furthermore, for every vertex x ∈ Lk(v), we have ♯NLk(v)(x) ≤

♯NK(x) and ♯BLk(v)(x) ≤ ♯BK(x). The pseudo-code for computing the link is given

in Algorithm 3 of Appendix A.

4.6. Poppable blockers

The smaller the number of blockers the more efficient our data structure will be.

Given a simplicial complex K represented by the pair (S,B), we are interested in

the operation that removes a blocker σ from the blocker set B, while leaving intact

the 1-skeleton S. The result is a complex K ′ represented by the pair (S,B \ {σ}).

By definition of a blocker, all faces of σ but σ itself belong to K. Thus, removing

σ from the blocker set of K has the effect of adding it to the complex, possibly

with some cofaces. We get back K from K ′ by removing precisely the star of σ

in K ′, that is K = K ′ \ StK′(σ). As we have seen earlier, if there is a unique

inclusion-maximal simplex η 6= σ in the star of σ, then |K ′| deformation retracts

to |K| and the operation that removes σ from the blocker set of K is then called

an anti-collapse. More generally, it has been established in Ref. 4 that if LkK′(σ)

is a cone, then we can go from K ′ to K by a sequence of collapses. We recall that

a simplicial complex L is said to be a cone if it contains a vertex o such that the

following implication holds: σ ∈ L =⇒ σ ∪ {o} ∈ L. The vertex o is called the

apex of the cone. We will see shortly that checking whether a simplicial complex is

a cone is not too complicated. This motivates the following definition:

Definition 3. Let K be a simplicial complex. The blocker σ of K is poppable if the

link of σ in the simplicial complex K ′ encoded by the pair (K(1),Blockers1(K)\{σ})
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is a cone. The operation that goes from K to K ′ is called an extended anti-collapse.

Removing poppable blockers from the data structure does not change the homo-

topy type. Checking whether a blocker σ is poppable can be done efficiently by first

computing the link L of σ in the complex (K(1),Blockers1(K) \ {σ}) as explained

in the previous section and then checking whether L is a cone. The following lemma

leads to a simple algorithm for testing whether L is a cone; see Algorithm 2 in

Appendix A for the pseudo-code.

Lemma 7. A simplicial complex L is a cone with apex o if and only if NL(o) =

Vert(L) \ {o} and BL(o) = ∅.

Proof. Suppose L is a cone with apex o. Clearly, every vertex v 6= o of L is

connected to o by an edge or equivalently NL(o) = Vert(L) \ {o}. Suppose for a

contradiction that oτ is a blocker of L for some simplex τ such that o ∩ τ = ∅. By

definition of a blocker, oτ 6∈ L and all proper faces of oτ belong to L. In particular

τ ∈ L and by definition of a cone oτ ∈ L, yielding a contradiction. Conversely,

suppose BL(o) = ∅ and NL(o) = Vert(L) \ {o}. Let τ ∈ L. It is easy to see that

oτ ∈ L since all edges of oτ belong to L and oτ contains no blocker.

5. Experiments

In this section we apply our representation to the simplification of a subfamily of flag

complexes, namely Rips complexes and present the results of various computational

experiments we performed.

5.1. Rips complexes

Given as input a point cloud P in a metric space and a real number r ≥ 0, the

proximity graph Gr(P ) is the graph whose vertices are the points P and whose

edges connect all pairs of points within distance 2r. By definition, the Rips complex

is the flag complex of the proximity graph, R(P, r) = Flag(Gr(P )). In our experi-

ments, we consider finite point sets P that sample various d-dimensional manifolds

X embedded in the D-dimensional Euclidean space. Typically, d ∈ {1, 2, 3}. In our

experiments, D ∈ {3, 4, 9, 1282}. Rips complexes are built using the extrinsic dis-

tance of the embedding space. In the remainder of this section, we establish an

upper bound on the initial size of our data structure and compare it with a brute-

force approach that stores all simplices in the Rips complex. For this, we suppose

the sampling is neither too sparse nor too dense. Precisely, we suppose that every

ball centered at X with radius ε contains at least one point of P and at most κ

points of P for some positive number ε ≤ r and some constant κ > 0. In particular,

dH(P,X) ≤ ε. We express our upper and lower bounds using respectively covering

and packing numbers whose definitions can be found in Ref. 6 and are recalled

below.
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Write B(x, r) for the closed ball with center x and radius r and let U ⊂ RD. An ε-

cover of U is a set Y ⊂ U with the property that the union of balls centered at Y with

radius ε contains U . An ε-packing of U is a set Y ⊂ U with the property that the

balls centered at Y with radius ε are pairwise disjoint. The covering number C(x, r, ε)

is the size of the smallest ε-cover of X ∩ B(x, r) and the packing number P(x, r, ε)

is the size of the largest ε-packing of X ∩B(x, r). We let C(r, ε) = maxx∈X C(x, r, ε)

and P(r, ε) = minx∈X P(x, r, ε). If X is a d-dimensional manifold with a positive

reach ρ > 0 then the covering number and the packing number are both Θ(rd/εd)

as ε → 0 and r < ρ. The constant hidden in Θ depends only upon the intrinsic

dimension d and does not depend upon the ambient dimension D.

Let us bound the size of our data structure. The number of neighbors of v is

upper bounded by

Nmax = max
v∈Vert(R(P,r))

♯N (v).

Since the Rips complex contains no blocker, the size of our data structure initially is

a constant times
∑

v∈Vert(R(P,r))(1+♯N (v)) ≤ n(1+Nmax). Note that the neighbors

of a vertex v in the Rips complexR(P, r) are the points of P \{v} in the ball B(v, 2r).

This ball can be covered with C(v, 2r, ε) balls of radius ε centered at X ∩B(v, 2r),

each of them containing at most κ points of P . It follows that ♯N (v) ≤ κC(v, 2r, ε)

and Nmax ≤ κC(2r, ε). Hence, the size of our data structure is bounded by n times

a quantity that depends only upon the ratio r/ε, the constant κ and the intrinsic

dimension d and not upon the ambient dimension D.

Let us now compare our representation with the one that consists in storing all

simplices. We first give an upper and lower bound on the number of k-simplices.

Consider a k-simplex σ which has v as a vertex. If σ ∈ R(P, r) then its vertex set

is contained in B(v, 2r). On the other hand, if the vertex set of σ is contained in

B(v, r) then σ ∈ R(P, r). Put another way, the set of k-simplices of R(P, r) with v

as a vertex is a subset of the set of k-simplices obtained by picking v and k distinct

neighbors of v in R(P, r). On the other hand, we get a k-simplex of R(P, r) by

choosing v and k distinct neighbors of v in R(P, r/2). Let

N ′
min = min

v∈Vert(R(P,r/2))
♯N (v).

We deduce the following upper and lower bounds on the number of k-simplices:

n

k + 1

(

N ′
min

k

)

≤ ♯{σ ∈ R(P, r) | dimσ = k} ≤
n

k + 1

(

Nmax

k

)

.

Summing over all dimensions, we get that n
N ′

min
+12

N ′

min ≤ ♯R(P, r) ≤ n2Nmax . We

saw above that Nmax ≤ κC(2r, ε). Let us give a lower bound on N ′
min. Recall that

the neighbors of a vertex v in the Rips complex R(P, r/2) are the points of P \ {v}

in the ball B(v, r). This ball can be packed with P(v, r−ε, ε) pairwise disjoint balls

of radius ε centered at X ∩ B(v, r − ε), each of them containing at least one point

of P . It follows that N ′
min ≥ P(r−ε, ε)−1. To conclude, if N represents the typical
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number of neighbors in the proximity graph, a brute-force approach would have to

enumerate something in the order of magnitude n
N+12

N , which is prohibitive for

realistic Rips complexes. This should be compared to the size of our data structure

which initially is roughly equal to O(nN). In Figure 7, we plotted the number of

k-simplices in the Rips complex of a point set P that samples the boundary of a

surface in R3. Already in this small example, the number of simplices is gigantic

and so is the size of a brute-force representation.
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Fig. 7. Number of k-simplices in R(P, r) as a function of k for a point set P that samples C2. We
used a logarithmic scale for the y-axis. Experimentally, we observe that the number of k-simplices is
above but close to n

k+1

(

N

k

)

for N = 25. The number of simplices is thus at least n

N+1
2N ≈ 3.4 109.

This should be compared with our data structure which has only to store 2646 vertices and 80304

edges to represent the same complex.

5.2. Datasets

Let us introduce the datasets we use to present our experiment findings. Each

dataset is a set of points P that samples a d-dimensional manifold X embedded in

RD. For each dataset, we try to find a scale parameter r, so that |R(P, r)| ≃ X. In

this we are helped by Ref. 3 which describes conditions guaranteeing that the Rips

complex R(P, r) recovers the homotopy type of X. Table 1 gives for each point set

P , its size, the dimension d of the sampled manifold, the ambient dimension D, the

smallest degree Nmin in R(P, r), and the largest degree Nmax in R(P, r). The first

group in the table contains synthetic datasets and the second group contains real

datasets.

5.2.1. Synthetic data

We consider three scenarios for generating P . First, we sample the boundary of

a (d + 1)-dimensional cube, Cd = ∂[−1, 1]d+1 embedded in Rd+1. Specifically, we

sample each of the 2d + 2 facets of Cd using a regular grid of kd points. Applying

this sampling method for k = 21 and d = 2, we get a first point set C2 whose size is
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Table 1. The seven point sets considered in our exper-
iments.

Dataset ♯points d D Nmin Nmax

C2 2646 2 3 50 74
S2 2646 2 3 64 151
C3 46656 3 4 91 153

S3 46656 3 4 38 333
SO3 50000 3 9 33 55

Ramses 193252 2 3 6 38
Lucky_cat 72 1 1282 7 44

6× 212 = 2646. Applying again this method for k = 18 and d = 3, we get a second

point set C3 whose size is 8 × 183 = 46656. For d ∈ {2, 3}, we then normalize Cd

and get a point set Sd which samples the d-sphere Sd = {x ∈ Rd+1 | ‖x‖ = 1}.

Finally, we sample the special orthogonal group SO3 using the method described in

Ref. 21 and get a point set SO3 ⊂ R9 whose size is 50000. We recall that the special

orthogonal group SO3 is diffeomorphic to the real projective space RP3 and can be

embedded in R9 by representing each rotation in 3D by a 3× 3 matrix.

5.2.2. Real data

Finally, we consider two real datasets. The first one, referred to as Ramses, is a

3D scan data consisting of points measured on the surface of a statue representing

Ramses II. The surface of the statue is homeomorphic to S2 and its scan is available

in the Aim@Shape repository. The second dataset, referred to as Lucky_cat, is a

collection of 72 images of a toy cat placed on a turntable and observed by a fixed

camera.15 Images of the toy are taken at pose interval of 5 degrees. Each image

has size 1282 = 16384. Since the degree of freedom of the acquisition system is 1,

the collection of images can be interpreted as a point cloud that samples a curve in

R16384. Some of the images in the dataset Lucky_cat are shown in Figure 8. The

Rips complex of Lucky_cat we use in our experiments is presented in Figure 9.

Fig. 8. Twelve of the 72 points in the dataset Lucky_cat. Each point represents a 128 pixel by 128
pixel image of a toy cat taken during its rotation around a fixed axis.
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5.3. Simplification

Once the Rips complex of P is built, we simplify it by iteratively contracting edges.

After each edge contraction, we delete poppable blockers. Initially, all edges are

stored in a priority queue Q. We use the length of the edges to prioritize them, so

that the shortest edge has highest priority. We then remove the edge ab with highest

priority from the priority queue. If ab satisfies the link condition, we contract ab to

a new vertex c = a+b
2 and update the data structure, which includes the removal

of edges from Q and the insertion of new edges into Q. We also remove poppable

blockers during that step. We let the process continue until no edges remain in

Q. Each edge contraction decreases the number of vertices by one. We call Ki the

simplicial complex obtained after i edge contractions and set ni = ♯Vert(Ki) =

♯Vert(K0)− i.

5.4. Results and discussion

For each point set P ∈ {C2, S2, C3, S3, SO3, Ramses}, we plot with respect to the

number i of edge contractions the number of blockers, the cumulated number of

poppable blockers that have been removed at step i and the average number of

neighbors per vertex; see Figure 10. For Lucky_cat, the simplicial complex obtained

after simplification is drawn in Figure 9.

180˚

300˚

0˚

15˚

345˚

Fig. 9. Left: Rips complex of the point set Lucky_cat. Right: After simplification, we obtain a

simplicial complex which consists of three vertices, three edges and has a unique blocker.

In our experiments, we observe that the total amount of blockers present in

the data structure remains notably small at all times. For Lucky_cat, none other

than the penultimate edge contraction produces a blocker. For C2 and S2, all block-

ers produced before the third from the last step are poppable. It follows that for

Lucky_cat, C2, and S2, the data structure contains no blockers almost until the end
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of the simplification. This should be compared with results in Ref. 2 in which we

were not removing poppable blockers. This slight modification in the simplification

process dramatically decreases the number of blockers in the data structure and

also accelerates computations since the cost of an edge contraction increases with

the number and dimension of blockers around that edge.

Except for SO3, the complex remaining at the end of the simplification process

possesses a unique blocker whose boundary is precisely the simplified complex. The

dimension of this unique remaining blocker is d+1, one more than the dimension d of

the sampled surface. Results are thus consistent with the topology of the sampled

shape which is a topological d-sphere for all our datasets but SO3. The complex

we obtain after simplifying the Rips complex of SO3 possesses 12 vertices and has

dimension 4. We computed its homology groups and checked that they coincide

with the homology groups of RP3. Interestingly, this complex is close to the smallest

triangulation of SO3 which contains 11 vertices.20

We also observe that, in all our experiments, the size of our data structure

decreases during the simplification. This can be explained by the fact that every

edge contraction decreases the number of vertices and edges and that the additional

cost of storing blockers remains negligible compared to the cost of storing the 1-

skeleton of the complex.

These very first illustrations of our data structure and simplification procedure

are quite promising. Indeed, in these preliminary experiments we have only tested

one of the simplest criteria for ordering edge contractions, namely the edge length,

and restricted ourselves to a strict application of edge contractions. In fact, we

believe that together with Ref. 3 this theoretical work lays theoretical foundations

and opens a new field of design and experimentation of simplification strategies

or computation of topological invariants in our representation. In future work, we

plan to revisit in this context usual simplification operations including, beyond edge

contraction, point cloud filtering, simplex collapse and anti-collapse.
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Fig. 10. We plotted as functions of i the number of blockers in the simplicial complex Ki on the
left, the cumulated number of poppable blockers removed from the data structure up to step i in
the middle and the average number of neighbors per vertex on the right. From top to bottom: the

initial Rips complex has vertex set C2, S2, C3, S3, SO3, and Ramses.
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Appendix A. Pseudo-codes and running times

We provide pseudo-codes for testing the link condition, computing the link of a sim-

plex α, testing whether a vertex belongs to a complex, testing whether a complex

is a cone and computing the blockers passing through c after the edge contraction

ab 7→ c. To express time complexities, let Nσ = maxv∈σ ♯N (v), Bσ = maxv∈σ ♯B(v)

and Qσ = maxv∈σ maxβ∈B(v) ♯β. Moreover, let Aσ be the number of blockers con-

tained in σ ∪ N (σ). We also suppose that we are able to answer whether v ∈ σ in

O(log ♯σ) time and whether τ ⊂ σ in O(♯σ log ♯σ) time. Furthermore, we suppose

that removing a vertex from σ takes O(log ♯σ) time.

Algorithm 1 Return true if and only if ab satisfies the link condition Lk(ab) =

Lk(a) ∩ Lk(b).

for all σ ∈ B(a) do

if b ∈ σ then return false end if

end for

return true

Algorithm 1 has time complexity O(Ba logQa) if the set of blockers B(a) 6= ∅

and O(1) otherwise. Algorithm 2 has time complexity O(♯Vert(L)).

Algorithm 2 Return true if and only if the complex L is a cone.

for all x ∈ Vert(L) do

if BL(x) = ∅ then

if ♯NL(x) = ♯Vert(L)− 1 then

return true

end if

end if

end for

return false

For computing the time complexity of Algorithm 3, we suppose α has constant

size. Computing the vertices in the link costs O
(

Nα logNα + ♯N (α)BN (α)

)

. Com-

puting the edges costs O
(

(♯V )2[logNV +BV logQV ]
)

. Computing the blocker

set costs O ( (♯V )BV [ logQV + (♯V ) log(♯V ) ] +AαBα(♯V ) log(♯V ) ). Summing up

these three costs and using V ⊆ N (α) and ♯N (α) ≤ Nα, we get that the time

complexity for Algorithm 3 is O(l(α)) with:

l(α) = (Nα)
2 [logNN (α) +BN (α)(logNα + logQN (α))] +AαBαNα logNα

For L = K, the time complexity of Algorithm 4 is O(g(♯σ, σ)) where g(x, y) =

x2 (logNy +By log x). If L is the link of a vertex v ∈ K, the time complexity
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Algorithm 3 Compute the 1-skeleton (V,E) and the blockers B in the link of a

simplex α.

V ← ∅

N (α)←
⋂

u∈αN (u)

for all v ∈ N (α) do

newvertex← true

for all β ∈ B(v) do

if β \ {v} ⊂ α then newvertex← false; break; end if

end for

if newvertex then V ← V ∪ {v} end if

end for

E ← ∅

for all x ∈ V do

for all y ∈ V such that x < y and y ∈ N (x) do

newedge← true

for all β ∈ B(x) such that y ∈ β do

if β \ {x, y} ⊂ α then newedge← false; break; end if

end for

if newedge then E ← E ∪ {x, y} end if

end for

end for

B ← ∅

for all x ∈ V do

for all β ∈ B(x) do

σ ← β \ α

if dimσ ≥ 2 and x first vertex of σ and σ ⊂ V then

newblocker ← true

for all a ∈ α do

for all η ∈ B(a) such that η ⊂ (σ ∪ α) do

if (η \ α) ( σ then newblocker ← false; break; end if

end for

end for

if newblocker then B ← B ∪ {σ} end if

end if

end for

end for

can also bound by O(g(♯σ, σ)) because for each vertex x in the link of v, we have

♯NLk(v)(x) ≤ ♯NK(x) and ♯BLk(v)(x) ≤ ♯BK(x).

Recall that di(v) designates the largest dimension of order-i blockers through v

and let d = d1(c) ≤ d0(a) + d0(b). Noting that the size of Za(b) is upper bounded

by Bb +Na and that αβ ⊂ Lk(a) ∪ Lk(b) has size d at most, we get that the time
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Algorithm 4 Return true if and only if the simplex σ ⊂ Vert(L) belongs to the

subcomplex L ⊂ K.

for all v ∈ σ do

for all w ∈ σ such that v < w do

if w 6∈ NL(v) then return false end if

end for

end for

for all v ∈ σ do

for all τ ∈ BL(v) do

if τ ⊂ σ then return false end if

end for

end for

return true

Algorithm 5 Compute the blockers B passing through c after the edge contraction

ab 7→ c.
B ← ∅; La ← Lk(a); Lb ← Lk(b)

for all α ∈ Za(b) do

for all β ∈ Zb(a) do

if αβ ∈ K then

newblocker ← true

for all τ ( αβ with dimension one less than αβ do

if τ 6∈ La and τ 6∈ Lb then

newblocker ← false; break

end if

end for

if newblocker then B ← B ∪ {cαβ} end if

end if

end for

end for

complexity for Algorithm 5 is O( l(a) + l(b) + (Na +Bb)(Nb +Ba)[g(d,Na ∪Nb) +

(d+ 1)(log d+ g(d− 1,Na) + g(d− 1,Nb)] ).

We conclude the appendix by computing the complexities when there are no

blockers through the vertices impacted by a local operation. The time complexity

corresponding to Algorithm 1, answering if an edge ab in K meets the link condition

is O(1). The time complexity corresponding to Algorithm 3 which builds a represen-

tation of the link of a simplex α, is O( N2
α logNN (α) ). For Algorithm 4 which tests

whether a simplex σ belongs to a subcomplex of K, we get O( (♯σ)2 logNσ ) and

updating the set of blockers takes O( NaNb logNN (a) ) (or O( NaNb logNN (b) )).

These complexities give a good picture of the practical behavior of the simplification

process when the number of blockers remains sufficiently small.


