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PULSATING FRONTS FOR NONLOCAL DISPERSION AND KPP
NONLINEARITY

JEROME COVILLE, JUAN DAVILA, AND SALOME MARTINEZ

ABSTRACT. In this paper we are interested in propagation phenomena for non-
local reaction-diffusion equations of the type:

%zJ*ufquf(:v,u) teR, zeRV,

where J is a probability density and f is a KPP nonlinearity periodic in the z-
variables. Under suitable assumptions we establish the existence of pulsating
fronts describing the invasion of the O state by an heterogeneous state. We
also give a variational characterization of the minimal speed of such pulsating
fronts and exponential bounds on the asymptotic behaviour of the solution.

Keywords: periodic front, non-local dispersal, KPP nonlinearity
2010 Mathematics Subject Classification: 45C05, 45G10, 45M15, 45M20, 92D25.

1. INTRODUCTION

In this paper we are interested in propagation phenomena for nonlocal reaction-
diffusion equations of the type:

0
(1.1) a—?:J*u—u—l—f(ac,u) teR, zeRY,
where J is a probability density and f is a nonlinearity which is KPP in w and

periodic in the z-variables, that is,
flx,u) = f(x+ku) VeeRY keZV ueR.

More precisely, we are interested in the existence/non-existence and the character-
ization of front type solutions called pulsating fronts. A pulsating front connecting
2 stationary periodic solutions po, p; of (1.1) is an entire solution that has the form
u(x,t) = P(x - e + ct,x) where e is a unit vector in RV, ¢ € R, and (s, ) is
periodic in the x variable, and such that
lim ¥(s,x) = po(x) uniformly in x
S——00

SEIJPOO Y(s,x) = p1(x) uniformly in x.

The real number c is called the effective speed of the pulsating front.

Using an equivalent definition, pulsating fronts were first defined and used by
Shigesada, Kawasaki and Teramoto [58, 59] in their study of biological invasions in
a heterogeneous environment modelled by the following reaction diffusion equation

ou

(1.2) i V- (A(x)Vu) + f(z,u) in RT x RY,

Date: February 5, 2013.



2 JEROME COVILLE, JUAN DAVILA, AND SALOME MARTINEZ

where A(x) and f(x,u) are respectively a periodic smooth elliptic matrix and a
smooth periodic function. Using heuristics and numerical simulations, in a one
dimensional situation and for the particular nonlinearity f(z,u) := u(n(z) — pu),
Shigesada, Kawasaki and Teramoto were able to recover earlier results on the min-
imal speed of spreading obtained by probabilistic methods by Freidlin and Gartner
[34, 35].

The above definition of pulsating front has been introduced by Xin [62, 63] in his
study of flame propagation. This definition is a natural extension of the definition of
the sheared travelling fronts studied for example in [10, 11]. Within this framework,
Xin [62, 63] has proved existence and uniqueness up to translation of pulsating fronts
for equation (1.2) with a homogeneous bistable or ignition non-linearity. Since then,
much attention has been drawn to the study of periodic reaction-diffusion equations
and the existence and the uniqueness of pulsating front have been proved in various
situations, see for example [5, 8, 9, 38, 39, 40, 41, 47, 61, 62, 63, 64]. In particular,
Berestycki, Hamel and Roques [8, 9] have showed that when f(x,u) is of KPP
type, then the existence of a unique non trivial stationary solution p(x) to (1.2) is
governed by the sign of the periodic principal eigenvalue of the following spectral
problem

V- (A(x)V¢) + fu(z,0)p + Apép = 0.

Furthermore, they have showed that there exists a critical speed ¢* so that a pul-
sating front with speed ¢ > ¢* in the direction e connecting the two equilibria
0 and p(z) exists and no pulsating front with speed ¢ < ¢* exists. They also
gave a precise characterisation of ¢* in terms of some periodic principal eigenvalue.
Versions of (1.2) with periodicity in time, or more general media are studied in
[5, 6, 7, 48, 50, 51, 52, 53, 55, 66]. It is worth noticing that when the matrix A and
f are homogeneous, then the equation (1.2) reduces to a classical reaction diffusion
equation with constant coefficients and the pulsating front (¢, ¢) is indeed a travel-
ling front which have been well studied since the pioneering works of Kolmogorov,
Petrovskii and Piskunov [44].

Here we are concerned with a nonlocal version of (1.2) where the classical local
diffusion operator V - (A(x)Vu) is replaced by the integral operator J * u — u. The
introduction of such type of long range interaction finds its justification in many
problems ranging from micro-magnetism [26, 27, 28], neural network [31] to ecology
[16, 19, 29, 45, 49, 60]. For example, in some population dynamic models, such
long range interaction is used to model the dispersal of individuals through their
environment, [32, 33, 42]. Regarding equation (1.1) we quote [1, 2, 18, 20, 21, 23, 25|
for the existence and characterisation of travelling fronts for this equation with
homogenous nonlinearity and [3, 22, 24, 36, 42] for the study of the stationary
problem.

In what follows, we assume that J : RV — R satisfies

J>0, [ J=1,J(0) >0,
(1.3) = AN 0)

J is smooth, symmetric with support contained in the unit ball,
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and that f: RN x [0,00) — R is [0, 1]V -periodic in x and satisfies:

f € C3RN x [0,00)),

f(0)=0,

f(z,u)/u is decreasing with respect to u on (0, +00),

there exists M > 0 such that f(z,u) <0 for all w > M and all .

(1.4)

The model example is
f(@,u) = u(a(r) —u)
where a(z) is a periodic, C® function.
Before constructing pulsating fronts, we discuss the existence of solutions of the
stationary equation

(1.5) Jxu—u+ f(z,u)=0 r e RN,

Under the assumption (1.4), 0 is a solution of (1.5) and, as shown in [22], the
existence of a positive periodic stationary solution p(z) is characterized by the sign
of a generalized principal eigenvalue of the linearisation of (1.5) around 0, defined
by
(1.6)

o =sup{ p €R | 3¢ € Cper (RY), ¢ > 0, such that J % ¢ — ¢ + fu(z,0)¢ + up < 0}

where Cpe,(RY) is the space of continuous periodic functions in RY.
More precisely, we have

Theorem 1.1. The stationary equation (1.5) has a positive continuous periodic
solution p(x) if and only if po < 0. Moreover the positive solution is Lipschitz and
unique in the class of positive bounded periodic function.

This result is analogous to the characterization of stationary positive solutions
of the differential equation (1.2) with f of type KPP in u. The main difference is
that up is not always an eigenvalue, that is, the supremum in (1.6) is not always
achieved. Similar results for (1.5), but assuming that 1 is an eigenvalue and for the
one-dimensional case (i.e N = 1) , have been obtained in [3, 24]. In this particular
situation, the uniqueness of the positive solution of (1.5) in the class of bounded
measurable functions has been proved in [24]. For the multidimensional case, the
existence and uniqueness of a stationary solution in the class of periodic functions
has been obtained by Shen and Zhang [56] assuming that pg is eigenvalue and by
Coville [22] without this assumption. The difference of Theorem 1.1 and [22] is that
we obtain a Lipschitz continuous solution.

The question whether g is really a principal eigenvalue, that is, if there exists
¢ € Cper(RY), ¢ > 0 such that

(1.7) Txd—¢+ ful@0)p+pudp=0  inRY

has been studied in [22, 56] where simple criteria on f,(z,0) have been derived
to ensure the existence of a principal eigenfunction ¢. For instance, the following
criterion proposed in [22]

1
——dr = h A= w(1,0),
/[0.,1}N A= u@.0) T = +o00, where ;161%513]" (z,0)

guarantees that pg is a principal eigenvalue. Some properties of 1o and the existence
criteria will be discussed in Section 3.
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Our main result on pulsating fronts is the following;:

Theorem 1.2. Assume g < 0 and that there exists ¢ € Cpe,r(RY), ¢ > 0 satisfying
(1.7). Then, given any unit vector e € RY there is a number ¢ > 0 such that for
¢ > ¢t (1.1) has a pulsating front solution u(z,t) = p(x.e + ct,x) with effective
speed ¢, and for ¢ < c& there is no such solution.

The minimal speed ¢} is given by

* . )
1. = inf | —=
(18) e irio( X )

where p) is the periodic principal eigenvalue of the following problem
(1.9) Ik é— b+ fu(@,0)+pd=0 RV

with Jy(z) := J(z)e**¢. We will see in Section 3 that this eigenvalue problem is
solvable under the assumptions of Theorem 1.2.

Shen and Zhang showed in [56] that ¢’ corresponds to the speed of spreading for
this equation in the following sense. For reasonable initial conditions, the solution
of (1.1) satisfies

limsup sup wu(z,t) =0 if ¢ > ¢k,
t—+o00 x-e+ct<0
while

klinﬁgx.eﬂf;zo(u(x’ t)—p(x)) =0 ife<el.

The nonexistence statement in Theorem 1.2 is a consequence of the these spreading
speed results. Along our analysis, we also obtain some asymptotic behaviour of
P(s,x) as s — +oo where ¢ is the pulsating front constructed in Theorem 1.2.
More precisely, let A(c) denote the smallest positive A such that ¢ = —{2.

Theorem 1.3. Assume 19 < 0 and that there ezists ¢ € Cper (RY), ¢ > 0 satisfying
(1.7). Then, given any unit vector e € RY and ¢ > ¢ we have
a) For any positive X so that A < X(c) there exist C' > 0 such that

U(s,x) < Ce™ Yz eRN, VseR.
b) There is 0,C > 0 such that
0 < plx) —tp(s,) < Ce ™ VaxecRN, Vs>0.

Equation (1.1) can be related to a class of problems studied by Weinberger
in [61]. However, as observed in [23, 56], one of the main difficulties in dealing
with the nonlocal equation (1.1) comes from the lack of regularizing effect of (1.1),
which makes the framework developed by Weinberger not applicable, since the
compactness assumption required in [61] does not hold.

Another difficulty in the construction of pulsating fronts is that the equation sat-
isfied by the function 1 (see (2.1) below) involves an integral operator in time and
space, which is in some sense degenerate. This difficulty also appears in the classi-
cal reaction diffusion case, and it becomes delicate to proceed using the standard
approaches used in [10, 11, 44].

Finally, we comment on some of the hypotheses made in the construction. Re-
garding smoothness of the data, one can deal with less regularity of J and f, but
some arguments would have to be modified. The hypothesis on the support of J
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in (1.3) can be weakened. For example, we believe that the same results are true
assuming that J satisfies the so called Mollison condition:

YA >0, / J(2)eN*l dz < +o0.
RN

Finally, the hypothesis that pg is an eigenvalue seems crucial in our approach. It
is an interesting open problem to understand whether some type of pulsating front
exists in the case where p( is not an eigenvalue. We believe that if such solutions
exist, they will be qualitatively different from the ones constructed in Theorem 1.2.
See also Remark 3.11 for other observations on this hypothesis.

In the preparation of this work, we were informed of a very recent work of Shen
and Zhang [57] done independently dealing with the existence and properties of
pulsating front for a nonlocal equation like (1.1). The construction of pulsating
front proposed by Shen and Zhang relies on a completely different method and an-
other definition of pulsating front. With their method, they are able to construct
bounded measurable pulsating fronts for any speed ¢ > ¢ x (e) but fail to construct
pulsating front for the critical speeds ¢*(e) due to the lack of good Lipschitz regular-
ity estimates on the fronts. Some additional properties, such as exact exponential
behaviour as ¢ — —oo, uniqueness of the profile in a appropriate class and some
kind of stability of the front are also studied in this work. The main differences
between the results obtained by Shen and Zhang and ours concern essentially the
regularity of the fronts. Whereas they obtained bounded measurable front, we ob-
tained uniform Lipschitz front which is a significant part of our work. We also
have the feeling that our approach is more robust, in the sense that it does not
strongly rely on the KPP structure and can be adapted to other situations such as
a monostable or ignition nonlinearity which seems not be the case for the method
used in [57]. We have in mind a problem like

ou / < T —y ) N
— = J | ——— | [u(y) — u(z)]dy + f(u) teR, z€eR
ot Jev~ \g(2)g(y) ’ ’
where f is monostable nonlinearity, J a smooth probability density and g a contin-
uous positive periodic function. It is worth noticing that in [57], the existence of a

principal eigenvalue for (1.7) is also a crucial hypothesis.

2. SCHEME OF THE CONSTRUCTION

The proof of Theorem 1.1 is contained in Section 5, and follows by now standard
arguments.

To construct a pulsating front solution u of (1.1) in the direction —e with effective
speed ¢ connecting 0 and a positive periodic stationary solution p, we let (s, z) =
U (w, 3:) Then we need to find 1) satisfying

C

e = M) =¥+ f(z,9) VseR, zeRY
U(s,x+k)=vU(s,z) VseR, zeRY, kezV,

lim ¢(s,x) =0 uniformly in z,
S——00

(2.1)

lim ¥(s,2) = p(z) uniformly in z,
S§—00
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where M is the integral operator

M[g)(s, ) = / (@ —y)b(s + (y — 2) - ey) dy.

RN
To analyse (2.1) we introduce a regularized problem, namely, we consider for
e>0

(2.2) s = M) =+ f(x,0) + Ay Vs €R, z € RY

where A is the Laplacian with respect to the x variables. The stationary version
of this equation is a perturbation of (1.5):

(2.3) O=Jsu—u+ f(z,u) +ecAu r e RN,

We will see in Section 5 that under the assumption that (1.5) has a positive periodic
continuous solution p, for small ¢ > 0 the equation (2.3) also has a stationary
positive solution p. and p. — p uniformly as ¢ — 0.

As a step to prove Theorem 1.2, for small ¢ > 0 we will find ¢} (¢) such that for
¢ > ci(e) there exists a solution . to (2.2) satisfying

lim (s, 2) =0
(2.4) Jim (s, z) = pe(2)

(s, ) is increasing in s and periodic in z,

This is done in Section 6, following in part the methods developed in [9].

A substantial part of this article is devoted to obtain estimates for ¢, that will
allow us to prove that ¢ = lim._,o 1. exists and solves (2.1). These estimates are
based on the expected exponential decay of 1) as s — —oo, which we discuss next.
Suppose 9 is a solution of (2.1). One may expect that for some A\ > 0

Y(s,x) = eMw(x) +o(e*®) ass— —o0, xRV

where w is a positive periodic function, at least when ¢ > ¢;. Then at main order
the equation in (2.1) yields

(2.5) cAw = / J(x — y)e/\(yfx)'ew(y) dy —w + fu(z,0)w in RY.
RN

Define
In(z) = J(z)e e
then (2.5) can be written as the periodic eigenvalue problem

(2.6) Iy kw—w~+ fu(x,0)w+ prw=0 in RY
' w > 0 is continuous and periodic,
which will be studied in Section 3. In particular, under the assumptions of Theo-
rem 1.2, we will see that it has a principal eigenvalue u) in the space of continu-
ous periodic functions. Then the speed of the travelling front should be given by
c = —5>, and this leads to the formula for the minimal speed (1.8).

For the solutions of (2.2) and (2.4) on can guess a similar asymptotic behaviour
as s — —oo and a formula for the minimal speed

* . He,
(2.7) ¢Z(e) = min(—==)
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where [t ) is the principal eigenvalue of —L. » where
L. yw =eAw+ Jyw —w + fu(z,0)w

in the space of C? periodic functions.
Based on the estimates developed in Section 7 for the operator L. yu, we prove
in Section 8 exponential bounds of the form: for 0 < A < A.(c)

(2.8) Ye(s,x) < Ce* Vo cRY VscR

where A;(c) is the smallest positive A such that ¢ = —“;'k, and C' does not depend

on € > 0. This exponential bound is obtained by studying the two sided Laplace
transform of 1., an idea present in [17].

The exponential estimate (2.8) allows us in Section 9 to obtain uniform control
of local Sobolev norms ||1)¢||w1.» with p > N, which in turn implies that we obtain
a locally uniform limit v = lim._ . for some subsequence. The final step is to
verify that 1 satisfies all the requirements in (2.1).

3. PRINCIPAL EIGENVALUE FOR NON-LOCAL OPERATORS

Let us recall the notation
Cper(RY) = {¢p € C(RY) | ¢ is [0,1]Y — periodic}.

For the rest of the article it is crucial to understand the eigenvalue problem (2.6),
and the purpose of this section is to study its properties. We will write (2.6) in the
form
51) L+ pup=0 inRY
' ¢ € Cper(RY), >0
where
Lyw = Jy xw+ a(z)w

and a(z) = fu(x,0) — 1 € Cper (RY).

We say that L) has a principal eigenfunction if for some pu € R there is a solution
in Cper (RY) of (3.1).

As we will see later, it is not true in general that L) has a principal eigenfunction,
but it is convenient to define in all cases

(3.2) pa =sup{ p € R | 3¢ € Cpe,,(RY), ¢ > 0, such that Lx¢ + u¢ < 0}
and call it the generalized principal eigenvalue of — L. The name is motivated by
the following result.
Proposition 3.1. Let A € R. Ifthereis p € R, ¢ € Cper (RYN), ¢ > 0 and nontrivial
satisfying Lxé 4+ po = 0, then w is given by (3.2) and it is simple eigenvalue of Ly.
The proof of this is a direct adaptation of Lemma 3.2 in [22].
The next proposition characterizes the existence of a principal eigenfunction.

Proposition 3.2. Ifa € Cpe,(RY), then maxa(z)+uy < 0. Moreover, max a(z)+
ux < 0 if and only if Ly admits a principal eigenfunction.

For the proof of the above result and the following two (Proposition 3.3 and
Corollary 3.4) see later in this section.

Proposition 3.3. The function —uy is conver in R and even. In particular, —py
is nondecreasing in [0,00) and nonincreasing in (—oo,0].
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Corollary 3.4. If Ly has a principal eigenfunction then for all X € R, Ly has a
principal eigenfunction.

In general it is difficult to describe precisely in terms of J and a whether Ly has
a principal eigenfunction, but we have sufficient and necessary conditions.

Proposition 3.5. Assume a € Cpe,(RY) and let A := maxgn a(z). There are
constants C1,Cy,m > 0 that depend on Jy such that:

a) if

(3.3) dz > C1||al|™

/ 1
[0,1]N A— a(m)
then Ly admits a principal eigenfunction,

b) if

1
——dx < C
/[071]N A — GJ(SC) 2

then Ly has mo principal eigenfunction.

We give the proof of this Proposition later on inside this section.
Finally, we need the next proposition to show that the formula (1.8) is well
defined and gives a positive number.

Proposition 3.6. The function A\ — py is continuous and for all € > 0 there exists
o > 0 such that
—px > —po —e+o0e?M YA ER.

The above Proposition is proved later on inside this section.

Remark 3.7. Many of the previous results have appeared in similar contexts, or
have been proved under slightly different conditions. Existence of a principal eigen-
function was obtained for symmetric non-local operators in [42], and later also in
[3, 22, 24, 56]. A condition like (3.3) is always explicitly or implicitly assumed in
these works. The motivation for definition (3.2) is taken from [12]. It has been
adapted to many elliptic operators, and was first introduced for non-local operators
in [22]. In this work the author obtained many of the results described here for an
integral operator on a domain in R . A characterization like Proposition 3.2 for i
was first obtained in [22]. The convexity of —ux, Proposition 3.3, is proved in [56]
under the assumption that a principal eigenfunction exists. Examples of non-local
operators with no principal eigenvalue are also presented in [22, 56].

The rest of this section is devoted to prove Propositions 3.2, 3.3, Corollary 3.4,
and Propositions 3.5 and 3.6. We start with some basic facts about the definition
(3.2). The following results are simple adaptations from results found in [22].

Proposition 3.8. (Proposition 1.1 [22]) Given a € Cpe,(RY), and J : RY — R,
J >0 in LY(RYN) define
pp(J,a) = sup{p € R|3p € Cper.(RN), ¢ > 0, such that J * ¢ + ag + ué < 0},
Then the following hold:
(i) If a1 > a9, then
:up(‘]’ a2) > M;D(J’ al)'
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(ii) If Jl Z J2 then
MP(JQ, a‘) > MP(‘]la a)'
(ili) pp(J,a) is Lipschitz in a, more precisely

lp (s a1) = pp(J, a2)| < Jlar — asfco-

To prove Proposition 3.5 we will need a generalization of the Krein-Rutman
theorem [46] for positive not necessarily compact operators due to Edmunds, Potter
and Stuart [30]. For this we recall some definitions. A cone in a real Banach space
X is a non-empty closed set K such that for all z,y € K and all & > 0 one has
r4+ay € K,and if z € K, —x € K then x = 0. A cone K is called reproducing
if X = K — K. A cone K induces a partial ordering in X by the relation = < y if
and only if x —y € K. A linear map or operator 7' : X — X is called positive if
T(K)CK.

If T : X — X is a bounded linear map on a complex Banach space X, its essential
spectrum (according to Browder [15]) consists of those A in the spectrum of T such
that at least one of the following conditions holds : (1) the range of A\I — T is not
closed, (2) A is a limit point of the spectrum of T', (3) U2, ker(A —T)™ is infinite
dimensional. The radius of the essential spectrum of T', denoted by r.(T), is the
largest value of |A| with A in the essential spectrum of T'. For more properties of
re(T) see [54].

Theorem 3.9. (Edmunds, Potter, Stuart [30]) Let K be a reproducing cone in a
real Banach space X, and let T € L(X) be a positive operator such that T™(u) > cu
for some u € K with ||u|| = 1, some positive integer m and some positive number
c. If ct/m > re(T), then T has an eigenvector v € K with associated eigenvalue
p>c™. and T* has an eigenvector v* € K* corresponding to the eigenvalue p.

If the cone K has nonempty interior and 7" is strongly positive, i.e. u > 0, u # 0
implies Tu € int(K), then p is the unique A € R for which there exist nontrivial
v € K such that Tv = Av and p is simple, see [65].

Proof of Proposition 3.5.
a) Write the eigenvalue problem (3.1) in the form

Iy xu+b(z)u = vu
where
bx)=a(x)+k, v=—-p+k
and k > 0 is a constant such that inf b > 0. Sometimes we will use the operator
notation Jy[¢] = Jy * ¢. We study this eigenvalue problem in the space Cpe,(RY)
with uniform norm, where the operator Jy is compact. Let u € Cper (RY), u > 0

and m € N . Since u and b are non-negative and J is a positive operator, we see
that

(3.4) (Jx 4+ b(x)" [u] > JMu] + b(z) " u
We observe that there are m and d > 0 depending on J such that for u € Cpe,(RY),

u >0,
JMu] > d/ u.
[0,1]~

JV u] = J)(\m) * U,

Indeed,
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where J
such that Jy(xz) > 0 for points x € Br(xo). Then Jy * Jy(x) > 0 for x € Bag(2x).
Iterating this argument we get J/(\m) (x) > 0 for x € Byr(maxo). We choose now
m large so that B,,r(mxg) contains some closed cube @ with vertices in ZN . Let

d=1inf,cq Jim)(x) > 0. Then, for u € Cpe,(RY), u >0,

Rlule) = [ K= pul)dy = /Q I Yue — 2) ds

Zd/u(x—z)dz:/ U,
Q [0,1]¥

since u is [0, 1]V -periodic.
Let € > 0 and define the continuous periodic positive function
1
max b™ — b(z)™ + ¢’

/(\m) denotes the m-fold convolution Jy *...x Jx. Let Br(zg) with R > 0 be

ue(x) =

We claim that choosing € and C} in (3.3) appropriately there is § > 0 such that
(3.5) TP ue + b(x)™ue > (maxb+6)"u.  in RY.
Indeed, taking Cy large in (3.3) and then £ > 0 small, we have
1
d\/[oﬁl]N max b™ — b(z)™ + ¢ dv > 1.
Then to prove (3.5) it is sufficient to have
(max b+ §)™ — b(x)™
max b™ — b(z)™ + ¢

in RV,

This last condition holds provided we take ¢ sufficiently small. Therefore, by (3.4)
and (3.5) we have
(Jx 4+ b(x))" [ue] > (max b+ ) ue

Using the compactness of the operator Jy, we have r.(Jy + b(z)) = max,cpn~ b(2),
and by Theorem 3.9 we obtain the desired conclusion. We observe that the principal
eigenvalue is simple since the cone of positive periodic functions has non-empty
interior and, for a sufficiently large p, the operator (J) + b)? is strongly positive.
Any point v in the spectrum of (Jy + b) with |v| > r.(Jx + b) is isolated, see [15].
In particular the principal eigenvalue is an isolated point in the spectrum.

b) As before, without loss of generality we can assume a > 0. Suppose there
exists a principal periodic eigenfunction ¢ with eigenvalue . Then maxa(z)+ pu <
0. Let C = [0,1]" and note that

J)\*Qﬁ(l'):/RNJ(w ))\(ﬂc y)e¢ dy_/ZJ A(mzk)e¢()

kezZN
< (/ ¢ sup Z J T — 2 — A(z—z—k)»e
C z,zeC bezN
But then
su J(x — z — k)er#—#=k)e,

keZN
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Integrating the above inequality we obtain

< dx/ su J(x — z — k)ere—z=k)e,

keZN

and hence

1
1< / ————dzx- sup J(x — 2 — k)eMr—2—k)e,
@, 2 )

keZN
Since p < —maxaf(-)
1< / dx - sup J(x — 2 — k)eMz—==k)e
max a(-) — a(x) 2,26C keZZN
Let
M = sup Z J(x — 2z — k)er@===kre,
z,z€C LeZN
€z
It
1
M / S S
¢ maxa(-) —a(x)
there can not exist a principal eigenfunction. O

Proof of Proposition 3.2. From the definition we obtain directly max a(z)+puy <
0 for all A € R. If there exists a principal eigenfunction ¢ € Cpe, (RY), then clearly
maxa(zr) + ux < 0.

Now suppose that maxa(z) + pux < 0. We approximate a by functions a. €
Cper (RY) such that maxa = maxac, ||a — ac| — 0 as e — 0, and

1
(3.6) / ——dx = +o0.
0,1V Max a: — ac(z)
Then, by Proposition 3.5 there exists a positive, periodic ¢., with ||¢c|cc = 1, such
that
Iy * Ge + (ac(x) + p5)pe =0, in RY,

Since by Proposition 3.8, u5 — pa, there exists 6 > 0 such that a.(z) + p5 < —0
for all z and . Therefore, by a simple compactness argument, we have that ¢. — ¢

uniformly as ¢ — 0, with ¢ positive satisfying (4.1), which concludes the proof.
O

Remark 3.10. If Ly has a principal eigenfunction ¢ € Cpe(RY), and additionally
a€CF k>1 and J is CF, then ¢ is also C*, which follows from

Iad = (—pr — a)9
and —py —a > 0 for some § > 0.

Proof of Proposition 3.3. To prove this result, we will first suppose that a
satisfies (3.6), and then we proceed by an approximation argument. We will prove
the convexity using an idea from [56]. Let A, A\ € R, and ¢ € (0,1). If a satisfies
(3.6) then by Proposition 3.5 there exists ¢1, ¢2 positive solutions of (3.1), with
corresponding eigenvalues g1, pi2, for Ap, A2 respectively. Consider ¢ = ¢} é_t.
Then by Hoélder’s inequality we have that

Iax < (Ja, * D1) (I, * )"
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Using the inequality above and that ¢; and ¢ are solutions of (3.1) we obtain that
Inxd < ((—a(@) = p)dn) ((—a(x) — p2)¢2)' ™" = (—a(z) — m)'(—ala) — p2)' "'

and then using Young’s inequality we obtain that

Iaxd < (H(—a(z) — ) + (1 —t)(—alz) — p2))¢ = (—a(@) + tpr + (1 — t)p2) 9,
from where
Bix+(1—t)xe = tpa + (1 — 1),

which gives the convexity.

To conclude when (3.6) does not hold, we just approximate a by a. satisfying
(3.6) and a. — a uniformly in RY. Then the result follows by Proposition 3.8 (iii).

Finally, we claim that the function u) is even. Indeed, suppose first u) is the
principal eigenvalue of Ly, so py + maxa(z) < 0. Considering Ly in the space
of L2 (RY) periodic functions, we have that L_, is its adjoint, and therefore p
is in the spectrum of L_,. Using pu) + maxa(z) < 0 it is easy to see that p is
the principal eigenvalue of L_y. In the case L) has no principal eigenfunction, we
directly deduce py = p—»x.

Since —puy is even and convex, we obtain, that u is nondecreasing in (0, 00) and
noincreasing in (—oo,0). O

Proof of Proposition 3.6. For the continuity of A\ +— u) we argue as follows.
Suppose first that a satisfies (3.6) and \; — M. It is easy to see that gy, is
bounded, so up to a subsequence px;, — p. Let ¢; € Cper(RY) be the principal
eigenfunction associated with py; (j = 1,2,...) normalized so that [|¢;[|z~ = 1.
Since 1 +maxa < 0, we have p; + maxa < —¢ < 0 for some § > 0 and all j large.
Then from

Iy, * 5 = (—pr, — a)g;

we obtain compactness to say that for a subsequence ¢; converges uniformly to a
nontrivial, nonnegative function ¢ € Cpe,(R") satisfying the eigenvalue problem

Sne ¥ = (—pp—a)p.

Because of the uniqueness of the principal eigenvalue, Proposition 3.1, p = p__.

If a does not satisfy (3.6) we argue approximating a by a. that satisfy (3.6).
Let 115 denote the principal eigenvalue of —Jy — a.. We note that the convergence
U5 — px as € — 0 is uniform by Proposition 3.8 (iii), so continuity of u5 with
respect to A for all € yields continuity of A — wy.

Next we show the exponential growth of —py. Observe that if ¢ € Cper (RN)
then

Iax o= ka(x,y)e N0 < (y)dy,
[0,1]¥
where
ka(z,y) = Z Mgz —y—k).
kezN

The function ky (-, y) is [0, 1]V -periodic. We consider the following eigenvalue prob-
lem

Lyd+ (n+e)p=0 with ¢ € C([0,1]"),
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where € > 0 and
L= | aEn)e 00y +a()6 + g
0,1
We will assume first that the support of J is large, so that for some constants
b,d > 0:
kx(z,y) > de  Va,y € [0,1]V,
Let w(y) = e~ *¥¢. Then

Lyw > (deb’\ +a(z) + po +e)w > deP w

where § > 0 and where we take A large. If A > 0 is large enough, by Theorem 3.9
we obtain a principal eigenfunction pecC ([0, 1]V) of Ly, with principal eigenvalue
—fin > e, Since kz,\(:n,y)ek(””_y)‘e is periodic in x, we see that QAﬁ is periodic.
Therefore, extending it periodically to RY, we find that it is the principal eigen-
function of Ly and —py + po + & = —fix > de?*. Now since —pu is non decreasing
in A we have —uy + po + € > € and by taking ¢ smaller if necessary we achieve for
all A
—px > —po — € + dePA

Without the assumption that the support of J is large, we can assume that

a(x) > 0 and work with m large so that the support of J” is large. Then

(Jr+a(@)™ = J5 +a()™.
Notice that
I () = T )
so the previous argument applies and we deduce that the principal eigenvalue of

JU+a(z)™ grows exponentially as A — +o0o0. Then the same holds for (J) +a(z))™
and therefore for Jy + a(z). O

Remark 3.11. We would like to comment here on the hypothesis in Theorem 1.2
that there is a principal eigenvalue for problem (1.7). In fact, the proof of The-
orem 1.2 reveals that we actually need only that (2.6) has a principal eigenvalue
for all X > 0, which holds under the stated hypotheses that (1.7) has a principal
eigenvalue (this is a consequence of Propositions 3.2 and 3.3). Then it is natural to
ask whether it is always true that (2.6) has a principal eigenfunction, even if (1.7)
does not. Thanks to Proposition 3.5 one can construct ezamples where (2.6) has
no principal eigenvalue for A in some interval around 0.

4. CONVERGENCE OF THE PRINCIPAL EIGENVALUE AND EIGENFUNCTION
Given € > 0 we study here the eigenvalue problem:
(4.1) {6Aw+J>\*ww+fu(x,0)w+uw0 in RY
w > 0 periodic and C?.
We will write
(4.2) Leyw=eAw+ Jyxw—w+ f(z,0)w

and L)\ = Lo)\.
In this section we will assume that g is a principal eigenvalue for —Ly. Observe
that by Corollary 3.4 u) is a principal eigenvalue of —Ly. By the Krein-Rutman
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theorem, we know that for € > 0, L. » has a principal eigenvalue p. » and there are
principal C? periodic eigenfunctions ¢, > 0 of L. , and @: x> 0of L7 ,, that is,

Leaten + peaxder =0 and L:,A¢:,A =+ :“&A‘vb:,)\ =0.
Lemma 4.1. Assume that pg is a principal eigenvalue for —Lg. For e > 0
(4.3) pex=sup {p €R:3¢ >0 L.rx¢+ pup <0}
(4.4) =inf {geR:3¢p >0 Lo+ pup >0},

where the sup and inf are taken over periodic C? periodic functions if € > 0 and
over continuous periodic functions if € = 0.

Proof. Let us write:

ply=sup {p:3¢>0 L.xp+pup <0}

poy=inf {p:3¢ >0 L ad+ pd >0}
Using ¢. in the definitions we see that

,u;)\ < pen < ,u::)\-
Let us prove . » = pu_ . Let € R be such that there exits ¢ > 0 C? periodic
such that L. zx¢ + up > 0. Then
Ms,/\<¢a¢:,>\> = —<¢aL:,A¢Z,A> = _<La,/\1/1a¢Z,A> < MW@Z,A)

where (, ) denotes L? inner product on [0, 1]". Since (1, $*) > 0 we deduce that
pex < p. Hence pex < p_ .
The proof of ,u:)\ < e,y is similar. (]

Lemma 4.2. Assume that po is a principal eigenvalue for —Lgo. Let p. x be the
principal eigenvalue of (4.1) in the space of C? periodic functions. Then

Hex = px ase — 0,
and the convergence is uniform for X\ in bounded intervals.
Let ¢. x be the principal periodic eigenfunction of L. x normalized so that
[Pe Al 220,17y = 1.

Then
e — b i C(RY) ase —0

where ¢y is the principal periodic eigenfunction of L.
Proof. Under the stated hypotheses (1.3), (1.4) on J and f, ¢, is C? by Proposi-
tion 3.5. Let g > py. Then
Leagr + pugx = eAdn + (1 — pa)pa > 0
if ¢ is small. Using formula (4.4) we see that for small €, p. » < p. Thus

limsup e x < -
e—0
Using (4.3) we can prove
liminf pee y > .
e—0
Next we prove the uniform convergence of ¢. \ and for this we derive a prior:
estimates. Since ¢. ) satisfies (4.1) and f,(x,0) is C? we see that ¢.  is in C>*(RY)
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for any o € (0,1). Fixi € {1,..., N} and differentiate (4.1) with respect to x;. Let
us write w; = Oy, ¢ x. Then

(4.5) eAw; + g; — w; + fu(z,0)w; + e w; =0 in RN,

where
gi(l') = /]RN (ali‘](‘r —y) — ;) e/\(y_l)ve(ba)\(y) dy + ailuf(l', 0)¢8,)\-

Let p > 1. Multiplying (4.5) by |w;|P~2w; and integrating on the period [0, 1] we
get

5/ Aw;lw;|P~?w; d$+/ gilwi [P~ w; da
[0,1]¥ (0,1}~

+/ (=14 ful2,0) + pro)ws]? dz = 0.
[0,1]N

Integrating by parts

co-1) [ Pl [ ) - e da
(0,1 [0,1]
= / gi|wi|p_2wi dx
[0,1]¥
and therefore

/ a—nmmf%mW%ms/ gilwiP~ de
[0,1]N [0,1]N

By Holder’s inequality
(4.6)

1-1/p 1/p
/ (1 - fu(l', 0) - ME,/\)|wi|p dx < (/ |wi|p> (/ |gi|p> :
[0,1]¥ [0,1]¥ [0,1]¥

Since the operator Ly has a principal eigenfunction ¢, > 0 from the relation
I dxn = (1= ful®,0) — px)oa

we see that
inf (1 — fu(z,0) — puy) > 0.

z€RN
Since f1z x — py as € — 0, for sufficiently small € > 0 we have

(1 — fu(z,0) — e n) > ¢ >0 for all z € RY.
We deduce from this and (4.6) that
lwille 0,17y < CllgillLejo,11v)
with C' independent of €. But
lgill 0,17y < CllgenllLro,1v)
and therefore, recalling the definition of w;, we obtain
(4.7) Ve llLeo,vy < Cllde Lo,y

with C' independent of e. Since we have normalized ||¢c || £2([0,117) = 1, using (4.7)
repeatedly and Sobolev’s inequality we deduce that for any p > 1

||v¢8,)\HLZD([O71]N) <C
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for some constant C. By Morrey’s inequality we deduce that ¢,  is bounded in
C([0,1]) for any 0 < o < 1. Therefore, for a subsequence we have that ¢. x — ¢
uniformly on [0, 1] to some continuous function ¢. Then, multiplying (4.1) by a
periodic smooth function and integrating by parts twice we deduce that ¢ > 0 is
a periodic eigenfunction of L) with eigenvalue puy. Then ¢ is a multiple of ¢, and
since both have L? norm equal to 1, we conclude that ¢ = ¢y. We also deduce that
the whole family ¢. » converges to ¢ as e — 0. 0

5. THE STATIONARY PROBLEM

In this section we give the proof of Theorem 1.1. The same result for Dirichlet
boundary condition appears in [22].
First we state a result analogous to Theorem 1.1 for the perturbed problem.

Proposition 5.1. Assume (1.4). Let p. denote the principal periodic eigenvalue
of —L. where for e >0

L =eAgp+ J ¢ — ¢+ fu(z,0)0.

The perturbed stationary equation (2.3) has a positive periodic solution if and only
if pe < 0 and this solution is unique.

We will omit the proof, since it is very similar to [8, 24].

Lemma 5.2. Assume pg < 0, so for e > 0 small p. < 0 and there exists a positive
solution p. of (2.3). Then there is a constant C' > 0 such that for ¢ > 0 small

%Spg(x) <C VzeRN
Also, pe is uniformly Lipschitz for e > 0 small, i.e., there is C such that
p(z) = pe(a’)| < Cla—2'| for all 2,2’ € RY
and for all € > 0 small.

Proof. For the proof of upper and lower bounds, it suffices to exhibit super and
subsolutions which are bounded and bounded away from zero, uniformly for € > 0
small. As a super solution we just take a large fixed constant.

Let us proceed with the construction of a sub solution. We follow an argument
developed in [22]. Let a(z) := fu(2,0) — 1 and o := supgy a(x). Since a(x) is
smooth and periodic there exists a point xg such that o = a(xg). By continuity of
a(z), for each n there exists 7, such that for all z € B, (z) we have |0 —a(z)| < 2.

Now let us consider a sequence of real numbers (g, )neny Which converges to zero
such that e, < % Next, let (Xn)nen be the following sequence of cut-off functions:
Xn(x) = x(”z;—j"”) where x is a smooth function such that 0 < x < 1, x(z) =0
for |z| > 2 and x(x) =1 for |z| < 1. Next, we let

Xn(@) = 37 Xulz — k)
kezN

so that for n large, y,, is well defined, smooth, and [0, 1]V periodic.
Let us consider the following sequence of continuous periodic functions (a,)nen,
defined by

an () := max{a(x),oxn}
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Then ||a, — allcc — 0 as n — co. Now consider a C* regularization b, (z)
pn * an(x) where p, is an adequate sequence of mollifiers with support in Ben (0
such that ||by, — anllec < |lan — @llco. Let ¢e > 0 be the principal eigenfunction
the following eigenvalue problem

5A¢a,n +J* ¢5,n + bn(w)(ba,n + Ma,n¢a,n =0 inR"Y.
Since b, is constant in a small neighborhood of x(y, which is a point where it

attains its maximum, by Proposition 3.5, there is a principal eigenvalue u,, and
eigenfunction ¢,, > 0 for the problem

Jx on + bn(w)(bn + pndp =0 in RY.
We normalize |[¢, | o (0,1~) = 1.
Using that ||by(x) — a(2)|lcc — 0 as n — oo, from the Lipschitz continuity with

respect to a(z) (Proposition 3.8) it follows that for n big enough, say n > ng, we
have

~—

f

o

Hn < % <0.
We fix ng large so that
|10
b — alloo < s
Having fixed ng, we work with €9 > 0 small so that

Hemy < % <0, forall 0<e<ey,

which is possible since pie p, = fin, as € = 0 by Lemma 4.2.
Now for o > 0 we have

50A¢s,no + J* U‘bs,ng - U‘bs,ng + f(SC, U‘bs,ng) > 7(”0,(:6) - bng (1'>Hoo + ME,nU)J¢E,nU
+ 0(0 ¢z n,)

> 7%U¢s,no + O(U¢s,no) > 0.

Therefore, for o > 0 sufficiently small, c¢.,, is a subsolution of (1.5). By
Lemma 4.2, ¢.,, — ¢n, uniformly in RY as ¢ — 0. Since ¢,, > 0 we find
the lower bound p. > 1/C for some C' > 0 and all € > 0 small.

Let us prove now that p. is uniformly Lipschitz. Let v = g’;j for some j €

{1,...,N}. Then v satisfies
J*v7U+€Av+fu(z5p€)v+f1)j(x7p5):0 zeRY.

We use that f(z,u)/u is a decreasing function for v > 0. This implies that f(z,u)—
fu(z,u)u > 0 for all z € RY and all u > 0. Since there is a fixed lower bound for
De 2 é (¢ > 0 small) we find a fixed lower bound for the quantity

f(fﬂapa) - fu(%Pa)Ps >09>0 Vre RN
and all € > 0 small. Then p. satisfies

eAp. + J *p. — pe + fu(zaps)ps = fu(zaps)ps - f(x,ps) < —do.

By the maximum principle we conclude that
|| ij HOO : N
|’U|§Tp8§c in RY.
0

Thus p. is uniformly Lipschitz. 0
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Proof of Theorem 1.1. Uniqueness is proved as in [24, 22]. Also the proof that
1o < 0 is necessary for existence is very similar to [24, 22], so we omit the details.

Assume now pp < 0 and let us prove that there exists a continuous solution. Let
p- be the positive solution of (2.3), which exists since p. < 0 for € > 0 small. By
Lemma 5.2, p. is uniformly Lipschitz and therefore, up to subsequence p., converges
uniformly in [0, 1] as e — 0 to a continuous function p > 0 which is periodic and
solves (1.5). By the uniqueness of the positive periodic solution of (1.5), we have
convergence of the whole family p.. O

Directly from the previous proof we get the following result.

Corollary 5.3. Assume po < 0, so pe <0 for e >0 small . Let p be the positive
continuous periodic solution of (1.5) and p. be the positive periodic solution of (2.3)
for e >0 small. Then

pe = p  uniformly as e — 0.
6. CONSTRUCTION OF APPROXIMATE PULSATING FRONTS
Let € > 0 be small enough so that

O0=Jxp—p+ecAp+ f(z,p) r RN

has a positive periodic solution p., which is unique.
Here the main result is the following.

Proposition 6.1. Let ¢i(¢) be defined by (2.7). For ¢ > c:(e) there is a solution

to
(6.1) cOsth = My — o + eAtp + f(x,7p) in R x RY
such that
lim _4(s,2) =0
(6.2) lim (s, z) = pe(2)

s——+o0

(s, x) is increasing in s and periodic in x.

To prove this result, we first work with an elliptic regularization L, of the op-
erator M — Id + A, — cOs as it is done in [5, 21, 25] and introduce a truncated
problem as follows. Given k,7, R > 0, 0 > 0 and ¢ € R consider the problem

Lo+ fo,9) + H(s,2) =0 in (-1, R) x RY
P(s,:) =o0¢ fors< —r

6.3
(6:3) P(s,) =p. fors>R
(s, ) is [0, 1]N-periodic for all s
where
L) = J@x—y)(s+(y—x)-e,y)dy —+eAph+ kdssth — cOs),

[—r<s+(y—z)-e<R]

¢ is the principal periodic eigenfunction associated with the principal eigenvalue
e of the following problem

eAdp+J ¢ — ¢+ fu(x,0)¢ + ped =0,
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and
H(s,z) = O'/ J(x —y)op:(y) der/ J(x —y)p:(y) dy.
[s+(y—z)-e<—r] [s4+(y—z)-e>R)

Proposition 6.2. There ezists og such that for all 0 < o < oy and for any ¢ € R
there exists a unique solution of (6.3). Moreover, the corresponding solution is
increasing in s, and continuous with respect to o with values in C*([—r, R] x RY).

Proof. Note that by construction, since J is smooth then H(s,z) is also smooth
and the problem (6.3) can be solved by super and sub-solutions techniques. We
call a function ¢ € C?(RY x [—r, R]) a super-solution of (6.3) if
Lo+ f(x, )+ H(s,x) <0, —r<s<R
Y(-r.2) 2 0¢e, Y(R,2) 2 pe(r) Vo eRY
1 is periodic in x.
Subsolutions are defined similarly reversing the inequalities. If there exists a subso-

lution ¥; € C?([—7r, R] x RY) and a supersolution ¥y € C?([—7r, R] x RY) such that
U, < Wy, then using monotone iterations one can construct a minimal solution y

and a maximal solution E of (6.3) such that ¥y < y < E < Wy. The monotone
iterations can be taken for instance of the form

o = ¥y
and 1, defined recursively as

(6.4)
— eAgtnt1 — KOss¥ni1 + Ostny1 + (A+ 1)1

= Mthy, + f(z,0n) + Atby, + H(z,s) in (—r, R) x RY
wn-i-l(_ra 'T) = U¢8) wn'i‘l(R’ ‘T) = pf(‘r) VZC € RN

41 is periodic in x.

where M denotes the operator
it = | T —yp(s+ (g~ ) -e.y) dy.
[—r<s+(y—z)-e<R]

Here A > 0 is a large constant such that u — f(z,u) + Au is increasing for all
u € [0, max p.] and all z. Then the right hand side of (6.4) is a monotone operator.

Now since, p. and w are bounded and strictly positive functions, the following
quantity o* is well defined

*

o :=sup{oc > 0|od: < p.}.

Take now 0 < ¢ < ¢*. Then from the definition of H(s,z) we see that p. is a
supersolution of (6.3). Indeed, a short computation shows that

‘Cﬁ[pf] + f(xaps) + H(wa 5) < (J * Pe _pa) + f(xapa) +eAzpe = 0.

Working with € > 0 sufficiently small we have that u. < 0. Let us now observe
that when 0 < ¢ < ¢* and o is small enough the function o¢. is a subsolution of



20 JEROME COVILLE, JUAN DAVILA, AND SALOME MARTINEZ

(6.3). Indeed, as above using that o¢. < p. a short computation shows that
En[0¢s] + f(:c, U¢€) + H(xv 5) > U(J * e — ¢€) + f(:c, U¢€) + 00

> 0¢e <,LL€ + ﬂ%;:bs) - fu(ZL',O)) :

Since ¢. is uniformly bounded, using the regularity of f(z,s) we have for o > 0
small enough say o < o3

f(z,00¢) He

Thus for o < g := inf{o1,0*}, 0¢. is a subsolution to (6.3) with oc¢. < p..

We prove now that for all o < o the corresponding problem (6.3) has a unique
positive solution denoted v,. To this end we use a standard sliding method. First
observe that for any 0 < o < 09, then any bounded solution v of the corresponding
problem (6.3) satisfies

00 <Y < pe.

Indeed, let us start with the proof of the inequality v < p.. Since p. is bounded
away from 0 the following quantity is well defined

7" =inf{y > 0]y <7p:}.

To prove the inequality, we are reduced to show that v* < 1. Assume by contradic-
tion that v* > 1. From the definition of v*, using the periodicity of the functions 1,
p. and a standard argument we see that there exists a point (sg, o) € (—7r, R) x RY
such that v*p.(so,x0) = ¥ (s0, z0o).

Observe that since @ is a decreasing function of s, the function y*p. is a
supersolution of (6.3). Moreover, for some positive constant A big enough, the
function y*p. — 1 satisfies

Lo(v'pe =) — A(¥'pe —9) <0, in (-r,R)xRY
(v'pe —)(—r,2) >0, (v'pe—¥)(R,z) >0 VzeRY.

Since L, is elliptic in (—r, R) x RY and v*p(so, z0) = ¥(s0, o), from the strong
maximum principle it follows that

Ype = in (—r,R) x RY,

which is impossible since v*p.(x) > pe(x) > ode(x) = ¥(—r,x). Therefore we
have v* < 1 and ¥ < p.. The strict inequality comes from the strong maximum
principle. Now observe that to obtain the other inequality o¢. < 1 we can just
reproduce the above argumentation with o¢. in the role of ¥ and % in the role of
Pe.

We are now in position to prove the uniqueness of the solution of (6.3). Suppose
11, 12 are 2 solutions of (6.3). Define the following continuous functions

op(x) ifs<—r and x € RY
Yi(s,z) =< Pi(s,z) if —r<s<R andz eRN
pe(x) if s> R and z € RN
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and
op-(z) ifs<—r andzeRY

Po(s,x) =< a(s,x) if —r<s<R andx RN
pe () if s> R and z € RV,

Note that with this notation the equation (6.3) satisfied by ¥; and 1y can be
rewritten

(6.5)  eA; + KDssth; — cOstby — i + f,90;) = =My in (—r,R) x RY,
with i € {1,2}.
Let us define B B
Vi (s,2) == P1(s +7,)

with 7 € R. Obviously, we have
Y7 (s,x) == P1(s + 7, 1) in (=r,R—7) xRN
We claim that for all 7 € [0, R + 7]
(6.6) U7 (s,2) > Pa(s,x) for (s,2) € R x RV,
By construction we easily see that z/?f"” > by in R x R since we know that
o <y <p. for (s,r) € R x RV,
Moreover, using that we have a strict inequality in (—r, R), that is to say
0. <P <p. for (s,z) € (—r,R) x RY,
we can find a positive ¢ such that for any 7 € [R+r — ¢, R+ r] we have
YT (s,x) > Pa(s,x) for (s,2) € R x RV,
Note also that by construction for all 7 > 0 we have
(6.7) Y] > o in (=00, =] U[R — 7, +00)) x RY.
Now let us define
™ =inf{r € [0,R]: ¥] >y for 7 €[r,R+7]}
then 0 < 7* < R+ r. Assume that 7* > 0. in this case
07 >4y inRxRY
and since J > 0 we have
M (7" — 1) 2 0.
Now, fix A > 0 large so that f (z,u) + Au is monotone increasing in [0, max p].

Let us denote z := 1/{* — 1by. Then using the definition of 1] and ¢ in (—r, R —
7*) x RN, we have

eAzZ + KOssz — €05z — (A+ 1)z < fM(z/_)I — 1/72) <0,
z(=r,z) >0 for all z € RY,
2(R—71",2) >0 for all z € RV,

By the strong maximum principle, it follows that z > 0 in (—r, R — 7%) x RV,
Therefore, we have 17" — 1y > 0 in [—r, R—7*] x RY and by continuity for § small
we have for any 7 in (7% — 6, 7%)

(6.8) YT —1hy >0 in [-r, R — 7] x RV,



22 JEROME COVILLE, JUAN DAVILA, AND SALOME MARTINEZ

Combining the later with (6.7) it follows that for any positive 7 in (7% — 6, 7*) we
have

O] =2 >0 in RxRV,
which contradicts the definition of 7*. Therefore, 7% = 0 and t; > 1. By inter-
changing the role of 1, and 1), in the above argument we end up with ¥; > 1y > 1)1,
which prove the uniqueness of the solution of (6.3).

Taking ¥2 = v in (6.6) shows that ¢ is increasing in s. Finally, denoting 1,
the unique solution of the corresponding problem (6.3) one can see that the map
o — 1, is continuous, thanks to the uniqueness of the solution to (6.3) and standard
elliptic estimates. O

Proposition 6.3. Suppose ¢ > c:(e). Then there exists ro > 0, k(c) >0 and k > 0
such that for r > rq, R > 19, £ < k(c) there is o € (0,00) for which the unique
increasing solution ¥ of (6.3) satisfies

max 0,x) = — min p;.
ZE[O,I]N,L/J( ) k RN p&
Proof. Let 1, denote the unique solution of (6.3) constructed in Proposition 6.2.
Choose k£ > 0, so that
00 max Ge > 7 minpe,
where ¢. denote the positive periodic principal eigenfunction associated with the
eigenvalue problem

Jxdp—¢+eAd+ fu(z,0)¢+ ped = 0.

Observe that since v, is increasing in s, we have maxgn ¥4, (0, ) > % mingw~ pe.
Next we prove that for o = 0, we have max,cpny ¥(0,2) < %minRN Pe.
Recall that

i@ = (-55).

where [ ) is the principal periodic eigenvalue of the problem

Ik — 4 A+ fulx,0)¢ + pe xd = 0.

Since ¢ > ¢} (e) there is A > 0 such that cA + p_ 5 > 0. Let us denote ¢, 5 the
principal periodic eigenfunction associated with p, 5 and consider the function

w = e/\(s_SO)Qﬁe,Xa

where sy € R is chosen so that

5 1
)\SU :
e max ¢, 5 < — min
¥ Te A N Pe,

k r
and take R > 0 large so that
eX(Rfso)]%glivm b5 > p=(2).
Since w is monotone increasing in s we have
w(s,xz) > p.(x) for any (s,x) € [R,+00) x RV,
Finally, observe that

ex(f’us“)%’;\(x) >0 forany (s,z)€RxR",
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We claim that the function w is a supersolution of (6.3) with o = 0 for x small
enough. Indeed, in (—r, R) we have

Lew + f(%, w) + H(S7 x) < (JX * (ba,j\ - Qﬁe,j\ + EAQﬁe,X + fu(xa 0)¢8,5\ - Cj‘qﬁe,j\ + 55‘2¢a,5\)e;\s
< —(pe s+ A — KX )w

Therefore, for x < C';% =: k(c) we have

Low+ f(z,w)+ H(s,z) <0 for all (s,z) € (—r, R) x R,
w(=r,xz) >0 for all z € RV,
w(R, ) > p. for all = € RY.

Since 0 is a subsolution of (6.3) with o =0 and w > 0 using the uniqueness of the
solution of (6.3) we must have ¢y (s, x) < w(s,x). Therefore

. Pe
a 0,r) < ma 0,z) < —.
e vol0, ) < xpgxw(0, ) < i

With R > 0 fixed, we see that the map o € [0, 09] — 1), is continuous, and at og
satisfies max ), (0, 2) > min &= and max (0, ) < min 5=. By continuity there is
o € [0, 00] such that max,(0,z) = min £=. O

Proposition 6.4. For ¢ > ci(e) and k < k(c) there is a solution to

(6.9) Ost) = M) — 1 + AV + k0t + f(2,9)  in R x RY
such that

dim (s, 2) =0

Jim (s, z) = pe(2)

U(s,x) is increasing in s and periodic in x.

Proof. For r > 0 large, let 1, be the solution of (6.3) with R = r obtained in
Proposition 6.3 where 0 = o(r) € (0,00) is such that

. De (x)
(6.10) max (0, 2) = Jmin ——.
We let » — oo. Since 1, is locally bounded in C1®, there is a subsequence such
that v, converges locally in C1“ to a function 1 : R x RY which satisfies (6.9) with
the speed ¢, is increasing in s and periodic in x.

The limit w(x) = lims_, oo (s, z) exists and is a solution of the stationary prob-
lem. By Proposition 5.1 part b) this solution is either 0 or the unique positive sta-
tionary solution p.. By (6.10) we conclude that w = 0. Similarly limg_, oo ¥(s,2) =
pe().

O

In the next proposition we establish some a priori estimates satisfied by the
solutions of (6.9). Namely, we have

Proposition 6.5. Let ¢ > c}(e) and k < k(c) then the solution (¢y e, c) of (6.9)
satisfies
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(i)
€ 1 ~
o[ 10w =5 [IVenP - § [ T@e) - )P + [ Plap)
RxC c c2 c

where C = [0,1]N and J = Y opezn J(x —y — k) is a symmetric positive
kernel.

(i) For all compact set K C R x RY | there exists R > 0, a constant y(R) and
n € N so that

19t < AR,
(ili) Given R >0, let
Qr={(s,z) eRxRY : |z| < R, |s|] < R}.
Then there exists positive constant M, M’ independent of € such that

1
sup |Vathe el < M (|c| + = + R (2 sup |pe(x)| + sup |fu(x,0)|)) sup |ty |
Qr Qr Qr

QRry/a
sup |wf€,8(t1a x) - wn,a(tQ; $)|

QR4 [t1 — t2|ﬁ

< M'sup |Vt el
Qr

We give the proof of this Proposition in Appendidx A. We are now in a position
to prove the Proposition 6.1

Proof of Proposition 6.1. Let us first assume that ¢ > ¢f(¢). Then from the
above construction, for any x < k(c), there exists a function v (s, x) increasing
in s and periodic in x € R that is solution of (6.9). Without loss of generality, we
can assume that v, . is normalized as follows

— min Pe
IE%X ¢n,€(07$) - Iﬂg}\]n k :
We let k — 0 along a sequence. Thanks to the apriori estimates of Proposition 6.5,
we can extract a subsequence of (¥, )neny Which converges locally uniformly in
R xRY to a function ¢. € H} (RN)NC*(R xRY) for some o € (0, 1), that satisfies
(6.1) in the sense of distributions. Since 1), . is periodic in z, monotone increasing
ins, and 0 < %, . < pe, we also have that 1. is periodic in x, monotone non
decreasing in s, and 0 < ¥. < p.. Note also that from the normalization condition,
since 1y, « — ¥ locally uniformly, we also deduce that
. Pe
6.11 max Y. (0,z) = min —.
(6.11) naxc-(0, ) = min 2
Furthermore, using standard parabolic estimate, on can show that 1. is a classical
solution of (6.1). Thus 9. satisfies

eAY. — cOsthe + M[Ye] — oo + f(2,9:) =0 in R x RY,
0<t¢<pe, 9p>0 inRxRY
Ve (s,+) is [0, 1]V -periodic for all s.

By standard estimates the limit w(x) = lims_, _ o 1 (s, z) exists and is a solution of
the stationary problem. By Proposition 5.1 part b) this solution is either 0 or the
unique positive stationary solution p.. By (6.11) we conclude that w = 0. Similarly

limg 4 oo ¥e(8, 2) = pe(x). O
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7. ESTIMATES FOR L x
Recall the notation from (4.2):
L.yu=cAu+ Jyxu—u—+ fyu(z,0)u.

Lemma 7.1. Let A be such that 0 < Ac < — i n, where pe x is the principal periodic
eigenvalue of the operator —L. x defined in section 4. If u € C*(RYN), u >0 is a
periodic solution to
Leyxu—Acu=h in RN
then
ull Lo (o,1v) < CenllPllpos(jo,11%)-
Note that for any € > 0 and 0 < Ay < Ay < —pe z/c we have

sup C: ) < o0,
Ao <A<\

but the constant depends on e.
Proof. Let ¢; \ be the principal eigenfunction of the adjoint operator L? ,. Then
multiplying the equation by ¢ | and integrating we find

(—ten = A0) / ug? = / hét .
[0,1]V [0,1]V

Since Ac < —pien, u > 0 and ¢ , is strictly positive and bounded, we obtain

lull Lo~y < CeallhllLao,y.-
The uniform norm follows because of standard elliptic estimates for the operator
Ls,)\- O

Proposition 7.2. There is p > 0, such that for any 0 < p < p there is g > 0
and C' such that for any 0 < € < g9, any A that satisfies (—pex — p)/c < A <
(—pex —p')/c and any u > 0 that is a periodic solution to

(7.1) Leau—Xeu=h inRY
for some h € L*> we have

lull oo go,11%) < ClIAll oo (o,1)%)-
The constant p > 0 does not depend on € or \.

Proof. Let uy be the principal eigenvalue of —Ly. Recall that inf,cp v (1 —
fu(z,0) — pg) > 0, so we can fix p > 0 such that inf, (1 — f,(2,0) — uop — p > 0).
Since uy < o, see Proposition 3.3, also inf, (1 — f,(2,0) — ux — p > 0). Let
0 < p’ < p and let us proceed by contradiction. Assume that there exist sequences
en — 0, A\, € R, periodic functions (h,) in L, (u,) in C?, such that: ), satisfies
(—pin — p)/c < Xy < (—pn — p')/c, where p, = fic, 1, Un solves (7.1) and

hallLe =0 and  |jup||pe = 1.
We write equation (7.1) as
(72) EnAUn - an(x)un = —9n

where
an(‘r) =1- fu(‘rao) +Apc and g, = J)\nun — hp.
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After extracting a subsequence we may assume that A\, — X\, u,, — u weakly-* in
L>([0,1]V) and then Jy, u, — Jyu uniformly. Hence g, — g = Jyu uniformly,
and g is continuous. By Lemma 4.2 we have p,, = e, x,, — tx as n — 0o. Since

an(x) =1— fu(z,0) + Apec > 1 — fu(x,0) — pp — p
and 1 — f,(z,0) — ux — p > 0, by working with n large we may assume that

inf a,(z) > ap >0 for all n.

Note that a, = a = 1 — f,,(2,0) + Ae¢, which is a continuous positive function,
and the convergence is uniform. We claim that w,, — ¢g/a uniformly. For the next
argument we will assume that g, > 0, which we can achieve by replacing w,, by
u, + M and g, by g, + apM where M > 0 is large. Note that (7.2) and g, — g
uniformly still hold. Let 0 < o < 1/2 and 29 € RY. By uniform convergence
gn — ¢, an — a and the continuity of g and a, we have

in _nl@) >(1- U>g(x0)
2€B,(z0) B + an(x) a(zo)
provided we choose 7 > 0, § > 0 small and n > ny with ny large, and this is
uniform in zg. Let z be the principal eigenfunction for —A in B, (xg) such that
_ _ 2 . . . .
Maxg, (z,) %2 = 1 and let v, = C/r* be the corresponding principal eigenvalue, that
is,

in B,(xo)

Az+v,2=0, 2>0 in By (z0)
z=0 on OB, (x0).

Define

Up = Uy — 2d, where d, = inf 9717(95)
B (z0) VpEn + G ()

Then
EnAvy, — apvy = —gn + dp(entr + an)z <0

by the choice of d,, and z < 1. Since v, = up, > 0 on 9B, (x) by the maximum
principle we deduce that

. gn(z) .

Uy, > inf ——————— )z in B,(x9).
"= (BT(‘,L‘U) Vrén + an(z>) T( O)

In particular, if n > ng is large enough so that v, < 3 we obtain

g(wo)
a(zo)

un(xg) > (1 —0)

This proves that
lim inf inf (u, — g/a) > 0.

n— o0 x

A similar argument shows that

lim sup sup(u, — g/a) <0

n—oo x

which proves the uniform convergence u,, — g/a. We deduce that u = g/a, and
therefore u solves the equation

Ju—u+ fu(x,0)u — Aeu = 0.
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But since ||uy||L~ = 1 and w,, converges uniformly we also deduce that |ul|p~ = 1.
Moreover u > 0. Then necessarily Ac is the principal eigenvalue —py of L. This not
possible because we assumed \¢ < —p,, —p’, 850 Ae < —py—p’, a contradiction. [

8. EXPONENTIAL BOUNDS
Suppose we have a solution of
s = eAp+ M) — o + f(x,7p) Vs € R,z € RN
(-, x) is nondecreasing for all x
(8.1) U(s,-) is [O 1]V periodic for all s
P(s,x) as s — —oo
P(s, x) —>p6( ) as s — .

Let 6 > 0 be fixed. We assume the following normalization on ):

8.2 0 =J.
(82) hax ¥(0,2) =
Let A-(c) be the smallest positive A such that ¢ = —#52. The main result in

this section is the following.

Proposition 8.1. For any 0 < A\ < A\.(c) there are § > 0, C > 0 such that if ¢
satisfies (8.1) and (8.2), then

(8.3) U(s,z) < Ce™ VzeRN, Vs<O0,
where C' does not depend on € > 0.
As a corollary we have:

Proposition 8.2. For all € > 0 small and any fized A such that 0 < X\ < A\.(c)
there exists Cy independent of € such that if ¥ satisfies (8.1) and (8.2), then

(8.4) [s(s,z)| < Cre*® Vs <0, Vo e RN
(8.5) V2V (s, )| < Cre™ Vs <0, Vo e RY
(8.6) e|V2ih(s, )| < Cre™ Vs <0, Vo € RV,

The proof of this proposition is based on scaling in the x variable and applying
Schauder estimates for parabolic equations. We omit the proof.
The proof has several steps.

Lemma 8.3. There exists \g > 0 and C > 0 such that if 6 > 0 is sufficiently small
and v satisfies (8.1) and (8.2), then

(8.7) / / Y(s,x)e M dsde < C Y0 < A< A
0,1V

where the constants do not depend on € > 0. Moreover,
/ Y(s,x)e Mds < C. YO <A<\

where C. depends on €.
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Proof. Let 7, : R — R be a s smooth function such that 7,,(s) =1 for all s > —n,
Nn(s) =0 for all s < —2n, n, > 0. Let A > 0 and define

Un(z,\) = /_OO (s, z)e " n,(s) ds.

We multiply (8.1) by n,(s)e™** and integrate on (—o0,00). The term involving
M) yields

/ Mp(s, z)rpn(s AédS*/ [ @t =) copma(o)e ™ dyds
RN
= [ e e [ sk = o) e (e O dsy
]RN

= [ = e [ e e - a) o) drdy
]RN
and we write this term as
BN [ a0 [ ) (= (= 0) - ) = ()] drdy
Hence
(8.8) eAU, + LU, — Uy, + fu(z,0)U, —c\U, =D, + E, + F,
where

D= [ I e [ e o) = (e~ (y - )] drdy

R — o0

E, = / (2, (5, 2)) — Fulr, O)(5, 2))e 1 (5) dis

— 00

Fa=—c [ ws.opi () ds

Observe that in D,,, we can assume that the integral in y ranges on |y — z| < 1
(because we assume that J has support contained in the unit ball). Then |(y — ) -
e| <1 and since 7 is nondecreasing

[ =i e [ - a) o) drdy
>/ J(x — _)‘(”” y)e/ P(r,y)e AT (T — 1) drdy
/ _)‘(”” y)e/ (T +1,y)e AT+, n(7) dT dy
>e

/ J(x — 7A(I y)- e/ V(1 y)e (1) dr dy
because (-, ) is nondecreasing. It follows that
D, < (1 —e MIUn(-,\).
Thus, from (8.8) and since F,, <0
AU, + \Uy, — Upn + fulz,0)U, — AU, < (1 —e ) J\Un(-,\) + E,
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0 [e%s)
En:/ ...der/ ... ds
—00 0
and note that

/ @ 0(,2)) — fule, 0)(s,2))e ()] ds < O

with C; ~ 1/X as A — 07. We estimate the other integral as follows:

Write

0 0
/ (F(,9(5,2)) — fulz, 0)(s, 2))e ™ ds < Cy / B(s,2)%e >, (s) ds

0
< C’fé/ 1/J(s,x)e_)‘s77n(s) ds < CyéUp(x, X)

where C'y is a constant that depends only on f.
In this way we obtain

(8.9)
AU, + J\Up — Uy + fu(2,0)U, — AU, < (1 — e ) J3Un(-, \) + C46U, + Cy

Let e, be the principal eigenvalue of the operator —(eA¢ + Jx¢ — ¢ + fu(z,0)9),
®e.x, the principal eigenfunction and ®: \ be the principal eigenfunction for the
adjoint operator. Since . — px as € — 0 and py < 0, we can assume that
pre,x < 0. Multiplying (8.9) by ¢}  and integrating over the period [0, 11V we find

(cper=) [ e Neia@ e <= e) [ U NoL (o) dot
[0,1]% (0,1}

+C’f5/ U, (z, A)(b:)\(x) dx + C1 / d):/\(z) dx
[0, 1)~

[0,1]¥
But

/ IUn(@, N () do = / ()6 A (2)Un (2, \) d
[0,1]N

[0,1]N
B /[0 1N [7ME’/\¢:’/\ + ¢:7A - fu(SC, 0)¢:,)\ — EA(b;)\] Un(:c7 )\) dx

Note that ¢7 , is uniformly bounded in C?([0,1]") as ¢ — 0, see Remark 3.10, a
property where use that f is C3. Using the uniform smoothness of ¢ ) and the
fact that it is uniformly bounded below ¢ ,(z) > ¢ > 0 as ¢ — 0 with A > 0 fixed,
we see that

/ TNUn (2, N7 (2) da < C Un (2, )67 5 () da.
[0,1]N ’ [0,1]N ’
Therefore
(—pea—cA) / Un (1, )5 (1) d < (1=~ )C+Cy) / Un (2, \)% 5 (2) de
[0,1]N [0,1]N
s [ ony)ds
[0,1]%

Choosing 6 > 0 and A > 0 sufficiently small we deduce that

/ Un(z, N2y (2)dx < C
[0,1]¥
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and again using that ¢ , is uniformly bounded below, we find

(8.10) / Un(z,\)dx < C
[0,1]¥

where C' is independent of € and n. Now letting n — oo, we obtain the conclusion
(8.7).
To prove the last part we observe that

nh_)n;@ Un(z,A) =Ul(xz, \)
by monotone convergence where
Uz, \) = / Y(s,x)e " ds.
By (8.10), U(-, \) is in L([0,1]") and is a weak solution of

eAU+ J\U—-U—c\U=E inRY
where
B= [ flvisa)eds
Note that
£ Lo jo,17) < CIU S M zeo,1v)

for all p > 1. Then, using standard elliptic LP estimates we deduce that U(-,\) €
L>® for 0 < X < \g. O

Lemma 8.4. Suppose ¢ : (—oc, 0] — [0,00) is nondecreasing and let A € R. Then

eks

(8.11) P(s) <A

1—e

0
- /_ Y(r)e Mdr Vs <O0.
Proof. Let t < 0. Then

0 0
1/}(t>/t 67A5d5§/75 P(s)e ™ ds.

O
We prove first the exponential decay of v for some constant that depends on .

Lemma 8.5. For any A < A\.(c) there is C. > 0 such that if ¢ is a solution of

(8.1) then

(8.12) Y(s,2) < Ce™ Vo e RN, Vs R.

Proof. In this proof € > 0 is fixed and we find J. > 0 such that if v satisfies
8.13 0,2) <4

(8.13) ZEIH[O%N#J(,:E)_ g

then the conclusion (8.12) holds. Given any solution of (8.1) we know already by
Lemma 8.3 that 1(s,2) — 0 as to —oo uniformly in z, even at an exponential rate,
so that (8.13) holds provided we replace ¢ (z, s) by ¥(x,s — 7) with 7 sufficiently
large.
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Let n € C*(R) be such that n(t) = 1 for ¢ < 1 and n(t) = 0 for t > 2. For
AER, x €[0,1]V, let U be defined by

(8.14) Uz, \) = /fo Y(s,x)e n(s) ds

with values in [0, co]. At this moment we know from Lemma 8.3 that U(z, \) < +00
if we take 0 < A < Ao where Ay > 0 is a small fixed number. The objective is to
prove that for any A such that 0 < Ae < —pic »

NU (-, Ml zoe 0,17y < 4-00.

Then from (8.11) we obtain the desired conclusion.
Assume that A is such that [|U(-, A)||ee(jo,1v) < +00. We multiply (8.1) by
n(s)e™* and integrate on (—oo, 00). We obtain

eAU + J\U — U + fu(z,0)U — cAU = Dyx(z) + Ex(z) + Fi(x)

where

Dafe) = [ T [ pm e o) — e — - ) - )] drdy

B = [ T (Fn (s, 2)) — fulw,0)(s, ) on(s) ds

— 00

Fy(z) = fc/ (s, )’ (s)e ™ ds.
Thus
(LE,,\ — )\C)U = D)+ E\ + F).
Since U is nonnegative, we may apply Lemma 7.1 and deduce
[UC Ml[zee < Cea(l[Dx+ Ex + FillL~)
Write U = Uy + Uy where

0 00
(8.15) U, :[ Y(s,2)e o n(s) ds, Us /0 V(s 2)e o n(s) ds.

Since Us > 0, we also have
U1l Lo (f0,1)%) < Cex [IDx + Ex + Fall oo (jo,1v)-
In Dy(z) one can restrict 7 to [—1,4]. Hence
DAl Lo (0,18 < €

and the constant remains bounded as A varies in a bounded interval of R. Similarly
the integral in Fy(z) is restricted to 1 < 7 < 2 and hence

[Ex][ Lo 0,7y < C

with C as before. We estimate

@l = | T (Fb(s, 7)) — fule, 0)(s,2))eNon(s) ds

-1
< C/ [ (s, x)|*e ™ ds + C
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By (8.11)
[h(s,z)| < Coe™||UL(N)|[pe Vo €[0,1]Y, Vs < —1.
Hence, using (8.13),

|Ea(z)] < 05;/2/ (s, 2) /2= ds + C

— 00

-1
< OS2 (V|32 / M2 ds + C = Cr, 02| UL (L N)[32 + C.

— 00

where C), ~ 1/\g. Therefore
(8.16) UL Nl e o177 < 022Cr ConlUL( NIF2 + Cr.

If we choose d. > 0 small this implies that there is a gap for ||U1(-, A)|[ ¢ (j0,1)%)-
For example we can achieve

either HUI(; )\)||Loo([071]N) S 201 or ||U1(',)\)HL0¢([011]N) Z 301.
Indeed, first fix 0 < A\g < A1 < A:(¢). Then we know from Lemma 7.1 that

sup C. \ < 0o0.
AoSASA

Choose §. > 0 such that

5;/2(301)1/2@0( sup CM> <
Ao <A<

Wl

Suppose that U (-, A)|[Le([0,117) < 3C1. Then by (8.16)

UL M) | e (o.113) < 6L/2C Con UL (S NIIF2 + €
< 551/2(7)\005,)\(301)1/2||U1(', ML~ + Cy

1
< §HU1(',/\)||L°° +Cy <2Ch.

Using Lemma 8.3 and increasing C and decreasing d. if necessary, we can assume
that

[UL(+; Aol < 2C7.
Since A — ||Uy(-, A)||= is continuous we see that
||U1(a)‘)HL°° <207 Vg <A< ).
O

Proof of Proposition 8.1. We argue as in Lemma 8.5. In this proof we take
p > 0 as in as in Proposition 7.2 and let 0 < p’ < p. We restrict A so that it satisfies
(—per —p)/c <A< (—pex—p')/cand take 0 < & < gy.

Let U be defined by (8.14), and Uy, U, defined in (8.15). Following the proof of
Lemma 8.5, if v satisfies (8.1) and (8.2) then, using Proposition 7.2,

UL (-, M| pos (0,178 < 8Y2CN|UL(, )\)Ili/i + (1,

where C' now remains bounded for any 0 < ¢ < g¢ if \ satisfies (—ucx — p)/c <
A < (—pter — p')/c. Again, choosing § > 0 small such that

61/2(301)1/26 < %
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we obtain
either ||U1(',)\)||Loo([071]N) S 201 or ||U1(',)\)||Loc([011]N) Z 301.

Let 9, (s,z) = (s — 7,2) where 7 > 0 and Uy denote the corresponding Laplace
transform as in (8.14), (8.15). By Lemma 8.5

U1, M) ||lLe — 0 as 7 — +oc.
Since 7+ ||U1,7(+, A)|| L is continuous we see that
1000 )l < 2C1.
Then by Lemma 8.4 we obtain (8.3). O

9. PROOF OF THE MAIN THEOREM

In this section we prove Theorem 1.2, by establishing a uniform estimate in V[/llof
of 1., the convergence of 1. to a function v satisfying the equation, and finally
establishing that v solves the full problem.

Proposition 9.1. There is 6 > 0 such that if 1. is a solution of (8.1) satisfying
the normalization condition (8.2), then for any for any 1 < p < oo and bounded
open set D in R x RY there is a constant C independent of € as € — 0 such that:

(9.1) 1¥ellwr(py < C.

Proof. For simplicity we write 1/ = 1. and we use the notation v¢,, = %. We
differentiate the equation in (8.1) with respect to z; and get

(92) C"/)szi = EA"/)II + Mzi WJ] - eiM[ws] - "/)xl + fu(xv "/))wzl + le (SC, "/))
where

M, [](s,7) = / To@ — y)b(s + (v — ) - ery) dy

RN
e=(e1,...,en). We write this as
CT/Jsxi + (1 - fu(z; 0))1/}11 = EAi/le + le ["/’] - 61M[¢s]
Let 1 < p < +o00 and 6 > 0 to be fixed later on. Then
o (=100 ) = Bosp=Tue00 (e (1= Ful,0) = 600, o2,
s ¢

Using (9.3) we obtain
S (e tr 0= efy, ) = LS00 (A, + Mo, [9] — esMTU]
C

ds
(@) = Ful@, ), + fo (2, 0) = 0, ) 2,
We integrate now with respect to  over the period [0,1]¥ and estimate the terms
on the right hand side.
0

0 s e P Se@ =0/l Pdp =T + I+ Is + I+ Is + I
[0,1]%
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where
= [ O DA, [, PR, do
[O,l]N 1 1 K
. / e A= OO epp []|4s, P2, da
[0,1]N

p727/)mi dx

Iy = —e; / i i AN ([T

[0,1] '

I4 = / €Sp(17fu(z’0)70)/c(fu(xa w) - fu(‘ra 0))|w$z |p dx
[0,1]™

15 - / esP(l_fu(m,O)—H)/CfM(x, ¢)|¢ml |p_2wli dx
[0.1]%

Is = —6 esPU—fu@0)=0)/ey, 1P dz.
0,1}~

Integrating by parts we can estimate
L= —e(p— 1)/ e PI=Fu @00 ey 10=2(7 |2
[0,1]¥

e [ T (RO G g 2, de
[0,1]%

< els|p
C

/[O " eSP(l—fu(m,O)—H)/C|szu(:E, O)| |V¢Zi| W% |p—1 de.

By Young’s inequality
I < Q/ (1= Fu@0)=0)/clyy 1P gy
[0,1]¥
CRIE 1

where C' depends on 6 and || f||c2. In a similar way

L < / e PU=Fulm0)=0)/e |y 1P d 4 C e PU L@ 0=0/e|\p [y]|P da
[0,1]%

[0,1]%

Iy < / esp(lffu(z,O)fe)/clwmwp dr +C esp(lffu(m,O)fe)/c|M[wsHp dr
[0,1}¥7

[0,1]¥

QD O O

I < / ePA=Fu@0=0)/e|yy 1P 4y 4 © / U= Fu @O0 /e[ £, (3 )P da
~ 5 oy ' [0,1]% '

To estimate I we write
Iy < sup | fuly, (s, 9)) = fuly, 0)] [ ePO—fu@O=0/clyy o gy
v [0, 1]~

We work with § > 0 small so that from the normalization condition (8.2) we get

0
sup |fu(y;w(57y))) - fu(y,0)| S for all s S 0.
Y

5
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Then
I < Q/ (1= Fule)=0)/c|y P gy
- 5 [071]N ‘
Combining the previous estimates we obtain
(9.4) c9 U= Fu@0=0) /ey 10 gy
p as [011]N !

< C€p|s|p/ P fu(@0)=0)/c| 7y |P da:
(0,1~

+C ePA=fu@0)=0)/e| pp []|P da
0.1 Z

e esp(l—fu(l70)—9)/C|M[1/Js]|p dzr
[0,1]N

+C e P F @O0/ f (2, )P da
[0,1]%
Let tg <t < 0. We integrate with respect to s over [tg,t] and then let ¢ — —oc.
By (8.5), given any 0 < A < A-(c) there is C such that

/[o g OO (s, ) e

C

(9.5) < e /[0,1]N exp(sp(1 — fu(z,0) — 0 4+ Ae)/c) dx.

We choose now A and 6 as follows. We fix a large Ay > 0. We note that since there
is a principal periodic eigenfunction ¢y € Cpe, (RY), ¢ > 0 for
Iy x (bk - ¢A + fu($50)¢A + M)\(bA =0 in RN

we must have

V= inf b (- fu(@,0) - pa)= inf  inf PO

> 0.
A€[0,A0] zERN A€[0,A0] z€RN P (x)

Since e, — px as € = 0, for € > 0 sufficiently small
inf (1 — fu(z,0) — pen) >~/2>0.
zERN

and since for A = A\.(c) we have A¢ = —p. \ we get
w(x,0) —1
Ae(c) > X4 sup fu(®,0) .

2c  LerN c

Take A\ > 0 such that

fulz,0) =1~ gl
9.6 e 4 <AL - —.
(96) ISEURPN c +4c SASALe) 4c
Then choose § = /8 > 0 and get
1— fulz,0)—0
(9.7) o= inf (LJFA) > 0.
zERN c

Then from (9.5) we obtain

C
/ 65p(1_fu(170)—9)/0|1/}zi (Sa 1,>|p dx = p/2 ePUS, Vs = 0’
[O,I]N e
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and therefore

(9.8) lim ePU=fu@0)=0)/ey (s, 2)|P dz = 0.

S§——00 [011]]\[

Integrating (9.4) in [to, t] with o < ¢ < 0 and using (9.8) we obtain

(9.9) ]—C)/ N 65p(1*fu(9070)*9)/0|1/}zi|p dr < Ky + Ko+ K5 + K4
[0,1]

where

t
K, = Csp/ |5|P/ e PU=Fu(@0=0)/e |y, |P dx ds
—00 [0,1]N
t
Ko=C [ [ erne0 0, ) dads
—oo J[0,1]NV
t
Ky = C/ / e PU=Su@0)=0)/e| N[y ] P dav ds
—oo J/[0,1]N

t
Ko=C [ [ ertn 00, (o) dods
—o0 J/[0,1]N

Next we claim that K1, Ko, K3, K4 remain bounded as e — 0. Indeed, by (8.6) and
(9.7),

esp(l—fu(m,o)—e)/c|v,l/)x_ |p < BSp(l_f“(l’O)_G)/c|Vi1/)|p

< gesp(l—fu(m,O)—H—i-Ac)/c < gespa

ep — P ’

for s < 0, € RY with C independent of ¢ (note that Vi),, is a second order
derivative of ). Therefore K; is bounded as ¢ — 0. The other ones can be
bounded similarly, using (8.3), (8.4) and the hypotheses f(z,0) = 0, f € C? which
imply

|fo;(z,u)] < Cu for 0 <u<§

for some C. Thus from (9.9) we deduce that there exists C' independent of € for ¢
small such that for all s <0

o [, e s e < €

This together with (8.4) proves the estimate (9.1) for any bounded open set D C
(—00,0) x RY. To obtain (9.1) for any bounded open set D C R x R" we proceed
similarly as before. We multiply (9.2) by |, |[P~2¢,, and integrate over [0, 1]V.
Using that 1 has a uniform upper bound we obtain

d

Sl wapdeze | e
(0,1~ (0,1~

Then, using Gronwall’s inequality we deduce for s > 0

/[ | [z, (s, 2)|P do < ecs/ [, (0, 2)|P dx + C.
0,1]¥

(0,1}
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Since by (9.10) we have a uniform control of the form f[o 1~ [z, (0, 2) P dz < C,
we obtain that for all R > 0 there exists C' > 0 independent of € such that

/ [z, (s,2)|P de < C for all |s|] < R.

[0,1]¥

Using this and (8.4) we obtain the estimate (9.1) for any bounded open set D C
R x RN, O

Lemma 9.2. If ¢ > ¢} there exists a function ¢ : R x RN which is C in s and
Lipschitz continuous and satisfies

(9.11) s = M) — ¢ + f(x,9) Vs€ER, z € RY
and
Br_n P(s,x) = 0.

Furthermore v > 0 is periodic in x and non-decreasing in s.

Proof. Let ¢ > ¢}. If ¢ > ¢} then ¢ > ¢}(e) for € > 0 small and we let, for small
€ > 0, ¥ be the solution constructed in Proposition 6.1 with speed c. If ¢ = ¢ we
let ¥. be the solution constructed in Proposition 6.1 with speed ¢. = ¢ (g). In any
case we have a solution of (6.1) with speed ¢. — ¢, satisfying also (6.2).

Let 6 > 0 be from Lemma 9.1 and shift in s so that 1. satisfies

0,7) = 4.
zen%vwg( )

Then, choosing p > N in Lemma 9.1 we can find a sequence &, — 0 such that
s, — 1 uniformly on compact sets. Using this local uniform convergence we see
that the function v satisfies (9.11) in the following weak form

—/ Z /MN vpduds = [ O; /[071]N<M 6] — 0 + £ (z, ) dads

for all ¢ : R x RV — R smooth periodic function with compact support. This
implies that v is C! in s and satisfies (9.11) classically. Since . is non-decreasing
in s and periodic in z we deduce that v is also non-decreasing in s and periodic in
x. Moreover, by Proposition 8.1, if we take 0 < A < \. we have 1(s,z) < Ce*®
with C independent of €. Letting ¢ — 0 we find the same inequality for ¢ and
hence limg_, oo ¥(s,2) = 0.

Finally, we prove that v is Lipschitz continuous, which follows the same lines of
Proposition 6.1, so we point out the main steps. Let b;, ¢ = 1,..., N denote the
canonical basis in R. Given h € R we define

U(s,x +bih) — P(s, x)

Dy(s, x) = .

We choose A, 0,0 > 0 as in (9.6), (9.7) so that

(9.12) 21— fu@0)=0)/c < 25(0=X) yr e RN 5 <0.
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Then we compute
0

Y o25(1=ful(x,0)=0)/c Dh,N2) —
0s (e (D7) )

_ 20250 £u@0=0)/¢ (1 1M — e MID=" 3] + (f. (2. 0) — £, (2.0 D"
- (Malw"] = esM (D0 + (fule, ) = fule,0)) D}y

+ DI (-, (s, + bih)) — DL ) Dl
where e = (eq,...,en),
M;[g](s,z) = /RN J(z+bihiiz) - J(xiy)g(SJr (y—z)-ey)dy
(s, x) = ¢(s — esh, x)

D;’lﬂ(s,m) _ 1/1(5 +Ta$) - w(sam)’

T

and (s, x) lies between (s, z) and ¥ (s, + b;h). From here we deduce

9 2s(1— fu (z,0)=0)/c/ yh, /)2
. u B A <
(e (DI)?) <

=00/ (VL2 4 MIDTH P + (DL (s, + b)),

Using the exponential decay (s, z) < Ce** for all s < 0 and all z € RV, and a
similar one for ¢5 (c.f. (8.4)), we deduce from this and (9.12) that

% (628(1_f”(1’0)_9)/C(D?’L/1)2) < 0620'8.
Integrating from —oo to s < 0, we conclude that there exists C' independent of h
such that

|Dj(s,x))| < Ce*, Vo eRN, Vs <0.
This proves that (s, ) is Lipschitz continuous for all s < 0. An argument similar
to the one at the end of Proposition 6.1 shows that it is also Lipschitz continuous

for all s € R. O

We now prove the exponential convergence ¥ (s, x) — p(z) as s — +00, uniformly
in x, by constructing appropriate subsolutions.

Lemma 9.3. Let ¢ be the function constructed in Lemma 9.2. Then there exists
C, o > 0 such that

0 <p(x)—(s,z) <Ce 7 forall s> 0.
In particular
Br_il (s, x) = p(x) uniformly for x € RY.
Proof. First we note that
Y(s,z) <p(x) forallscR, xRV,

Next we show that (s, z) — p(z) as s — +oo uniformly for z € RY. For this
we will prove that there exists €9 > 0 such that for any 0 < mg < 1 there is s € R
such that

(9.13) Ye(s,x) > mop-(x) forallz € RN, s> 59, 0 < e < ep.

The value sg depends on mg but not on e.
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Recall that we have normalized 1. by

0,2) =6
xéﬁfﬁwwa( )

where § > 0 is from Proposition 9.1. By Lemma 9.2
Pe =Y ase—0

uniformly on compact sets of R x RY. Since ¢y > 0 in RY x R and is continuous
we see that that there is eg > 0 and a > 0 such that for 0 < ¢ < g

Ve (0,2) > 2ap.(z) Vo e RV,
Note that a < 1. Then we also have
Ve(s,x) > 2ap.(z) Yo e RY, 5s>0,

because . (-, x) is non-decreasing.

Given a < m <1, R > 1, we construct a family of functions

Um(8,2) = A (s)pe(z) s€R, 2 € RY

where
O (s~ )+ (m— aus — )
and n € C*(R) is a cut-off function such that n(s) = 0 for s < 0, n(s) = 1 for
$s>1,0<np<1and 0<n <2 Notethat a <\, (s) <m for all s > 0.

Fix 0 <mg < 1 and let a < m < myg. It can be shown that we can choose R > 0
large enough, independently of €, so that v, satisfies

AUy + Mvm] — v + f(2,0m) — c(Vm)s >0

for s > 1 and € RV,

Using a sliding argument we obtain that a <m < myg

Ve > v, foralls>1, z€0,1]V.

Am(8) =a+

Using this inequality with m = mg we establish (9.13). Letting & — 0 we the
deduce that
lim (s,2) = p(x) uniformly for z € RY.

s—+00
Finally, let us show that there is exponential convergence. For this we construct
a subsolution w,, with this property. Indeed, let ¢ > 0 to be fixed shortly and
0<m<1. We set

W (s,2) =m(l —e 7°)p(x).
Choosing Sy large and o > 0 small we obtain that
Mwp] — wm + f(2,0) — c(wn)s >0 in [Sp, +o0) x RY.
Let S7 be such that
Y(s,x) > (1 —e 7ot )p(z) Vs> S, e RV,

This can be done because we know that ¥ (s, x) — p(z) as s — +00 uniformly for
r € RV,
Using again a sliding argument we can prove that

(s, 2) > wp(s+ S — Sy,x2) Vs> Sp, v € RY
and all 0 < m < 1. Letting m — 1 we find
(s, x) > (1 — e 7CFS0=50)(2) for all s > s, = € RY,
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which finishes the proof of the lemma. 0

Remark 9.4. The limit p(x) = lims_,o0 (s, x) exists by monotonicity, but we can-
not assert that it defines a continuous function (we have not proved uniform conti-
nuity of (s, xz) as s = 00). One could then argue that p is a bounded measurable
solution of the stationary problem and that Theorem 1.1 also asserts the uniqueness
of this solution. This would yield pointwise convergence limg_, oo (s, z) = p(x)
for all z € RV,

Lastly, to finish the proof of Theorem 1.2 we prove the non-existence of front for
speed ¢ < c.

Lemma 9.5. Let J and f satisfy (1.3) and (1.4) and let e € RY be a unit vector.
Assume g < 0 and that there exists ¢ € Cper(RY), ¢ > 0 satisfying (1.7). Then
there exists no pulsating front (1, ¢) connecting 0 and p(x) in the direction e so that
c<cl.

Proof. Assume by contradiction that there exists a pulsating front 1 with speed
¢ < ¢t Then up to a shift ¢ is a supersolution of the parabolic problem (1.1) for
any initial data ug > 0 so that

supug < min p(z), iminf inf wy >0, up =0 for xz.e << —1

RN RN r—+oo x.e<r
Let u be the solution of the parabolic problem (1.1) with initial data ug satisfying
the above condition then by the maximum principle, we have for all (t,z) € RT x
RY,

u(t,z) < P(x.e + ct +to, x)

for some fixed to. From Shen and Zhang results, Theorem C in [56], since ¢ < ¢}
we have

liminf inf — =0.
tlgl-ﬁgo m.eglctzo(u(w, t) p(iﬂ)) 0

Thus we get the following contradiction

it e it b (e )
0= fminf | inf, (u(e0) —p) < Juaf i (W(oe et +10,2) — p(o)

< (¢(to, ) — p(z)) <0.

APPENDIX A. UNIFORM ESTIMATES FOR SOLUTIONS SOME REGULARIZED
PROBLEMS

In this section we prove Proposition 6.5. The estimates in this proposition divide
naturally in 2 parts, one consisting in energy type estimates, and the other one are
Schauder type estimates.

Proof of Proposition 6.5 i). We proceed as in Lemma 2.5 in [9]. Let us denote
¢r,e the solution of (6.9). Then multiply equation (6.9) by 051 . and integrate
over [~ R, R] x C where C := [0,1]V. Then it follows that
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C/ |as"/)l<a,s|2 = "5/ asi/}n,sass"/)ka,s + 5/ asi/}n,sAx"/)ka,s
[-R,R]xC [-R,R]xC [-R,R]xC

+ / aswma (M'L/Jn,s - wn,a‘) + / as"/}maf(sa wn,a‘)
[-R,R]xC [-R,R]xC

Excepted the term Z := f[_R RIxC Osr,e (M) e — Vi), all the term can be

estimated as in the proof of Lemma 2.5 in [9], so we only deal with Z.
A simple computation shows that

1 1
/ 851/};{,5"/)11,6 = _/ as("/’ka,s)Q =5 /[("/’n,s)2]lj]{~
[~R,R]xC 2 JI_r.R)xc 2 Jc

So it remains to compute

I := / as"/)n,sM"/)n,&
[—R,R]xC

Let us denote Cj, := k+C where k € Z". With this notation, using the periodicity
in « of the function 1, . we have

M. = kezZ:N /HC J(@ = y)Yec(s+ (v — x).e,y) dy

= Z /CJ(x—k—y)wm,a(S-i-(y—x).e—i—k.e,y)dy.

kezZN

Now using integration by parts it follows that

I= /CXC keZZN J(:C - Y- k)[wn,s(S, z)wn,s(s + (y - ZL').G + k.e, y)]l_zR

.

Let us make the change of variable 7 = s+ (y — x).e 4+ k.e in the last term of the
right hand side. Then we have

R
J(x—y— k)/ Vi, (8, 2) 05 e (s + (y — @).e + ke, y).
XckeZN —R

R
/C c / Z J(:C — Y- k)wn,s(sa z)aswn,s(s + (y - x).e + k'ev y)

—Rpezn

R+ (y—=x).etk.e
= / J(xfy*k)/ wn,s(T+ (z*y)'efk'evx)aswn,s(ﬂ y)
cxC keZN —R+(y—=x).et+k.e

Let R — oo. Using that 1), . — p. respectively 0 as s — 00, ¥, > 0,059 >
0 we obtain

1
(Al) 351/%,51%,5 = 5/]7?
RxC C
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and
0.t Mie= [ 3 Iy Rplalpaty)
RxC cxC keZN
+oo
- / Z Jx—y—k) Y e(T+ (2 —y).e — ke, )05 (T, ).
CXC pegn -

Going back to the definition of M1, . and using the symmetry of J we can rewrite
the above equality the following way

/R Ot M = /C Tape(@)pe(@)de — | Mio(r,y)0riee(r,y) drdy.
X

RxC
Thus we have

1
as'l/Jn,aMwn,a =z / J*Pe(ﬂﬁ)Pe(ﬂﬂ) dx.
RxC 2 C

Set J(x,y) := > wezn J(x —y + k), the the above equality rewrites as follows

1 ~

(A'2) / as"/)ka,sM"/)n,s = 5 // j(xvy)ps(y)ps(z> dydz

RxC cJC
Finally, combining (A.1) and (A.2), we obtain
1 ~
/ as"/)n,s(M"/)n,s - 7/}/{,5) = *Z j(:c, y)(ps(x) — DPe (y))2 dxdy.
RxC CxC
Hence,

€ 1 ~
C/ |3s¢n,5|2 = _5/ |Vmpa|2 - Z/ j(m,y)(pg pa /F €T pa
RxC C Cc2

which proves (i).

Proof of Proposition 6.5 ii). Let K be a compact set of R x RY. Then since
K is bounded, there exists n € N and R > 0 so that £ C (—Ry, Ro) X nQ where
Q= [-1,1]".

Let us denote E(u) the following energy on the set of periodic function

=——/|VUI2——/Jwy /qu

From (), there exists R € [Ro, Ry + 1] so that
(AS) / |aswn 5| ) < 5(175

Let us now multiply (6.9) by v, . and integrate over (—R, R) x Q. Then we have

C
§/~[ i,g]l—%R = R/~[¢K7585¢K75]§an/ . |as"/)n,s|27€/ . |vm"/)l<a,s|2
Q Q (—R,R)xQ (=R,R)xQ

M k,e = Wk, K,& s YK, K,&
Ry [ X TTS

Therefore since 9, . is uniformly bounded and periodic in x we have,

. / Vatnol? = 2¢(R)
(-R,R)xQ
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where

&
R):=—- 2 1B — as 552 HEaS nal—z
9By i= g [ [ 0l 4 [ et

M k,e = ¥K,e K,& y VK, K,E*
+/(_R7R)XC< e = Un ), +/(_R7R)ch<w,>w,

Since 0 < ¥, < ey, 059 > 0 and f is uniformly bounded, using Cauchy-
Schwartz inequality it follows that

VRVl [ 924w [ 52 [ 0ncP(Roz) + 2R [ (7 xplpe+ 28] fl [ oo
c c Je c c
Thus, since ¢ > 0 by (A.3) we have

KE (pe
W <lel [ 52+ (be) [ #2428 [ epop 2RI [ e
c || c c c

Hence the estimate (ii) follows by periodicity.

O

The proof of Proposition 6.5 iii) is based on the next 2 lemmas. The first one is
a version of a result of [4], on gradient estimates for elliptic regularizations of semi-
linear parabolic equations. The result in [4] is based on Bernstein type estimates
and is nonlinear in nature, while the estimates below have a linear character, and
are based on a technique of Brandt [13] (see also [14, 43] and [37] Chap. 3).

Given R > 0 let

Qr={(tz) eRxRY :|t| <R, |z;| <R Vi=1,...,N}.
Lemma A.1. Suppose u € C*(QRr) satisfies
Ayu+ euy +ur = f(z,t) in Qg
where 0 < e <1, f € L®(Qr). Then

2(N +1 R
(A4) [0,1(0,0)] < (w + 2) sup |u| + — sup| f|
R Qr 2 Qn

foralli=1,...,N, where C is independent of R, €.

Proof. Let us write x = (z1,2') € RY with 21 € R, 2/ € RN~ Define
Q={(t,r;,z) ERxRxRY1:0<2 <R, |z <1 Vi=2,...,N, [t| <1}

and

v(t,z1,2") = = (u(t,z1,2") — u(t, —z1,2"))

DN | =

for (t,z1,2') € Q. Let us write
Lv = A,v+ vy + 4.

Then L is an elliptic operator and satisfies the maximum principle. We have

Lo(t,01,0') = 5 (F(ta,a) = [t —0,a')) Tor (t,00,0') € @
and

o < suplul in Q.

R
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Let
o(t,r,2") = Az (R — x1) + B(z? + |:L'/|2 + t2)
where
1
BT
and

1
A== (sup|f|+B(2N+2€+2R)).
2\ @Qn

With these choices we see that

lo| <© ondQ.
and

Lt < —sup|f| in Q.
Qr
By the maximum principle & — v > 0 in Q. Similarly o +v > 0 in Q and therefore
lv| <7 in Q.

This implies

|0.,v(0,0)] < AR

and gives (A.4) for i = 1. The same proof replacing x; by any of the other variables
X, ..., Ty yields (A.4). O

Lemma A.2. Suppose u € C%(Qs) satisfies
ur — Agu — euy = f(x,t)  in Qo

where € > 0 and f € L>®(Q2). Then for some 0 < a < 1 there is a constant C
independent of € such that

t1) — t
sup lu(z, t1) — u(z, ta)|
|| <1,t1,t2€[—1,1] [ty — ta|

< (suplr]+suplul
Q2 Q2
Proof. Let us write
M = sup |f| + sup |ul.
Q2 Q2
By Lemma A.1
(A.5) sup |Vyu| < CM.
Q1

Let ¢ € CY(R™) have support in the ball closed ball B; of RY. Multiplying the
equation by uy and integrating in By we find

1d d
—— wpdr —e— uutgodx—i—e/ ufapdac—i—/ |Vu|2<pdx+/ VuVpudx
2dt Bs dt Bs 1 Bs Bs
= fupdz.
B>
Integrating this from ¢ to ¢; with —1 <ty < ¢; < 1 and using (A.5) gives
ed

ty
2 ed 2 2 2
oL dal s dal / / dz = O(M
2dt Bzuth:t1+2dt B2u<pxt:t0+5 to luttpx (M%)
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where O(M?) is uniform in e. Integrate now with respect to o € [1/2,2/3] and
t1 € [5/6,1]. We obtain

1
5/ / g(tyuiedrdt = O(M?)
1/2.J)B,

where ¢(t) is a continuous function which is positive in [1/2,1]. Therefore one can
always select tg € [1/2, 1], possibly depending on &, such that

(A.6) E/B u(to)?pde = O(M?).

Now multiply the equation by u:p and integrate in Bs, to obtain

d
/ uftpdx—i— ulpdr + =
B

d
57 |Vu|2<p dx + VuVpus de = — fugo

1d
2 dt By dt
Integrating with respect tote[-1/2 to] with ¢y as above yields

/ /utgodacdt——/ utgod‘ /|Vu|2<pdac‘0 + VuVpu: dz
1/2 B2 B2 1/2 B2

-],

(A.7) / / utp dr dt + VuVu, de = O(M?)
1/2/B, B

But )
1 \% 1
< —/ |Vu|2ﬂdac+—/ ou? dx
By 2 JB, ¥ 2 /B,

One can select a function ¢ > 0 with support the ball |z| < 1 and positive in |z] < 1
2
such that % is bounded. So by (A.5)

—1/2
Using (A.5) and (A.6) we find

VuVpu, dz

VuVpu, dz

B

1
<O(M?) + —/ ou? da
2 Bs

and integrating on [—1/2,tg] we have

/ /Vquputd:cdt
1/2 J By

This combined with (A.7) gives

/ / goufdxdtSCMQ.
1/2 /B,

We may further restrict ¢ such that ¢ > 1 in the ball |z| < 1/2 ad deduce

< O(M?) + / /cpufd:cdt.
1/2 J B,

(A.8) / uf do dt < CM?
Q12
Let t1,ty € [—1/4,1/4], with t; < t5. Let € RY with || < 1. Then

u(x, ta) —u(z, ty) = / i ug(x, t) dt.

t1
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Now integrate this with respect to x in the ball of center xy, |2o| < 1/4 and radius
T = (t2 — tl)l/(ZN)Z

to
/ (u(z, te) —u(z, t1)) de = / / ug(x,t) da dt.
B(xzo,r) t1 B(xo,r)

By the mean value theorem there is some Z € B(xg, ) such that

C
w(@, t2) —u(T,t) = — u(x,ty) —u(zx,t1))dx
@t —uz) =15 [ (e t) —ute )

and therefore, using (A.8)

to
lu(z, ta) — u(z, t1)| < %/ / |ue(x, t)| da dt
r t1 B(IU7 )

to —t 1/2 to
S C“Ni/;) / / Ut($7t>2 dx dt
r t1 B(Io,’l“)

< CM(ty —t)Y4,
Since (A.5) holds we deduce
|u(m0, tg) - u(mo, t1)| < CM(tQ - tl)l/(QN).

1/2

O
Acknowledgments. J.D. was partially supported by Fondecyt 1090167, S.M.
was partially supported by Fondecyt 1090183, and both acknoledge CAPDE-Anillo
ACT-125 and Fondo Basal CMM. This work is also part of the MathAmSud
NAPDE project (08MATHO01) and ECOS contract no. CO9EO0G.
We are grateful to the reviewers of this article for very useful comments.

REFERENCES

[1] G. Alberti, G. Bellettini, A nonlocal anisotropic model for phase transitions. I. The optimal
profile problem, Math. Ann., 310, (1998), 3, 527-560.

[2] P. W. Bates, P. C. Fife, X. Ren, X. Wang, Traveling Waves in a convolution model for phase
transition. Arch. Rational Mech. Anal. 138 (1997), no. 2, 105-136.

[3] P.W. Bates, G. Zhao, Existence, uniqueness and stability of the stationary solution to a
nonlocal evolution equation arising in population dispersal. J. Math. Anal. Appl. 332 (2007),
no. 1, 428-440

[4] H. Berestycki, F. Hamel, Gradient estimates for elliptic regularizations of semilinear parabolic

and degenerate elliptic equations. Comm. Partial Differential Equations 30 (2005), no. 1-3,

139-156.

H. Berestycki, F. Hamel, Front propagation in periodic excitable media. Comm. Pure Appl.

Math. 55 (2002), no. 8, 949-1032.

H. Berestycki, F. Hamel, Generalized travelling waves for reaction-diffusion equations. Per-

spectives in nonlinear partial differential equations, 101-123, Contemp. Math., 446, Amer.

Math. Soc., Providence, RI, 2007.

H. Berestycki, F. Hamel, G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable

media. J. Funct. Anal. 255 (2008), no. 9, 2146-2189

[8] H. Berestycki, F. Hamel, L. Roques, Analysis of the periodically fragmented environment
model. 1. Species persistence. J. Math. Biol. 51 (2005), no. 1, 75-113.

[9] H. Berestycki, F. Hamel, L. Roques, Analysis of the periodically fragmented environment
model. II. Biological invasions and pulsating travelling fronts. J. Math. Pures Appl. (9) 84
(2005), no. 8, 1101-1146.

[10] H. Berestycki, B. Larrouturou, P.-L. Lions, Multi-dimensional travelling-wave solutions of a

flame propagation model, Arch. Rational Mech. Anal., 111 (1990), 1, 33-49.

5

[6

[7



(11]

(12]

13]
14]
(15]
[16]
(17]
(18]
(19]
20]
(21]
(22]
23]
(24]
25]
[26]
27]
28]

29]

(30]
(31]
(32]

(33]

(34]
(35]
(36]

(37]

PULSATING FRONTS FOR NONLOCAL DISPERSION AND KPP NONLINEARITY 47

H. Berestycki, L. Nirenberg Travelling fronts in cylinders, Ann. Inst. H. Poincaré Anal. Non
Linéaire, 9 (1992), 5, 497-572.

H. Berestycki, L. Nirenberg, S.R.S. Varadhan, The principal eigenvalue and maximum prin-
ciple for second-order elliptic operators in general domains. Comm. Pure Appl. Math. 47
(1994), 47-92.

A. Brandt, Interior estimates for second-order elliptic differential (or finite-difference) equa-
tions via the mazimum principle. Israel J. Math. 7 (1969), 95-121.

A. Brandt, Interior Schauder estimates for parabolic differential- (or difference-) equations
via the mazimum principle. Israel J. Math. 7 (1969), 254-262.

F.E. Browder, On the spectral theory of elliptic differential operators. I. Math. Ann. 142
(1960/1961), 22-130.

M. L. Cain, B.G. Milligan, A.E. Strand, Long-distance seed dispersal in plant populations,
Am. J. Bot., 87 (2000), 9, ,1217-1227.

J. Carr, A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations. Proc.
Amer. Math. Soc. 132 (2004), no. 8, 2433-2439.

X. Chen, Ezistence, uniqueness, and asymptotic stability of traveling waves in nonlocal evo-
lution equations. Adv. Differential Equations 2 (1997), no. 1, 125-160.

J.S. Clark, Why Trees Migrate So Fast: Confronting Theory with Dispersal Biology and the
Paleorecord, The American Naturalist, 152 (1998), 2, 204-224.

J. Coville, On uniqueness and monotonicity of solutions of non-local reaction diffusion equa-
tion, Ann. Mat. Pura Appl. (4) 185 (2006),3,461-485.

J. Coville, Travelling fronts in asymmetric nonlocal reaction diffusion equation: The bistable
and ignition case, Preprint of the CMM.

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some
nonlocal operators, J. Differential Equations 249 (2010) 2921-2953.

J. Coville, L. Dupaigne, On a non-local reaction diffusion equation arising in population
dynamics. Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 4, 727-755.

J. Coville, J. Davila, S. Martinez, Existence and uniqueness of solutions to a nonlocal equation
with monostable nonlinearity. SIAM J. Math. Anal. 39 (2008), no. 5, 1693-1709.

J. Coville, J. Davila, S. Martinez, Nonlocal anisotropic dispersal with monostable nonlinear-
ity. J. Differential Equations 244 (2008), no. 12, 3080-3118.

A. De Masi, T. Gobron, E. Presutti, Travelling fronts in non-local evolution equations, Arch.
Rational Mech. Anal., 132 (1995), 2, 143-205.

A. De Masi, E. Orlandi, E. Presutti, L. Triolo, Glauber evolution with Kac potentials. I.
Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity 7 (1994), 633-696.

A. De Masi, E. Orlandi, E. Presutti, L. Triolo, Uniqueness and global stability of the instanton
in nonlocal evolution equations, Rend. Mat. Appl. (7) , 14 (1994), 4, 693-723.

C. Deveaux, E. Klein, Estimation de la dispersion de pollen a longue distance a [’echelle
d’un paysage agicole : une approche expérimentale, Publication du Laboratoire Ecologie,
Systématique et Evolution, 2004.

D.E. Edmunds, A.J.B. Potter, C.A. Stuart, Non-compact positive operators. Proc. Roy. Soc.
London Ser. A 328 (1972), no. 1572, 67-81.

G.B. Ermentrout, J. B. McLeod, Ezistence and uniqueness of travelling waves for a neural
network, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 3, 461-478.

P.C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomath-
ematics, 28, Springer-Verlag, Berlin, 1979.

P.C. Fife, An integrodifferential analog of semilinear parabolic PDEs, Partial differential
equations and applications, Lecture Notes in Pure and Appl. Math., 177, 137-145, Dekker,
New York, 1996.

M.I. Freidlin, On wavefront propagation in periodic media, Stochastic analysis and applica-
tions, Adv. Probab. Related Topics, 7, 147-166, Dekker, New York, 1984.

M.I. Freidlin, Ju. Gertner, The propagation of concentration waves in periodic and random
media, Dokl. Akad. Nauk SSSR, 249, (1979), 3, 521-525.

J. Garcia-Melian, J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Commun.
Pure Appl. Anal., 8, (2009), 6, 2037-2053.

D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order. Reprint of
the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.



48

(38]
39]
[40]

[41]

[42]
[43]

44]

[45]
[46]

[47]

48]
[49]
[50]
[51]
[52]
/53]

[54]
[55]

[56]
[57]
(58]
[59]
[60]
[61]
(62]
(63]

[64]
[65]

JEROME COVILLE, JUAN DAVILA, AND SALOME MARTINEZ

F. Hamel, L. Roques, Uniqueness and stability properties of monostable pulsating fronts.
Journal of the European Mathematical Society. In Press.

S. Heinze, Wave solutions to reaction-diffusion systems in perforated domains, Z. Anal.
Anwendungen, 20, (2001), 3, 661-676.

S. Heinze, G. Papanicolaou, A. Stevens, Variational principles for propagation speeds in
inhomogeneous media, SIAM J. Appl. Math., 62, (2001), 1, 129-148.

W. Hudson, B. Zinner, Existence of traveling waves for reaction diffusion equations of Fisher
type in periodic media, Boundary value problems for functional-differential equations, 187—
199, World Sci. Publ., River Edge, NJ, 1995.

V. Hutson, S. Martinez, K. Mischaikow, G.T. Vickers, The evolution of dispersal, J. Math.
Biol., 47 (2003), 6, 483-517.

B.F. Knerr, Parabolic interior Schauder estimates by the mazimum principle. Arch. Rational
Mech. Anal. 75 (1980/81), no. 1, 51-58.

A.N. Kolmogorov, I. G. Petrovsky, N. S. Piskunov, Etude de l’équation de la diffusion avec
croissance de la quantité de matiere et son application a un probléme biologique, Bulletin
Université d’Etat & Moscow (Bjul. Moskowskogo Gos. Univ), Série Internationale, (1937),
Section A, 1-26.

M. Kot, J. Medlock, Spreading disease: integro-differential equations old and new, Math.
Biosci., 184 (2003), 2, 201-222.

M.G. Krein, M.A. Rutman, Linear operators leaving invariant a cone in a Banach space.
Uspehi Matem. Nauk (N. S.) 3, (1948), no. 1(23), 3-95.

H. Matano, K.I. Nakamura, B. Lou, Periodic traveling waves in a two-dimensional cylinder
with saw-toothed boundary and their homogenization limit, Netw. Heterog. Media, 1, (2006),
4, 537-568.

A. Mellet, J.-M. Roquejoffre, Y. Sire. Generalized fronts for onedimensionnal reaction-
diffusion equations. Discrete Contin. Dyn. Syst. A, 26, (2010), 1, 303-312.

J. D. Murray, Mathematical biology, Biomathematics, 19, Second Ed., Springer-Verlag, Berlin,
1993.

G. Nadin, Traveling fronts in space-time periodic media. J. Math. Pures Appl. (9) 92 (2009),
no. 3, 232-262.

G. Nadin, L. Rossi. Propagation phenomena for time heterogeneous KPP reaction-diffusion
equations, preprint.

J. Nolen, J.-M. Roquejoffre, L. Ryzhik, A. Zlatos. Existence and Nonexistence of Fisher-KPP
Transition Fronts, preprint.

J. Nolen, L. Ryzhik, Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst.
H. Poincaré Anal. Non Linéaire 26 (2009), no. 3, 1021-1047.

R.D. Nussbaum, The radius of the essential spectrum. Duke Math. J. 37 (1970), 473-478.
W.-X. Shen, Traveling waves in time dependent bistable equations. Differential Integral Equa-
tions 19 (2006), no. 3, 241-278.

W.-X. Shen, A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in
space periodic habitats. J. Differential Equations 249 (2010), no. 4, 747-795.

W.-X. Shen, A. Zhang, Traveling wave solutions of spatially periodic nonlocal monostable
equations.

N. Shigesada, K. Kawasaki, E. Teramoto, Traveling periodic waves in heterogeneous environ-
ments, Theoret. Population Biol., 30 (1986), 1, 143-160.

N. Shigesada, K. Kawasaki, E. Teramoto, The speeds of traveling frontal waves in heteroge-
neous environments, Lecture Notes in Biomath., 71, 88-97, Springer, Berlin, 1987.

F.M. Schurr, O. Steinitz, R. Nathan, Plant fecundity and seed dispersal in spatially hetero-
geneous environments: models, mechanisms and estimation, J. Ecol., 96 (2008), 4, 628-641.
H.F. Weinberger,On spreading speeds and travelling waves for growth and migration models
in a periodic habitat. J. Math. Biol. 45 (2002), no. 6, 511-548.

J. Xin, Ezistence of planar flame fronts in convective-diffusive periodic media, Arch. Rational
Mech. Anal., 121 (1992), 3, 205-233.

J. Xin, Ezistence and stability of travelling waves in periodic media governed by a bistable
nonlinearity, J. Dynam. Differential Equations, 3 (1991), 4, 541-573.

J. Xin, Front propagation in heterogeneous media, SIAM Rev., 42, (2000), 2, 161-230.

E. Zeidler, Nonlinear functional analysis and its applications. I. Fixed-point theorems.
Springer-Verlag, New York, 1986.



PULSATING FRONTS FOR NONLOCAL DISPERSION AND KPP NONLINEARITY 49

[66] A. Zlatos. Generalized travelling waves in disordered media: FExistence, uniqueness, and
stability, preprint.

J. CoviLLE — INRA, EqQuipE BIOSP, CENTRE DE RECHERCHE D’AVIGNON, DOMAINE SAINT
PAuUL, SITE AGROPARC, 84914 AVIGNON CEDEX 9, FRANCE
E-mail address: jerome.coville@avignon.inra.fr

J. DAVILA — DEPARTAMENTO DE INGENIERIA MATEMATICA AND CMM, UNIVERSIDAD DE CHILE,
CASILLA 170 CORREO 3, SANTIAGO, CHILE.
E-mail address: jdavila@dim.uchile.cl

S. MARTINEZ — DEPARTAMENTO DE INGENIERfA MATEMATICA AND CMM, UNIVERSIDAD DE
CHILE, CASILLA 170 CORREO 3, SANTIAGO, CHILE.
E-mail address: samartin@dim.uchile.cl



