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In this paper we are interested in propagation phenomena for nonlocal reaction-diffusion equations of the type:

where J is a probability density and f is a KPP nonlinearity periodic in the xvariables. Under suitable assumptions we establish the existence of pulsating fronts describing the invasion of the 0 state by an heterogeneous state. We also give a variational characterization of the minimal speed of such pulsating fronts and exponential bounds on the asymptotic behaviour of the solution.

Introduction

In this paper we are interested in propagation phenomena for nonlocal reactiondiffusion equations of the type:

(1.1)

∂u ∂t = J * u -u + f (x, u) t ∈ R, x ∈ R N ,
where J is a probability density and f is a nonlinearity which is KPP in u and periodic in the x-variables, that is,

f (x, u) = f (x + k, u) ∀x ∈ R N , k ∈ Z N , u ∈ R.
More precisely, we are interested in the existence/non-existence and the characterization of front type solutions called pulsating fronts. A pulsating front connecting 2 stationary periodic solutions p 0 , p 1 of (1.1) is an entire solution that has the form u(x, t) := ψ(x • e + ct, x) where e is a unit vector in R N , c ∈ R, and ψ(s, x) is periodic in the x variable, and such that lim s→-∞ ψ(s, x) = p 0 (x) uniformly in x lim s→+∞ ψ(s, x) = p 1 (x) uniformly in x.

The real number c is called the effective speed of the pulsating front. Using an equivalent definition, pulsating fronts were first defined and used by Shigesada, Kawasaki and Teramoto [START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF][START_REF] Shigesada | The speeds of traveling frontal waves in heterogeneous environments[END_REF] in their study of biological invasions in a heterogeneous environment modelled by the following reaction diffusion equation

(1.2) ∂u ∂t = ∇ • (A(x)∇u) + f (x, u) in R + × R N ,
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where A(x) and f (x, u) are respectively a periodic smooth elliptic matrix and a smooth periodic function. Using heuristics and numerical simulations, in a one dimensional situation and for the particular nonlinearity f (x, u) := u(η(x) -µu), Shigesada, Kawasaki and Teramoto were able to recover earlier results on the minimal speed of spreading obtained by probabilistic methods by Freidlin and Gartner [START_REF] Freidlin | On wavefront propagation in periodic media, Stochastic analysis and applications[END_REF][START_REF] Freȋdlin | The propagation of concentration waves in periodic and random media[END_REF].

The above definition of pulsating front has been introduced by Xin [START_REF] Xin | Existence of planar flame fronts in convective-diffusive periodic media[END_REF][START_REF] Xin | Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity[END_REF] in his study of flame propagation. This definition is a natural extension of the definition of the sheared travelling fronts studied for example in [START_REF] Berestycki | Multi-dimensional travelling-wave solutions of a flame propagation model[END_REF][START_REF] Berestycki | Nirenberg Travelling fronts in cylinders[END_REF]. Within this framework, Xin [START_REF] Xin | Existence of planar flame fronts in convective-diffusive periodic media[END_REF][START_REF] Xin | Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity[END_REF] has proved existence and uniqueness up to translation of pulsating fronts for equation (1.2) with a homogeneous bistable or ignition non-linearity. Since then, much attention has been drawn to the study of periodic reaction-diffusion equations and the existence and the uniqueness of pulsating front have been proved in various situations, see for example [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts[END_REF][START_REF] Hamel | Uniqueness and stability properties of monostable pulsating fronts[END_REF][START_REF] Heinze | Wave solutions to reaction-diffusion systems in perforated domains[END_REF][START_REF] Heinze | Variational principles for propagation speeds in inhomogeneous media[END_REF][START_REF] Hudson | Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media[END_REF][START_REF] Matano | Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit[END_REF][START_REF] Weinberger | On spreading speeds and travelling waves for growth and migration models in a periodic habitat[END_REF][START_REF] Xin | Existence of planar flame fronts in convective-diffusive periodic media[END_REF][START_REF] Xin | Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity[END_REF][START_REF] Xin | Front propagation in heterogeneous media[END_REF]. In particular, Berestycki, Hamel and Roques [START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts[END_REF] have showed that when f (x, u) is of KPP type, then the existence of a unique non trivial stationary solution p(x) to (1.2) is governed by the sign of the periodic principal eigenvalue of the following spectral problem ∇ • (A(x)∇φ) + f u (x, 0)φ + λ p φ = 0. Furthermore, they have showed that there exists a critical speed c * so that a pulsating front with speed c ≥ c * in the direction e connecting the two equilibria 0 and p(x) exists and no pulsating front with speed c < c * exists. They also gave a precise characterisation of c * in terms of some periodic principal eigenvalue. Versions of (1.2) with periodicity in time, or more general media are studied in [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Berestycki | Generalized travelling waves for reaction-diffusion equations[END_REF][START_REF] Berestycki | Asymptotic spreading in heterogeneous diffusive excitable media[END_REF][START_REF] Mellet | Generalized fronts for onedimensionnal reactiondiffusion equations[END_REF][START_REF] Nadin | Traveling fronts in space-time periodic media[END_REF][START_REF] Nadin | Propagation phenomena for time heterogeneous KPP reaction-diffusion equations[END_REF][START_REF] Nolen | Existence and Nonexistence of Fisher-KPP Transition Fronts[END_REF][START_REF] Nolen | Traveling waves in a one-dimensional heterogeneous medium[END_REF][START_REF] Shen | Traveling waves in time dependent bistable equations[END_REF][START_REF] Zlatos | Generalized travelling waves in disordered media: Existence, uniqueness, and stability[END_REF]. It is worth noticing that when the matrix A and f are homogeneous, then the equation (1.2) reduces to a classical reaction diffusion equation with constant coefficients and the pulsating front (ψ, c) is indeed a travelling front which have been well studied since the pioneering works of Kolmogorov, Petrovskii and Piskunov [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF].

Here we are concerned with a nonlocal version of (1.2) where the classical local diffusion operator ∇ • (A(x)∇u) is replaced by the integral operator J * u -u. The introduction of such type of long range interaction finds its justification in many problems ranging from micro-magnetism [START_REF] De Masi | Travelling fronts in non-local evolution equations[END_REF][START_REF] De Masi | Glauber evolution with Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics[END_REF][START_REF] De Masi | Uniqueness and global stability of the instanton in nonlocal evolution equations[END_REF], neural network [START_REF] Ermentrout | Existence and uniqueness of travelling waves for a neural network[END_REF] to ecology [START_REF] Cain | Long-distance seed dispersal in plant populations[END_REF][START_REF] Clark | Why Trees Migrate So Fast: Confronting Theory with Dispersal Biology and the Paleorecord[END_REF][START_REF] Deveaux | Estimation de la dispersion de pollen à longue distance à l'echelle d'un paysage agicole : une approche expérimentale[END_REF][START_REF] Kot | Spreading disease: integro-differential equations old and new[END_REF][START_REF] Murray | Mathematical biology, Biomathematics[END_REF][START_REF] Schurr | Plant fecundity and seed dispersal in spatially heterogeneous environments: models, mechanisms and estimation[END_REF]. For example, in some population dynamic models, such long range interaction is used to model the dispersal of individuals through their environment, [START_REF] Fife | Mathematical aspects of reacting and diffusing systems[END_REF][START_REF] Fife | An integrodifferential analog of semilinear parabolic PDEs, Partial differential equations and applications[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF]. Regarding equation (1.1) we quote [START_REF] Alberti | A nonlocal anisotropic model for phase transitions. I. The optimal profile problem[END_REF][START_REF] Bates | Traveling Waves in a convolution model for phase transition[END_REF][START_REF] Chen | Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations[END_REF][START_REF] Coville | On uniqueness and monotonicity of solutions of non-local reaction diffusion equation[END_REF][START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equation: The bistable and ignition case[END_REF][START_REF] Coville | On a non-local reaction diffusion equation arising in population dynamics[END_REF][START_REF] Coville | Nonlocal anisotropic dispersal with monostable nonlinearity[END_REF] for the existence and characterisation of travelling fronts for this equation with homogenous nonlinearity and [START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] García-Melián | A logistic equation with refuge and nonlocal diffusion[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF] for the study of the stationary problem.

In what follows, we assume that J : R N → R satisfies

   J ≥ 0, R N J = 1, J(0) > 0,
J is smooth, symmetric with support contained in the unit ball, (1.3) and that f : R N × [0, ∞) → R is [0, 1] N -periodic in x and satisfies:

           f ∈ C 3 (R N × [0, ∞)),
f (•, 0) ≡ 0, f (x, u)/u is decreasing with respect to u on (0, +∞), there exists M > 0 such that f (x, u) ≤ 0 for all u ≥ M and all x.

(1.4)

The model example is f (x, u) = u(a(x) -u) where a(x) is a periodic, C 3 function.

Before constructing pulsating fronts, we discuss the existence of solutions of the stationary equation

J * u -u + f (x, u) = 0 x ∈ R N . (1.5)
Under the assumption (1.4), 0 is a solution of (1.5) and, as shown in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF], the existence of a positive periodic stationary solution p(x) is characterized by the sign of a generalized principal eigenvalue of the linearisation of (1.5) around 0, defined by

µ 0 = sup{ µ ∈ R | ∃φ ∈ C per (R N ), φ > 0, such that J * φ -φ + f u (x, 0)φ + µφ ≤ 0} (1.6)
where C per (R N ) is the space of continuous periodic functions in R N .

More precisely, we have This result is analogous to the characterization of stationary positive solutions of the differential equation (1.2) with f of type KPP in u. The main difference is that µ 0 is not always an eigenvalue, that is, the supremum in (1.6) is not always achieved. Similar results for (1.5), but assuming that µ 0 is an eigenvalue and for the one-dimensional case (i.e N = 1) , have been obtained in [START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF]. In this particular situation, the uniqueness of the positive solution of (1.5) in the class of bounded measurable functions has been proved in [START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF]. For the multidimensional case, the existence and uniqueness of a stationary solution in the class of periodic functions has been obtained by Shen and Zhang [START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF] assuming that µ 0 is eigenvalue and by Coville [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF] without this assumption. The difference of Theorem 1.1 and [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF] is that we obtain a Lipschitz continuous solution.

The question whether µ 0 is really a principal eigenvalue, that is, if there exists φ ∈ C per (R N ), φ > 0 such that

J * φ -φ + f u (x, 0)φ + µ 0 φ = 0 in R N (1.7)
has been studied in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF] where simple criteria on f u (x, 0) have been derived to ensure the existence of a principal eigenfunction φ. For instance, the following criterion proposed in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF] [0,1] N 1 A -f u (x, 0) dx = +∞, where A = max

x∈R N f u (x, 0),
guarantees that µ 0 is a principal eigenvalue. Some properties of µ 0 and the existence criteria will be discussed in Section 3.

Our main result on pulsating fronts is the following:

Theorem 1.2. Assume µ 0 < 0 and that there exists φ ∈ C per (R N ), φ > 0 satisfying (1.7). Then, given any unit vector e ∈ R N there is a number c * e > 0 such that for c ≥ c * e (1.1) has a pulsating front solution u(x, t) = ψ(x.e + ct, x) with effective speed c, and for c < c * e there is no such solution. The minimal speed c * e is given by

(1.8) c * e := inf λ>0 -µ λ λ
where µ λ is the periodic principal eigenvalue of the following problem (1.9)

J λ * φ -φ + f u (x, 0)φ + µφ = 0 in R N
with J λ (x) := J(x)e λx.e . We will see in Section 3 that this eigenvalue problem is solvable under the assumptions of Theorem 1.2. Shen and Zhang showed in [START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF] that c * e corresponds to the speed of spreading for this equation in the following sense. For reasonable initial conditions, the solution of (1.1) satisfies lim sup

t→+∞ sup x•e+ct≤0 u(x, t) = 0 if c > c * e , while lim inf t→+∞ inf x•e+ct≥0 (u(x, t) -p(x)) = 0 if c < c * e .
The nonexistence statement in Theorem 1.2 is a consequence of the these spreading speed results. Along our analysis, we also obtain some asymptotic behaviour of ψ(s, x) as s → ±∞ where ψ is the pulsating front constructed in Theorem 1.2. More precisely, let λ(c) denote the smallest positive λ such that c = -µ λ λ . Theorem 1.3. Assume µ 0 < 0 and that there exists φ ∈ C per (R N ), φ > 0 satisfying (1.7). Then, given any unit vector e ∈ R N and c ≥ c * e we have a) For any positive λ so that λ < λ(c) there exist C > 0 such that

ψ(s, x) ≤ Ce λs ∀x ∈ R N , ∀s ∈ R. b) There is σ, C > 0 such that 0 ≤ p(x) -ψ(s, x) ≤ Ce -σs ∀x ∈ R N , ∀s ≥ 0.
Equation (1.1) can be related to a class of problems studied by Weinberger in [START_REF] Weinberger | On spreading speeds and travelling waves for growth and migration models in a periodic habitat[END_REF]. However, as observed in [START_REF] Coville | On a non-local reaction diffusion equation arising in population dynamics[END_REF][START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF], one of the main difficulties in dealing with the nonlocal equation (1.1) comes from the lack of regularizing effect of (1.1), which makes the framework developed by Weinberger not applicable, since the compactness assumption required in [START_REF] Weinberger | On spreading speeds and travelling waves for growth and migration models in a periodic habitat[END_REF] does not hold.

Another difficulty in the construction of pulsating fronts is that the equation satisfied by the function ψ (see (2.1) below) involves an integral operator in time and space, which is in some sense degenerate. This difficulty also appears in the classical reaction diffusion case, and it becomes delicate to proceed using the standard approaches used in [START_REF] Berestycki | Multi-dimensional travelling-wave solutions of a flame propagation model[END_REF][START_REF] Berestycki | Nirenberg Travelling fronts in cylinders[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF].

Finally, we comment on some of the hypotheses made in the construction. Regarding smoothness of the data, one can deal with less regularity of J and f , but some arguments would have to be modified. The hypothesis on the support of J in (1.3) can be weakened. For example, we believe that the same results are true assuming that J satisfies the so called Mollison condition:

∀ λ > 0, R N J(z)e λ|z| dz < +∞.
Finally, the hypothesis that µ 0 is an eigenvalue seems crucial in our approach. It is an interesting open problem to understand whether some type of pulsating front exists in the case where µ 0 is not an eigenvalue. We believe that if such solutions exist, they will be qualitatively different from the ones constructed in Theorem 1.2. See also Remark 3.11 for other observations on this hypothesis.

In the preparation of this work, we were informed of a very recent work of Shen and Zhang [START_REF] Shen | Traveling wave solutions of spatially periodic nonlocal monostable equations[END_REF] done independently dealing with the existence and properties of pulsating front for a nonlocal equation like (1.1). The construction of pulsating front proposed by Shen and Zhang relies on a completely different method and another definition of pulsating front. With their method, they are able to construct bounded measurable pulsating fronts for any speed c > c * (e) but fail to construct pulsating front for the critical speeds c * (e) due to the lack of good Lipschitz regularity estimates on the fronts. Some additional properties, such as exact exponential behaviour as t → -∞, uniqueness of the profile in a appropriate class and some kind of stability of the front are also studied in this work. The main differences between the results obtained by Shen and Zhang and ours concern essentially the regularity of the fronts. Whereas they obtained bounded measurable front, we obtained uniform Lipschitz front which is a significant part of our work. We also have the feeling that our approach is more robust, in the sense that it does not strongly rely on the KPP structure and can be adapted to other situations such as a monostable or ignition nonlinearity which seems not be the case for the method used in [START_REF] Shen | Traveling wave solutions of spatially periodic nonlocal monostable equations[END_REF]. We have in mind a problem like

∂u ∂t = R N J x -y g(x)g(y) [u(y) -u(x)] dy + f (u) t ∈ R, x ∈ R N ,
where f is monostable nonlinearity, J a smooth probability density and g a continuous positive periodic function. It is worth noticing that in [START_REF] Shen | Traveling wave solutions of spatially periodic nonlocal monostable equations[END_REF], the existence of a principal eigenvalue for (1.7) is also a crucial hypothesis.

Scheme of the construction

The proof of Theorem 1.1 is contained in Section 5, and follows by now standard arguments.

To construct a pulsating front solution u of (1.1) in the direction -e with effective speed c connecting 0 and a positive periodic stationary solution p, we let ψ(s, x) = u s-x•e c , x . Then we need to find ψ satisfying

             cψ s = M [ψ] -ψ + f (x, ψ) ∀s ∈ R, x ∈ R N ψ(s, x + k) = ψ(s, x) ∀s ∈ R, x ∈ R N , k ∈ Z N , lim s→-∞ ψ(s, x) = 0 uniformly in x, lim s→∞ ψ(s, x) = p(x) uniformly in x, (2.1) 
where M is the integral operator

M [ψ](s, x) = R N J(x -y)ψ(s + (y -x) • e, y) dy.
To analyse (2.1) we introduce a regularized problem, namely, we consider for ε > 0

cψ s = M [ψ] -ψ + f (x, ψ) + ε∆ψ ∀s ∈ R, x ∈ R N (2.2)
where ∆ is the Laplacian with respect to the x variables. The stationary version of this equation is a perturbation of (1.5):

0 = J * u -u + f (x, u) + ε∆u x ∈ R N . (2.3)
We will see in Section 5 that under the assumption that (1.5) has a positive periodic continuous solution p, for small ε > 0 the equation (2.3) also has a stationary positive solution p ε and p ε → p uniformly as ε → 0.

As a step to prove Theorem 1.2, for small ε > 0 we will find c * e (ε) such that for c ≥ c * e (ε) there exists a solution

ψ ε to (2.2) satisfying        lim s→-∞ ψ(s, x) = 0 lim s→+∞ ψ(s, x) = p ε (x) ψ(s, x) is increasing in s and periodic in x, (2.4) 
This is done in Section 6, following in part the methods developed in [START_REF] Berestycki | Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts[END_REF]. A substantial part of this article is devoted to obtain estimates for ψ ε that will allow us to prove that ψ = lim ε→0 ψ ε exists and solves (2.1). These estimates are based on the expected exponential decay of ψ as s → -∞, which we discuss next. Suppose ψ is a solution of (2.1). One may expect that for some λ > 0 ψ(s, x) = e λs w(x) + o(e λs ) as s → -∞, x ∈ R N where w is a positive periodic function, at least when c > c * e . Then at main order the equation in (2.1) 

yields cλw = R N J(x -y)e λ(y-x).e w(y) dy -w + f u (x, 0)w in R N . (2.5) Define J λ (x) = J(x)e -λx•e
then (2.5) can be written as the periodic eigenvalue problem

J λ * w -w + f u (x, 0)w + µ λ w = 0 in R N
w > 0 is continuous and periodic, (2.6) which will be studied in Section 3. In particular, under the assumptions of Theorem 1.2, we will see that it has a principal eigenvalue µ λ in the space of continuous periodic functions. Then the speed of the travelling front should be given by c = -µ λ λ , and this leads to the formula for the minimal speed (1.8). For the solutions of (2.2) and (2.4) on can guess a similar asymptotic behaviour as s → -∞ and a formula for the minimal speed

c * e (ε) = min λ>0 (- µ ε,λ λ ) (2.7)
where µ ε,λ is the principal eigenvalue of -L ε,λ where L ε,λ w = ε∆w + J λ w -w + f u (x, 0)w in the space of C 2 periodic functions.

Based on the estimates developed in Section 7 for the operator L ε,λ u, we prove in Section 8 exponential bounds of the form: for 0 < λ < λ ε (c)

ψ ε (s, x) ≤ Ce λs ∀x ∈ R N ∀s ∈ R (2.8)
where λ ε (c) is the smallest positive λ such that c = -µ ε,λ λ , and C does not depend on ε > 0. This exponential bound is obtained by studying the two sided Laplace transform of ψ ε , an idea present in [START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF].

The exponential estimate (2.8) allows us in Section 9 to obtain uniform control of local Sobolev norms ψ ε W 1,p with p > N , which in turn implies that we obtain a locally uniform limit ψ = lim ε→0 ψ ε for some subsequence. The final step is to verify that ψ satisfies all the requirements in (2.1).

Principal eigenvalue for non-local operators

Let us recall the notation

C per (R N ) = {φ ∈ C(R N ) | φ is [0, 1] N -periodic}.
For the rest of the article it is crucial to understand the eigenvalue problem (2.6), and the purpose of this section is to study its properties. We will write (2.6) in the form

L λ φ + µφ = 0 in R N φ ∈ C per (R N ), φ > 0 (3.1)
where L λ w = J λ * w + a(x)w and a(x) = f u (x, 0) -1 ∈ C per (R N ).

We say that L λ has a principal eigenfunction if for some µ ∈ R there is a solution in C per (R N ) of (3.1).

As we will see later, it is not true in general that L λ has a principal eigenfunction, but it is convenient to define in all cases (3.2)

µ λ = sup{ µ ∈ R | ∃φ ∈ C per (R N ), φ > 0, such that L λ φ + µφ ≤ 0}
and call it the generalized principal eigenvalue of -L λ . The name is motivated by the following result.

Proposition 3.1. Let λ ∈ R. If there is µ ∈ R, φ ∈ C per (R N
), φ ≥ 0 and nontrivial satisfying L λ φ + µφ = 0, then µ is given by (3.2) and it is simple eigenvalue of L λ .

The proof of this is a direct adaptation of Lemma 3.2 in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]. The next proposition characterizes the existence of a principal eigenfunction.

Proposition 3.2. If a ∈ C per (R N ), then max a(x)+µ λ ≤ 0. Moreover, max a(x)+ µ λ < 0 if and only if L λ admits a principal eigenfunction.

For the proof of the above result and the following two (Proposition 3.3 and Corollary 3.4) see later in this section.

Proposition 3.3. The function -µ λ is convex in R and even. In particular, -µ λ is nondecreasing in [0, ∞) and nonincreasing in (-∞, 0]. Corollary 3.4. If L 0 has a principal eigenfunction then for all λ ∈ R, L λ has a principal eigenfunction.

In general it is difficult to describe precisely in terms of J and a whether L λ has a principal eigenfunction, but we have sufficient and necessary conditions. Proposition 3.5. Assume a ∈ C per (R N ) and let A := max R N a(x). There are constants C 1 , C 2 , m > 0 that depend on J λ such that: a) if

[0,1] N 1 A -a(x) dx ≥ C 1 a m L ∞ (3.3) then L λ admits a principal eigenfunction, b) if [0,1] N 1 A -a(x) dx ≤ C 2
then L λ has no principal eigenfunction.

We give the proof of this Proposition later on inside this section. Finally, we need the next proposition to show that the formula (1.8) is well defined and gives a positive number.

Proposition 3.6. The function λ → µ λ is continuous and for all ε > 0 there exists

σ > 0 such that -µ λ ≥ -µ 0 -ε + σe σ|λ| ∀λ ∈ R.
The above Proposition is proved later on inside this section.

Remark 3.7. Many of the previous results have appeared in similar contexts, or have been proved under slightly different conditions. Existence of a principal eigenfunction was obtained for symmetric non-local operators in [START_REF] Hutson | The evolution of dispersal[END_REF], and later also in [START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF]. A condition like (3.3) is always explicitly or implicitly assumed in these works. The motivation for definition (3.2) is taken from [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF]. It has been adapted to many elliptic operators, and was first introduced for non-local operators in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]. In this work the author obtained many of the results described here for an integral operator on a domain in R N . A characterization like Proposition 3.2 for µ λ was first obtained in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]. The convexity of -µ λ , Proposition 3.3, is proved in [START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF] under the assumption that a principal eigenfunction exists. Examples of non-local operators with no principal eigenvalue are also presented in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF].

The rest of this section is devoted to prove Propositions 3.2, 3.3, Corollary 3.4, and Propositions 3.5 and 3.6. We start with some basic facts about the definition (3.2). The following results are simple adaptations from results found in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]. Proposition 3.8. (Proposition 1.1 [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]) Given a ∈ C per (R N ), and J :

R N → R, J ≥ 0 in L 1 (R N ) define µ p (J, a) = sup{µ ∈ R|∃φ ∈ C per (R N ), φ > 0, such that J * φ + aφ + µφ ≤ 0},
Then the following hold:

(i) If a 1 ≥ a 2 , then µ p (J, a 2 ) ≥ µ p (J, a 1 ). (ii) If J 1 ≥ J 2 then µ p (J 2 , a) ≥ µ p (J 1 , a). (iii) µ p (J, a) is Lipschitz in a, more precisely |µ p (J, a 1 ) -µ p (J, a 2 )| ≤ a 1 -a 2 ∞ .
To prove Proposition 3.5 we will need a generalization of the Krein-Rutman theorem [START_REF] Krein | Linear operators leaving invariant a cone in a Banach space[END_REF] for positive not necessarily compact operators due to Edmunds, Potter and Stuart [START_REF] Edmunds | Non-compact positive operators[END_REF]. For this we recall some definitions. A cone in a real Banach space X is a non-empty closed set K such that for all x, y ∈ K and all α ≥ 0 one has x + αy ∈ K, and if

x ∈ K, -x ∈ K then x = 0. A cone K is called reproducing if X = K -K. A cone K induces a partial ordering in X by the relation x ≤ y if and only if x -y ∈ K. A linear map or operator T : X → X is called positive if T (K) ⊆ K.
If T : X → X is a bounded linear map on a complex Banach space X, its essential spectrum (according to Browder [START_REF] Browder | On the spectral theory of elliptic differential operators[END_REF]) consists of those λ in the spectrum of T such that at least one of the following conditions holds : (1) the range of λI -T is not closed, (2) λ is a limit point of the spectrum of T , (3) ∪ ∞ n=1 ker(λI -T ) n is infinite dimensional. The radius of the essential spectrum of T , denoted by r e (T ), is the largest value of |λ| with λ in the essential spectrum of T . For more properties of r e (T ) see [START_REF] Nussbaum | The radius of the essential spectrum[END_REF]. Theorem 3.9. (Edmunds, Potter, Stuart [START_REF] Edmunds | Non-compact positive operators[END_REF]) Let K be a reproducing cone in a real Banach space X, and let T ∈ L(X) be a positive operator such that T m (u) ≥ cu for some u ∈ K with u = 1, some positive integer m and some positive number c. If c 1/m > r e (T ), then T has an eigenvector v ∈ K with associated eigenvalue ρ ≥ c 1/m . and T * has an eigenvector v * ∈ K * corresponding to the eigenvalue ρ.

If the cone K has nonempty interior and T is strongly positive, i.e. u ≥ 0, u = 0 implies T u ∈ int(K), then ρ is the unique λ ∈ R for which there exist nontrivial v ∈ K such that T v = λv and ρ is simple, see [START_REF] Zeidler | Nonlinear functional analysis and its applications. I. Fixed-point theorems[END_REF].

Proof of Proposition 3.5.

a) Write the eigenvalue problem (3.1) in the form

J λ * u + b(x)u = νu
where b(x) = a(x) + k, ν = -µ + k and k > 0 is a constant such that inf b > 0. Sometimes we will use the operator notation J λ [φ] = J λ * φ. We study this eigenvalue problem in the space C per (R N ) with uniform norm, where the operator J λ is compact. Let u ∈ C per (R N ), u ≥ 0 and m ∈ N . Since u and b are non-negative and J λ is a positive operator, we see that

(J λ + b(x)) m [u] ≥ J m λ [u] + b(x) m u (3.4)
We observe that there are m and d > 0 depending on J such that for u ∈ C per (R N ), u ≥ 0,

J m λ [u] ≥ d [0,1] N u. Indeed, J m λ [u] = J (m) λ * u,
where J (m) λ denotes the m-fold convolution J λ * . . . * J λ . Let B R (x 0 ) with R > 0 be such that J λ (x) > 0 for points x ∈ B R (x 0 ). Then J λ * J λ (x) > 0 for x ∈ B 2R (2x 0 ). Iterating this argument we get J (m) λ (x) > 0 for x ∈ B mR (mx 0 ). We choose now m large so that B mR (mx 0 ) contains some closed cube Q with vertices in Z N . Let

d = inf x∈Q J (m) λ (x) > 0. Then, for u ∈ C per (R N ), u ≥ 0, J m λ [u](x) = R n J (m) λ (x -y)u(y) dy ≥ Q J (m) λ (z)u(x -z) dz ≥ d Q u(x -z) dz = [0,1] N u, since u is [0, 1] N -periodic.
Let ε > 0 and define the continuous periodic positive function

u ε (x) = 1 max b m -b(x) m + ε .
We claim that choosing ε and C 1 in (3.3) appropriately there is δ > 0 such that

J m λ u ε + b(x) m u ε ≥ (max b + δ) m u ε in R N . (3.5)
Indeed, taking C 1 large in (3.3) and then ε > 0 small, we have

d [0,1] N 1 max b m -b(x) m + ε dx > 1.
Then to prove (3.5) it is sufficient to have

1 > (max b + δ) m -b(x) m max b m -b(x) m + ε in R N .
This last condition holds provided we take δ sufficiently small. Therefore, by (3.4) and (3.5) we have

(J λ + b(x)) m [u ε ] ≥ (max b + δ) m u ε .
Using the compactness of the operator J λ , we have r e (J λ + b(x)) = max x∈R N b(x), and by Theorem 3.9 we obtain the desired conclusion. We observe that the principal eigenvalue is simple since the cone of positive periodic functions has non-empty interior and, for a sufficiently large p, the operator (J λ + b) p is strongly positive. Any point ν in the spectrum of (J λ + b) with |ν| > r e (J λ + b) is isolated, see [START_REF] Browder | On the spectral theory of elliptic differential operators[END_REF]. In particular the principal eigenvalue is an isolated point in the spectrum.

b) As before, without loss of generality we can assume a > 0. Suppose there exists a principal periodic eigenfunction φ with eigenvalue µ. Then max a(x) + µ < 0. Let C = [0, 1] N and note that

J λ * φ(x) = R N J(x -y)e λ(x-y)•e φ(y) dy = C k∈Z N J(x -z -k)e λ(x-z-k)•e φ(z) dz ≤ ( C φ) sup x,z∈C k∈Z N J(x -z -k)e λ(x-z-k)•e But then φ(x) ≤ 1 -(a(x) + µ) ( C φ) sup x,z∈C k∈Z N J(x -z -k)e λ(x-z-k)•e .
Integrating the above inequality we obtain

C φ ≤ C 1 -(a(x) + µ) dx • C φ • sup x,z∈C k∈Z N J(x -z -k)e λ(x-z-k)•e ,
and hence

1 ≤ C 1 -(a(x) + µ) dx • sup x,z∈C k∈Z N J(x -z -k)e λ(x-z-k)•e . Since µ ≤ -max a(•) 1 ≤ C 1 max a(•) -a(x) dx • sup x,z∈C k∈Z N J(x -z -k)e λ(x-z-k)•e Let M = sup x,z∈C k∈Z N J(x -z -k)e λ(x-z-k)•e . If M C 1 max a(•) -a(x) dx < 1
there can not exist a principal eigenfunction.

Proof of Proposition 3.2. From the definition we obtain directly max a(x)+µ λ ≤ 0 for all λ ∈ R. If there exists a principal eigenfunction φ ∈ C per (R N ), then clearly max a(x) + µ λ < 0. Now suppose that max a(x) + µ λ < 0. We approximate a by functions

a ε ∈ C per (R N ) such that max a = max a ε , a -a ε ∞ → 0 as ε → 0, and [0,1] N 1 max a ε -a ε (x) dx = +∞. (3.6)
Then, by Proposition 3.5 there exists a positive, periodic φ ε , with

φ ε ∞ = 1, such that J λ * φ ε + (a ε (x) + µ ε λ )φ ε = 0, in R N .
Since by Proposition 3.8, µ ε λ → µ λ , there exists δ > 0 such that a ε (x) + µ ε λ < -δ for all x and ε. Therefore, by a simple compactness argument, we have that φ ε → φ uniformly as ε → 0, with φ positive satisfying (4.1), which concludes the proof.

Remark 3.10. If L λ has a principal eigenfunction φ ∈ C per (R N ), and additionally a ∈ C k , k ≥ 1 and J is C k , then φ is also C k , which follows from J λ φ = (-µ λ -a)φ and -µ λ -a ≥ δ for some δ > 0.
Proof of Proposition 3.3. To prove this result, we will first suppose that a satisfies (3.6), and then we proceed by an approximation argument. We will prove the convexity using an idea from [START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF]. Let λ 1 , λ 2 ∈ R, and t ∈ (0, 1). If a satisfies (3.6) then by Proposition 3.5 there exists φ 1 , φ 2 positive solutions of (3.1), with corresponding eigenvalues µ 1 , µ 2 , for λ 1 , λ 2 respectively. Consider φ = φ t 1 φ 1-t 2 . Then by Hölder's inequality we have that

J λ * φ ≤ (J λ1 * φ 1 ) t (J λ2 * φ 2 ) 1-t .
Using the inequality above and that φ 1 and φ 2 are solutions of (3.1) we obtain that

J λ * φ ≤ ((-a(x) -µ 1 )φ 1 ) t ((-a(x) -µ 2 )φ 2 ) 1-t = (-a(x) -µ 1 ) t (-a(x) -µ 2 ) 1-t φ
and then using Young's inequality we obtain that

J λ * φ ≤ (t(-a(x) -µ 1 ) + (1 -t)(-a(x) -µ 2 ))φ = (-a(x) + tµ 1 + (1 -t)µ 2 )φ, from where µ tλ1+(1-t)λ2 ≥ tµ 1 + (1 -t)µ 2 ,
which gives the convexity.

To conclude when (3.6) does not hold, we just approximate a by a ε satisfying (3.6) and a ε → a uniformly in R N . Then the result follows by Proposition 3.8 (iii).

Finally, we claim that the function µ λ is even. Indeed, suppose first µ λ is the principal eigenvalue of L λ , so µ λ + max a(x) < 0. Considering L λ in the space of L 2 loc (R N ) periodic functions, we have that L -λ is its adjoint, and therefore µ λ is in the spectrum of L -λ . Using µ λ + max a(x) < 0 it is easy to see that µ λ is the principal eigenvalue of L -λ . In the case L λ has no principal eigenfunction, we directly deduce µ λ = µ -λ .

Since -µ λ is even and convex, we obtain, that µ is nondecreasing in (0, ∞) and noincreasing in (-∞, 0).

Proof of Proposition 3.6. For the continuity of λ → µ λ we argue as follows. Suppose first that a satisfies (3.6) and λ j → λ ∞ . It is easy to see that µ λj is bounded, so up to a subsequence µ λj → µ. Let φ j ∈ C per (R N ) be the principal eigenfunction associated with µ λj (j = 1, 2, . . .) normalized so that φ j L ∞ = 1. Since µ + max a < 0, we have µ λj + max a ≤ -δ < 0 for some δ > 0 and all j large. Then from J λj * φ j = (-µ λj -a)φ j we obtain compactness to say that for a subsequence φ j converges uniformly to a nontrivial, nonnegative function φ ∈ C per (R N ) satisfying the eigenvalue problem

J λ∞ * φ = (-µ -a)φ.
Because of the uniqueness of the principal eigenvalue, Proposition 3.1, µ = µ λ∞ . If a does not satisfy (3.6) we argue approximating a by a ε that satisfy (3.6). Let µ ε λ denote the principal eigenvalue of -J λ -a ε . We note that the convergence µ ε λ → µ λ as ε → 0 is uniform by Proposition 3.8 (iii), so continuity of µ ε λ with respect to λ for all ε yields continuity of λ → u λ .

Next we show the exponential growth of -µ λ . Observe that if φ ∈ C per (R N ) then

J λ * φ = [0,1] N k λ (x, y)e -λ(x-y)•e φ(y)dy,
where

k λ (x, y) = k∈Z N e λk•e J(x -y -k).
The function k λ (•, y) is [0, 1] N -periodic. We consider the following eigenvalue problem

Lλ φ + (µ + ε)φ = 0 with φ ∈ C [0, 1] N ,
where ε > 0 and

Lλ φ = [0,1] N k λ (x, y)e -λ(x-y)•e φ(y)dy + a(x)φ + µ 0 φ.
We will assume first that the support of J is large, so that for some constants b, d > 0:

k λ (x, y) ≥ de bλ ∀x, y ∈ [0, 1] N .
Let w(y) = e -λy•e . Then Lλ w ≥ (de bλ + a(x)

+ µ 0 + ε)w ≥ δe bλ w
where δ > 0 and where we take λ large. If λ > 0 is large enough, by Theorem 3.9 we obtain a principal eigenfunction φ ∈ C([0, 1] N ) of Lλ , with principal eigenvalue -μ λ ≥ δe bλ . Since k λ (x, y)e λ(x-y)•e is periodic in x, we see that φ is periodic. Therefore, extending it periodically to R N , we find that it is the principal eigenfunction of L λ and -µ λ + µ 0 + ε = -μ λ ≥ δe bλ . Now since -µ λ is non decreasing in λ we have -µ λ + µ 0 + ε ≥ ε and by taking δ smaller if necessary we achieve for all λ -µ λ ≥ -µ 0 -ε + δe bλ .

Without the assumption that the support of J is large, we can assume that a(x) ≥ 0 and work with m large so that the support of J m is large. Then

(J λ + a(x)) m ≥ J m λ + a(x) m . Notice that J m λ (x) = e λx•e J m (
x) so the previous argument applies and we deduce that the principal eigenvalue of J m λ +a(x) m grows exponentially as λ → +∞. Then the same holds for (J λ +a(x)) m and therefore for J λ + a(x).

Remark 3.11. We would like to comment here on the hypothesis in Theorem 1.2 that there is a principal eigenvalue for problem (1.7). In fact, the proof of Theorem 1.2 reveals that we actually need only that (2.6) has a principal eigenvalue for all λ > 0, which holds under the stated hypotheses that (1.7) has a principal eigenvalue (this is a consequence of Propositions 3.2 and 3.3). Then it is natural to ask whether it is always true that (2.6) has a principal eigenfunction, even if (1.7) does not. Thanks to Proposition 3.5 one can construct examples where (2.6) has no principal eigenvalue for λ in some interval around 0.

Convergence of the principal eigenvalue and eigenfunction

Given ε ≥ 0 we study here the eigenvalue problem:

ε∆w + J λ * w -w + f u (x, 0)w + µw = 0 in R N w > 0 periodic and C 2 . (4.1)
We will write

L ε,λ w = ε∆w + J λ * w -w + f u (x, 0)w (4.2)
and L λ = L 0,λ .

In this section we will assume that µ 0 is a principal eigenvalue for -L 0 . Observe that by Corollary 3.4 µ λ is a principal eigenvalue of -L λ . By the Krein-Rutman theorem, we know that for ε > 0, L ε,λ has a principal eigenvalue µ ε,λ and there are principal

C 2 periodic eigenfunctions φ ε,λ > 0 of L ε,λ and φ * ε,λ > 0 of L * ε,λ , that is, L ε,λ φ ε,λ + µ ε,λ φ ε,λ = 0 and L * ε,λ φ * ε,λ + µ ε,λ φ * ε,λ = 0. Lemma 4.1. Assume that µ 0 is a principal eigenvalue for -L 0 . For ε ≥ 0 µ ε,λ = sup {µ ∈ R : ∃φ > 0 L ε,λ φ + µφ ≤ 0} (4.3) = inf {µ ∈ R : ∃φ > 0 L ε,λ φ + µφ ≥ 0}, (4.4)
where the sup and inf are taken over periodic C 2 periodic functions if ε > 0 and over continuous periodic functions if ε = 0.

Proof. Let us write:

µ + ε,λ = sup {µ : ∃φ > 0 L ε,λ φ + µφ ≤ 0} µ - ε,λ = inf {µ : ∃φ > 0 L ε,λ φ + µφ ≥ 0}. Using φ ε in the definitions we see that µ - ε,λ ≤ µ ε,λ ≤ µ + ε,λ . Let us prove µ ε,λ = µ - ε,λ . Let µ ∈ R be such that there exits ψ > 0 C 2 periodic such that L ε,λ ψ + µψ ≥ 0. Then µ ε,λ ψ, φ * ε,λ = -ψ, L * ε,λ φ * ε,λ = -L ε,λ ψ, φ * ε,λ ≤ µ ψ, φ * ε,λ
where , denotes L 2 inner product on [0, 1] N . Since ψ, φ * > 0 we deduce that

µ ε,λ ≤ µ. Hence µ ε,λ ≤ µ - ε,λ . The proof of µ + ε,λ ≤ µ ε,λ is similar. Lemma 4.2.
Assume that µ 0 is a principal eigenvalue for -L 0 . Let µ ε,λ be the principal eigenvalue of (4.1) in the space of C 2 periodic functions. Then

µ ε,λ → µ λ as ε → 0,
and the convergence is uniform for λ in bounded intervals. Let φ ε,λ be the principal periodic eigenfunction of L ε,λ normalized so that

φ ε,λ L 2 ([0,1] N ) = 1. Then φ ε,λ → φ λ in C(R N ) as ε → 0 where φ λ is the principal periodic eigenfunction of L λ . Proof. Under the stated hypotheses (1.3), (1.4) on J and f , φ λ is C 2 by Proposi- tion 3.5. Let µ > µ λ . Then L ε,λ φ λ + µφ λ = ε∆φ λ + (µ -µ λ )φ λ ≥ 0 if ε is small. Using formula (4.4) we see that for small ε, µ ε,λ ≤ µ. Thus lim sup ε→0 µ ε,λ ≤ µ λ . Using (4.3) we can prove lim inf ε→0 µ ε,λ ≥ µ λ .
Next we prove the uniform convergence of φ ε,λ and for this we derive a priori estimates. Since φ ε,λ satisfies (4.1) and

f u (x, 0) is C 2 we see that φ ε,λ is in C 3,α (R N )
for any α ∈ (0, 1). Fix i ∈ {1, . . . , N } and differentiate (4.1) with respect to x i . Let us write w i = ∂ xi φ ε,λ . Then

ε∆w i + g i -w i + f u (x, 0)w i + µ ε,λ w i = 0 in R N , (4.5)
where

g i (x) = R N (∂ xi J(x -y) -λe i ) e λ(y-x)•e φ ε,λ (y) dy + ∂ 2 xiu f (x, 0)φ ε,λ .
Let p ≥ 1. Multiplying (4.5) by |w i | p-2 w i and integrating on the period [0, 1] N we get

ε [0,1] N ∆w i |w i | p-2 w i dx + [0,1] N g i |w i | p-2 w i dx + [0,1] N (-1 + f u (x, 0) + µ ε,λ )|w i | p dx = 0.
Integrating by parts

ε(p -1) [0,1] N |w i | p-2 |∇w i | 2 + [0,1] N (1 -f u (x, 0) -µ ε,λ )|w i | p dx = [0,1] N g i |w i | p-2 w i dx
and therefore

[0,1] N (1 -f u (x, 0) -µ ε,λ )|w i | p dx ≤ [0,1] N g i |w i | p-1 dx.
By Hölder's inequality

[0,1] N (1 -f u (x, 0) -µ ε,λ )|w i | p dx ≤ [0,1] N |w i | p 1-1/p [0,1] N |g i | p 1/p . (4.6) 
Since the operator L λ has a principal eigenfunction φ λ > 0 from the relation

J λ * φ λ = (1 -f u (x, 0) -µ λ )φ λ we see that inf x∈R N (1 -f u (x, 0) -µ λ ) > 0.
Since µ ε,λ → µ λ as ε → 0, for sufficiently small ε > 0 we have

(1 -f u (x, 0) -µ ε,λ ) ≥ c > 0 for all x ∈ R N .
We deduce from this and (4.6) that

w i L p ([0,1] N ) ≤ C g i L p ([0,1] N )
with C independent of ε. But

g i L p ([0,1] N ) ≤ C φ ε,λ L p ([0,1] N )
and therefore, recalling the definition of w i , we obtain

∇φ ε,λ L p ([0,1] N ) ≤ C φ ε,λ L p ([0,1] N ) (4.7)
with C independent of ε. Since we have normalized φ ε,λ L 2 ([0,1] N ) = 1, using (4.7) repeatedly and Sobolev's inequality we deduce that for any p > 1

∇φ ε,λ L p ([0,1] N ) ≤ C
for some constant C. By Morrey's inequality we deduce that φ ε,λ is bounded in C α ([0, 1] N ) for any 0 < α < 1. Therefore, for a subsequence we have that φ ε,λ → φ uniformly on [0, 1] N to some continuous function φ. Then, multiplying (4.1) by a periodic smooth function and integrating by parts twice we deduce that φ ≥ 0 is a periodic eigenfunction of L λ with eigenvalue µ λ . Then φ is a multiple of φ λ and since both have L 2 norm equal to 1, we conclude that φ = φ λ . We also deduce that the whole family φ ε,λ converges to φ λ as ε → 0.

The stationary problem

In this section we give the proof of Theorem 1.1. The same result for Dirichlet boundary condition appears in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF].

First we state a result analogous to Theorem 1.1 for the perturbed problem.

Proposition 5.1. Assume (1.4). Let µ ε denote the principal periodic eigenvalue of -L ε where for ε > 0

L ε φ = ε∆φ + J * φ -φ + f u (x, 0)φ.
The perturbed stationary equation (2.3) has a positive periodic solution if and only if µ ε < 0 and this solution is unique.

We will omit the proof, since it is very similar to [START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF][START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF]. Lemma 5.2. Assume µ 0 < 0, so for ε > 0 small µ ε < 0 and there exists a positive solution p ε of (2.3). Then there is a constant C > 0 such that for ε > 0 small

1 C ≤ p ε (x) ≤ C ∀x ∈ R N .
Also, p ε is uniformly Lipschitz for ε > 0 small, i.e., there is C such that

|p ε (x) -p ε (x ′ )| ≤ C|x -x ′ | for all x, x ′ ∈ R N
and for all ε > 0 small.

Proof. For the proof of upper and lower bounds, it suffices to exhibit super and subsolutions which are bounded and bounded away from zero, uniformly for ε > 0 small. As a super solution we just take a large fixed constant. Let us proceed with the construction of a sub solution. We follow an argument developed in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]. Let a(x) := f u (x, 0) -1 and σ := sup R N a(x). Since a(x) is smooth and periodic there exists a point x 0 such that σ = a(x 0 ). By continuity of a(x), for each n there exists η n such that for all x ∈ B ηn (x 0 ) we have |σ -a(x)| ≤ 2 n . Now let us consider a sequence of real numbers (ε n ) n∈N which converges to zero such that ε n ≤ ηn 2 . Next, let (χ n ) n∈N be the following sequence of cut-off functions: χn (x) := χ( x-x0 εn ) where χ is a smooth function such that 0 ≤ χ ≤ 1, χ(x) = 0 for |x| ≥ 2 and χ(x) = 1 for |x| ≤ 1. Next, we let

χ n (x) = k∈Z N χn (x -k)
so that for n large, χ n is well defined, smooth, and [0, 1] N periodic.

Let us consider the following sequence of continuous periodic functions (a n ) n∈N , defined by

a n (x) := max{a(x), σχ n }. Then a n -a ∞ → 0 as n → ∞. Now consider a C ∞ regularization b n (x) := ρ n * a n (x)
where ρ n is an adequate sequence of mollifiers with support in B εn 4 (0), such that b n -a n ∞ ≤ a n -a ∞ . Let φ ε,n > 0 be the principal eigenfunction of the following eigenvalue problem

ε∆φ ε,n + J * φ ε,n + b n (x)φ ε,n + µ ε,n φ ε,n = 0 in R N .
Since b n is constant in a small neighborhood of x 0 , which is a point where it attains its maximum, by Proposition 3.5, there is a principal eigenvalue µ n and eigenfunction φ n > 0 for the problem

J * φ n + b n (x)φ n + µ n φ n = 0 in R N . We normalize φ n L ∞ ([0,1] N ) = 1.
Using that b n (x) -a(x) ∞ → 0 as n → ∞, from the Lipschitz continuity with respect to a(x) (Proposition 3.8) it follows that for n big enough, say n ≥ n 0 , we have

µ n ≤ µ 0 2 < 0.
We fix n 0 large so that b n0 -a ∞ ≤ |µ 0 | 8 Having fixed n 0 , we work with ε 0 > 0 small so that

µ ε,n0 ≤ µ 0 4 < 0, for all 0 < ε ≤ ε 0 ,
which is possible since µ ε,n0 → µ n0 as ε → 0 by Lemma 4.2. Now for σ > 0 we have

εσ∆φ ε,n0 + J * σφ ε,n0 -σφ ε,n0 + f (x, σφ ε,n0 ) ≥ -a(x) -b n0 (x) ∞ + µ ε,n0 σφ ε,n0 + o(σφ ε,n0 ) ≥ - µ 0 8 σφ ε,n0 + o(σφ ε,n0 ) > 0.
Therefore, for σ > 0 sufficiently small, σφ ε,n0 is a subsolution of (1.5). By Lemma 4.2, φ ε,n0 → φ n0 uniformly in R N as ε → 0. Since φ n0 > 0 we find the lower bound p ε ≥ 1/C for some C > 0 and all ε > 0 small. Let us prove now that p ε is uniformly Lipschitz. Let v = ∂pε ∂xj for some j ∈ {1, . . . , N }. Then v satisfies

J * v -v + ε∆v + f u (x, p ε )v + f xj (x, p ε ) = 0 x ∈ R N .
We use that f (x, u)/u is a decreasing function for u > 0. This implies that f (x, u)f u (x, u)u > 0 for all x ∈ R N and all u > 0. Since there is a fixed lower bound for p ε ≥ 1 C (ε > 0 small) we find a fixed lower bound for the quantity

f (x, p ε ) -f u (x, p ε )p ε ≥ δ 0 > 0 ∀x ∈ R N
and all ε > 0 small. Then p ε satisfies

ε∆p ε + J * p ε -p ε + f u (x, p ε )p ε = f u (x, p ε )p ε -f (x, p ε ) ≤ -δ 0 .
By the maximum principle we conclude that

|v| ≤ f xj ∞ δ 0 p ε ≤ C in R N .
Thus p ε is uniformly Lipschitz.

Proof of Theorem 1.1. Uniqueness is proved as in [START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]. Also the proof that µ 0 < 0 is necessary for existence is very similar to [START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF], so we omit the details. Assume now µ 0 < 0 and let us prove that there exists a continuous solution. Let p ε be the positive solution of (2.3), which exists since µ ε < 0 for ε > 0 small. By Lemma 5.2, p ε is uniformly Lipschitz and therefore, up to subsequence p ε , converges uniformly in [0, 1] N as ε → 0 to a continuous function p > 0 which is periodic and solves (1.5). By the uniqueness of the positive periodic solution of (1.5), we have convergence of the whole family p ε .

Directly from the previous proof we get the following result.

Corollary 5.3. Assume µ 0 < 0, so µ ε < 0 for ε > 0 small . Let p be the positive continuous periodic solution of (1.5) and p ε be the positive periodic solution of (2.3) for ε > 0 small. Then p ε → p uniformly as ε → 0.

Construction of approximate pulsating fronts

Let ε > 0 be small enough so that

0 = J * p -p + ε∆p + f (x, p) x ∈ R N
has a positive periodic solution p ε , which is unique.

Here the main result is the following.

Proposition 6.1. Let c * e (ε) be defined by (2.7). For c ≥ c * e (ε) there is a solution to

c∂ s ψ = M ψ -ψ + ε∆ψ + f (x, ψ) in R × R N (6.1) such that        lim s→-∞ ψ(s, x) = 0 lim s→+∞ ψ(s, x) = p ε (x)
ψ(s, x) is increasing in s and periodic in x.

(6.2)

To prove this result, we first work with an elliptic regularization L κ of the operator M -Id + ε∆ x -c∂ s as it is done in [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equation: The bistable and ignition case[END_REF][START_REF] Coville | Nonlocal anisotropic dispersal with monostable nonlinearity[END_REF] and introduce a truncated problem as follows. Given κ, r, R > 0, σ ≥ 0 and c ∈ R consider the problem

           L κ ψ + f (x, ψ) + H(s, x) = 0 in (-r, R) × R N ψ(s, •) = σφ for s ≤ -r ψ(s, •) = p ε for s ≥ R ψ(s, •) is [0, 1] N -periodic for all s (6.3)
where

L κ ψ := [-r≤s+(y-x)•e≤R] J(x -y)ψ(s + (y -x) • e, y) dy -ψ + ε∆ x ψ + κ∂ ss ψ -c∂ s ψ,
φ ε is the principal periodic eigenfunction associated with the principal eigenvalue µ ε of the following problem

ε∆φ + J * φ -φ + f u (x, 0)φ + µ ε φ = 0, and 
H(s, x) = σ [s+(y-x)•e≤-r] J(x -y)φ ε (y) dy + [s+(y-x)•e≥R]
J(x -y)p ε (y) dy. Proposition 6.2. There exists σ 0 such that for all 0 ≤ σ ≤ σ 0 and for any c ∈ R there exists a unique solution of (6.3). Moreover, the corresponding solution is increasing in s, and continuous with respect to σ with values in

C 2 ([-r, R] × R N ).
Proof. Note that by construction, since J is smooth then H(s, x) is also smooth and the problem (6.3) can be solved by super and sub-solutions techniques. We call a function ψ ∈ C 2 (R N × [-r, R]) a super-solution of (6.3) if

L κ ψ + f (x, ψ) + H(s, x) ≤ 0, -r < s < R ψ(-r, x) ≥ σφ ε , ψ(R, x) ≥ p ε (x) ∀x ∈ R N ψ is periodic in x.
Subsolutions are defined similarly reversing the inequalities. If there exists a subsolution

Ψ 1 ∈ C 2 ([-r, R] × R N ) and a supersolution Ψ 2 ∈ C 2 ([-r, R] × R N ) such that Ψ 1 ≤ Ψ 2 ,
then using monotone iterations one can construct a minimal solution ψ and a maximal solution ψ of (6.3) such that Ψ 1 ≤ ψ ≤ ψ ≤ Ψ 2 . The monotone iterations can be taken for instance of the form

ψ 0 = Ψ 1
and ψ n defined recursively as Here A > 0 is a large constant such that u → f (x, u) + Au is increasing for all u ∈ [0, max p ε ] and all x. Then the right hand side of (6.4) is a monotone operator. Now since, p ε and w are bounded and strictly positive functions, the following quantity σ * is well defined

           -ε∆ x ψ n+1 -κ∂ ss ψ n+1 + c∂ s ψ n+1 + (A + 1)ψ n+1 = M ψ n + f (x, ψ n ) + Aψ n + H(x, s) in (-r, R) × R N ψ n+1 (-r, x) = σφ ε , ψ n+1 (R, x) = p ε (x) ∀x ∈ R N ψ n+1 is periodic in x.
σ * := sup{σ > 0 | σφ ε ≤ p ε }.
Take now 0 ≤ σ ≤ σ * . Then from the definition of H(s, x) we see that p ε is a supersolution of (6.3). Indeed, a short computation shows that

L κ [p ε ] + f (x, p ε ) + H(x, s) ≤ (J * p ε -p ε ) + f (x, p ε ) + ε∆ x p ε = 0.
Working with ε > 0 sufficiently small we have that µ ε < 0. Let us now observe that when 0 ≤ σ ≤ σ * and σ is small enough the function σφ ε is a subsolution of (6.3). Indeed, as above using that σφ ε ≤ p ε a short computation shows that

L κ [σφ ε ] + f (x, σφ ε ) + H(x, s) ≥ σ(J * φ ε -φ ε ) + f (x, σφ ε ) + εσ∆ x φ ε ≥ σφ ε -µ ε + f (x, σφ ε ) σφ ε -f u (x, 0) .
Since φ ε is uniformly bounded, using the regularity of f (x, s) we have for σ ≥ 0 small enough say σ ≤ σ 1

-µ ε + f (x, σφ ε ) σφ ε -f u (x, 0) ≥ - µ ε 2 ≥ 0.
Thus for σ ≤ σ 0 := inf{σ 1 , σ * }, σφ ε is a subsolution to (6.3) with σφ ε ≤ p ε .

We prove now that for all σ ≤ σ 0 the corresponding problem (6.3) has a unique positive solution denoted ψ σ . To this end we use a standard sliding method. First observe that for any 0 ≤ σ ≤ σ 0 , then any bounded solution ψ of the corresponding problem (6.3) satisfies

σφ ε < ψ < p ε .
Indeed, let us start with the proof of the inequality ψ ≤ p ε . Since p ε is bounded away from 0 the following quantity is well defined

γ * := inf{γ > 0 | ψ ≤ γp ε }.
To prove the inequality, we are reduced to show that γ * ≤ 1. Assume by contradiction that γ * > 1. From the definition of γ * , using the periodicity of the functions ψ, p ε and a standard argument we see that there exists a point (s

0 , x 0 ) ∈ (-r, R)× R N such that γ * p ε (s 0 , x 0 ) = ψ(s 0 , x 0 ).
Observe that since f (x,s) s is a decreasing function of s, the function γ * p ε is a supersolution of (6.3). Moreover, for some positive constant A big enough, the function γ * p ε -ψ satisfies

L κ (γ * p ε -ψ) -A(γ * p ε -ψ) ≤ 0, in (-r, R) × R N (γ * p ε -ψ)(-r, x) ≥ 0, (γ * p ε -ψ)(R, x) ≥ 0 ∀x ∈ R N .
Since L κ is elliptic in (-r, R) × R N and γ * p ε (s 0 , x 0 ) = ψ(s 0 , x 0 ), from the strong maximum principle it follows that r,x). Therefore we have γ * ≤ 1 and ψ ≤ p ε . The strict inequality comes from the strong maximum principle. Now observe that to obtain the other inequality σφ ε < ψ we can just reproduce the above argumentation with σφ ε in the role of ψ and ψ in the role of p ε .

γ * p ε ≡ ψ in (-r, R) × R N , which is impossible since γ * p ε (x) > p ε (x) ≥ σφ ε (x) = ψ(-
We are now in position to prove the uniqueness of the solution of (6.3). Suppose ψ 1 , ψ 2 are 2 solutions of (6.3). Define the following continuous functions

ψ1 (s, x) :=      σφ ε (x) if s < -r and x ∈ R N ψ 1 (s, x) if -r ≤ s ≤ R and x ∈ R N p ε (x) if s > R and x ∈ R N and ψ2 (s, x) :=      σφ ε (x) if s < -r and x ∈ R N ψ 2 (s, x) if -r ≤ s ≤ R and x ∈ R N p ε (x) if s > R and x ∈ R N .
Note that with this notation the equation ( 6.3) satisfied by ψ 1 and ψ 2 can be rewritten (6.5)

ε∆ψ i + κ∂ ss ψ i -c∂ s ψ i -ψ i + f (x, ψ i ) = -M ψi in (-r, R) × R N , with i ∈ {1, 2}. Let us define ψτ 1 (s, x) := ψ1 (s + τ, x) with τ ∈ R. Obviously, we have ψτ 1 (s, x) := ψ 1 (s + τ, x) in (-r, R -τ ) × R N We claim that for all τ ∈ [0, R + r] ψτ 1 (s, x) > ψ2 (s, x) for (s, x) ∈ R × R N . (6.6)
By construction we easily see that ψR+r

1 ≥ ψ2 in R × R N since we know that σφ ε ≤ ψ i ≤ p ε for (s, x) ∈ R × R N .
Moreover, using that we have a strict inequality in (-r, R), that is to say

σφ ε < ψ i < p ε for (s, x) ∈ (-r, R) × R N ,
we can find a positive ε such that for any τ ∈ [R + r -ε, R + r] we have ψτ 1 (s, x) > ψ2 (s, x) for (s, x) ∈ R × R N . Note also that by construction for all τ ≥ 0 we have

(6.7) ψτ 1 ≥ ψ2 in ((-∞, -r] ∪ [R -τ, +∞)) × R N .

Now let us define

τ * = inf{τ ∈ [0, R] : ψτ ′ 1 ≥ ψ2 for τ ′ ∈ [τ, R + r]} then 0 ≤ τ * < R + r. Assume that τ * > 0. in this case ψτ * 1 ≥ ψ2 in R × R N and since J ≥ 0 we have M ( ψτ * 1 -ψ2 ) ≥ 0. Now, fix A > 0 large so that f (x, u) + Au is monotone increasing in [0, max p ε ].
Let us denote z := ψτ * 1 -ψ2 . Then using the definition of ψτ 1 and ψ2 in (-r, Rτ * ) × R N , we have

ε∆z + κ∂ ss z -c∂ s z -(A + 1)z ≤ -M ( ψτ * 1 -ψ2 ) ≤ 0, z(-r, x) > 0 for all x ∈ R N , z(R -τ * , x) > 0 for all x ∈ R N .
By the strong maximum principle, it follows that z > 0 in (-r, R -τ * ) × R N . Therefore, we have ψτ * 1 -ψ2 > 0 in [-r, R -τ * ] × R N and by continuity for δ small we have for any τ in (τ * -δ, τ * )

(6.8) ψτ 1 -ψ2 ≥ 0 in [-r, R -τ ] × R N .
Combining the later with (6.7) it follows that for any positive τ in (τ * -δ, τ * ) we have ψτ 1 -ψ2 ≥ 0 in R × R N , which contradicts the definition of τ * . Therefore, τ * = 0 and ψ1 ≥ ψ2 . By interchanging the role of ψ 1 and ψ 2 in the above argument we end up with ψ1 ≥ ψ2 ≥ ψ1 , which prove the uniqueness of the solution of (6.3).

Taking ψ 2 = ψ in (6.6) shows that ψ is increasing in s. Finally, denoting ψ σ the unique solution of the corresponding problem (6.3) one can see that the map σ → ψ σ is continuous, thanks to the uniqueness of the solution to (6.3) and standard elliptic estimates. Proposition 6.3. Suppose c > c * e (ε). Then there exists r 0 > 0, κ(c) > 0 and k > 0 such that for r ≥ r 0 , R ≥ r 0 , κ ≤ κ(c) there is σ ∈ (0, σ 0 ) for which the unique increasing solution ψ of (6.3) satisfies

max x∈[0,1] N ψ(0, x) = 1 k min R N p ε .
Proof. Let ψ σ denote the unique solution of (6.3) constructed in Proposition 6.2. Choose k > 0, so that

σ 0 max R N φ ε > 1 k min R N p ε ,
where φ ε denote the positive periodic principal eigenfunction associated with the eigenvalue problem

J * φ -φ + ε∆φ + f u (x, 0)φ + µ ε φ = 0.
Observe that since ψ σ is increasing in s, we have max R N ψ σ0 (0, x) > 1 k min R N p ε . Next we prove that for σ = 0, we have max

x∈R N ψ 0 (0, x) < 1 k min R N p ε . Recall that c * e (ε) := inf λ>0 - µ ε,λ λ ,
where µ ε,λ is the principal periodic eigenvalue of the problem

J λ * φ -φ + ε∆φ + f u (x, 0)φ + µ ε,λ φ = 0.
Since c > c * e (ε) there is λ > 0 such that c λ + µ ε, λ > 0. Let us denote φ ε, λ the principal periodic eigenfunction associated with µ ε, λ and consider the function

w := e λ(s-s0) φ ε, λ, where s 0 ∈ R is chosen so that e -λs0 max R N φ ε, λ < 1 k min R N p ε ,
and take R > 0 large so that

e λ(R-s0) min R N φ ε, λ ≥ p ε (x).
Since w is monotone increasing in s we have

w(s, x) ≥ p ε (x) for any (s, x) ∈ [R, +∞) × R N .
Finally, observe that e λ(-r-s0) φ ε, λ(x) ≥ 0 for any (s, x) ∈ R × R N .

We claim that the function w is a supersolution of (6.3) with σ = 0 for κ small enough. Indeed, in (-r, R) we have

L ε w + f (x, w) + H(s, x) ≤ (Jλ * φ ε, λ -φ ε, λ + ε∆φ ε, λ + f u (x, 0)φ ε, λ -c λφ ε, λ + κ λ2 φ ε, λ)e λs ≤ -(µ ε, λ + c λ -κ λ2 )w
Therefore, for κ ≤ c+µλ λ2 =: κ(c) we have

L ε w + f (x, w) + H(s, x) ≤ 0 for all (s, x) ∈ (-r, R) × R N , w(-r, x) > 0 for all x ∈ R N , w(R, x) > p ε for all x ∈ R N .
Since 0 is a subsolution of (6.3) with σ = 0 and w ≥ 0 using the uniqueness of the solution of (6.3) we must have ψ 0 (s, x) ≤ w(s, x). Therefore max

R N ψ 0 (0, x) ≤ max R N w(0, x) < min R N p ε k .
With R > 0 fixed, we see that the map σ ∈ [0, σ 0 ] → ψ σ is continuous, and at σ 0 satisfies max ψ σ0 (0, x) > min pε k and max ψ 0 (0, x) < min pε k . By continuity there is σ ∈ [0, σ 0 ] such that max ψ σ (0, x) = min pε k . Proposition 6.4. For c > c * e (ε) and κ ≤ κ(c) there is a solution to

c∂ s ψ = M ψ -ψ + ε∆ψ + κ∂ ss ψ + f (x, ψ) in R × R N (6.9) such that lim s→-∞ ψ(s, x) = 0 lim s→+∞ ψ(s, x) = p ε (x)
ψ(s, x) is increasing in s and periodic in x.

Proof. For r > 0 large, let ψ r be the solution of (6.3) with R = r obtained in Proposition 6.3 where σ = σ(r) ∈ (0, σ 0 ) is such that

max x∈R N ψ r (0, x) = min x∈R N p ε (x) k . (6.10)
We let r → ∞. Since ψ r is locally bounded in C 1,α , there is a subsequence such that ψ r converges locally in C 1,α to a function ψ : R × R N which satisfies (6.9) with the speed c, is increasing in s and periodic in x.

The limit w(x) = lim s→-∞ ψ(s, x) exists and is a solution of the stationary problem. By Proposition 5.1 part b) this solution is either 0 or the unique positive stationary solution p ε . By (6.10) we conclude that w ≡ 0. Similarly lim s→+∞ ψ(s, x) = p ε (x).

In the next proposition we establish some a priori estimates satisfied by the solutions of (6.9). Namely, we have Proposition 6.5. Let c > c * e (ε) and κ ≤ κ(c) then the solution (ψ κ,ε , c) of (6.9) satisfies

(i) c R×C |∂ s ψ κ,ε | 2 = - ε 2 C |∇ x p ε | 2 - 1 4 C 2 J (x, y)(p ε (x) -p ε (y)) 2 + C F (x, p ε )
where C = [0, 1] N and J = k∈Z N J(x -y -k) is a symmetric positive kernel. (ii) For all compact set K ⊂ R × R N , there exists R > 0, a constant γ(R) and n ∈ N so that

K |∇ x ψ κ,ε | 2 ≤ γ(R)(2n) N . (iii) Given R > 0, let Q R = {(s, x) ∈ R × R N : |x| < R, |s| < R}.
Then there exists positive constant M, M ′ independent of ε such that

sup Q R/4 |∇ x ψ κ,ε | ≤ M |c| + 1 R + R 2 sup QR |p ε (x)| + sup QR |f u (x, 0)| sup QR |ψ κ,ε | sup Q R/4 |ψ κ,ε (t 1 , x) -ψ κ,ε (t 2 , x)| |t 1 -t 2 | 1 2N ≤ M ′ sup QR |∇ x ψ κ,ε |.
We give the proof of this Proposition in Appendidx A. We are now in a position to prove the Proposition 6.1

Proof of Proposition 6.1. Let us first assume that c > c * e (ε). Then from the above construction, for any κ ≤ κ(c), there exists a function ψ κ,ε (s, x) increasing in s and periodic in x ∈ R N that is solution of (6.9). Without loss of generality, we can assume that ψ κ,ε is normalized as follows max

R N ψ κ,ε (0, x) = min R N p ε k .
We let κ → 0 along a sequence. Thanks to the apriori estimates of Proposition 6.5, we can extract a subsequence of (ψ κn,ε ) n∈N which converges locally uniformly in R×R N to a function ψ ε ∈ H 1 loc (R N )∩C α (R×R N ) for some α ∈ (0, 1), that satisfies (6.1) in the sense of distributions. Since ψ κn,ε is periodic in x, monotone increasing in s, and 0 ≤ ψ κn,ε ≤ p ε , we also have that ψ ε is periodic in x, monotone non decreasing in s, and 0 ≤ ψ ε ≤ p ε . Note also that from the normalization condition, since ψ κn,ε → ψ ε locally uniformly, we also deduce that (6.11) max

R N ψ ε (0, x) = min R N p ε k .
Furthermore, using standard parabolic estimate, on can show that ψ ε is a classical solution of (6.1). Thus ψ ε satisfies

     ε∆ψ ε -c∂ s ψ ε + M [ψ ε ] -ψ ε + f (x, ψ ε ) = 0 in R × R N , 0 ≤ ψ ≤ p ε , ∂ s ψ ≥ 0 in R × R N ψ ε (s, •) is [0, 1] N -periodic for all s.
By standard estimates the limit w(x) = lim s→-∞ ψ ε (s, x) exists and is a solution of the stationary problem. By Proposition 5.1 part b) this solution is either 0 or the unique positive stationary solution p ε . By (6.11) we conclude that w ≡ 0. Similarly lim s→+∞ ψ ε (s, x) = p ε (x).

Estimates for L ε,λ

Recall the notation from (4.2):

L ε,λ u = ε∆u + J λ * u -u + f u (x, 0)u.
Lemma 7.1. Let λ be such that 0 < λc < -µ ε,λ , where µ ε,λ is the principal periodic eigenvalue of the operator -L ε,λ defined in section 4.

If u ∈ C 2 (R N ), u ≥ 0 is a periodic solution to L ε,λ u -λcu = h in R N then u L ∞ ([0,1] N ) ≤ C ε,λ h L ∞ ([0,1] N ) .
Note that for any ε > 0 and 0 < λ 0 < λ 1 < -µ ε,λ /c we have

sup λ0≤λ≤λ1 C ε,λ < ∞,
but the constant depends on ε.

Proof. Let φ * ε,λ be the principal eigenfunction of the adjoint operator L * ε,λ . Then multiplying the equation by φ * ε,λ and integrating we find

(-µ ε,λ -λc) [0,1] N uφ * ε,λ = [0,1] N hφ * ε,λ .
Since λc < -µ ε,λ , u ≥ 0 and φ * ε,λ is strictly positive and bounded, we obtain

u L 1 ([0,1] N ) ≤ C ε,λ h L 1 ([0,1] N ) .
The uniform norm follows because of standard elliptic estimates for the operator L ε,λ . Proposition 7.2. There is ρ > 0, such that for any 0 < ρ ′ < ρ there is ε 0 > 0 and C such that for any 0 < ε ≤ ε 0 , any λ that satisfies (-µ ε,λ -ρ)/c ≤ λ ≤ (-µ ε,λ -ρ ′ )/c and any u ≥ 0 that is a periodic solution to

L ε,λ u -λcu = h in R N (7.1) for some h ∈ L ∞ we have u L ∞ ([0,1] N ) ≤ C h L ∞ ([0,1] N ) .
The constant ρ > 0 does not depend on ε or λ.

Proof. Let µ λ be the principal eigenvalue of -L λ . Recall that inf x∈[0,1] N (1 - f u (x, 0) -µ 0 ) > 0, so we can fix ρ > 0 such that inf x (1 -f u (x, 0) -µ 0 -ρ > 0). Since µ λ ≤ µ 0 , see Proposition 3.3, also inf x (1 -f u (x, 0) -µ λ -ρ > 0). Let 0 < ρ ′ < ρ
and let us proceed by contradiction. Assume that there exist sequences

ε n → 0, λ n ∈ R, periodic functions (h n ) in L ∞ , (u n ) in C 2 , such that: λ n satisfies (-µ n -ρ)/c ≤ λ n ≤ (-µ n -ρ ′ )/c
, where µ n = µ εn,λn , u n solves (7.1) and

h n L ∞ → 0 and u n L ∞ = 1.
We write equation (7.1) as

ε n ∆u n -a n (x)u n = -g n (7.2) where a n (x) = 1 -f u (x, 0) + λ n c and g n = J λn u n -h n .
After extracting a subsequence we may assume that λ n → λ, u n → u weakly-* in L ∞ ([0, 1] N ) and then J λn u n → J λ u uniformly. Hence g n → g = J λ u uniformly, and g is continuous. By Lemma 4.2 we have µ n = µ εn,λn → µ λ as n → ∞. Since

a n (x) = 1 -f u (x, 0) + λ n c ≥ 1 -f u (x, 0) -µ n -ρ
and 1 -f u (x, 0) -µ λ -ρ > 0, by working with n large we may assume that inf x a n (x) ≥ a 0 > 0 for all n.

Note that a n → a = 1 -f u (x, 0) + λc, which is a continuous positive function, and the convergence is uniform. We claim that u n → g/a uniformly. For the next argument we will assume that g n > 0, which we can achieve by replacing u n by u n + M and g n by g n + a n M where M > 0 is large. Note that (7.2) and g n → g uniformly still hold. Let 0 < σ < 1/2 and x 0 ∈ R N . By uniform convergence g n → g, a n → a and the continuity of g and a, we have inf

x∈Br(x0) g n (x) β + a n (x) ≥ (1 -σ) g(x 0 ) a(x 0 ) in B r (x 0 )
provided we choose r > 0, β > 0 small and n ≥ n 0 with n 0 large, and this is uniform in x 0 . Let z be the principal eigenfunction for -∆ in B r (x 0 ) such that max Br (x0) z = 1 and let ν r = C/r 2 be the corresponding principal eigenvalue, that is,

∆z + ν r z = 0, z > 0 in B r (x 0 ) z = 0 on ∂B r (x 0 ). Define v n = u n -zd n where d n = inf Br (x0) g n (x) ν r ε n + a n (x)
.

Then ε n ∆v n -a n v n = -g n + d n (ε n ν r + a n )z ≤ 0
by the choice of d n and z ≤ 1. Since v n = u n ≥ 0 on ∂B r (x 0 ) by the maximum principle we deduce that

u n ≥ inf Br (x0) g n (x) ν r ε n + a n (x) z in B r (x 0 ).
In particular, if n ≥ n 0 is large enough so that ν r ε n ≤ β we obtain

u n (x 0 ) ≥ (1 -σ) g(x 0 ) a(x 0 ) .
This proves that lim inf

n→∞ inf x (u n -g/a) ≥ 0.
A similar argument shows that lim sup n→∞ sup x (u n -g/a) ≤ 0 which proves the uniform convergence u n → g/a. We deduce that u = g/a, and therefore u solves the equation

J λ u -u + f u (x, 0)u -λcu = 0.
But since u n L ∞ = 1 and u n converges uniformly we also deduce that u L ∞ = 1. Moreover u ≥ 0. Then necessarily λc is the principal eigenvalue -µ λ of L λ . This not possible because we assumed λ n c ≤ -µ n -ρ ′ , so λc ≤ -µ λ -ρ ′ , a contradiction.

Exponential bounds

Suppose we have a solution of

               cψ s = ε∆ψ + M [ψ] -ψ + f (x, ψ) ∀s ∈ R, x ∈ R N ψ(•, x) is nondecreasing for all x ψ(s, •) is [0, 1] N periodic for all s ψ(s, x) → 0 as s → -∞ ψ(s, x) → p ε (x) as s → ∞. (8.1)
Let δ > 0 be fixed. We assume the following normalization on ψ:

max x∈[0,1] N ψ(0, x) = δ. (8.2)
Let λ ε (c) be the smallest positive λ such that c = -µ ε,λ λ . The main result in this section is the following. Proposition 8.1. For any 0 < λ < λ ε (c) there are δ > 0, C > 0 such that if ψ satisfies (8.1) and (8.2), then

ψ(s, x) ≤ Ce λs ∀x ∈ R N , ∀s ≤ 0, (8.3)
where C does not depend on ε > 0.

As a corollary we have: Proposition 8.2. For all ε > 0 small and any fixed λ such that 0 < λ < λ ε (c) there exists C λ independent of ε such that if ψ satisfies (8.1) and (8.2), then |ψ s (s, x)| ≤ C λ e λs ∀s ≤ 0, ∀x ∈ R N (8.4)

ε 1/2 |∇ x ψ(s, x)| ≤ C λ e λs ∀s ≤ 0, ∀x ∈ R N (8.5) ε|∇ 2 x ψ(s, x)| ≤ C λ e λs ∀s ≤ 0, ∀x ∈ R N . (8.6)
The proof of this proposition is based on scaling in the x variable and applying Schauder estimates for parabolic equations. We omit the proof.

The proof has several steps.

Lemma 8.3.

There exists λ 0 > 0 and C > 0 such that if δ > 0 is sufficiently small and ψ satisfies (8.1) and (8.2), then

[0,1] N ∞ -∞ ψ(s, x)e -λs ds dx ≤ C ∀0 < λ ≤ λ 0 (8.7)
where the constants do not depend on ε > 0. Moreover,

∞ -∞ ψ(s, x)e -λs ds ≤ C ε ∀0 < λ ≤ λ 0
where C ε depends on ǫ.

Proof. Let η n : R → R be a s smooth function such that η n (s) = 1 for all s ≥ -n, η n (s) = 0 for all s ≤ -2n, η ′ n ≥ 0. Let λ > 0 and define

U n (x, λ) = ∞ -∞
ψ(s, x)e -λs η n (s) ds.

We multiply (8.1) by η n (s)e -λs and integrate on (-∞, ∞). The term involving M ψ yields

∞ -∞ M ψ(s, x)η n (s)e -λs ds = ∞ -∞ R N J(x -y)ψ(s + (y -x) • e, y)η n (s)e -λs dy ds = R N J(x -y)e -λ(x-y)•e ∞ -∞ ψ(s + (y -x) • e, y)η n (s)e -λ(s+(y-x)•e) ds dy = R N J(x -y)e -λ(x-y)•e ∞ -∞ ψ(τ, y)e -λτ η n (τ -(y -x) • e) dτ dy
and we write this term as

J λ U n (•, λ)+ R N J(x-y)e -λ(x-y)•e ∞ -∞ ψ(τ, y)e -λτ [η n (τ -(y -x) • e) -η n (τ )] dτ dy Hence ε∆U n + J λ U n -U n + f u (x, 0)U n -cλU n = D n + E n + F n (8.8)
where

D n = R N J(x -y)e -λ(x-y)•e ∞ -∞ ψ(τ, y)e -λτ [η n (τ ) -η n (τ -(y -x) • e)] dτ dy E n = ∞ -∞ (f (x, ψ(s, x)) -f u (x, 0)ψ(s, x))e -λs η n (s) ds F n = -c ∞ -∞ ψ(s, x)η ′ n (s)e -λs ds.
Observe that in D n , we can assume that the integral in y ranges on |y -x| ≤ 1 (because we assume that J has support contained in the unit ball). Then |(y -x) • e| ≤ 1 and since η is nondecreasing

R N J(x -y)e -λ(x-y)•e ∞ -∞ ψ(τ, y)e -λτ η n (τ -(y -x) • e) dτ dy ≥ R N J(x -y)e -λ(x-y)•e ∞ -∞ ψ(τ, y)e -λτ η n (τ -1) dτ dy = R N J(x -y)e -λ(x-y)•e ∞ -∞ ψ(τ + 1, y)e -λ(τ +1) η n (τ ) dτ dy ≥ e -λ R N J(x -y)e -λ(x-y)•e ∞ -∞ ψ(τ, y)e -λτ η n (τ ) dτ dy because ψ(•, x) is nondecreasing. It follows that D n ≤ (1 -e -λ )J λ U n (•, λ).
Thus, from (8.8) and since F n ≤ 0

ε∆U n + J λ U n -U n + f u (x, 0)U n -cλU n ≤ (1 -e -λ )J λ U n (•, λ) + E n Write E n = 0 -∞ . . . ds + ∞ 0 . . . ds and note that ∞ 0 (f (x, ψ(s, x)) -f u (x, 0)ψ(s, x))e -λs η n (s) ds ≤ C 1
with C 1 ∼ 1/λ as λ → 0 + . We estimate the other integral as follows:

0 -∞ (f (x, ψ(s, x)) -f u (x, 0)ψ(s, x))e -λs ds ≤ C f 0 -∞ ψ(s, x) 2 e -λs η n (s) ds ≤ C f δ 0 -∞ ψ(s, x)e -λs η n (s) ds ≤ C f δU n (x, λ)
where C f is a constant that depends only on f . In this way we obtain

ε∆U n + J λ U n -U n + f u (x, 0)U n -cλU n ≤ (1 -e -λ )J λ U n (•, λ) + C f δU n + C 1 (8.9) 
Let µ ε,λ be the principal eigenvalue of the operator -(ε∆φ + J λ φ -φ + f u (x, 0)φ), φ ε,λ , the principal eigenfunction and φ * ε,λ be the principal eigenfunction for the adjoint operator. Since µ ε,λ → µ λ as ε → 0 and µ λ < 0, we can assume that µ ε,λ < 0. Multiplying (8.9) by φ * ε,λ and integrating over the period [0, 1] N we find

(-µ ε,λ -cλ) [0,1] N U n (x, λ)φ * ε,λ (x) dx ≤ (1 -e -λ ) [0,1] N J λ U n (x, λ)φ * ε,λ (x) dx+ +C f δ [0,1] N U n (x, λ)φ * ε,λ (x) dx + C 1 [0,1] N φ * ε,λ (x) dx But [0,1] N J λ U n (x, λ)φ * ε,λ (x) dx = [0,1] N (J λ ) * φ * ε,λ (x)U n (x, λ) dx = [0,1] N -µ ε,λ φ * ε,λ + φ * ε,λ -f u (x, 0)φ * ε,λ -ε∆φ * ε,λ U n (x, λ) dx
Note that φ * ε,λ is uniformly bounded in C 2 ([0, 1] N ) as ε → 0, see Remark 3.10, a property where use that f is C 3 . Using the uniform smoothness of φ * ε,λ and the fact that it is uniformly bounded below φ * ε,λ (x) ≥ c > 0 as ε → 0 with λ > 0 fixed, we see that

[0,1] N J λ U n (x, λ)φ * ε,λ (x) dx ≤ C [0,1] N U n (x, λ)φ * ε,λ (x) dx. Therefore (-µ ε,λ -cλ) [0,1] N U n (x, λ)φ * ε,λ (x) dx ≤ ((1-e -λ )C+C f δ) [0,1] N U n (x, λ)φ * ε,λ (x) dx +C 1 [0,1] N φ * ε,λ (x) dx
Choosing δ > 0 and λ > 0 sufficiently small we deduce that

[0,1] N U n (x, λ)φ * ε,λ (x) dx ≤ C
and again using that φ * ε,λ is uniformly bounded below, we find

[0,1] N U n (x, λ) dx ≤ C (8.10)
where C is independent of ε and n. Now letting n → ∞, we obtain the conclusion (8.7).

To prove the last part we observe that

lim n→∞ U n (x, λ) = U (x, λ)
by monotone convergence where

U (x, λ) = ∞ -∞
ψ(s, x)e -λs ds.

By (8.10), U (•, λ) is in L 1 ([0, 1] N ) and is a weak solution of ε∆U + J λ U -U -cλU = Ẽ in R N where Ẽ = ∞ -∞ f (x, ψ(s, x
))e -λs ds.

Note that Ẽ

L p ([0,1] N ) ≤ C U (•, λ) L p ([0,1] N )
for all p ≥ 1. Then, using standard elliptic L p estimates we deduce that We prove first the exponential decay of ψ for some constant that depends on ε.

U (•, λ) ∈ L ∞ for 0 < λ ≤ λ 0 .
Lemma 8.5. For any λ < λ ε (c) there is C ε > 0 such that if ψ is a solution of (8.1) then ψ(s, x) ≤ C ε e λs ∀x ∈ R N , ∀s ∈ R. (8.12)
Proof. In this proof ε > 0 is fixed and we find

δ ε > 0 such that if ψ satisfies max x∈[0,1] N ψ(0, x) ≤ δ ε (8.13)
then the conclusion (8.12) holds. Given any solution of (8.1) we know already by Lemma 8.3 that ψ(s, x) → 0 as to -∞ uniformly in x, even at an exponential rate, so that (8.13) holds provided we replace ψ(x, s) by ψ(x, s -τ ) with τ sufficiently large.

Let η ∈ C ∞ (R) be such that η(t) = 1 for t ≤ 1 and η(t) = 0 for t ≥ 2. For λ ∈ R, x ∈ [0, 1] N , let U be defined by

U (x, λ) = ∞ -∞
ψ(s, x)e -λs η(s) ds (8.14) with values in [0, ∞]. At this moment we know from Lemma 8.3 that U (x, λ) < +∞ if we take 0 < λ ≤ λ 0 where λ 0 > 0 is a small fixed number. The objective is to prove that for any λ such that 0 < λc < -µ ε,λ

U (•, λ) L ∞ ([0,1] N ) < +∞.
Then from (8.11) we obtain the desired conclusion.

Assume that λ is such that

U (•, λ) L ∞ ([0,1] N ) < +∞.
We multiply (8.1) by η(s)e -λs and integrate on (-∞, ∞). We obtain

ε∆U + J λ U -U + f u (x, 0)U -cλU = D λ (x) + E λ (x) + F λ (x)
where

D λ (x) = R N J(x -y)e -λ(x-y)•e ∞ -∞ ψ(τ, y)e -λτ [η(τ ) -η(τ -(y -x) • e)] dτ dy E λ (x) = ∞ -∞ (f (x, ψ(s, x)) -f u (x, 0)ψ(s, x))e -λs η(s) ds F λ (x) = -c ∞ -∞ ψ(s, x)η ′ (s)e -λs ds. Thus (L ε,λ -λc)U = D λ + E λ + F λ .
Since U is nonnegative, we may apply Lemma 7.1 and deduce

U (•, λ) L ∞ ≤ C ε,λ ( D λ + E λ + F λ L ∞ ) Write U = U 1 + U 2 where U 1 = 0 -∞ ψ(s, x)e -λs η(s) ds, U 2 = ∞ 0 ψ(s, x)e -λs η(s) ds. (8.15)
Since U 2 ≥ 0, we also have

U 1 L ∞ ([0,1] N ) ≤ C ε,λ D λ + E λ + F λ L ∞ ([0,1] N ) . In D λ (x) one can restrict τ to [-1, 4]. Hence D λ L ∞ ([0,1] N ) ≤ C
and the constant remains bounded as λ varies in a bounded interval of R. Similarly the integral in F λ (x) is restricted to 1 ≤ τ ≤ 2 and hence

F λ L ∞ ([0,1] N ) ≤ C
with C as before. We estimate

|E λ (x)| = ∞ -∞ (f (x, ψ(s, x)) -f u (x, 0)ψ(s, x))e -λs η(s) ds ≤ C -1 -∞ |ψ(s, x)| 2 e -λs ds + C By (8.11) |ψ(s, x)| ≤ C 0 e λs U 1 (•, λ) L ∞ ∀x ∈ [0, 1] N , ∀s ≤ -1.
Hence, using (8.13),

|E λ (x)| ≤ Cδ 1/2 ε -1 -∞ |ψ(s, x)| 3/2 e -λs ds + C ≤ Cδ 1/2 ε U 1 (•, λ) 3/2 L ∞ -1 -∞ e λs/2 ds + C = C λ0 δ 1/2 ε U 1 (•, λ) 3/2 L ∞ + C.
where C λ0 ∼ 1/λ 0 . Therefore

U 1 (•, λ) L ∞ ([0,1] N ) ≤ δ 1/2 ε C λ0 C ε,λ U 1 (•, λ) 3/2 L ∞ + C 1 . (8.16)
If we choose δ ε > 0 small this implies that there is a gap for

U 1 (•, λ) L ∞ ([0,1] N ) .
For example we can achieve

either U 1 (•, λ) L ∞ ([0,1] N ) ≤ 2C 1 or U 1 (•, λ) L ∞ ([0,1] N ) ≥ 3C 1 .
Indeed, first fix 0 < λ 0 < λ 1 < λ ε (c). Then we know from Lemma 7.1 that

sup λ0≤λ≤λ1 C ε,λ < ∞. Choose δ ε > 0 such that δ 1/2 ε (3C 1 ) 1/2 C λ0 sup λ0≤λ≤λ1 C ε,λ ≤ 1 3 . Suppose that U 1 (•, λ) L ∞ ([0,1] N ) ≤ 3C 1 .
Then by (8.16)

U 1 (•, λ) L ∞ ([0,1] N ) ≤ δ 1/2 ε C λ0 C ε,λ U 1 (•, λ) 3/2 L ∞ + C 1 ≤ δ 1/2 ε C λ0 C ε,λ (3C 1 ) 1/2 U 1 (•, λ) L ∞ + C 1 ≤ 1 3 U 1 (•, λ) L ∞ + C 1 ≤ 2C 1 .
Using Lemma 8.3 and increasing C 1 and decreasing δ ε if necessary, we can assume that

U 1 (•, λ 0 ) L ∞ ≤ 2C 1 . Since λ → U 1 (•, λ) L ∞ is continuous we see that U 1 (•, λ) L ∞ ≤ 2C 1 ∀λ 0 ≤ λ ≤ λ 1 .
Proof of Proposition 8.1. We argue as in Lemma 8.5. In this proof we take ρ > 0 as in as in Proposition 7.2 and let 0 < ρ ′ < ρ. We restrict λ so that it satisfies (-µ ε,λ -ρ)/c ≤ λ ≤ (-µ ε,λ -ρ ′ )/c and take 0 < ε ≤ ε 0 . Let U be defined by (8.14), and U 1 , U 2 defined in (8.15). Following the proof of Lemma 8.5, if ψ satisfies (8.1) and (8.2) then, using Proposition 7.2,

U 1 (•, λ) L ∞ ([0,1] N ) ≤ δ 1/2 C U 1 (•, λ) 3/2 L ∞ + C 1 ,
where C now remains bounded for any 0

< ε ≤ ε 0 if λ satisfies (-µ ε,λ -ρ)/c ≤ λ ≤ (-µ ε,λ -ρ ′ )/c. Again, choosing δ > 0 small such that δ 1/2 (3C 1 ) 1/2 C ≤ 1 3 we obtain either U 1 (•, λ) L ∞ ([0,1] N ) ≤ 2C 1 or U 1 (•, λ) L ∞ ([0,1] N ) ≥ 3C 1 .
Let ψ τ (s, x) = ψ(s -τ, x) where τ > 0 and U 1,τ denote the corresponding Laplace transform as in (8.14), (8.15). By Lemma 8.5

U 1,τ (•, λ) L ∞ → 0 as τ → +∞. Since τ → U 1,τ (•, λ) L ∞ is continuous we see that U 1,0 (•, λ) L ∞ ≤ 2C 1 .
Then by Lemma 8.4 we obtain (8.3).

Proof of the main theorem

In this section we prove Theorem 1.2, by establishing a uniform estimate in W 1,p loc of ψ ε , the convergence of ψ ε to a function ψ satisfying the equation, and finally establishing that ψ solves the full problem.

Proposition 9.1. There is δ > 0 such that if ψ ε is a solution of (8.1) satisfying the normalization condition (8.2), then for any for any 1 ≤ p < ∞ and bounded open set D in R × R N there is a constant C independent of ε as ε → 0 such that:

ψ ε W 1,p (D) ≤ C. (9.1)
Proof. For simplicity we write ψ = ψ ε and we use the notation ψ xi = ∂ψ ∂xi . We differentiate the equation in (8.1) with respect to x i and get

cψ sxi = ε∆ψ xi + M xi [ψ] -e i M [ψ s ] -ψ xi + f u (x, ψ)ψ xi + f xi (x, ψ) (9.2)
where y) dy e = (e 1 , . . . , e N ). We write this as 

M xi [ψ](s, x) = R N J xi (x -y)ψ(s + (y -x) • e,
cψ sxi + (1 -f u (x, 0))ψ xi = ε∆ψ xi + M xi [ψ] -e i M [ψ s ] + (f u (x, ψ) -f u (x, 0))ψ xi + f xi (x, ψ).
∂ ∂s e sp(1-fu(x,0)-θ)/c |ψ xi | p = p c e sp(1-fu(x,0)-θ)/c ε∆ψ xi + M xi [ψ] -e i M [ψ s ] + (f u (x, ψ) -f u (x, 0))ψ xi + f xi (x, ψ) -θψ xi |ψ xi | p-2 ψ xi .
We integrate now with respect to x over the period [0, 1] N and estimate the terms on the right hand side. where

I 1 = ε [0,1] N e sp(1-fu(x,0)-θ)/c ∆ψ xi |ψ xi | p-2 ψ xi dx I 2 = [0,1] N e sp(1-fu(x,0)-θ)/c M xi [ψ]|ψ xi | p-2 ψ xi dx I 3 = -e i [0,1] N e sp(1-fu(x,0)-θ)/c M [ψ s ]|ψ xi | p-2 ψ xi dx I 4 = [0,1] N e sp(1-fu(x,0)-θ)/c (f u (x, ψ) -f u (x, 0))|ψ xi | p dx I 5 = [0,1] N e sp(1-fu(x,0)-θ)/c f xi (x, ψ)|ψ xi | p-2 ψ xi dx I 6 = -θ [0,1] N e sp(1-fu(x,0)-θ)/c |ψ xi | p dx.
Integrating by parts we can estimate

I 1 = -ε(p -1) [0,1] N e sp(1-fu(x,0)-θ)/c |ψ xi | p-2 |∇ψ xi | 2 dx -ε [0,1] N ∇ e sp(1-fu(x,0)-θ)/c ∇ψ xi |ψ xi | p-2 ψ xi dx ≤ ε|s|p c [0,1] N e sp(1-fu(x,0)-θ)/c |∇ x f u (x, 0)| |∇ψ xi | |ψ xi | p-1 dx.
By Young's inequality

I 1 ≤ θ 5 [0,1] N e sp(1-fu(x,0)-θ)/c |ψ xi | p dx + Cε p |s| p [0,1] N e sp(1-fu(x,0)-θ)/c |∇ψ xi | p dx
where C depends on θ and f C 2 . In a similar way

I 2 ≤ θ 5 [0,1] N e sp(1-fu(x,0)-θ)/c |ψ xi | p dx + C [0,1] N e sp(1-fu(x,0)-θ)/c |M xi [ψ]| p dx I 3 ≤ θ 5 [0,1] N e sp(1-fu(x,0)-θ)/c |ψ xi | p dx + C [0,1] N e sp(1-fu(x,0)-θ)/c |M [ψ s ]| p dx I 5 ≤ θ 5 [0,1] N e sp(1-fu(x,0)-θ)/c |ψ xi | p dx + C [0,1] N e sp(1-fu(x,0)-θ)/c |f xi (x, ψ)| p dx
To estimate I 4 we write

I 4 ≤ sup y |f u (y, ψ(s, y))) -f u (y, 0)| [0,1] N e sp(1-fu(x,0)-θ)/c |ψ xi | p dx.
We work with δ > 0 small so that from the normalization condition (8.2) we get 

≤ Cε p |s| p [0,1] N e sp(1-fu(x,0)-θ)/c |∇ψ xi | p dx + C [0,1] N e sp(1-fu(x,0)-θ)/c |M xi [ψ]| p dx + C [0,1] N e sp(1-fu(x,0)-θ)/c |M [ψ s ]| p dx + C [0,1] N e sp(1-fu(x,0)-θ)/c |f xi (x, ψ)| p dx
Let t 0 ≤ t ≤ 0. We integrate with respect to s over [t 0 , t] and then let t 0 → -∞. By (8.5), given any 0 < λ < λ ε (c) there is C such that

[0,1] N e sp(1-fu(x,0)-θ)/c |ψ xi (s, x)| p dx ≤ C ε p/2 [0,1] N exp(sp(1 -f u (x, 0) -θ + λc)/c) dx. (9.5)
We choose now λ and θ as follows. We fix a large Λ 0 > 0. We note that since there is a principal periodic eigenfunction φ λ ∈ C per (R N ), φ λ > 0 for

J λ * φ λ -φ λ + f u (x, 0)φ λ + µ λ φ λ = 0 in R N we must have γ ≡ inf λ∈[0,Λ0] inf x∈R N (1 -f u (x, 0) -µ λ ) = inf λ∈[0,Λ0] inf x∈R N J λ * φ λ (x) φ λ (x) > 0.
Since µ ε,λ → µ λ as ε → 0, for ε > 0 sufficiently small

inf x∈R N (1 -f u (x, 0) -µ ε,λ ) ≥ γ/2 > 0.
and since for λ = λ ε (c) we have λc = -µ ε,λ we get

λ ε (c) ≥ γ 2c + sup x∈R N f u (x, 0) -1 c . Take λ > 0 such that sup x∈R N f u (x, 0) -1 c + γ 4c ≤ λ ≤ λ ε (c) - γ 4c . (9.6)
Then choose θ = γ/8 > 0 and get

σ ≡ inf x∈R N 1 -f u (x, 0) -θ c + λ > 0. (9.7)
Then from (9.5) we obtain Integrating (9.4) in [t 0 , t] with t 0 ≤ t ≤ 0 and using (9.8) we obtain

c p [0,1] N e sp(1-fu(x,0)-θ)/c |ψ xi | p dx ≤ K 1 + K 2 + K 3 + K 4 (9.9)
where

K 1 = Cε p t -∞ |s| p [0,1] N e sp(1-fu(x,0)-θ)/c |∇ψ xi | p dx ds K 2 = C t -∞ [0,1] N e sp(1-fu(x,0)-θ)/c |M xi [ψ]| p dx ds K 3 = C t -∞ [0,1] N e sp(1-fu(x,0)-θ)/c |M [ψ s ]| p dx ds K 4 = C t -∞ [0,1] N e sp(1-fu(x,0)-θ)/c |f xi (x, ψ)| p dx ds
Next we claim that K 1 , K 2 , K 3 , K 4 remain bounded as ε → 0. Indeed, by (8.6) and (9.7),

e sp(1-fu(x,0)-θ)/c |∇ψ xi | p ≤ e sp(1-fu(x,0)-θ)/c |∇ 2 x ψ| p ≤ C ε p e sp(1-fu(x,0)-θ+λc)/c ≤ C ε p e spσ ,
for s ≤ 0, x ∈ R N with C independent of ε (note that ∇ψ xi is a second order derivative of ψ). Therefore K 1 is bounded as ε → 0. The other ones can be bounded similarly, using (8.3), (8.4) and the hypotheses f (x, 0) = 0, f ∈ C 3 which imply

|f xi (x, u)| ≤ Cu for 0 ≤ u ≤ δ
for some C. Thus from (9.9) we deduce that there exists C independent of ε for ε small such that for all s ≤ 0 Using that ψ has a uniform upper bound we obtain

d ds [0,1] N |ψ xi | p dx ≤ C [0,1] N |ψ xi | p dx.
Then, using Gronwall's inequality we deduce for s ≥ 0

[0,1] N |ψ xi (s, x)| p dx ≤ e Cs [0,1] N |ψ xi (0, x)| p dx + C.
Since by (9.10) we have a uniform control of the form [0,1] N |ψ xi (0, x)| p dx ≤ C, we obtain that for all R > 0 there exists C > 0 independent of ε such that 

cψ s = M [ψ] -ψ + f (x, ψ) ∀s ∈ R, x ∈ R N (9.11) and lim s→-∞ ψ(s, x) = 0.
Furthermore ψ > 0 is periodic in x and non-decreasing in s.

Proof. Let c ≥ c * e . If c > c * e then c > c * e (ε) for ε > 0 small and we let, for small ε > 0, ψ ε be the solution constructed in Proposition 6.1 with speed c. If c = c * e we let ψ ε be the solution constructed in Proposition 6.1 with speed c ε = c * e (ε). In any case we have a solution of (6.1) with speed c ε → c, satisfying also (6.2).

Let δ > 0 be from Lemma 9.1 and shift in s so that ψ ε satisfies max

x∈[0,1] N ψ ε (0, x) = δ.
Then, choosing p > N in Lemma 9.1 we can find a sequence ε n → 0 such that ψ εn → ψ uniformly on compact sets. Using this local uniform convergence we see that the function ψ satisfies (9.11) in the following weak form

-c ∞ -∞ [0,1] N ψϕ s dxds = ∞ -∞ [0,1] N (M [ψ] -ψ + f (x, ψ))ϕ dxds
for all ϕ : R × R N → R smooth periodic function with compact support. This implies that ψ is C 1 in s and satisfies (9.11) classically. Since ψ ε is non-decreasing in s and periodic in x we deduce that ψ is also non-decreasing in s and periodic in x. Moreover, by Proposition 8.1, if we take 0 < λ < λ c we have ψ ε (s, x) ≤ Ce λs with C independent of ε. Letting ε → 0 we find the same inequality for ψ and hence lim s→-∞ ψ(s, x) = 0. Finally, we prove that ψ is Lipschitz continuous, which follows the same lines of Proposition 6.1, so we point out the main steps. Let b i , i = 1, . . . , N denote the canonical basis in R N . Given h ∈ R we define

D h i ψ(s, x) = ψ(s, x + b i h) -ψ(s, x) h .
We choose λ, θ, σ > 0 as in (9.6), (9.7) so that e 2s(1-fu(x,0)-θ)/c ≤ e 2s(σ-λ) ∀x ∈ R N , s ≤ 0. (9.12) Then we compute ∂ ∂s e 2s(1-fu(x,0)-θ)/c (D

h i ψ) 2 = = 2 c e 2s(1-fu(x,0)-θ)/c M i [ψ h ] -e i M [D -hei s ψ] + (f u (x, ψ) -f u (x, 0))D h i ψ + D h i f (•, ψ(s, x + b i h)) -θD h i ψ D h i ψ where e = (e 1 , . . . , e N ), M i [g](s, x) = R N J(x + b i h -y) -J(x -y) h g(s + (y -x) • e, y) dy ψ h (s, x) = ψ(s -e i h, x) D τ s ψ(s, x) = ψ(s + τ, x) -ψ(s, x) τ ,
and ψ(s, x) lies between ψ(s, x) and ψ(s, x + b i h). From here we deduce ∂ ∂s e 2s(1-fu(x,0)-θ)/c (D

h i ψ) 2 ≤ e 2s(1-fu(x,0)-θ)/c M i [ψ h ] 2 + M [D -eih s ψ] 2 + (D h i f (•, ψ(s, x + b i h))) 2 .
Using the exponential decay ψ(s, x) ≤ Ce λs for all s ≤ 0 and all x ∈ R N , and a similar one for ψ s (c.f. (8.4)), we deduce from this and (9.12) that ∂ ∂s e 2s(1-fu(x,0)-θ)/c (D h i ψ) 2 ≤ Ce 2σs . Integrating from -∞ to s ≤ 0, we conclude that there exists C independent of h such that |D h i ψ(s, x))| ≤ Ce λs , ∀x ∈ R N , ∀s ≤ 0. This proves that ψ(s, •) is Lipschitz continuous for all s ≤ 0. An argument similar to the one at the end of Proposition 6.1 shows that it is also Lipschitz continuous for all s ∈ R.

We now prove the exponential convergence ψ(s, x) → p(x) as s → +∞, uniformly in x, by constructing appropriate subsolutions. Lemma 9.3. Let ψ be the function constructed in Lemma 9.2. Then there exists C, σ > 0 such that 0 ≤ p(x) -ψ(s, x) ≤ Ce -σs for all s ≥ 0.

In particular lim

s→+∞ ψ(s, x) = p(x) uniformly for x ∈ R N .
Proof. First we note that

ψ(s, x) ≤ p(x) for all s ∈ R, x ∈ R N .
Next we show that ψ(s, x) → p(x) as s → +∞ uniformly for x ∈ R N . For this we will prove that there exists ε 0 > 0 such that for any 0 < m 0 < 1 there is s 0 ∈ R such that

ψ ε (s, x) ≥ m 0 p ε (x) for all x ∈ R N , s ≥ s 0 , 0 < ε ≤ ε 0 . (9.13)
The value s 0 depends on m 0 but not on ε.

Recall that we have normalized ψ ε by max

x∈[0,1] N ψ ε (0, x) = δ
where δ > 0 is from Proposition 9.1. By Lemma 9.2 ψ ε → ψ as ε → 0 uniformly on compact sets of R × R N . Since ψ > 0 in R N × R and is continuous we see that that there is ε 0 > 0 and a > 0 such that for 0 < ε ≤ ε 0

ψ ε (0, x) ≥ 2ap ε (x) ∀x ∈ R N .
Note that a < 1. Then we also have

ψ ε (s, x) ≥ 2ap ε (x) ∀x ∈ R N , s ≥ 0, because ψ ε (•, x) is non-decreasing. Given a ≤ m ≤ 1, R ≥ 1, we construct a family of functions v m (s, x) = λ m (s)p ε (x) s ∈ R, x ∈ R N where λ m (s) = a + (m -a)s R + 1 (1 -η(s -R)) + (m -a)η(s -R) and η ∈ C ∞ (R) is a cut-off function such that η(s) = 0 for s ≤ 0, η(s) = 1 for s ≥ 1, 0 ≤ η ≤ 1 and 0 ≤ η ′ ≤ 2. Note that a ≤ λ m (s) ≤ m for all s ≥ 0. Fix 0 < m 0 < 1 and let a ≤ m ≤ m 0 . It can be shown that we can choose R > 0 large enough, independently of ε, so that v m satisfies ε∆v m + M [v m ] -v m + f (x, v m ) -c(v m ) s ≥ 0 for s ≥ 1 and x ∈ R N .
Using a sliding argument we obtain that a ≤ m ≤ m 0

ψ ε ≥ v m for all s ≥ 1, x ∈ [0, 1] N .
Using this inequality with m = m 0 we establish (9.13). Letting ε → 0 we the deduce that lim s→+∞ ψ(s, x) = p(x) uniformly for x ∈ R N .

Finally, let us show that there is exponential convergence. For this we construct a subsolution w m with this property. Indeed, let σ > 0 to be fixed shortly and 0 ≤ m ≤ 1. We set w m (s, x) = m(1 -e -σs )p(x). Choosing S 0 large and σ > 0 small we obtain that

M [w m ] -w m + f (x, w m ) -c(w m ) s ≥ 0 in [S 0 , +∞) × R N . Let S 1 be such that ψ(s, x) ≥ (1 -e -σ(S0+1) )p(x) ∀s ≥ S 1 , x ∈ R N .
This can be done because we know that ψ(s, x) → p(x) as s → +∞ uniformly for x ∈ R N .

Using again a sliding argument we can prove that

ψ(s, x) ≥ w m (s + S 0 -S 1 , x) ∀s ≥ S 1 , x ∈ R N
and all 0 ≤ m < 1. Letting m → 1 we find ψ(s, x) ≥ (1 -e -σ(s+S0-S1) )p(x) for all s ≥ s 0 , x ∈ R N , which finishes the proof of the lemma.

Remark 9.4. The limit p(x) = lim s→∞ ψ(s, x) exists by monotonicity, but we cannot assert that it defines a continuous function (we have not proved uniform continuity of ψ(s, x) as s → ∞). One could then argue that p is a bounded measurable solution of the stationary problem and that Theorem 1.1 also asserts the uniqueness of this solution. This would yield pointwise convergence lim s→+∞ ψ(s, x) = p(x) for all x ∈ R N .

Lastly, to finish the proof of Theorem 1.2 we prove the non-existence of front for speed c < c * e .

Lemma 9.5. Let J and f satisfy (1.3) and (1.4) and let e ∈ R N be a unit vector. Assume µ 0 < 0 and that there exists φ ∈ C per (R N ), φ > 0 satisfying (1.7). Then there exists no pulsating front (ψ, c) connecting 0 and p(x) in the direction e so that c < c * e .

Proof. Assume by contradiction that there exists a pulsating front ψ with speed c < c * e . Then up to a shift ψ is a supersolution of the parabolic problem (1.1) for any initial data u 0 ≥ 0 so that sup

R N u 0 < min R N p(x), lim inf r→+∞ inf x.e≤r u 0 > 0, u 0 = 0 for x.e << -1
Let u be the solution of the parabolic problem (1.1) with initial data u 0 satisfying the above condition then by the maximum principle, we have for all (t, x) ∈ R + × R N , u(t, x) ≤ ψ(x.e + ct + t 0 , x) for some fixed t 0 . From Shen and Zhang results, Theorem C in [START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF] (ψ(x.e + ct + t 0 , x) -p(x)) ≤ (ψ(t 0 , x) -p(x)) < 0.

Appendix A. Uniform estimates for solutions some regularized problems

In this section we prove Proposition 6.5. The estimates in this proposition divide naturally in 2 parts, one consisting in energy type estimates, and the other one are Schauder type estimates.

Proof of Proposition 6.5 i). We proceed as in Lemma 2.5 in [START_REF] Berestycki | Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts[END_REF]. Let us denote φ κ,ε the solution of (6.9). Then multiply equation ( Going back to the definition of M ψ κ,ε and using the symmetry of J we can rewrite the above equality the following way From (i), there exists R ∈ [R 0 , R 0 + 1] so that

(A.3) c C |∂ s ψ κ,ε | 2 (R) ≤ E(p ε )
Let us now multiply (6.9) by ψ κ,ε and integrate over (-R, R) × Q. Then we have

c 2 Q[ψ 2 κ,ε ] R -R = κ Q[ψ κ,ε ∂ s ψ κ,ε ] R -R -κ (-R,R)× Q |∂ s ψ κ,ε | 2 -ε (-R,R)× Q |∇ x ψ κ,ε | 2 + (-R,R)× Q(M ψ κ,ε -ψ κ,ε )ψ κ,ε + (-R,R)× Q f (x, ψ κ,ε
)ψ κ,ε Therefore since ψ κ,ε is uniformly bounded and periodic in x we have,

ε (-R,R)× Q |∇ x ψ κ,ε | 2 = 2γ(R)
where

γ(R) := - c 2 C [ψ 2 κ,ε ] R -R -κ (-R,R)×C |∂ s ψ κ,ε | 2 + κ C [ψ κ,ε ∂ s ψ κ,ε ] R -R + (-R,R)×C (M ψ κ,ε -ψ κ,ε )ψ κ,ε + (-R,R)×C f (x, ψ κ,ε )ψ κ,ε .
Since 0 ≤ ψ κ,ε ≤ p ε , ∂ s ψ κ,ε ≥ 0 and f is uniformly bounded, using Cauchy-Schwartz inequality it follows that

γ(R) ≤ |c| C p 2 ε + κ C p 2 ε C |∂ s ψ κ,ε | 2 (R, x) + 2R C (J * p ε )p ε + 2R f ∞ C p ε .
Thus, since c > 0 by (A.3) we have

γ(R) ≤ |c| C p 2 ε + κE(p ε ) |c| C p 2 ε + 2R C (J * p ε )p ε + 2R f ∞ C p ε .
Hence the estimate (ii) follows by periodicity.

The proof of Proposition 6.5 iii) is based on the next 2 lemmas. The first one is a version of a result of [START_REF] Berestycki | Gradient estimates for elliptic regularizations of semilinear parabolic and degenerate elliptic equations[END_REF], on gradient estimates for elliptic regularizations of semilinear parabolic equations. The result in [START_REF] Berestycki | Gradient estimates for elliptic regularizations of semilinear parabolic and degenerate elliptic equations[END_REF] is based on Bernstein type estimates and is nonlinear in nature, while the estimates below have a linear character, and are based on a technique of Brandt [START_REF] Brandt | Interior estimates for second-order elliptic differential (or finite-difference) equations via the maximum principle[END_REF] (see also [START_REF] Brandt | Interior Schauder estimates for parabolic differential-(or difference-) equations via the maximum principle[END_REF][START_REF] Knerr | Parabolic interior Schauder estimates by the maximum principle[END_REF] and [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] Chap. 3).

Given R > 0 let for all i = 1, . . . , N , where C is independent of R, ε.

Q R = {(t, x) ∈ R × R N : |t| < R, |x i | < R ∀i =

Proof. Let us write

x = (x 1 , x ′ ) ∈ R N with x 1 ∈ R, x ′ ∈ R N -1 . Define Q = {(t, x 1 , x ′ ) ∈ R × R × R N -1 : 0 < x 1 < R, |x i | < 1 ∀i = 2, . . . , N, |t| < 1} and v(t, x 1 , x ′ ) = 1 2 (u(t, x 1 , x ′ ) -u(t, -x 1 , x ′ ))
for (t, x 1 , x ′ ) ∈ Q. Let us write

Lv = ∆ x v + εv tt + v t .
Then L is an elliptic operator and satisfies the maximum principle. We have Lv(t, x 1 , x ′ ) = 1 2 (f (t, x 1 , x ′ ) -f (t, -x 1 , x ′ )) for (t, Integrating this from t 0 to t 1 with -1 ≤ t 0 < t 1 ≤ 1 and using (A. 

Theorem 1 . 1 .

 11 The stationary equation (1.5) has a positive continuous periodic solution p(x) if and only if µ 0 < 0. Moreover the positive solution is Lipschitz and unique in the class of positive bounded periodic function.

( 6 . 4 )

 64 where M denotes the operator M ψ(s, x) = [-r≤s+(y-x)•e≤R] J(x -y)ψ(s + (y -x) • e, y) dy.

Lemma 8 . 4 .

 84 Suppose ψ : (-∞, 0] → [0, ∞) is nondecreasing and let λ ∈ R. Then ψ(s) ≤ λ e λs 1 -e λs 0 -∞ ψ(τ )e -λτ dτ ∀s ≤ 0. (8.11) Proof. Let t ≤ 0. Then ψ(t) 0 t e -λs ds ≤ 0 t ψ(s)e -λs ds.

(9. 3 )

 3 Let 1 ≤ p < +∞ and θ > 0 to be fixed later on. Then∂ ∂s e sp(1-fu(x,0)-θ)/c |ψ xi | p = p c e sp(1-fu(x,0)-θ)/c (cψ sxi + (1 -f u (x, 0) -θ)ψ xi ) |ψ xi | p-2 ψ xi Using (9.3) we obtain

  e sp(1-fu(x,0)-θ)/c |ψ xi | p dx = I 1 + I 2 + I 3 + I 4 + I 5 + I 6

  sup y |f u (y, ψ(s, y))) -f u (y, 0)| ≤ θ 5 for all s ≤ 0.ThenI 4 ≤ θ 5 [0,1] N e sp(1-fu(x,0)-θ)/c |ψ xi | p dxCombining the previous estimates we obtain c p ∂ ∂s [0,1] N e sp(1-fu(x,0)-θ)/c |ψ xi | p dx (9.4)

[0, 1 ]

 1 N e sp(1-fu(x,0)-θ)/c |ψ xi (s, x)| p dx ≤ C ε p/2 e pσs , ∀s ≤ 0, and therefore lim s→-∞ [0,1] N e sp(1-fu(x,0)-θ)/c |ψ xi (s, x)| p dx = 0. (9.8)

[0, 1 ]

 1 N e sp(1-fu(x,0)-θ)/c |ψ xi (s, x)| p dx ≤ C (9.10) This together with (8.4) proves the estimate (9.1) for any bounded open set D ⊂ (-∞, 0) × R N . To obtain (9.1) for any bounded open set D ⊂ R × R N we proceed similarly as before. We multiply (9.2) by |ψ xi | p-2 ψ xi and integrate over [0, 1] N .

[0, 1 ]Lemma 9 . 2 .

 192 N |ψ xi (s, x)| p dx ≤ C for all |s| ≤ R. Using this and (8.4) we obtain the estimate (9.1) for any bounded open set D ⊂ R × R N . If c ≥ c * e there exists a function ψ : R × R N which is C 1 in s and Lipschitz continuous and satisfies

  (u(x, t) -p(x)) = 0. Thus we get the following contradiction 0 = lim inf t→+∞ inf x.e+ct≥0 (u(x, t) -p(x)) ≤ lim inf t→+∞ inf x.e+ct≥0

  6.9) by ∂ s ψ κ,ε and integrate over [-R, R] × C where C := [0, 1] N . Then it follows that and R×C∂ s ψ κ,ε M ψ κ,ε = C×C k∈Z N J(x -y -k)p ε (x)p ε (y) -C×C k∈Z N J(x -y -k) +∞ -∞ψ κ,ε (τ + (x -y).e -k.e, x)∂ s ψ κ,ε (τ, y).

R×C∂ 2 CCF 2 CF

 22 s ψ κ,ε M ψ κ,ε = C J * p ε (x)p ε (x) dx -R×C M ψ κ,ε (τ, y)∂ τ ψ κ,ε (τ, y) dτ dy.Thus we haveR×C ∂ s ψ κ,ε M ψ κ,ε = 1 2 C J * p ε (x)p ε (x) dx.Set J (x, y) := k∈Z N J(x -y + k), the the above equality rewrites as follows(A.2) R×C ∂ s ψ κ,ε M ψ κ,ε = 1 2 C C J (x, y)p ε (y)p ε (x) dydxFinally, combining (A.1) and (A.2), we obtainR×C ∂ s ψ κ,ε (M ψ κ,ε -ψ κ,ε ) = -1 4 C×C J (x, y)(p ε (x) -p ε (y)) 2 dxdy.Hence,c R×C |∂ s ψ κ,ε | 2 = -ε |∇ x p ε | 2 -1 4 C 2 J (x, y)(p ε (x) -p ε (y)) 2 + (x, p ε )which proves (i).Proof of Proposition 6.5 ii). Let K be a compact set of R × R N . Then since K is bounded, there exists n ∈ N and R > 0 so that K ⊂ (-R 0 , R 0 ) × n Q whereQ := [-1, 1] N .Let us denote E(u) the following energy on the set of periodic function := -ε |∇ x u| 2 -1 4 C 2 J (x, y)(u(x) -u(y)) 2 + C (x, u).

1 , 2

 12 . . . , N }. Lemma A.1. Suppose u ∈ C 2 (Q R ) satisfies ∆ x u + εu tt + u t = f (x, t) in Q R where 0 < ε ≤ 1, f ∈ L ∞ (Q R ). Then |∂ xi u(0, 0)| ≤

  x 1 , x ′ ) ∈ Q and |v| ≤ sup QR |u| in Q. Let v(t, x 1 , x ′ ) = Ax 1 (R -x 1 ) + B(x 2 1 + |x ′ | 2 + t 2 ) where B(2N + 2ε + 2R) .With these choices we see that|v| ≤ v on ∂ Q. and Lv ≤ -sup QR |f | in Q. By the maximum principle v -v ≥ 0 in Q. Similarly v + v ≥ 0 in Q and therefore |v| ≤ v in Q. This implies |∂ x1 v(0, 0)| ≤ ARand gives (A.4) for i = 1. The same proof replacing x 1 by any of the other variables x 2 , . . . , x n yields (A.4).Lemma A.2. Suppose u ∈ C 2 (Q 2 ) satisfies u t -∆ x u -εu tt = f (x, t) in Q 2where ε > 0 and f ∈ L ∞ (Q 2 ). Then for some 0 < α < 1 there is a constant C independent of such thatsup |x|≤1,t1,t2∈[-1,1] |u(x, t 1 ) -u(x, t 2 )| |t 1 -t 2 | α x u| ≤ CM. (A.5) Let ϕ ∈ C 1 (R N )have support in the ball closed ball B1 of R N . Multiplying the equation by uϕ and integrating in B 2

  ) is uniform in ε. Integrate now with respect to t 0 ∈ [1/2, 2/3] and t 1 ∈ [5/6, 1]. We obtain is a continuous function which is positive in [1/2, 1]. Therefore one can always select t 0 ∈ [1/2, 1], possibly depending on ε, such thatε B2 u t (t 0 ) 2 ϕ dx = O(M 2 ). (A.6)Now multiply the equation by u t ϕ and integrate in B 2 , to obtain Integrating with respect to t ∈ [-1/2, t 0 ] with t 0 as above yields One can select a function ϕ ≥ 0 with support the ball |x| ≤ 1 and positive in |x| < 1 such that |∇ϕ| 2We may further restrict ϕ such that ϕ ≥ 1 in the ball |x| ≤ 1/2 ad deduceLet t 1 , t 2 ∈ [-1/4, 1/4], with t 1 ≤ t 2 . Let x ∈ R N with |x| ≤ 1. Then u(x, t 2 ) -u(x, t 1 ) =Now integrate this with respect to x in the ball of center x 0 , |x 0 | ≤ 1/4 and radius r = (t 2 -t 1 ) 1/(2N ) : (u(x, t 2 ) -u(x, t 1 )) dx = By the mean value theorem there is some x ∈ B(x 0 , r) such thatu(x, t 2 ) -u(x, t 1 ) = C r N B(x0,r) (u(x, t 2 ) -u(x, t 1 )) dx ≤ CM (t 2 -t 1 ) 1/4 .Since (A.5) holds we deduce |u(x 0 , t 2 ) -u(x 0 , t 1 )| ≤ CM (t 2 -t 1 ) 1/(2N ) .

	where O(M 2 ε B(x0,r)		1 1/2 B2	g(t)u 2 t ϕ dx dt = O(M 2 ) t2 t1 B(x0,r) u t (x, t) dx dt.
	and therefore, using (A.8) where g(t) B2 u 2 t ϕ dx -ε 2 d dt B2 u 2 t ϕ dx + |u(x, t 2 ) -u(x, t 1 )| ≤ C r N 1 2 t0 -1/2 B2 u 2 t ϕ dx dt -ε 2 B2 u 2 t ϕ dx d dt B2 t2 t1 B(x0,r) |∇u| 2 ϕ dx + |u t (x, t)| dx dt B2 ∇u∇ϕu t dx = t0 -1/2 + 1 2 B2 |∇u| 2 ϕ dx B2 -1/2 + t0 ≤ C(t 2 -t 1 ) 1/2 t1 B(x0,r) r N/2 u t (x, t) 2 dx dt t2	d dt B2 ∇u∇ϕu t dx f uϕ 1/2
												=	B2	f uϕ	t0 -1/2
	Using (A.5) and (A.6) we find		
	(A.7)				t0 -1/2 B2	u 2 t ϕ dx dt +	B2	∇u∇ϕu t dx = O(M 2 )
	But			B2	∇u∇ϕu t dx ≤	1 2 B2	|∇u| 2 |∇ϕ| 2 ϕ	dx +	1 2 B2	ϕu 2 t dx
						B2	∇u∇ϕu t dx ≤ O(M 2 ) +	1 2 B2	ϕu 2 t dx
	and integrating on [-1/2, t 0 ] we have
			t0 -1/2 B2	∇u∇ϕu t dx dt ≤ O(M 2 ) +	1 2	t0 -1/2 B2	ϕu 2 t dx dt.
	This combined with (A.7) gives	
										t0 -1/2 B2	ϕu 2 t dx dt ≤ CM 2 .
	(A.8)										Q 1/2	u 2 t dx dt ≤ CM 2
													5) gives
	-	ε 2	d dt B2	u 2 ϕ dx	t=t1	+	ε 2	d dt B2	u 2 ϕ dx	t=t0 t2 t1	+ ε u t (x, t) dt. t1 t0 Q1	u 2 t ϕ dx = O(M 2 )

ϕ is bounded. So by

(A.5) 
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), all the term can be estimated as in the proof of Lemma 2.5 in [START_REF] Berestycki | Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts[END_REF], so we only deal with I.

A simple computation shows that

So it remains to compute

Let us denote C k := k+C where k ∈ Z N . With this notation, using the periodicity in x of the function ψ κ,ε we have

).e + k.e, y) dy.

Now using integration by parts it follows that

e, y).

Let us make the change of variable τ = s + (y -x).e + k.e in the last term of the right hand side. Then we have

Let R → ∞. Using that ψ κ,ε → p ε respectively 0 as s → ±∞, ψ κ,ε ≥ 0, ∂ s ψ κ,ε ≥ 0 we obtain