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Abstract— Deprotonative cupration of aromatics including heterocycles (anisole, 1,4-dimethoxybenzene, thiophene, furan, 2-
fluoropyridine, 2-chloropyridine, 2-bromopyridine and 2,4-dimethoxypyrimidine) was realized in tetrahydrofuran at room temperature 
using the Gilman-type amido-cuprate (TMP)2CuLi in situ prepared from CuCl2·TMEDA through successive addition of 1 equivalent of 
butyllithium and 2 equivalents of LiTMP. The intermediate lithium (hetero)arylcuprates were evidenced by trapping with iodine, allyl 
bromide, methyl iodide and benzoyl chlorides, the latter giving the best results. Symmetrical dimers were also prepared from lithium azine 
and diazine cuprates using nitrobenzene as oxidative agent.    © 2013 Elsevier Science. All rights reserved 
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Lithium bases have been largely employed for the deproto-

metalation of aromatic rings.1 Even if less nucleophilic hindered 

lithium dialkylamides are more suitable for the metalation of 

aromatics bearing reactive functions or sensitive π-deficient 

heterocycles, low reaction temperatures are required due to the 

high reactivity of the corresponding (hetero)aryllithiums. 

The use of bimetallic bases in order to get more efficient 

and/or more chemoselective reactions is a challenging field. LIC-

KOR (LIC = butyllithium, KOR = potassium tert-butoxide) first 

described by Schlosser2 and Lochmann,3 and BuLi-LiDMAE 

(DMAE = 2-dimethylaminoethoxide) introduced by Caubère4 and 

developed further by Gros and Fort in the pyridine series5 are 

well-known examples of synergic (or superbasic) mixtures of 

organolithiums and alkali metal alkoxides. By combining soft 

organometallic compounds with alkali (or alkaline-earth metal) 

additives, bases have been more recently prepared and used to 

generate functionalized aromatic compounds including 

heterocycles.6 Examples are R2Zn(TMP)Li(·TMEDA) (R = tBu, 

Bu; TMP = 2,2,6,6-tetramethylpiperidino, TMEDA = N,N,N’,N’-

tetramethylethylenediamine) (described by the groups of Kondo, 

Uchiyama, Mulvey and Hevia),7 (TMP)2Zn·2MgCl2·2LiCl8 and 

TMPZnCl·LiCl9 (Knochel), iBu3Al(TMP)Li (Uchiyama and 

Mulvey),10 Al(TMP)3·3LiCl (Knochel),11 (Me3SiCH2)2Mn(TMP)-

Li·TMEDA (Mulvey),12 and MeCu(TMP)(CN)Li2 (Uchiyama and 

Wheatley).13 

We recently accomplished the deproto-metalation of a large 

range of aromatics including heterocycles using a newly 

developed lithium-cadmium base, (TMP)3CdLi, in situ prepared 

from CdCl2·TMEDA and 3 equivalents of LiTMP.14 We here 

describe the synthesis of putative (TMP)2CuLi using the same 

approach, and its use to deprotonate aromatic substrates. 

Wheatley and Uchiyama documented in 2007 the first direct 

metalation using a lithium cuprate.13 The authors showed that 

Gilman-type amidocuprates prepared from CuI were less efficient 

bases than Lipshutz-type amidocuprates prepared from CuCN. 

MeCu(TMP)(CN)Li2 was identified as the best base when used at 

the rate of 2 equivalents in tetrahydrofuran (THF) at 0°C. 

Our approach was based on the in situ generation of putative 

(TMP)2CuLi from CuCl2·TMEDA15 by (i) reduction of Cu(II) to 

Cu(I) and (ii) formation of the lithium cuprate by addition of two 

equivalents of LiTMP. The reaction of copper(II) chloride with 

lithium bis(trimethylsilyl)amide at the reflux temperature of THF 

being known to produce the corresponding copper(I) amide,16 the 

generation of (TMP)2CuLi starting from CuCl2·TMEDA and 

using 3 equivalents of LiTMP was first considered. Electron 

paramagnetic resonance (EPR) response of Cu(II) was used in 

order to check the validity of the reduction step using LiTMP. To 

this purpose, the EPR spectrum of a THF solution prepared from 

CuCl2·TMEDA and LiTMP (2.10-3 M each) was collected, and 

compared with a spectrum recorded from a THF solution of 

CuCl2·TMEDA (2.10-3 M). It was observed that the reduction to 

Cu(I) was not quantitative, even after 20 hours at room 

temperature, and that TEMPO was formed, probably by reaction 

between LiTMP and dissolved oxygen17 (Figure 1).18 It was then 
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decided to attempt the use of butyllithium for the reduction of 

CuCl2·TMEDA at 0°C, and the EPR spectrum of a THF solution 

prepared from CuCl2·TMEDA and BuLi (2.10-3 M each) was 

recorded. The spectrum showing a complete reduction of Cu(II), 

we prepared the mixed lithium-copper base as depicted in Scheme 

1, and recorded again the spectra of the solution. The only 

observable signal being attributed to TEMPO,19 the reactivity of 

such prepared (TMP)2CuLi was studied towards various 

aromatics. 

  

Figure 1. EPR spectra of (i) a THF solution prepared from 

CuCl2·TMEDA and LiTMP (2.10-3 M each), (ii) the same solution 20 h 

later and (iii) a THF solution of TEMPO (g = 2.007, aN = 15.54 G). 

CuCl2 (TMP)2CuLi

3 LiTMP

BuLi
- 1/2 Bu-Bu
- LiCl

CuCl
LiTMP

LiTMP

TMPCu

- LiCl  

Scheme 1. Synthesis of (TMP)2CuLi from CuCl2·TMEDA as copper(II) 

source. 

Table 1. Deproto-cupration of 1a,b followed by trapping with 

electrophiles. 

OMe

R

1a (R = H)
1b (R = OMe)

1) (TMP)2CuLi (1 equiv)
THF, rt, 2 h

2) Electrophile

OMe

R E

 

Entry Substrate Electrophile Product, Yield % 

1 1a I2 
OMe

I  
2a, 20 

2 1b I2 
OMe

IMeO  
2b, 19 

3 1b CH2=CHCH2Br 
OMe

MeO  
3b, 41 

4 1b C6H5COCl 
OMe

MeO
O

Ph  

4b, 53 

5 1b 4-ClC6H4COCl 
OMe

MeO
O

Cl  

5b, 57 

With anisole (1a) and the 4-methoxy derivative 1b as 

substrate, the metalation reactions performed in THF at room 

temperature by using 1 equivalent of in situ prepared 

(TMP)2CuLi, followed by subsequent trapping with elemental 

iodine after 2 h, proceeded in low yields (compounds 2a20 and 

2b,21 Table 1, entries 1,2). Concomitant formation of 2,2’-

dimethoxybiphenyl22 and N-(2-methoxyphenyl)-2,2,6,6-

tetramethylpiperidine23 was observed from anisole (1a), probably 

through reactions occurring during the trapping step with iodine. 

Indeed, it was noted that carrying out the reaction using water as 

electrophile instead of iodine resulted in recovered anisole. 

Whereas the use of ethyl acrylate and enones such as 2-

cyclohexen-1-one and 2-cyclopenten-1-one did not allow any 

trapping products, reactions proved successful when performed 

with allyl bromide and benzoyl chlorides at the reflux temperature 

of THF (entries 3-5) to afford the allylated derivative 3b,24 and the 

benzophenones 4b25 and 5b26 in yields ranging from 41 to 57%. 

We next demonstrated that the cuprate base was suitable for 

the metalation of both -excessive and -deficient aromatic 

heterocycles. Thiophene (6a) and furan (6b) proved to react under 

the same reaction conditions to furnish after trapping with benzoyl 

chlorides the expected ketones 7a,20 8a27 and 7b27 (Scheme 2). 

6a (X = S)

6b (X = O)

1) (TMP)2CuLi (1 equiv)
THF, rt, 2 h

2) C6H5COCl
          or
4-ClC6H4COCl

X

7a (X = S, R = H): 48%
8a (X = S, R = Cl): 48%
7b (X = O, R = H): 53%

X
O

R

 

Scheme 2. Deproto-cupration of 6a,b followed by trapping with benzoyl 

chlorides. 

2-Halopyridines 9a-c were similarly successively treated with 

the amido-cuprate and benzoyl chlorides. Whereas a low 20% 

yield (compound 10c)28 was obtained starting from 2-

bromopyridine (9c) and using benzoyl chloride, side reactions 

were not observed with its lighter isomers 9a,b, and the expected 

ketones 10a,29 10b30 and 11a31 were isolated in good yields. Using 

iodine as electrophile in the case of 2-fluoropyridine (9a) resulted 

in the formation of the iodide 12a20 in a moderate 31% yield due 

to the concomitant formation of the 3,3’-dimer 13a.32 The latter 

was obtained in a high 84% yield using nitrobenzene,33 which 

proved to be in this reaction a better oxidant than iodine (Table 2). 

2,4-Dimethoxypyrimidine (14) was finally similarly involved 

in the reaction to afford after subsequent trapping with benzoyl 

chlorides, allyl bromide and iodomethane the regioselectively 

functionalized derivatives 15-18 in yields ranging from 19 to 

52%;34 the corresponding 5,5’-dimer 19 also formed using 

nitrobenzene as oxidative agent (Scheme 3). 

Table 2. Deproto-cupration of 9a-c followed by trapping with 

electrophiles or oxidation. 

N

9a (X = F)
9b (X = Cl)
9c (R = Br)

1) (TMP)2CuLi (1 equiv)
THF, rt, 2 h

2) Electrophile or C6H5NO2 N

E

XX

 

Entry Substrate 
Electrophile or 

oxidative agent 
Product, Yield % 
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1 9a C6H5COCl 

N F

Ph

O

 

10a, 85 

2 9b C6H5COCl 

N Cl

Ph

O

 

10b, 78 

3 9c C6H5COCl 

N Br

Ph

O

 

10c, 20 

4 9a 4-ClC6H4COCl 

N F

O

Cl 

11a, 83 

5 9a I2 
N

I

F 
12a, 31 

6 9a C6H5NO2 

N F

NF

 

13a, 84 

N

N

MeO

OMe

(TMP)2CuLi (1 equiv)
THF, rt, 2 h

N

N

MeO

OMe

Cu(TMP)LiPhCOCl

N

N

MeO

OMe

Ph

O

4-ClC6H4COCl

N

N

MeO

OMe O

Cl

15:35 45%

16:35 52%

CH2=CHCH2Br

N

N

MeO

OMe

17:35 19%

PhNO2

N

N

OMe

MeO

19:35 22%

N

N

MeO

OMe

Me

18:36 24%

)2

MeI

14

 

Scheme 3. Deproto-cupration of 14 followed by trapping with 

electrophiles or oxidation. 

In summary, deprotonative cupration of aromatics was 

realized using a Gilman-type amido-cuprate in situ prepared from 

stable CuCl2·TMEDA.37 The intermediate lithium arylcuprates 

were notably evidenced by trapping with benzoyl chlorides in 

satisfying yields. 

Further development will notably concern the impact of 

TEMPO on reaction yields. Indeed, it is known from the literature 

that TEMPO is an excellent ligand for alkali metals, and its 

presence in TMP-containing complexes can modify the 

availability of the amido groups.38 

Acknowledgment 

We gratefully acknowledge the financial support of MESR of 

France (to T. T. N.). 

References and Notes 

1. a) Gschwend, H. W.; Rodriguez, H. R. Org. React. 1979, 26, 
1–360. b) Beak, P.; Snieckus, V. Acc. Chem. Res. 1982, 15, 

306–312. c) Snieckus, V. Chem. Rev. 1990, 90, 879–933. d) 
Gant, T. G.; Meyers, A. I. Tetrahedron 1994, 50, 2297–2360. 
e) Schlosser, M. Organometallics in Synthesis, 2nd ed. (Ed.: 
M. Schlosser), Wiley, 2002, Chapter I. 

2. Schlosser, M. Pure Appl. Chem. 1988, 60, 1627–1634. 
3. Lochmann, L. Eur. J. Inorg. Chem. 2000, 1115–1126. 
4. Caubère, P. Chem. Rev. 1993, 93, 2317–2334. 
5. Gros, P.; Fort, Y. Eur. J. Org. Chem. 2002, 3375–3383. 
6. For reviews, see: a) Mulvey, R. E. Organometallics 2006, 25, 

1060–1075; b) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; 
Kondo, Y. Angew. Chem. Int. Ed. 2007, 46, 3802–3824; c) 
Mulvey, R. E. Acc. Chem. Res. 2009, 42, 743–755. 

7. a) Kondo, Y.; Shilai, M.; Uchiyama, M.; Sakamoto, T. J. Am. 
Chem. Soc. 1999, 121, 3539–3540. b) Uchiyama, M.; 
Miyoshi, T.; Kajihara, Y.; Sakamoto, T.; Otani, Y.; Ohwada, 
T.; Kondo, Y. J. Am. Chem. Soc. 2002, 124, 8514–8515. c) 
Barley, H. R. L.; Clegg, W.; Dale, S. H.; Hevia, E.; 
Honeyman, G. W.; Kennedy, A. R.; Mulvey, R. E. Angew. 
Chem. Int. Ed. 2005, 44, 6018–6021. d) Clegg, W.; Dale, S. 
H.; Hevia, E.; Honeyman, G. W.; Mulvey, R. E. Angew. 
Chem. Int. Ed. 2006, 45, 2370-2374. e) Clegg, W.; Dale, S. 
H.; Harrington, R. W.; Hevia, E.; Honeyman, G. W.; Mulvey, 
R. E. Angew. Chem. Int. Ed. 2006, 45, 2374–2377. f) Clegg, 
W.; Dale, S. H.; Drummond, A. M.; Hevia, E.; Honeyman, G. 
W.; Mulvey, R. E. J. Am. Chem. Soc. 2006, 128, 7434–7435. 
g) Uchiyama, M.; Kobayashi, Y.; Furuyama, T.; Nakamura, 
S.; Kajihara, Y.; Miyoshi, T.; Sakamoto, T.; Kondo, Y.; 
Morokuma, K. J. Am. Chem. Soc. 2008, 130, 472–480. h) 
Clegg, W.; Conway, B.; Hevia, E.; McCall, M. D.; Russo, L.; 
Mulvey, R. E. J. Am. Chem. Soc. 2009, 131, 2375–2384. 

8. a) Wunderlich, S. H.; Knochel, P. Angew. Chem. Int. Ed. 
2007, 46, 7685–7688. b) Wunderlich, S.; Knochel, P. Chem. 
Commun. 2008, 6387–6389. c) Wunderlich, S. H.; Knochel, 
P. Org. Lett. 2008, 10, 4705–4707. d) Mosrin, M.; Knochel, 
P. Chem. Eur. J. 2009, 15, 1468–1477. 

9. Mosrin, M.; Knochel, P. Org. Lett. 2009, 11, 1837–1840. 
10. a) Uchiyama, M.; Naka, H.; Matsumoto, Y.; Ohwada, T. J. 

Am. Chem. Soc. 2004, 126, 10526–10527. b) Garcia-Alvarez, 
J.; Graham, D. V.; Kennedy, A. R.; Mulvey, R. E.; 
Weatherstone, S. Chem. Commun. 2006, 30, 3208–3210. c) 
Garcia-Alvarez, J.; Hevia, E.; Kennedy, A. R.; Klett, J.; 
Mulvey, R. E. Chem. Commun. 2007, 2402–2404. d) 
Conway, B.; Hevia, E.; García-Álvarez, J.; Graham, D. V.; 
Kennedy, A. R.; Mulvey, R. E. Chem. Commun. 2007, 5241–
5243. e) Naka, H.; Uchiyama, M.; Matsumoto, Y.; Wheatley, 
A. E. H.; McPartlin, M.; Morey, J. V.; Kondo, Y. J. Am. 
Chem. Soc. 2007, 129, 1921–1930. f) Naka, H.; Morey, J. V.; 
Haywood, J.; Eisler, D. J.; McPartlin, M.; Garcia, F.; Kudo, 
H.; Kondo, Y.; Uchiyama, M.; Wheatley, A. E. H. J. Am. 
Chem. Soc. 2008, 130, 16193–16200. 

11. Wunderlich, S. H.; Knochel, P. Angew. Chem. Int. Ed. 2009, 
48, 1501–1504. 

12. Garcia-Álvarez, J.; Kennedy, A. R.; Klett, J.; Mulvey, R. E. 
Angew. Chem. Int. Ed. 2007, 46, 1105–1108. 

13. Usui, S.; Hashimoto, Y.; Morey, J. V.; Wheatley, A. E. H.; 
Uchiyama, M. J. Am. Chem. Soc. 2007, 129, 15102–15103. 

14. a) L'Helgoual'ch, J.-M.; Bentabed-Ababsa, G.; Chevallier, F.; 
Yonehara, M.; Uchiyama, M.; Derdour, A.; Mongin, F. 
Chem. Commun. 2008, 5375–5377. b) Snégaroff, K.; 
L'Helgoual'ch, J.-M.; Bentabed-Ababsa, G.; Nguyen, T. T.; 
Chevallier, F.; Yonehara, M.; Uchiyama, M.; Derdour, A.; 
Mongin, F. Chem. Eur. J., in press. See also: c) 
L'Helgoual'ch, J.-M.; Bentabed-Ababsa, G.; Chevallier, F.; 
Derdour, A.; Mongin, F. Synthesis 2008, 4033–4035; d) 
Bentabed-Ababsa, G.; Blanco, F.; Derdour, A.; Mongin, F.; 
Trécourt, F.; Quéguiner, G.; Ballesteros, R.; Abarca, B. J. 
Org. Chem. 2009, 74, 163–169. 



 Tetrahedron Letters  4 

15. We chose CuCl2 as copper salt source instead of CuCl 
because of its higher air stability. In addition, the presence of 
TMEDA makes salts less sensitive to moisture, and 
sometimes favors deprotonation reactions: see references 7d-
f. For the synthesis of CuCl2·TMEDA, see: Handley, D. A.; 
Hitchcock, P. B.; Lee, T. H.; Leigh, G. J. Inorg. Chem. Acta 
2001, 316, 59–64. 

16. James, A. M.; Laxman, R. V.; Fronczek, F. R.; Maverick, A. 
W. Inorg. Chem. 1998, 37, 3785–3791. 

17. The reaction of lithiated organics with molecular oxygen is 
well-documented: Wheatley, A. E. H. Chem. Soc. Rev. 2001, 
30, 265–273. The process is thought to involve a radical chain 
decomposition in which a peroxide intermediate degrades to 
an organooxide product. 

18. An organic radical was also observed (g = 2.005, aH = 1.096 
G, 2H), but was not identified: 

    

19. TEMPO is similarly formed by preparing LiTMP in THF. 
20. The spectral data are analogous to those obtained from a 

commercial sample. 
21. The 1H NMR data are analogous to those described: Azadi-

Ardakani, M.; Wallace, T. W. Tetrahedron 1988, 44, 5939–
5952. 

22. The physical and spectral data are analogous to those 
previously described: Yuan, Y.; Bian, Y. Appl. Organomet. 
Chem. 2008, 22, 15–18. 

23. 1H NMR (300 MHz, CDCl3):  0.78 (s, 6H), 1.23 (s, 6H), 
1.49-1.64 (m, 6H), 3.75 (s, 3H), 6.82-6.88 (m, 2H), 7.13-7.19 
(m, 1H), 7.29 (dd, 1H, J = 8.3 and 1.9 Hz); 13C NMR (75 
MHz, CDCl3):  18.6, 26.0, 31.5, 41.8, 54.4, 55.1, 111.0, 
119.3, 126.4, 134.2, 136.0, 160.3. 

24. The 1H NMR data are analogous to those described: Ochiai, 
M.; Fujita, E.; Arimoto, M.; Yamaguchi, H. Chem. Pharm. 
Bull. 1982, 30, 3994–3999. 

25. The 1H NMR data are analogous to those described: Chen, X.; 
Yu, M.; Wang, M. J. Chem. Res. 2005, 80–81. 

26. The spectral data are analogous to those previously described: 
Waterlot, C.; Hasiak, B.; Couturier, D.; Rigo, B. Tetrahedron 
2001, 57, 4889–4901. 

27. The spectral data are analogous to those previously described: 
Rao, M. L. N.; Venkatesh, V.; Banerjee, D. Tetrahedron 
2007, 63, 12917–12926. 

28. The spectral data are analogous to those previously described: 
Inamoto, K.; Katsuno, M.; Yoshino, T.; Arai, Y.; Hiroya, K.; 
sakamoto, T. Tetrahedron 2007, 63, 2695–2711. 

29. The 1H NMR data are analogous to those described: Güngör, 
T.; Marsais, F.; Quéguiner, G. J. Organomet. Chem. 1981, 
215, 139–150. 

30. The 1H NMR data are analogous to those described: Trécourt, 
F.; Marsais, F.; Güngör, T.; Quéguiner, G. J. Chem. Soc., 
Perkin Trans. 1 1990, 2409–2415. 

31. Compound 11a: yellow powder; mp 90°C; 1H NMR (300 
MHz, CDCl3):  7.37 (ddd, 1H, J = 7.6, 4.9 and 1.9 Hz), 7.44-
7.50 (m, 2H), 7.73-7.79 (m, 2H), 8.04 (ddd, 1H, J = 9.4, 7.5 
and 2.0 Hz), 8.43 (ddd, 1H, J = 4.9, 2.1 and 1.2 Hz); 13C 

NMR (75 MHz, CDCl3):  121.3 (d, J = 30 Hz), 121.9 (d, J = 
4.5 Hz), 129.2 (s, 2C), 131.1 (d, 2C, J = 1.2 Hz), 135.0 (d, J = 
0.9 Hz), 140.7 (s), 142.0 (d, J = 3.3 Hz), 150.9 (d, J = 15 Hz), 
160.1 (d, J = 243 Hz), 190.7 (d, J = 4.9 Hz). 

32. Compound 13a: beige powder; mp 153°C; 1H NMR (300 
MHz, CDCl3):  7.31-7.36 (m, 2H), 7.88-7.96 (m, 2H), 8.30 
(dd, 2H, J = 4.9 and 1.9 Hz); 13C NMR (75 MHz, CDCl3):  
116.7 (m), 121.7 (m), 142.0 (t, J = 3.3 Hz), 148.1 (m), 160.4 
(d, J = 241 Hz). 

33. Mandeville, W. H.; Whitesides, G. M. J. Org. Chem. 1974, 
39, 400–405. 

34. Even if the basicity of pyrimidine nitrogens is low compared 
with that of pyridine, competitive quaternarization by reaction 
with allyl bromide and methyl iodide is not impossible under 
the conditions used. 

35. Compound 15: yellow oil; 1H NMR (300 MHz, CDCl3):  
3.95 (s, 3H), 4.07 (s, 3H), 7.42-7.49 (m, 2H), 7.58 (tt, 1H, J = 
7.3 and 1.3 Hz), 7.74-7.78 (m, 2H), 8.46 (br s, 1H); 13C NMR 
(75 MHz, CDCl3):  54.5, 55.5, 114.5, 128.5 (2C), 129.7 
(2C), 133.3, 137.6, 161.2, 166.3, 169.3, 192.2. 
Compound 16: yellow powder; mp 145-146°C; 1H NMR (300 
MHz, CDCl3):  8.48 (s, 1H), 7.68-7.73 (m, 2H), 7.41-7.46 
(m, 2H), 4.08 (s, 3H), 3.96 (s, 3H); 13C NMR (75 MHz, 
CDCl3):  54.5, 55.5, 114.1, 128.8 (2C), 130.9 (2C), 136.0, 
139.7, 161.3, 166.5, 169.1, 190.9. 
Compound 17: yellow oil; 1H NMR (300 MHz, CDCl3):  
3.22 (m, 2H), 3.96 (s, 3H), 3.97 (s, 3H), 5.00-5.08 (m, 2H), 
5.82-5.97 (m, 1H), 7.98 (br s, 1H); 13C NMR (75 MHz, 
CDCl3):  29.8, 54.0, 54.8, 113.6, 116.5, 135.2, 157.0, 164.4, 
169.4. 
Compound 19: red powder; mp 209°C; 1H NMR (300 MHz, 
CDCl3):  3.97 (s, 6H), 4.03 (s, 6H), 8.20 (s, 2H); 13C NMR 
(75 MHz, CDCl3):  54.3 (2C), 55.0 (2C), 108.3 (2C), 158.8 
(2C), 165.1 (2C), 168.7 (2C). 

36. The spectral data are analogous to those previously described: 
Boudet, N.; Dubbaka, S. R.; Knochel, P. Org. Lett. 2008, 10, 
1715–1718. 

37. Typical procedure: To a stirred, cooled (0°C) suspension of 
CuCl2·TMEDA (0.25 g, 1.0 mmol) in THF (5 mL) were 
successively added BuLi (about 1.6 M hexanes solution, 1.0 
mmol) and, 15 min later, a solution of LiTMP prepared in 
THF (2 mL) at 0°C from 2,2,6,6-tetramethylpiperidine (0.34 
mL, 2.0 mmol) and BuLi (about 1.6 M hexanes solution, 2.0 
mmol). The mixture was stirred for 15 min at this temperature 
before introduction of 2,4-dimethoxypyrimidine (125 L, 1.0 
mmol). After 2 h at room temperature, benzoyl chloride (0.24 
mL, 2.0 mmol) was added at 0°C. The mixture was stirred for 
16 h at 60°C before addition of brine (5 mL) and extraction 
with Et2O (3 x 10 mL). The combined organic layers were 
washed with brine (10 mL), dried over Na2SO4, filtered, and 
concentrated under reduced pressure before purification by 
column chromatography on silica gel (eluent: heptane/EtOAc 
8:2). Compound 15 (0.11 g, 45%) was isolated as a yellow 
oil. 

38. Forbes, G. C.; Kennedy, A. R.; Mulvey, R. E.; Rodger, P. J. 
A. Chem. Commun. 2001, 1400–1401. See also: Balloch, L.; 
Drummond, A. M.; García-Álvarez, P.; Graham, D. V.; 
Kennedy, A. R.; Klett, J.; Mulvey, R. E.; O'Hara, C. T.; 
Rodger, P. J. A.; Rushworth, I. D. Inorg. Chem. 2009, 48, 
6934–6944. 

 

 


