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________________________________________________________________________________________ 

Abstract— The synthesis and the characterization of new multichromophoric boron-dipyrromethene dyes are described. 
Their absorption, photoluminescence as well as their two-photon absorption properties have been investigated. This 
work shows that assembling several dyes in conjugated multichromophoric structures is a promising strategy for 
improving the two-photon absorption properties of such fluorophores in the NIR region while retaining their excellent 
photoluminescence properties. 
________________________________________________________________________________________ 
 

For more than a decade, two-photon absorption (TPA) has attracted increasing attention in relation 

with various applications, such as 3D microfabrication1 and optical data storage,2 photodynamic therapy,3 and 

optical power limiting.4 Moreover, two-photon-excited fluorescence (TPEF) has been found to be of particular 

interest for the biology community: two-photon laser scanning fluorescence microscopy (TPEFLSM) offers 

the advantages of imaging deeper in living tissues (down to 500 μm), with reduced photodamages and 

background fluorescence and with sharp 3D spatial resolution.5 The advantages of TPEFLSM call for the 

design of new fluorophores whose TPA cross-sections are optimized in the spectral range of interest for 

biological imaging (700-1200 nm). Indeed designing molecular fluorophores with much higher TPA cross-

section than endogenous chromophores6 and conventional fluorophores such as fluorescein or rhodamine,7 

would allow to reduce the concentration of fluorophores and molecular markers and/or the excitation intensity, 

which is highly desirable for biological imaging.8 Key parameters for the design of new TPE-fluorophores and 

markers for biological imaging are high fluorescence quantum yield Φ and very large TPA cross-section (σ2). 

In addition excellent photostability and low (photo)toxicity are required. 

Boron-dipyrromethene dyes (Figure 1) belong to a modern class of fluorophores showing attractive 

properties: tunable photoluminescence in the 500-650 nm spectral range, high fluorescence quantum yield in 

various media (including water in the case of water-soluble derivatives), long enough fluorescence lifetime 

(about 5 ns).10-20 In addition, both hydrophilic and lipophilic derivatives can be prepared via grafting of 

suitable side groups on the pyrrole moieties. Boron-dipyrromethene fluorophores have been used in 

fluorescent probes for various applications including cation sensing,21 ionofluorophores,22 dosimetric 

reagents,23 monitoring of bioactivity (NO imaging),24 live-cell imaging25 and even in TPEF-based 

fluorimmunoassays.26 However, these compounds have not yet been optimized for TPA and their TPEF cross-

sections remain low.7 In this paper, we describe the strategy that we have implemented towards improved 

TPEF. 

 

______________________ 
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Figure 1. Left: general structure of boron-dipyrromethenes (BODIPY®). 

Right: structure of water-soluble 4,4-difluoro-1,3,5,7,8-pentamethyl-4-

bora-3a,4a-diaza-s-indacene-2,6-disulfonic acid, disodium salt27 (PM556). 

 

Our approach is based on the design of multichromophoric boron-dipyrromethene assemblies, where 

dyes moieties are assembled in defined geometries by using conjugated rigid spacers (Scheme 1). Although 

much work has been carried out in the past on multichromophoric assemblies in the field of second-order 

nonlinear optics,28 the mutichromophoric strategy is very recent in the field of TPA.29,30 

Based on our earlier work on the design of nanoscale elongated quadrupolar and octupolar derivatives 

built from either a biphenyl31 or a triphenylbenzene30,32 core and displaying giant TPA cross-sections, we 

chose to use biphenyl and triphenylbenzene as rigid spacers connecting the boron-dipyrromethene 

fluorophores. However, in contrast to our previous work, we chose to focus on short derivatives to maintain 

compact size/volume. In addition we did not introduce ethynylene or vinylene intermediary linkers to ensure 

high photostability. Hereafter, we will describe the synthesis, photoluminescence and TPA properties of such 

bis-chromophoric and tris-chromophoric derivatives. An important issue is to investigate how the approach 

implemented here affects the photoluminescence and TPA properties. 

The bis-chromophoric dye 3 was synthesized from (1,1’-biphenyl)-4,4’-dicarboxaldehyde33 (2) and 4 

equiv of 2,4-dimethyl-3-ethylpyrrole (1) (Scheme 1). The synthesis proceeds in three steps: first addition of 

TFA to the mixture of aldehyde and pyrrole to give in situ the corresponding dipyrromethane, then conversion 

of the latter into dipyrromethene by oxidation with DDQ, and finally treatment with an excess of 

trifluoroboron-etherate in the presence of base to afford the corresponding boron complex. The tris-

chromophoric dye 5 was prepared by reacting the trialdehyde 434 with 6 equiv of the pyrrole 1 (Scheme 1), 

using the same procedure than for 3. The new fluorophores 3 and 5 have been fully characterized by NMR and 

HRMS.35 
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Scheme 1. Reagents and conditions: (a) 1 (4 equiv), 2 (1 equiv), TFA, CH2Cl2, rt, 

2 h, then DDQ (2 equiv), rt, 1 h, then i-Pr2NEt, BF3-Et2O (excess), rt, 1 h (overall 

yield 42%); (b) 1 (6 equiv), 4 (1 equiv), TFA, CH2Cl2, rt, 2 h, then DDQ (3 equiv), 

rt, 1 h, then i-Pr2NEt, BF3-Et2O (excess), rt, 1 h (overall yield 23%). 

 

The absorption and photoluminescence characteristics (including fluorescence quantum yields and 

fluorescence lifetimes) of the series of dyes are gathered in Table 1. As illustrated in Figure 2, chromophores 3 

and 5 exhibit an intense and sharp absorption band in the visible region. Both dyes present similar 

photophysical properties. Both the energy absorption and emission band peaks are at the same wavelength, 

and absorption and emission bands show identical width and vibronic structure. In addition, the molar 

extinction coefficients were found to increase linearly with the number of boron-dipyrromethene 

chromophores while the fluorescence quantum yields and lifetimes remain the same (Table 1). This indicates 

that the excitation energy is localized on the boron-dipyrromethene moieties and that emission occurs from 

these units, thus retaining the excellent photoluminescence properties of the boron-dipyrromethene 

fluorophores. 
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Table 1. One and two-photon photophysical data of fluorophores 3 and 5. 

σ2 (GM)f 
Compd 

λabs 
(nm) ε 

(M-1.cm-1) 
λem 

(nm) Φd 
τe 

(ns) 
at 700 nm at 990 nm 

3
a
 527 161900 542 0.72 4.76 57 48 

5
a 527 244300 542 0.69 4.78 82 75 

PM556b 491g 98600g 519g 0.83g 4.23g - 9 (20h)i 

Fluoresceinc 491 75500 515 0.90  18i 13i 
a In toluene. 
b In water. 
c In water, pH 11. 
d Fluorescence quantum yield determined relative to fluorescein in 0.1 N NaOH. 
e Experimental fluorescence lifetime using time-correlated single photon counting. 
f TPA cross-sections; 1 GM = 10-50 cm4.s.photon-1; TPEF measurements were 
performed using a mode-locked Ti:sapphire laser delivering 80 fs pulses at 80 
MHz, calibrated with fluorescein.7 
g Data from lit.13 
h TPA cross-section at 920 nm. 
i Data from lit.7 

 

 

 
Figure 2. Absorption and fluorescence emission spectra of dyes 3 and 

5 in toluene. 

 

The TPA spectra of multichromophoric dyes 3 and 5 (Figure 3) were determined in the NIR range 

(700-1000 nm) by investigating the two-photon-excited fluorescence (TPEF) in 10-4 M toluene solutions using 

a mode-locked Ti:sapphire laser delivering 80 fs pulses at 80 MHz, following the experimental protocol 

described by Xu and Webb.7 The quadratic dependence of the fluorescence intensity on the excitation intensity 

was verified for every data point. TPEF measurements were calibrated relative to the absolute TPEF action 

cross-sections determined by Xu and Webb for fluorescein in water (pH = 11) in the 690-1000 nm range.7,36
 

This procedure provides the TPEF action cross-section σ2φ from which the corresponding σ2 value is derived. 

Selected data are included in Table 1. Literature TPA data for PM556 and fluorescein7 are also shown for 

comparison. 
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Figure 3. TPA spectra of dyes 3 and 5 in toluene. 

 

The TPA cross-sections of bis-chromophoric dye 3 and tris-chromophoric dye 5 were found to be of 48 

and 75 GM at 990 nm, respectively, which correspond to about 2.4 and 3.7 times that of PM556 at its 

maximum (σ2
max = 20 GM at 920 nm). This reveals a reasonable increase (20% for 3 and 25% for 5) of the 

lower energy TPA maxima in the assemblies as compared to the additional contribution of two or three 

independent PM556 chromophores. More importantly, we observe the emergence of a new and more intense 

TPA band at lower wavelength that is not present in the TPA spectrum of the reference boron-dipyrromethene 

dye.7 As a result multichromophoric fluorophores 3 and 5 show much larger TPA cross-section at 700 nm than 

single boron-dipyrromethene dyes. This higher energy two-photon excitation band responsible for the marked 

TPA enhancement at 700 nm is most probably related to the presence of the biphenyl and triphenylbenzene 

linkers (in relation with the weakly one-photon allowed absorption band observed at 350 nm). It should be 

stressed however that the TPA cross-section of both the biphenyl or triphenyl benzene moieties and of the 

boron-dipyrromethene are quite low at 700 nm emphasizing that the combination of these conjugated linkers 

with the boron-dipyrromethene moieties leads to a cooperative enhancement of the TPA responses as 

compared to an additive behavior. The modular multichromophoric strategy implemented here thus opens an 

interesting route for TPA enhancement and could be extended to other types of conjugated connectors, 

including dendrimers. 

In conclusion, the multichromophoric approach based on the grafting of multiple boron-

dipyrromethene fluorophores on suitable cores that act as two-photon absorption enhancers is indicating that 

the multichromophoric approach is a valid strategy for improving the TPA properties. This novel approach 

towards improved TPEF labels and probes offers several advantages because it allows retaining the excellent 

characteristics of the boron-dipyrromethene fluorescent units while taking advantage of the connectors for 

TPA modulation and enhancement. This leaves space for further engineering and spectral tuning of the TPEF 

properties in multichromophoric assemblies. In particular the molecular engineering routes for optimization of 

the TPA properties of quadrupoles31,37 and octupoles38 could be successfully applied for the design of 

optimized multichromophoric architectures. Furthermore it would be interesting to assemble a large number 

of chromophoric units in dendritic structures where the dendritic core could serve as a TPA enhancer. 
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