Jérôme Coville 
email: jerome.coville@avignon.inra.fr
  
J Ér 
  
Ôme Coville 
  
  
  
  
Harnack type inequality for positive solution of some integral equation

Keywords: 2000 Mathematics Subject Classification. Primary 45A05, 47G10, 45M20, 47B34 Nonlocal diffusion operators, Harnack type inequality, positive solutions

In this paper, we establish some Harnack type inequalities satisfied by positive solutions of nonlocal inhomogeneous equations arising in the description of various phenomena ranging from population dynamics to micro-magnetism. For regular domains, we also derive an inequality up to the boundary. The main difficulty in such context lies in a precise control of the solutions outside a compact set and the existence of local uniform estimates. We overcome this problem by proving a contraction result which makes the L 1 norms of the solutions on two compact sets ω1 ⊂⊂ ω2 equivalent. We also construct the principal positive eigenfunctions associated to particular nonlocal operators by using the corresponding Harnack type inequalities.

INTRODUCTION AND MAIN RESULTS

In this paper, we investigate the existence of a Harnack type inequality for positive continuous solutions of with Ω ⊂ R d , k ≥ 0 and b(x) ∈ C(Ω). Precise assumptions on Ω, k and b will be given later on. Such type of linear operator has been widely used to describe the dispersal of a population in its environment in the following sense. As stated in [START_REF] Paul | Mathematical aspects of reacting and diffusing systems[END_REF][START_REF] Paul | An integrodifferential analog of semilinear parabolic PDEs[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF], if u(y, t) is thought of as a density at a location y at a time t and k(x, y) as the probability distribution of jumping from a location y to a location x, then the rate at which the individuals from all other positions are arriving to the location x is Ω k(x, y)u(y, t) dy.

On the other hand, the rate at which the individuals are leaving the location x to travel to all other places is -b(x)u(x, t). The operator L is called nonlocal since the behaviour of a function at a given point depends on its values at points some distance away rather than just nearby ones.

In the past few years, there has been an intense interest to use such nonlocal operators to model problems in mathematical physics or in ecology, see, among other references, [START_REF] De Masi | Travelling fronts in non-local evolution equations[END_REF][START_REF] Paul | An integrodifferential analog of semilinear parabolic PDEs[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF][START_REF] Medlock | Spreading disease: integro-differential equations old and new[END_REF][START_REF] Schumacher | Travelling-front solutions for integro-differential equations[END_REF]. In particular, much attention has been devoted to the study of the nonlocal reaction diffusion equation

(1.3) ∂u ∂t = L[u] + f (x, u(x, t)) in Ω × R + ,
where the usual elliptic diffusion operator is replaced by the operator L, see for example [START_REF] Bates | Traveling waves in a convolution model for phase transitions[END_REF][START_REF] Cortázar | A nonlocal inhomogeneous dispersal process[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF][START_REF] Medlock | Spreading disease: integro-differential equations old and new[END_REF]. Problems related to (1.3) with a homogeneous nonlinearity have been widely treated in the literature when b(x) ≡ 1 and the kernel take the form of a convolution operator, i.e. k(x, y) = J(xy) with J a probability density. For instance, the works in the references [START_REF] Bates | Traveling waves in a convolution model for phase transitions[END_REF][START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equation: The bistable and ignition case[END_REF][START_REF] Jér Ôme Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Coville | On a non-local equation arising in population dynamics[END_REF][START_REF] De Masi | Uniqueness and global stability of the instanton in nonlocal evolution equations[END_REF] are devoted to the study of travelling front solutions existing for the problem (1.3) with a homogeneous bistable or monostable nonlinearity, while [START_REF] Bates | An integrodifferential model for phase transitions: stationary solutions in higher space dimensions[END_REF][START_REF] Adam | The nonlocal bistable equation: stationary solutions on a bounded interval[END_REF] deal with the study of the steady state solutions of the problem (1.3) with a logistic type, bistable or powerlike nonlinearity. The particular instance of the parabolic problem in R n when f = 0 is considered in [START_REF] Chasseigne | Asymptotic behavior for nonlocal diffusion equations[END_REF][START_REF] Cortazar | Boundary fluxes for nonlocal diffusion[END_REF]. In the heterogeneous case ( b and k general), few results are known. This is due mostly to the lack of compactness properties of L + λ or of its inverse. We quote [START_REF] Jér Ôme Coville | Nonlocal anisotropic dispersal with monostable nonlinearity[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF] which deal with a convolution kernel in a periodic environment with a monostable type nonlinearity and [START_REF] Cortázar | A nonlocal inhomogeneous dispersal process[END_REF] in the case of a linear heterogeneous dispersal process in R.

When the kernel k(x, y) is smooth and compactly supported, it is easy to see that, when applied to a smooth function, the operator L can be rewritten into the following form

L[u] := M[u] + R[u]
with M an elliptic operator (1.4)

M[u] := a ij (x)∂ ij u + b i (x)∂ i u + c(x)u,
and R an operator involving derivatives of higher order than in M. Indeed, we have

L[u] = Ω k(x, y)[u(y) -u(x)] dy -c(x)u,
with c(x) := b(x) -Ω k(x, y)dy. Hence, setting z = xy and performing a formal Taylor expansion of u in the integral, we obtain

x-Ω k(x, x -z)[u(x -z) -u(x)] dy = a ij (x)∂ ij u + b i (x)∂ i u + R[x, ∂ ijk u]
with a ij (x) and b i (x) defined by the following expressions

a ij (x) = 1 2 x-Ω k(x, x -z)z i z j dz b i (x) = x-Ω k(x, x -z)z i dz and R[x, ∂ ijk u] := x-Ω k(x, x -z)z i z j z k 1 0 1 0 1 0 st 2 ∂ ijk u(x -hstz) dhdsdt dz.
Therefore, for suitable kernels k, it seems reasonable to expect that the operator L shares many of the properties of M.

For a uniform elliptic operator M, it is well known that the positive solutions of the equation M[u] = 0 are satisfying an Harnack inequality, see [START_REF] Evans | Partial differential equations[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. That is to say Theorem 1.1 (Harnack Inequality [START_REF] Evans | Partial differential equations[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]). Let Ω ⊂ R n be a domain and let ω ⊂⊂ Ω be a compact sub-domain. Then there exists a constant C(ω) such that for all positive smooth solutions u so that

M[u] = 0 we have u(x) ≤ Cu(y) for all x, y ∈ ω.
Such estimate is an extremely important tool in the study of partial differential equations since they are providing in particular various key estimates in the analysis of the regularity of the solutions of PDE's. Moreover, such estimate plays a central role in the construction of a positive eigenfunction of M, which is also an essential tool in the analysis of various nonlinear partial differential equations, see for example [START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF][START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF][START_REF] Berestycki | On the principal eigenvalue of elliptic operators in R N and applications[END_REF].

As observed in [START_REF] Cortázar | A nonlocal inhomogeneous dispersal process[END_REF][START_REF] Jér Ôme Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF] for some particular choice of b and k, the principal eigenvalue λ 1 of L and its corresponding positive eigenfunction φ 1 , that is

(1.5) L[φ 1 ] + λ 1 φ 1 = 0 in Ω,
are central in the analysis of the nonlocal reaction diffusion problems such as (1.3). However, due to the lack of compactness of L + λ or of its inverse, proving the existence of a principal eigenpair in this context is a very difficult task and no general result is known. As for elliptic operators, an Harnack type inequality for the positive solutions of such nonlocal equation (1.5) is expected to provide a priori estimates for the construction of eigenpairs of a general operator L. It is therefore of great interest to investigate the existence of such estimates. For some particular kernel k(x, y), the Harnack estimate for solutions of (1.1) are often obtained as a consequence of the harmonic property of the solution. Indeed, when k(x, y) takes the following form

k(x, y) = 1 |B(x,r(x))| if y ∈ B(x, r(x)) 0 otherwise
where c 0 < r(x) < d(x, ∁Ω) is a given function, then the positive solutions of (1.1) are harmonic functions. There exists a vast literature dealing with what is called in potential theory "The Converse Mean Value Problem". The central question is then to find the conditions on k(x, y) so that the solutions u of (1.1) are harmonic. For more details on this subject, we refer the interested reader to [START_REF] Baxter | Restricted mean values and harmonic functions[END_REF][START_REF] Cornea | Martin compactification for discrete potential theory and the mean value property[END_REF][START_REF] Hansen | Restricted mean value property for positive functions[END_REF][START_REF] Hansen | Littlewood's one-circle problem, revisited[END_REF][START_REF] Hansen | Harmonic functions and averages on shells[END_REF][START_REF] Hansen | A converse to the mean value theorem for harmonic functions[END_REF][START_REF] Netuka | Mean value property and harmonic functions[END_REF][START_REF] Veech | A converse to the mean value theorem for harmonic functions[END_REF] and references therein. For the above kernel, to our knowledge, Veech [START_REF] Veech | A converse to the mean value theorem for harmonic functions[END_REF] was the first to obtain a Harnack type estimate for the positive solutions of (1.1) as a consequence of the restricted mean value property itself rather than the harmonic property of the solution. Later, Cornea and Vesel ý [START_REF] Cornea | Finiteness principle and Harnack principle[END_REF][START_REF] Cornea | Martin compactification for discrete potential theory and the mean value property[END_REF] have extended the Harnack type estimate obtained by Veech to some more general kernels. More precisely, they have obtained the following Theorem 1.2 ( [14, 15]). Let k(x, y) be a kernel so that ∀x ∈ Ω, there exists V x and W x , two compact neighbourhoods of x and two strictly positive constants m x and M x such that W x ⊂ Ω and for any y ∈ V x we have

(1.6) m x χ Vx ≤ 1 b(.) k(., y) ≤ M x χ Wx
where χ A is the characteristic function of the set A. Then, for all compact set ω ⊂ Ω there exists a constant C(ω, k) such that for all super-median function u (i.e. any function u satisfying u(x) ≥ 1 b(x) Ω k(x, z)u(z) dz for all x) and any two points x, y ∈ ω, one have

1 b(x) Ω k(x, z)u(z) dz ≤ C 1 b(y) Ω k(y, z)u(z) dz.
Some Harnack inequality for nonlocal operators have also been proved for singular kernel, essentially for the generators of pure jump processes, see for example [START_REF] Bass | Stochastic differential equations with jumps[END_REF][START_REF] Bass | Harnack inequalities for non-local operators of variable order[END_REF][START_REF] Bass | Harnack inequalities for jump processes[END_REF][START_REF] Bogdan | Harnack's inequality for stable Lévy processes[END_REF][START_REF] Caffarelli | Regularity theory for fully nonlinear integrodifferential equations[END_REF][START_REF] Moritz Kassmann | Harnack inequalities: an introduction[END_REF]. In this context, the operator L takes the form

(1.7) L[u] := Ω k(x, y)[u(y) -u(x)] dy,
where k(x, y) ∼ 1 |x-y| d+α with α > 0. This particular structure implies some extra regularity for the solutions of (1.1) and plays an essential role in the derivation of the Harnack inequality.

In this work, we investigate the existence of a Harnack type inequality for a class of nonlocal operators L for which the condition on the kernel (1.6) is not always verified and when the compact set ω can touch the boundary ∂Ω when it exists. More precisely, we study the existence of a Harnack type inequality for the positive solutions of the operator defined in (1.2), for any positive function b(x) and when the kernel k(x, y) takes the form introduced by Cortazar et al. in [START_REF] Cortázar | A nonlocal inhomogeneous dispersal process[END_REF]:

(1.8) k(x, y) = J x -y g(y) 1 g n (y) ,
where J is a probability density and the function g is bounded and non negative. We are particularly interested in finding some simple conditions on J, g, b and Ω such that a Harnack type inequality holds for the positive solutions of the following equation (1.9)

Ω J x -y g(y) u(y) g d (y) dy -b(x)u = 0. in Ω.
Now let us state the precise assumptions that we impose on J, g and b. Throughout this paper and without further notice we will always assume that J b and g satisfy the following assumptions

J ∈ L ∞ (R d ) ∩ L 1 (R d ), (H1) 
m 0 χ B(0,r 0 ) ≤ J ≤ M 0 χ B(0,R 0 ) for some positive constants r 0 , R 0 , m 0 , M 0 , (H2)

g ∈ L ∞ (Ω), 0 ≤ g ≤ β, 1 g d ∈ L p loc (Ω) with p > 1, (H3) b ∈ C( Ω), b(x) > 0. ( H4 
)
Let us also denote by S the set of point where g is vanishing (i.e. S := {x ∈ Ω|g(x) = 0} ).

Without loss of generality we will also assume that R 0 = 1. Note that when S = ∅ the kernel k(x, y) = J x-y g(y)

1 g d (y) does not satisfy automatically the assumption of Cornea and Vesel ý (i.e. the condition (1.6)) moreover the operator L can not be rewritten as a jump operator like in the equation (1.7).

Under the above assumptions on J, g, and b, we first establish some kind of uniform estimate satisfied by the positive solutions of (1.9). More precisely, we prove the following Theorem 1.3. Let J, g, and b satisfying (H1-H4) and assume that Ω ∩ S ⊂⊂ Ω and let ω ⊂ Ω be a compact set. Let us denote Ω(ω) the following set

Ω(ω) := x∈ω B(x, β).
Then there exists a positive constant η * such that for any 0 < η ≤ η * there exist a compact set ω ′ ⊂⊂ Ω(ω) ∩ Ω and a constant C(J, ω, ω ′ , b, g, η) such that the following assertions are verified

(i) {x ∈ Ω(ω) ∩ W η |d(x, ∂(Ω(ω) ∩ W η )) > η} ⊂ ω ′
, where W η := {x ∈ Ω|g(x) > η} (ii) for all positive continuous solutions u of (1.9), the following inequality holds:

u(x) ≤ Cu(y) for all x ∈ ω, y ∈ ω ′ ∩ ω.
Under an additional assumption on the regularity of the compact set ω, we have a more precise estimate. Namely, we prove the following result.

Theorem 1.4. Let J, g, and b satisfying (H1-H4) and assume that Ω ∩ S ⊂⊂ Ω. Let ω ⊂ Ω be a compact set which satisfies an uniform inner cone condition. Then there exists a positive constant η * such that for any 0 < η ≤ η * , there exists a constant C(J, ω, b, g, η) such that for all positive continuous solutions u of (1.9) the following inequality holds u(x) ≤ Cu(y) for all x ∈ ω, y ∈ ω ∩ {y ∈ Ω|g(y) > 2η}.

Note that in the above Theorems (Theorems 1.3 and 1.4), no condition is required on the open set Ω. Therefore, the respective inequalities are holding as well when Ω = R n . In this particular case the assumption on S can be weakened. More specifically instead of assuming that Ω ∩ S ⊂⊂ Ω we can require that for any subset S of S, there exists a ball B(x 0 , R) such that B(x 0 , R) ∩ S ⊂⊂ B(x 0 , R).

Corollary 1.5. Let J, g, and b satisfying (H1-H4) and assume that S satisfies the above condition and let ω ⊂ R n be a compact set. Then there exists a positive constant η * such that for any 0 < η ≤ η * there exists a constant C(J, ω, b, g, η) such that for all positive continuous solutions u of (1.9) the following inequality holds

u(x) ≤ Cu(y) for all x ∈ ω, y ∈ ω ∩ {y ∈ Ω|g(y) > 2η}.
Observe that when the compact set ω ⊂ Ω and the considered kernel k(x, y) satisfies the condition (1.6) we recover the Harnack type estimate obtained by Cornea in [START_REF] Cornea | Finiteness principle and Harnack principle[END_REF][START_REF] Cornea | Martin compactification for discrete potential theory and the mean value property[END_REF].

As consequence of Theorems 1.3 and 1.4 we get various uniform estimates on the positive solutions u of (1.9) when Ω is a bounded domain. More precisely for general bounded domains we have Corollary 1.6. Assume J, g and b satisfy (H1-H4), let Ω be a bounded domain and assume that 1

g d ∈ L p (Ω) for p > 1.
Then there exists a positive constant η * such that for any 0 < η ≤ η * there exists a compact set ω ′ ⊂⊂ Ω and a constant C(J, Ω, ω ′ , b, g, η) such that the two following assertions hold (i) {x ∈ Ω|d(x, ∂W η ) > η} ⊂ ω ′ (ii) for all positive continuous solutions u of (1.9),

sup Ω u ≤ Cu(y) for all y ∈ ω ′ .
Note that in this case, the assumption S ∩ Ω ⊂⊂ Ω is not any more required and the function g can vanish at the boundary.

In the case of a regular bounded domain and assuming that g > α the above inequality extends up to the boundary. Corollary 1.7. Let J, g, and b satisfying (H1-H4) and assume that g ≥ α > 0 and Ω is a bounded domain which satisfies an uniform inner cone condition. Then there exists a constant C(Ω, g, J, b) such that for all positive continuous solutions u of (1.9) it holds

sup Ω u ≤ C inf Ω u.
Note that, in this particular case, whereas the classical Harnack type inequality remains true for positive solutions of the uniformly elliptic equation (1.4) its extension up to the boundary (Corollary 1.7) does not. The validity of such an extension is a consequence of the nonlocal nature of the equation considered.

Our last result is an application of these estimates to the construction of a positive solution of (1.9) for a particular b(x). Let us consider the equation

(1.10) Ω J x -y g(y) u(y) g n (y) dy -a(x)u = 0 in Ω,
where a(x) is defined as follows

a(x) := Ω J y-x g(x) dy g n (x) if x ∈ S 1 otherwise
In the literature this equation corresponds to the nonlocal analogue of the usual eigenvalue problem for an elliptic operator with homogeneous Neumann boundary condition. For some particular situations, the existence of a positive solution is also well known. Indeed when g ≡ cste then it is easy to see that for any J any constant is a solution of the problem (1.10). In this particular situation the kernel is of Markov type which is not true when g ≡ cste.

Another well known case is when Ω is a bounded domain and J is assumed to be a smooth (i.e. at least continuous ) function. Then in such a case the equation (1.10) reduces to a homogeneous second kind Fredholm integral equation, well studied in the literature, see for example [START_REF] Polyanin | Handbook of integral equations[END_REF]. To our knowledge besides the two above situations the existence of a non trivial positive solution of (1.10) under some general assumptions on J, g and b has only been obtained in the case Ω = R see [START_REF] Cortázar | A nonlocal inhomogeneous dispersal process[END_REF].

Let us now state our result.

Theorem 1.8. Let J, g, and b satisfying (H1-H4) and assume that Ω ∩ S ⊂⊂ Ω. Then there exists a positive continuous solution p of (1.10).

COMMENTS AND STRAIGHTFORWARD GENERALISATIONS

Before going into the proofs of these results, let us make some comments and explain our strategy of proofs.

We first want to emphasize that the continuity assumption H4 made on b is not necessary and all the results can be proved assuming that b ∈ L ∞ (Ω) with inf Ω b > 0. We want also to point out that all the above results extend obviously to the kernels k(x, y) of the form

k(x, y) = J x 1 -y 1 g 1 (y) ; x 2 -y 2 g 2 (y) ; . . . ; x n -y n g n (y) 1 n i=1 g i (y)
.

We also remark that the assumption J > c 0 χ B(0,r 0 ) cannot be removed easily and a generalisation of the Harnack type estimate for more general measure J seems delicate. Indeed it is well known that the Harnack type inequality is false for some discrete Laplacian ∆ h which corresponds to have in our framework b = g ≡ 1 and J := 1 2 (δ h + δ -h ) where δ h denotes the Dirac mass at the point h, see [START_REF] Netuka | Harmonic functions and mean value theorems[END_REF]. For example by taking h = 2π we have 1 + cos(x) is a non negative solution of the average equation

u(x) = R J(x -y)u(y) dy = 1 2 (u(x + 2π) + u(x -2π)).
Extension of these Harnack type inequality for positive measure J are currently under consideration.

We want also to emphasize even though the average equation (1.9) have some similarities with the average equations studied in the "Converse Restricted Mean Value Problem", the two equations are fundamentally different. Indeed whereas a function satisfying a Restricted Mean Value Property with respect to a measure µ verifies

(2.1) u(x) = B(x,δ(x)) u(y)dµ(y)
for some function δ(x), a solution u of (1.9) satisfies

u(x) = B(x,g(y))∩Ω u(y)dν(y),
which in the case g ≡ cste cannot be rewritten in the form (2.1) for some measure µ. We also have recently observed that all our results on Harnack type inequality can be extended to the framework of super-median function (i.e u so that L[u] ≤ 0). In this framework, we have a Harnack type estimate of the form Theorem 2.1. Let J, g, and b satisfying (H1-H4). Assume that Ω ∩ S ⊂⊂ Ω and let ω ⊂⊂ Ω be a compact set. Let Ω(ω) denote the following set

Ω(ω) := x∈ω B(x, d ω ),
where d ω := d(ω, ∂Ω). Then there exists a positive constant η * such that, for any 0 < η ≤ η * , there exists a compact set ω ′ ⊂⊂ Ω(ω) and a constant C(J, ω, ω ′ , b, g, η) such that the following assertions are verified

(i) {x ∈ Ω(ω) ∩ W η |d(x, ∂(Ω(ω) ∩ W η )) > η} ⊂ ω ′ , where W η := {x ∈ Ω|g(x) > η} (ii)
for all positive continuous super median function u of (1.9) the following inequality holds:

1 b(x) Ω J x -z g(z) u(z) dz g d (z) ≤ C 1 b(y) Ω J y -z g(z) u(z) dz g d (z) for all x ∈ ω, y ∈ ω ′ ∩ ω.
We have remarked that some of our results can be generalized easily to the situation where the function g is vanishing at the boundary of the set Ω provided that g(x) < d(x, ∂Ω). More precisely, we have Theorem 2.2. Let J, g, and b satisfying (H1-H4). Assume that S = ∂Ω ∪ S i with Ω ∩ S i ⊂⊂ Ω and g(x) < d(x, ∂Ω). Let ω ⊂⊂ Ω be a compact set and let Ω(ω) denote the following set

Ω(ω) := x∈ω B(x, d ω ),
where d ω := d(ω, ∂Ω). Then there exists a positive constant η * such that, for any 0 < η ≤ η * , there exist a compact set ω ′ ⊂⊂ Ω(ω) and a constant C(J, ω, ω ′ , b, g, η) such that the following assertions are verified

(i) {x ∈ Ω(ω) ∩ W η |d(x, ∂(Ω(ω) ∩ W η )) > η} ⊂ ω ′ ,
where W η := {x ∈ Ω|g(x) > η} (ii) for all positive continuous solutions u of (1.9), the following inequality holds:

u(x) ≤ Cu(y) for all x ∈ ω, y ∈ ω ′ ∩ ω.
Now let us explain our strategy to obtain such Harnack type inequality. It is mainly based on the following observation. For the harmonic functions (i.e functions u such that ∆u = 0) it is well known (see [START_REF] Evans | Partial differential equations[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]) that they satisfy a mean value equality

u(x) = B(x,r) u(y) dy |B(x, r)| ,
which holds for any ball B(x, r) ⊂⊂ Ω. An Harnack inequality is derived easily from this property. Our idea is then to view a positive solution u of (1.9) as a positive function satisfying some mean value equality

(2.2) u(x) = 1 b(x) Ω u(y) dµ(x, y),
for some given measure dµ, and to use this formulation to obtain some uniform estimates depending only on ω, J and b. However, the later mean value property is fundamentally different from the one satisfied by harmonic functions in at least two ways. First, the measure dµ(x, y) is no more homogeneous and may be singular in the variable y. Second, the solution of equation (1.9) satisfies the mean value equality for the fixed domain Ω, whereas for harmonic functions the mean value equality holds for any ball compactly included in Ω.

All the difficulty in obtaining such Harnack type estimates arises from these two differences. We note that our proofs differ from the one given in [START_REF] Cornea | Finiteness principle and Harnack principle[END_REF][START_REF] Cornea | Martin compactification for discrete potential theory and the mean value property[END_REF] providing alternative proofs of these Harnack type estimates. In particular, from our analysis, we can extract an estimate of the constant C involved in the Harnack type inequality.

The paper is organized as follows. In the next section, we establish some general estimates that we use along our paper. Then we establish some uniform estimates satisfied by the positive solutions of (1.9). Next, in section 5, we prove the various Harnack type inequalities appearing in Theorems 1.3, and 1.4, and Corollaries 1.5 to 1.7. Finally, the last section is devoted to the construction of a positive eigenfunction (Theorem 1.8).

PRELIMINARIES

In this section, we prove some technical lemmas concerning some sets of positive functions satisfying a pointwise estimate. Similar estimates and inequalities can be found in [START_REF] Cornea | Martin compactification for discrete potential theory and the mean value property[END_REF]. Let us state our first lemma, Lemma 3.1. Let Ω ⊂ R n be a domain and let x ∈ Ω and η > 0 so that B(x, 4η) ⊂ Ω. Let C 0 be a positive constant and define X the following set of functions

X(x) := u ∈ C(Ω) | u ≥ 0, such that u(y) ≥ C 0 B(y,η) u(s) ds for all y ∈ B(x, 2η)
Then for all η 4 ≤ r ≤ η, there exists a positive constant C 1 (r, η, C 0 ) ≤ 1 so that for all u ∈ X we have

B(x,r) u(s) ds ≥ C 1 B(x,r+ η 4 )
u(s) ds.

Assume for the moment that Lemma 3.1 holds. Then we can derive the following uniform estimates Lemma 3.2. Let Ω ⊂ R n , Σ ⊂⊂ Ω and C 0 > 0 be respectively a domain, a smooth connected compact set and a positive constant. Choose η > 0 such that

Ω 2η := x∈Σ B(x, 4η) ⊂⊂ Ω
and consider X the following set of functions

X := u ∈ C(Ω) | u ≥ 0, such that u(y) ≥ C 0 B(y,η) u(s) ds for all y ∈ Ω η := x∈Σ B(x, 2η)
Then there exists two positive constants C(η, C 0 , Σ) and N (η, Σ) so that (i) for all x, y ∈ Σ and for all u ∈ X we have

B(x, η 4 ) u(s) ds ≥ C B(y, η 4 )
u(s) ds.

(ii) for all x ∈ Σ and for all u ∈ X we have

B(x, η 4 ) u(s) ds ≥ C N Σ u(s) ds.

Proof of Lemma 3.2:

Let us start with the proof of (i). Observe that for any z ∈ Σ we have by assumption

(3.1) B(z, 2η) ⊂ Ω η and X ⊂ X(z).
Therefore applying Lemma 3.1 respectively with r = η 4 and η 2 yields for all u ∈ X and for all

z ∈ Σ B(z, η 4 ) u(s)ds ≥ C 1 η 4 , η, C 0 B(z, η 2 ) u(s) ds, B(z, η 2 ) u(s)ds ≥ C 1 η 2 , η, C 0 B(z, 3η 4 ) 
u(s) ds.

Thus for all u ∈ X and for all z ∈ Σ we have

(3.2) B(z, η 4 ) u(s)ds ≥ C 2 B(z, 3η 4 ) u(s) ds, with C 2 := C 1 η 4 , η, C 0 C 1 η 2 , η, C 0 .
Using now that Σ is a compact connected set then there exists a finite number of balls B(z i , η 4 ) covering Σ. That is to say, for some N (Σ, η) ∈ N,

Σ ⊂ N i=1 B(z i , η 4 
).

Now let x, y ∈ Σ be fixed . From the covering, we can find a finite sequence (t n ) n∈{0,...,N 0 } of elements of Σ so that

     N 0 ≤ N (Σ, η) + 2 t i ∈ {x, y, z 1 , . . . , z N }, t 0 = x and t N 0 = y ∀i ∈ {0, . . . , N 0 -1}, B(t i+1 , η 4 ) ⊂ B(t i , 3η 4 
)
Since for all u ∈ X, u ≥ 0, using (3.2) with z = x and the definition of t 1 , we deduce that for all u ∈ X

B(x, η 4 ) u(s) ds ≥ C 2 B(x, 3η 4 ) u(s) ds ≥ C 2 B(t 1 , η 4 )
u(s) ds.

Then by induction, for all u ∈ X we achieve

B(x, η 4 ) u(s) ds ≥ (C 2 ) N 0 B(y, η 4 )
u(s) ds.

Since N (η, Σ) is independent of x and y and N 0 ≤ N + 2 we have for all x, y ∈ Σ and for all u ∈ X,

B(x, η 4 ) u(s) ds ≥ (C 2 ) N +2 B(y, η 4 )
u(s) ds, which proves (i).

To obtain (ii), we just have to remark that using the above covering of Σ and (i) for all x ∈ Σ and all u ∈ X we have

B(x, η 4 ) u(s) ds ≥ N i=1 (C 2 ) N +2 N B(z i ,η) u(s) ds ≥ (C 2 ) N +2 N N i=1 B(y i ,η) u(s) ds ≥ (C 2 ) N +2 N Σ u(s) ds.
Let us now turn our attention to the proof of the technical Lemma 3.1.

Proof of Lemma 3.1

Since r ≤ η, for all z ∈ B(x, r) we have B(z, η) ⊂ B(x, 2η) and by assumption for all u ∈ X(x) we have

(3.3) B(x,r) u(s) ds ≥ C 0 B(x,r) B(z,η)
u(s) ds dz.

Let us now consider the annulus A := A(x, r ′ , r), for some 0 < r ′ < r which will be chosen later on. Observe that for ǫ > 0, A can be covered by a finite numbers of balls B(z, rr ′ + ǫ), where z ∈ ∂B(x, r ′ ). Namely, we have for some

N (r-r ′ +ǫ) ∈ N, A ⊂ N (r-r ′ +ǫ) i=1 B(z i , (r -r ′ + ǫ)).
Observe that by construction, for any

N (r-r ′ )+ǫ) -tuplet ( z 1 , z 2 , . . . , z N (n-r ′ )+ǫ) ) such that z i ∈ B(z i , (r -r ′ ) + ǫ) ∩ A we have A ⊂ N (r-r ′ +ǫ) i=1 B( z i , 2(r -r ′ ) + 2ǫ).
Moreover, for rr ′ + ǫ < η 2 and for any

N (r-r ′ )+ǫ) -tuplet ( z 1 , z 2 , . . . , z N (r-r ′ )+ǫ) ) such that z i ∈ B(z i , (r -r ′ ) + ǫ) ∩ A, we see that (3.4) A(x, r ′ , r ′ + η 2 -[(r -r ′ ) + ǫ]) ⊂ N (r-r ′ +ǫ) i=1 B( z i , η). Indeed, let ( z 1 , z 2 , . . . , z N (n-r ′ )+ǫ) ) be a N (r-r ′ )+ǫ) -tuplet such that z i ∈ B(z i , (r -r ′ ) + ǫ) ∩ A and take y ∈ A(x, r ′ , r ′ + η 2 -[(r -r ′ ) + ǫ]
). Then d(y, ∂B(x, r ′ )) ≤ η 2 -[(rr ′ ) + ǫ] and there exists z ∈ ∂B(x, r ′ ) so that yz = d(y, ∂B(x, r ′ )). Since z ∈ ∂B(x, r ′ ), by construction there exists z j ∈ ∂B(x, r ′ ) so that z ∈ B(z j , rr ′ + ǫ).

Choose z j the corresponding element in the N (r-r ′ )+ǫ) -tuplet ( z 1 , z 2 , . . . , z N (n-r ′ )+ǫ) ) and compute yz j then we have

y -z j ≤ y -z + z -z j + z j -z j ≤ η 2 + [(r -r ′ ) + ǫ] ≤ η since [(r -r ′ ) + ǫ] < η 2 .
Thus y ∈ B( z j , η) and (3.4) holds. Let us fix ǫ = r 8 and choose r ′ = 15r 16 . Let us also denote µ(S) the Lebesgue measure of a set S and consider A i := B(z i , (rr ′ ) + ǫ) ∩ A . By construction, since y i ∈ ∂B(x, r ′ ), we have µ(A i ) = µ(A j ) for all i, j and for each A i from (3.3) we have for all u ∈ X(x)

(3.5) B(x,r) u(s) ds ≥ C 0 A i B(z,η) u(s) ds dz.
Therefore for all u ∈ X(x), on each A i there exists a point z i ∈ A i which can depend on u such that (3.6)

B(x,r) u(s) ds ≥ C 0 µ(A i ) B( z i ,η)
u(s) ds.

Using that µ(A i ) = µ(A j ) for all i, j, we deduce that for each u ∈ X(x) there exists a

N (r-r ′ )+ǫ) -tuplet ( z 1 , z 2 , . . . , z N (n-r ′ )+ǫ) ) so that B(x,r) u(s) ds ≥ C 0 µ(A i )N (r-r ′ +ǫ) N (r-r ′ +ǫ) i=1 B( z i ,η) u(s) ds ≥ C 0 µ(A i )N (r-r ′ +ǫ) N (r-r ′ +ǫ) i=1 B( z i ,η) u(s) ds.
Since by construction for each u ∈ X(x) we have z i ∈ B(z i , (rr ′ ) + ǫ) ∩ A for all i. Using the geometric condition (3.4), it follows that for all u ∈ X(x)

B(x,r) u(s) ds ≥ C 0 µ(A i )N r-r ′ +ǫ A(x,r ′ ,r ′ + η 2 -[(r-r ′ )+ǫ]) u(s) ds. Therefore, B(x,r) u(s) ds ≥ C 0 µ(A i )2N r-r ′ +ǫ A(x,r ′ ,r ′ + η 2 -[(r-r ′ )+ǫ]) u(s) ds + 1 2 B(x,r) u(s) ds ≥ C 1 B(x,r)∪A(x,r ′ ,r ′ + η 2 -[(r-r ′ )+ǫ]) u(s) ds ≥ C 1 B(x,r ′ + η 2 -[(r-r ′ )+ǫ]) u(s) ds, ≥ C 1 B(x,r+h) u(s) ds,
where

C 1 := min{ C 0 2µ(A i )N r-r ′ +ǫ , 1 2 } and h := η 2 -[2(r -r ′ ) + ǫ]. Since by construction h = η 2 -[2(r -r ′ ) + ǫ] ≥ η 2 -r 4 ≥ η 4
we achieve for all u ∈ X(x),

B(x,r) u(s) ds ≥ C 1 B(x,r+h) u(s) ds ≥ C 1 B(x,r+ η 4 )
u(s) ds.

Remark 3.3. Note that from our construction we can make the constant C 1 independent of r. Namely, by our choice of r ′ and ǫ N r-r ′ +ǫ = N 1 is invariant with r and we have 15 16 , 1) ∩ B(z, 17 16 )

C 1 ≥ min{ C 0 2η d µ(A(0,
)N 1 , 1 2 },
where z is any point of ∂B(0, 15 16 ) and d the dimension of space.

LOCAL UNIFORM ESTIMATES

In this section, we establish some local uniform estimates, which will play an essential role in deriving Harnack type inequalities. Lemma 4.1. Let Ω ⊂ R n and u ∈ C(Ω) be respectively a connected domain and a positive solution of (1.9). Let Ω ′ ⊂ Ω be a compact set such that g ≥ α > 0 in Ω ′ . Then there exists ǫ * > 0 such that for all ǫ ≤ ǫ * , there exists Ω ǫ and C ǫ (α, β, J, ǫ, b) such that Ωǫ u(y) dy ≥ C ǫ Ω ′ u(y) dy.

Moreover, Ω ǫ satisfies the following chain of inclusion

x ∈ Ω ′ |d(x, ∂Ω ′ ) > αǫ ⊂ Ω ǫ ⊂ x ∈ Ω ′ |d(x, ∂Ω ′ ) > αǫ 2 .

Proof :

Since u is a positive solution of (1.9), using that Ω ′ ⊂ Ω, we have (4.1)

Ω ′ J x -y g(y) u(y) g d (y) dy -b(x)u(x) ≤ 0 in Ω.
The domain Ω ′ being compact and u continuous, we can integrate (4.1) over Ω ǫ ⊂⊂ Ω ′ and we have

Ωǫ Ω ′ J x -y g(y) u(y) g d (y) dy ≤ Ωǫ b(x)u(x) dx.
Using that g ≥ α > 0 in Ω ′ , Fubini's Theorem and setting z = x-y g(y) , we end up with

Ωǫ b(x)u(x) dx ≥ Ω ′ u(y) g d (y) Ωǫ J x -y g(y) dx dy (4.2) ≥ Ω ′ u(y)
Ωǫ,y J(z) dz dy (4.3) where Ω ǫ,y := Ωǫ-y g(y) . We claim that Claim 4.1. There exist Ω ǫ and c 0 > 0 such that, for all y ∈ Ω ′ , Ωǫ,y J(z)dz > c 0 .

Observe that by proving the above claim the proof of the lemma is ended. Indeed, assuming it is true, then we derive from the above inequality

Ωǫ b(x)u(x) dx ≥ Ω ′ u(y) Ωǫ,y J(z) dz dy, ≥ c 0 Ω ′ u(y)dy. Hence, Ωǫ u(x) dx ≥ c 0 b ∞ Ω ′ u(y)dy.
Since the above computation is independent of y ∈ Ω ′ , the claim is proved.

Remark 4.2. Observe that from the above computation, we have a certain degree of freedom over the parameter ǫ, which later can be chosen at our convenience.

Let us now show another important estimate.

Lemma 4.3.

Let Ω ⊂ R n be a connected set and u a positive continuous function satisfying (1.9).

Let Ω ′ ⊂ Ω be such that g ≥ α > 0 in Ω ′ . Then for any Ω ′′ ⊂⊂ Ω ′ there exist δ and a constant C(β, J, α, δ, b) such that

∀ x ∈ Ω δ := x∈Ω ′′ B(x, δ), u(x) ≥ C B(x,δ)
u(y) dy.

Proof:

Let d := d(Ω ′′ , ∂Ω ′ ).
By assumption, one has d > 0. Since u is positive and Ω ′ ⊂ Ω, we deduce from (1.9) that at x ∈ Ω we have

b(x)u(x) ≥ Ω ′ J x -y g(y) u(y) g d (y) dy ≥ B(x,β)∩Ω ′ J x -y g (y) u(y) g d (y) dy. 
Using that J(0) > 0, α ≤ g ≤ β in Ω ′ and b ∞ < C we see that for δ small, say δ ≤ δ 1 , we have

u(x) ≥ B(x,δ)∩Ω ′ J x -y g(y) u(y) g d (y) dy ≥ min B(0,δ) J β n b ∞ B δ (x)∩Ω ′ u(y) dy.
Choosing δ < min{ d 2 , δ 1 }, it follows that for any x ∈ Ω δ , B(x, δ) ⊂ Ω ′ . Hence, for all x ∈ Ω δ , we have

u(x) ≥ min B(0,δ) J β n b ∞ B δ (x)
u(y) dy and the Lemma is proved.

HARNACK TYPE INEQUALITIES

We are now in position to prove the different Harnack type inequalities, Theorems 1.3 and 1.4 and Corollaries 1.7 and 1.5. The proof of the Corollaries come as a straightforward application of the main Theorems and thus left to the reader. Simple proofs of Theorem 1.3 can be obtained using Theorems 1.4, so let us first prove Theorem 1.4.

Proof Theorem 1.4:

Before we begin, let us make some remarks and introduce some notation. First observe that if the estimates in Theorem 1.4 hold for a given compact set ω ⊂ Ω, then they hold as well for any compact set ω ⊂ ω. Indeed, since the estimates in Theorem 1.4 hold for ω, there exists a positive constant η * (ω) so that for any 0 < η ≤ η * (ω) there exists a constant C(η) such that for all positive solution u of (1.9) the following inequality holds:

u(x) ≤ Cu(y) for all x ∈ ω, y ∈ ω ∩ W 2η ,
where W η := {y ∈ Ω|g(y) ≥ η}.

Using now that any positive solutions of (1.9) satisfies

sup ω u ≤ sup ω u ≤ C(η) inf W 2η ∩ω u ≤ C(η) inf W 2η ∩ ω u,
it follows that the estimates in Theorem 1.4 hold for ω.

From the above observation, we can restrict our attention to compact set ω ⊂ Ω such that S ⊂⊂ ω. Fix now ω and let us define the following sets

ω η := x∈ω B(x, η) ∩ Ω Z η := {y ∈ Ω|g(y) < η} W η := {y ∈ Ω|g(y) ≥ η}. Since 1 g d ∈ L p loc with p > 1,
we can choose η 1 small enough such that (5.1)

ω∩Z η * dy g d (y) ≤ inf ω b 2 J ∞ .
Since S ⊂⊂ ω, we can choose η 1 smaller if necessary to achieve

ω η 1 ∩ Z η ⊂ ω. Fix now, 0 < η ≤ η 1 .
We are now in a position to prove the Theorem. The proof follows essentially four steps.

Step 1: Now, define the following bounded set

Ω(ω) := x∈ω B(x, β),
and set the measure dµ = dy g d (y) , which is well defined since 1 g d ∈ L 1 loc . Since J is compactly supported, it follows that in ω, u satisfies

u(x) = 1 b(x) Ω(ω)∩Ω J x -y g(y) u(y)dµ(y) (5.2) = 1 b(x) Ω(ω)∩Zη J x -y g(y) u(y)dµ(y) + 1 b(x) Ω(ω)∩Wη J x -y g(y) u(y)dµ(y). (5.3) Observe that for x ∈ ω, y ∈ Z η ∩ (Ω(ω) \ ω η ), we have x -y g(y) ≥ 1.
Therefore since supp(J) ⊂ B(0, 1), it follows that for x ∈ ω

1 b(x) Ω(ω)∩Zη J x -y g(y) u(y)dµ(y) = 1 b(x) ωη∩Zη J x -y g(y) u(y)dµ(y)
and from (5.3) we get

(5.4) u(x) ≤ 1 b(x) ωη∩Zη J x -y g(y) u(y)dµ(y) + J ∞ inf ω b(x) Ω(ω)∩Wη u(y)dµ(y).
Since u is continuous and ω is compact, u achieves its maximum at some point, say x 0 ∈ ω. At this point, from (5.4) we have:

(5.5) u(x 0 ) ≤ 1 b(x 0 ) ωη∩Zη J x 0 -y g(y) u(y)dµ(y) + J ∞ inf ω b(x) Ω(ω)∩Wη u(y)dµ(y).
Using that ω η ∩ Z η ⊂ ω and (5.1), it follows that

(5.6) u(x 0 ) ≤ u(x 0 ) 2 + J ∞ inf ω b(x) Ω(ω)∩Wη u(y)dµ(y).
Therefore,

(5.7) u(x 0 ) ≤ 2 J ∞ inf ω b(x) Ω(ω)∩Wη u(y)dµ(y).
Step 2: For any ν ∈ R, let us consider the set ω ν := {x ∈ ω|d(x, ∂ω) ≥ ν} and C(x, θ, a) be the cone issued from x with angle θ and height a. On one hand, since S ⊂⊂ ω, there exists ν 0 > 0 such that ω \ ω 4ν 0 ∩ S = ∅. On the other hand, since ω satisfies an uniform inner cone condition, it follows that for ν small enough, say ν ≤ ν * , there exists r(ν) > 0 such that for any x ∈ ω \ ω ν , there exists x ∈ ω such that

B(x, r) ⊂ C x,θ,a ∩ (ω ν \ ω 4ν ) B(x, r) ⊂ B(x, β).
Let us now fix ν ≤ min{ν 0 , ν * } and take η * := min Ω(ω)\ω 4ν g. By construction, η * > 0. Now take any x ∈ ω \ ω ν . From (1.9), using the uniform inner cone property, we have

u(x) = 1 b(x) Ω J x -y g(y)
u(y) g d (y) dy (5.8)

≥ 1 b(x) C x,θ,a ∩B(x,β) J x -y g(y)
u(y) g d (y) dy (5.9)

≥ 1 b(x) B(x,r) J x -y g(y)
u(y) g d (y) dy. (5.10) Recall that g ≥ η * in B(x, r). Therefore, since J(0) > 0, b > 0, there exists δ 0 and C 0 independent of x such that B(x, δ 0 ) ⊂ B(x, r) and

(5.11) u(x) ≥ C 0 B(x,δ 0 )
u(y) dy.

Fix now η ≤ min{ η 1 2 , η * 2 } such that W η \ W 2 η ⊂⊂ ω ν ,

and let

d := d ω ν ∩ W 2η , ∂(Ω(ω) ∩ W η ) .
By construction, we have d > 0. Indeed, since η ≤ η * , we have

∂(Ω(ω)∩ W η ) = Γ 1 ∪ Γ 2 where Γ 1 ⊂ (Ω(ω) \ ω ν 2 ) and Γ 2 ⊂ (W η \ W 3η 4 
). Therefore, for any

x ∈ ω ν ∩ W 2η d(x, Γ 1 ∪ Γ 2 ) ≥ d x, (Ω(ω) \ ω ν 2 ) ∪ (W η \ W 3η 4
) > 0.

Step 3: Let ν and η be defined by the above steps. Since d > 0, choosing ǫ small enough, say ǫ ≤ d 2η , it follows that

ω ν ∩ W 2η ⊂ {x|d (x, ∂(Ω(ω) ∩ W η )) ≥ ǫη}.
Now, since g ≥ η in Ω(ω) ∩ W η , from Lemma 4.1 there exists ǫ * so that for all 0 < ǫ ≤ ǫ * there exists a non empty set Ω ǫ and a constant C ǫ (J, η, Ω(ω

) ∩ W η , b) such that {x|d(x, ∂(Ω(ω) ∩ W η )) ≥ ǫη} ⊂ Ω ǫ ⊂ x|d(x, ∂(Ω(ω) ∩ W η )) ≥ ǫη 2 and
(5.12) Ωǫ u(y)dy ≥ C ǫ Ω(ω)∩Wη u(y)dy.

Observe that by choosing ǫ ≤ min{ǫ * , d 2η }, we also have ω ν ∩ W 2η ⊂ Ω ǫ . We now fix ǫ ≤ min{ǫ * , d 2η } and choose δ < ǫη 8 , and consider the set

Ω δ := x∈Ωǫ B(x, 2δ).
By construction, we have Ω ǫ ⊂⊂ Ω δ ⊂ Ω(ω) ∩ W η and g ≥ η in Ω δ . Therefore, from Lemma 4.3 there exists δ 1 and C ′ 0 such that for any x ∈ Ω ǫ , we have

(5.13) u(x) ≥ C ′ 0 B(x,δ 1 )
u(s)ds.

So we have

(5.14) u(x) ≥ min{C 0 , C ′ 0 } B(x,δ 1 )
u(s)ds.

Step 4: Take now δ * ≤ min{δ 0 , δ 1 }, where δ 0 is defined in (5.11). Then by construction Ω ǫ and u satisfies the assumption of Lemma Collecting the inequalities (5.7), (5.12) and (5.15), it follows that for all x ∈ Ω ǫ we have

u(x 0 ) ≤ 2 J ∞ inf ω b(x)C ǫ Ωǫ u(s) ds (5.16) ≤ 2 J ∞ inf ω b(x)C ǫ N C(min{C 0 , C ′ 0 }) B(x,δ * ) u(s) ds (5.17) ≤ 2 J ∞ inf ω b(x)C ǫ N C(min{C 0 , C ′ 0 }) min{C 0 , C ′ 0 } u(x). (5.18)
Observing that ω ν ∩ W 2 η ⊂ Ω ǫ , from equation (5.18) it follows that (5.19) u(x 0 ) ≤ Cu(x) for all x ∈ ω ν ∩ W 2 η. Now observe that from (5.4), we also get that for all x ∈ ω \ ω ν ,

u(x) ≥ C 0 B(x,δ 0 ) u(s) ds,
where B(x, δ 0 ) ⊂ ω ν \ ω 4ν . Therefore, since x ∈ ω ν ∩ W 2η ⊂ Ω ǫ and δ * ≤ δ 0 , it follows that (5.20)

u(x) ≥ C 0 B(x,δ 0 ) u(s) ds ≥ min{C 0 , C ′ 0 } B(x, δ * 2 )
u(s) ds.

Using again Lemma 3.2 yields

u(x) ≥ C(min{C 0 , C ′ 0 }) N Ωǫ u(s) ds. (5.21)
As above, we can combine the inequalities (5.21), (5.12) and (5.3) to obtain (5.22) u(x 0 ) ≤ Cu(x) for all x ∈ (ω \ ω ν ).

Thus, from the inequalities (5. [START_REF] Jér Ôme Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF]) and (5.22) we get

(5.23) u(x 0 ) ≤ Cu(y) for all y ∈ ω ∩ W 2η .

Hence, we have

(5.24) u(x) ≤ Cu(y) for all x ∈ ω, y ∈ ω ∩ W 2η .
Let us now deal with the general estimate and prove the Theorem 1.3.

Proof of Theorem 1.3:

Let us first observe that the estimate is straightforward if the set ω ⊂⊂ Ω. Indeed, in such cases there exists always a regular compact set ω such that ω ⊂⊂ ω ⊂ Ω and the Theorem 1.4 applies. Therefore the only case left to analyse is when the domain ω touches the boundary of Ω. In such case and without any regularity assumption on the domain, we cannot derive the estimates from a simple argument. To obtain the estimate we use a similar argument as for the proof of Theorem 1.4. The proof here follows essentially three steps.

Step 1: First remark that as for the proof of Theorem 1.4, we can restrict our attention to a compact set ω ⊂ Ω such that S ⊂⊂ ω. Now let us define the sets Ω(ω) := x∈ω B(x, β) ∩ Ω and W η as in the above proof. Following a similar argument, for a point x 0 ∈ ω where u achieves its maximum and for small enough η, say η ≤ η * , we have (5.25) u(x 0 ) ≤ 2 J ∞ inf ω b(x) Ω(ω)∩Wη u(y)dµ(y).

From (1.9), using that u, J and g are non-negative, it follows that for all x ∈ Ω we have

(5.26) u(x) ≥ 1 b(x) Ω(ω)∩Wη J x -y g(y) u(y)dµ(y).
Since g ≥ η in Ω(ω) ∩ W η , from Lemma 4.1 there exists ǫ * > 0 such that for all 0 < ǫ ≤ ǫ * , there exists a non empty set Recall that from the proof of Lemma 4.1, we also have ǫ ≤ ǫ * ≤ 1 4 . Thus, we have {x|d

Ω ǫ ⊂⊂ Ω(ω) ∩ W η and a constant C ǫ (J, η, Ω(ω) ∩ W η , b) such that {x|d(x, ∂(Ω(ω) ∩ W η )) ≥ ǫη} ⊂ Ω ǫ ⊂ x|d(x, ∂(Ω(ω) ∩ W η )) ≥ ǫη 2 
(x, ∂(Ω(ω) ∩ W η )) ≥ η} ⊂ {x|d(x, ∂(Ω(ω) ∩ W η )) ≥ ǫη} ⊂ Ω ǫ .
Step 2: Choose now δ < min ǫη 8 , ǫ 8 , where ǫ and η are defined by the previous Step, and consider the set

Ω δ := x∈Ωǫ B(x, 2δ).
By construction, Ω δ ⊂ Ω(ω) ∩ W η and g ≥ η in Ω δ . Using Lemma 4.3, for any x ∈ Ω ǫ we have

(5.28) u(x) ≥ C 0 B(x,δ)
u(s)ds.

Step 3. As in the previous proof, by construction Ω ǫ and u satisfies the assumption of Lemma 3.2 and we end up with

(5.29) u(x) ≥ C 0 B(x,δ) u(s) ds ≥ C(C 0 ) N Ωǫ u(s) ds.
Collecting (5.25), (5.26) and (5.29), it follows that for all x ∈ Ω ǫ we have

u(x 0 ) ≤ 2 J ∞ inf ω b(x)C ǫ N C(C 0 )C 0 u(x).
Therefore, for all y ∈ ω and x ∈ Ω ǫ we have u(y) ≤ Cu(x).

Hence, for all y ∈ ω and x ∈ Ω ǫ ∩ ω we have u(y) ≤ Cu(x).

CONSTRUCTION OF NON TRIVIAL POSITIVE SOLUTION OF A PARTICULAR NONLOCAL

EQUATION

In this section, we deal with the construction of a positive solution of (1.10) and prove Theorem 1.8.

Proof of Theorem 1.8:

We treat two cases Case 1: Ω bounded. First, let us assume that Ω is bounded and J is regular. Let us define the operator T ∈ L(C(Ω)) by

T u := 1 a(x) Ω J x -y g(y) u(y) g d (y) dy, where a(x) := Ω J y-x g(x) dy g d (x) for x ∈ S 1 otherwise. Since 1 g d (y) ∈ L 1 loc ,
T is a compact operator. Moreover T is positive since g,a and J are nonnegative functions. Using now the Krein-Rutman Theorem, there exists an eigenvalue λ and a continuous eigenfunction φ > 0 such that

1 a(x) Ω J x -y g(y) φ g(y) dy = λφ.
Integrating the equation over Ω, it follows that λ = 1, and φ is our desired solution. To obtain a solution in the case J ∈ L ∞ ∩ L 1 (Ω), we proceed by regularisation. Let (ρ n ) n∈N a sequence of C ∞ mollifier and consider the problem with the regular kernel J n := J ⋆ ρ n . By the above argumentation, for each n there exists φ n > 0 solution of the regularized problem. Now using the global estimate of Corollary (1.7) we have

sup Ω φ n ≤ C(J n ) inf ω φ n .
Let us normalize φ n so that inf ωφ n ≥ 1. From a carefully analysis of C(J n ) on can show that this constant depends only on C(J, Ω). Thus (φ n ) n∈Ω is a uniformly bounded sequence of continuous function. Using now Arzela-Ascoli Theoreme and a standard diagonal extraction argument, there exists a convergent subsequence (φ n ) which converges locally uniformly to a positive continuous bounded function φ. Moreover, using Lebesgue monotone convergence Theorem, one can see that φ is our desired solution.

Case 2: Ω unbounded.

Assume now that Ω is any open set and let Ω n be an increasing sequence of bounded subsets such that lim n→∞ Ω n = Ω. Since S ⊂⊂ Ω, we can also assume that for all n ∈ N, S ∩ Ω n ⊂⊂ Ω n . Let φ n denote the associated solution to Ω n with the normalization φ(x 0 ) = 1 for some fixed x 0 ∈ Ω n that we will choose later on. Since n ∈ N, S ⊂⊂ Ω n and (Ω n ) n∈N is an increasing sequence of sets, for some η 1 small we have

n∈N (Ω n ∩ W η 1 ) = Ω 0 ∩ W η 1 = ∅.
Let us choose x 0 ∈ Ω 0 ∩ W η 1 .

Let us now fix n ∈ N and consider the sequence of functions (φ n+k ) k∈N . By construction, φ n+k satisfies the equation

Ω n+k J
xy g(y)

φ n+k (y) g d (y) dya n+k (x)φ n+k = 0.

Since Ω n is an increasing sequence of bounded sets, for any k ∈ N we have Ω n ⊂ Ω n+k . Using Theorem 1.3 with Ω n and φ n+k , it follows that for any k ∈ N there exists a constant η * k , such that for all η ≤ η * k there exists ω ′ n+k and a constant C n+k (J, g, η, a n+k ∞ , β, Ω n ) such that {x ∈ Ω n+k |d(x, ∂(Ω n ∩ W η )) > η} ⊂ ω ′ n+k (6.1) sup Ωn φ n+k ≤ C n+k (η)φ n+k (x) for all x ∈ ω ′ n+k . (6.2)

For each k ∈ N, let us choose η k such that

Ω n ∩ W η 1 ⊂ {x ∈ Ω n |d(x, ∂W η k ) > η k }.
Using the monotonicity of the sequence (Ω n ) n∈N , it follows that

Ω 0 ∩ W η 1 ⊂ Ω n ∩ W η 1 ⊂ {x ∈ Ω n |d(x, ∂W η k ) > η k } ⊂ ω ′
n+k . Therefore, from the above set inclusion and (6.2), it follows that (6.3) sup

Ωn φ n ≤ C n+k (η k )φ n (x 0 ) ≤ C n+k (η k ).
Now, observe that the sequence of positive functions (a n+k (x)) k∈N is increasing in Ω n and uniformly bounded. The monotonicity property follows easily from the monotonicity of the Ω n . Indeed, recall that for any x ∈ Ω n \ S we have a n+k (x) = Ω n+k J yx g(x) dy g d (x) .

Therefore, using that Ω n ⊂ Ω n + 1 and that J, g are non negative functions, it follows that a n+k (x) = On the other hand, for x ∈ S, we have a n (x) = 1 for all n ∈ N. Thus, a n+k ≤ a n+k+1 in Ω n .

From the definition of a n , we also get easily the uniform bound. For any x ∈ Ω n \ S, using a change of variable we have J(z) dz ≤ 1.

Using that (a n (x)) n is uniformly bounded independent of n and increasing in Ω n , we can make the constant C n+k independent of k. Therefore, for all k ∈ N, φ n+k is uniformly bounded in Ω n . Now, since φ n+k is uniformly continuous on Ω n , using Arzela-Ascoli's Theorem we can extract from (φ n+k ) k∈N a sub-sequence which converges uniformly in Ω n . By a standard diagonal argument, we can extract from (φ n ) n∈N a sub-sequence which converges to a function φ uniformly on every compact subset ω of Ω. Using that J has compact support and the Lebesgue dominated convergence theorem, passing to the limit in the equation yields

Ω J
xy g(y) φ g(y)

dya(x)φ = 0.

  , y)u(y) dyb(x)u,
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 32 and by (ii) of Lemma 3.2 we end up with (5.15) u(x) ≥ min{C 0 , C ′ 0 } B(x,δ * ) u(s) ds ≥ C(min{C 0 , C ′ 0 }) N Ωǫ u(s) ds.

  Ωǫ u(y)dµ(y) ≥ C ǫ Ω(ω)∩Wη u(y)dµ(y).
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Proof of the claim

By assumption, since J(0) > 0 and J smooth, there exist r 0 > 0 and c 0 such that min B(0,r 0 ) J > c 0 . Fix ǫ ≤ min{ r 0 2 ; 1 4 } such that the two sets

are non empty disjoint sets. Choose Ω ǫ smooth (at least C 2 ) so that Ω ′ ǫ ⊂⊂ Ω ǫ and Ω ǫ ∩ Ω ′ ǫ = ∅. By construction, we see that Ωǫ is compact and for all y ∈ Ω ′ , d(y, Ω ǫ ) < ǫα.

Again by construction we observe that for δ ≤ ǫα 4 , we also have

From the uniform regularity of Ω ǫ , there exists a constant δ small enough, say 0 < δ < δ 1 ≤ ǫα 4 where δ 1 only depends on the regularity of ∂Ω ǫ , such that for all z ∈ Ω ǫ , there exists

Now, pick y ∈ Ω ′ . Since Ωǫ is compact, there exists z 0 ∈ Ωǫ such that yz 0 = d(y, Ω ǫ ). Using (4.6), it follows that there exists z ′ 0 such that

Recall that Ω ǫ,y = Ωǫ-y g(y) thus from (4.7) it follows that B(z ′ 0 , δ 8 )y g(y)

⊂ Ω ǫ,y .

Take now s ∈ B(z ′ 0 , δ 8 ) and let us compute s-y g(y) :

Since δ ≤ ǫα 4 and ǫ ≤ r 0 2 , we achieve sy g(y)

Finally, let us compute Ωǫ,y J(z)dz. From the above construction, we have 

)).