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Abstract

In this paper we study the mode concept in asyn-
chronous systems. First, we propose an abstract TLA+
specification. Then, we discuss how the mode concepts
proposed by the two architecture languages: Giotto and
AADL could be related to this abstraction.

1 Introduction

The use of models is now acknowledged as a first

step for the production of correct code. For such a pur-

pose, the TOPCASED project [14], provides generic so-

lutions to elaborate domain specific models. For real

time and embedded systems, the AADL1 [2] architec-

ture description language is currently supported [14];

actually AADL textual and graphical editors are pro-

vided; moreover bridges to different analysis tools are

also available within the toolkit. Besides model driven

engineering, one of the aims of the TOPCASED project

is to promote the production of certified code, i.e., code

with a proof of its correctness. In the avionics domain,

the synchronous approach [3] has already provided so-

lutions towards this end: actually, certified code genera-

tors do exist and are already in use [5]. However, with

respect to the asynchronous approach, to the best of our

knowledge, no acknowledged solution does exist. From

our point of view, two reasons can explain such a situa-

tion:

∗Work funded by CNES and EADS Astrium Satellites
1AADL stands for Architecture Analysis and Design Language.

• Although, the asynchronous approach is widely

used in practice, we lack abstractions that will be

useful for analysis purposes. Indeed, the asyn-

chronous approach is too nondeterministic to lend

itself to usual model checking techniques.

• The basic mechanisms are complex. It follows that

it is not easy to provide a coherent execution model

that will handle the needs of real time applications.

With respect to these two points, one the major out-

comes of AADL [12] has been to capitalize more than

10 years of experiments based on MetaH[15] and to pro-

pose an execution model that covers most of the needs

of real-time systems while preserving analysis perspec-

tives. Since one of the goals of the TOPCASED project

is to promote the production of certified code, all the

mechanisms underlying the execution model must be

semantically well defined. In a previous paper [4], we

have been interested in the communication aspects. In

this paper, we address the mode mechanisms provided

by AADL.

Real time systems and especially embedded ones are

well known to be static, e.g. threads are not created dy-

namically, memory is statically allocated, . . . The notion

of mode has been proposed to express the fact that al-

though the configuration of a real time system should be

known a priori, it can change in a statically defined way.

In this paper, we propose an abstract specification of the

mode concept in asynchronous systems. We try to as-

sess this abstraction by considering how modes are dealt

with in Giotto [7] and AADL.

In section 2 we present an abstract specification of

modes. Then, in section 3, we present two concrete



models related to this abstract specification. In section

4, we conclude and present some perspectives of our

work.

2 An abstract specification of modes

Although mode’s description in the AADL standard

is quite precise, it seems opportune for us to formally

specify their behavior. This work has two main goals :

• describe precisely the behavior of a system during

a mode transition,

• and possibly propose evolutions of the language.

We develop several specifications incrementally, we

present here only the most complete one. Aiming to

keep models simple, we try to focus only on the mode

behavior, thus we abstract communication and schedul-

ing. In this model we will take into account only

one type of messages, those that are involved in mode

switching. As we do not describe the behavior of threads

or any components we will consider that those messages

can appear in the system. The scheduling mechanism is

reduced to a two state automaton. A thread can be either

active or idle, the transition between those two states is

atomic and non deterministic. With those specifications

we try to list the different mechanisms that can be used

to describe a mode transition. Those mechanisms are

used to define precisely the time of the mode switch and

the way threads are handled.

2.1 Atomic mode transitions

At this level, we introduce modes, the events that
fire transitions between modes and for each mode the
threads that are allowed to run. The mode automa-
ton is encoded by constants, modes states are encoded
by a set, transitions are defined by a relation between
the couple <old mode, event> and the new mode.
The configuration of a mode is defined by a relation
that associates a set of threads to each mode. This
level is characterized by the invariant stating that the
current set of active threads, defined as the variable
currentThreads, is always a subset of the threads
allowed by the mode:

currentThreads ∈ SUBSET ModeThreads[currentMode]

A mode transition is triggered by the reception of an

event. We consider that a mode transition is atomic and

is executed as soon as the event is received. During the

transition all the threads of the old mode not present in

the new mode are stopped and the ones of the new mode

are started.

2.2 Breaking transitions

In fact, considering transitions as atomic is not real-

istic. Indeed, mode transitions are complex and do take

time. Consequently, we “break” the previous mode tran-

sitions. The main interest of this level, is to take into

account that we do not switch instantaneously from the

thread set of the current mode to the thread set of the

next mode. We have an intermediate time during which

the threads that are no longer in the thread set of the next

mode “disappear” gradually. The intermediate time ends

when only threads belonging to the next mode remain.

2.3 Critical threads

The aim of this level is to make precise that some

threads should not disappear when a mode transition oc-

curs. More precisely, the mode switch is delayed until

critical threads that do not belong to the next mode com-

plete. At this level we distinguish two types of threads,

normal threads and critical threads. On the mode tran-

sition normal threads that are not part of the new mode

are stopped if they are active. Critical threads must be

stopped when they become idle. When this event is re-

ceived the first thing the system does is to keep running

normally. In this first phase, the system waits for the end

of all critical threads. When all critical threads are idle

the mode transition is executed and the system comes

back to normal mode.

2.4 Zombie threads

When an event mode occurs, some threads have to

disappear since they do not belong to the thread set of the

next mode. However, before disappearing some clean-

ing staff may be necessary, e.g., release some resources

they currently hold. For such a purpose, we introduce

the so called zombie threads. The introduction of this

type of threads constrains us to add a third state in our

state machine. In this state the system waits for the ter-

mination of zombie threads. The rest of the system be-

haves normally in the new mode. This state will be left

when all zombie threads will have finished their execu-

tion. The utilization of such threads implies an overhead

on the processor load. Consequently, they must be used

carefully.



2.5 Preemption and priorities

At this level we add two mechanisms to our specifica-

tion. In the first one we slightly modify the definition of

critical threads. In the precedent specifications for each

mode we defined a set of critical threads. But this set

may also depend on the type of mode transition. For ex-

ample a mode switch due to an hardware error must be

handled faster than a planned mode switch. Thus, the set

of critical threads depends on the urgency of the mode

switch. This is why the set of critical thread does not de-

pend on modes only but also on mode transitions, i.e. the

current mode and the event that triggered the transition.

This last feature consists in the introduction of a pri-

ority depending on the nature of the mode switch. We

associate to each event a level of priority. A mode transi-

tion can be interrupted only if an event of higher priority

arrives. If the system is waiting for the end of critical

threads, this may change the set of critical threads. If

the system is waiting for the end of zombie threads, all

the zombie threads are stopped and the system starts to

wait for the end of critical threads.

2.6 The TLA+ specification

We present here the most complete TLA+ [8] spec-

ification (see table 1). Figure 1 is a graphical repre-

sentation of this automaton. The Normal behavior
state is the initial state. The ThreadTransition
is an abstraction of the scheduler: when this transition

is executed some threads are activated (i.e. they en-

ter in the currentThreads set), and other are de-

activated (i.e. they leave the currentThreads set).

This transition has a specific behavior when the sys-

tem contains zombies. In this case a zombie can only

leave the set of executing threads. The “start mode”

transition mainly stores the event that have triggered

the mode switch. The system remains in the old mode

until currentThreads does not contain any critical

threads. At this time the actual mode switch occurs. The

zombies set is initialized, thread that are not allowed

to be zombies in the next mode and that are not part of

the new mode are stopped, and new threads are started.

The EndModeTransition specifies that the system

comes back in a normal mode only if all zombies have

terminated their execution.

MODULE advanced modes

EXTENDS Naturals

CONSTANTS

Mode, InitialMode, Event, Thread, NextMode,
domNextMode, ModeThreads, Critical,
Zombies, Priority

AllEvent Δ
= Event ∪ {“NoEvent”}

ASSUME

∧ InitialMode ∈ Mode
∧ domNextMode ⊆ Mode × Event
∧ NextMode ∈ [domNextMode → Mode]
∧ ModeThreads ∈ [Mode → SUBSET Thread]
∧ “NoEvent” /∈ Event
∧ Critical ∈ [domNextMode → SUBSET Thread]
∧ Zombies ∈ [Mode → SUBSET Thread]
∧ ∀m ∈ Mode : Zombies[m] ∩ ModeThreads[m] = {}
∧ Priority ∈ [AllEvent → Nat]
∧ Priority[“NoEvent”] = 0 ∧ ∀ e ∈ Event : Priority[e] > 0

VARIABLES

currentMode, currentThreads, currentEvent, zombies

TypeInvariant Δ
=

∧ currentMode ∈ Mode ∧ currentEvent ∈ AllEvent
∧ currentThreads ∈ SUBSET Thread

Invariant Δ
=

∧ currentThreads ∈
SUBSET (ModeThreads[currentMode] ∪ zombies)

∧ zombies ∈ SUBSET Zombies[currentMode]

Init Δ
=

∧ currentMode = InitialMode
∧ currentThreads ∈ SUBSET ModeThreads[currentMode]
∧ zombies = {}
∧ currentEvent = “NoEvent”

StartModeTransition(evt) Δ
=

∧ 〈currentMode, evt〉 ∈ domNextMode
∧ Priority[evt] > Priority[currentEvent]
∧ currentEvent′ = evt
∧ zombies′ = {}
∧ currentThreads′ = currentThreads \ zombies
∧ UNCHANGED 〈currentMode〉

ModeTransition Δ
=

∧ currentEvent �= “NoEvent”
∧ currentEvent′ = “NoEvent”
∧ currentMode′ = NextMode[currentMode, currentEvent]
∧ currentThreads ∩ Critical[currentMode, currentEvent] = {}
∧ zombies′ = currentThreads ∩ Zombies[currentMode′]
∧ currentThreads′ ∈

SUBSET (ModeThreads[currentMode′] ∪ zombies′)

EndModeTransition Δ
=

∧ zombies = {}
∧ UNCHANGED 〈currentMode, currentThreads, zombies, currentEvent〉

ThreadTransition Δ
=

∧ currentThreads′ ∈ SUBSET ModeThreads[currentMode]
∧ IF zombies �= {} THEN

∧ currentThreads′ ∈
SUBSET (ModeThreads[currentMode] ∪ zombies′)
∧ zombies′ ∈ SUBSET zombies
ELSE

∧ currentThreads′ ∈ SUBSET ModeThreads[currentMode]
∧ UNCHANGED 〈zombies〉

∧ UNCHANGED 〈currentMode, currentEvent〉

Table 1. TLA modes specification



currentEvent = ”NoEvent”

∧zombies �= ∅

currentEvent = ”NoEvent” currentEvent �= ”NoEvent”

∧zombies = ∅∧zombies = ∅
StartModeTransition

ModeTransitionEndModeTransition

StartModeTransition

StartModeTransition

ThreadTransitionThreadTransition

ThreadTransition

Normal behavior Wainting for critical threads

Wainting for zombie threads

Figure 1. Abstract mode transitions

3 Concrete models

In this section we try to define relations between

our specification of the mode transition and languages

that implement this function. The first comparison is

made with Giotto, which can be seen as a synchronous

approach of architecture languages. As its execution

model is very strict the link between those two for-

malisms is quite easy to find. Secondly we will com-

pare our work to the AADL vision of modes. As AADL

was the starting point of this study the TLA specification

matches quite well with the AADL execution model.

3.1 The Giotto refinement

Giotto is a time driven language, a system is a set

of mode, each mode has a period and contains a set of

threads. The period of a thread is defined by the num-

ber of activations of this thread in its mode and the pe-

riod of the mode. At every period a condition is evalu-

ated to decide if the system stays in the same mode or

must change. The period of the mode corresponds to the

hyper-period of the threads in the mode.

In our model the condition triggering mode switch is

simply abstracted as the reception of an event. We don’t

evaluate a complex condition on data, we just test if an

event has been received or not. The abstraction of the

time at which the mode switch occurs, i.e. the period

of the mode, is a little bit less simple. However, we can

notice that the mode switch always occurs when all the

threads have completed their execution (at their hyper-

period). In our model this corresponds to a system where

all the threads belong to the CriticalThreads set

for all modes. In this case, the hyper-period corresponds

to an empty currentThread set (all threads have fin-

ished their execution). Those constraints can be repre-

sented by the following conditions:

complete(t)

awaiting_resource

block_on_resource(t)

awaiting_mode

runningawaiting_dispatch

unblock_on_release_resource(t)

ready

dispatch(t) preempt(t)

currentThreads

ModeThread[currentMode]

resume(t)

Figure 2. Abstraction of the thread behav-
ior

∀ m ∈ Mode : Zombies [m] = ∅
∀ m ∈ Mode : ∀ e i n Event :

<<m, e>> ∈ domNextMode ⇒
C r i t i c a l T h r e a d s [m, e ] = ModeThreads [m]

3.2 The AADL refinement

In this part we first compare our work to the AADL

notion of modes. Then we make two propositions of

evolution for the standard. At last we bring up the prob-

lem of communication during mode transition.

3.2.1 AADL modes

The description of the mode automaton in AADL is dis-

tributed in the different hierarchical components, each

component can contain a local mode automaton. The

product of these automata is the mode automaton of the

whole system. The composition of these automata is not

studied in our model. We model the complete automaton

as a set of constants and a variable. Mode is the set of all

modes, NextMode is the set of all possible transitions,

Event is the set of events that trigger mode switches,

and currentMode is the variable called SOM (Sys-

tem Operational Mode) in the AADL standard. As we

mainly focus on the behavior of the system during the

mode switch we do not represent the behavior of threads.

A thread can be waiting for a mode switch (the thread

is not in the current mode), executing (the thread is in

currentThreads state), or idle (the thread is in the

current mode but not in currentThread).

In AADL like in Giotto the time of the mode switch

depends on periodic threads. The main difference

with the Giotto model is that not all periodic threads

are used to determinate the hyper-period. A property



called synchronized is used to determinate if the

thread must be taken into account to calculate the hyper-

period. The mode switch occurs at the hyper-period

of the synchronized threads. As we do not have the

notion of time we will use the same abstraction as in

Giotto, we can consider that at the time of the hyper-

period all synchronized threads are waiting for their dis-

patch. The synchronized threads can be represented

by our CriticalThreads. If there is no periodic

threads the mode switch is immediate, the guard of the

ModeTransition is true when an event arrives.

In AADL some threads of the old mode are allowed

to end their execution in the new mode. It depends

on the value of a specific property, Active thread
handling protocol. Threads of the old mode can

be allowed to end their execution or to finish the compu-

tation of all the data contained in their ports. In the sec-

ond case the thread will be dispatched numerous times.

In our model we can allow a thread to end its execution

in the new mode by adding it in the Zombie set of the

new mode.

In AADL the system comes back in a nominal behav-

ior one hyper-period after the mode switch. Before this

deadline the system cannot start another mode switch.

In our model we consider that the mode transition ends

when all zombie threads have finished their execution.

3.2.2 Proposition of evolutions

In the current AADL standard we cannot handle prior-

ities on modes transitions, i.e. a mode transition can-

not be interrupted. Furthermore the set of synchronized

threads depends only on the current mode. But those

notions can be easily integrated using or modifying ex-

isting properties. The synchronized property asso-

ciates a boolean to a thread in a particular mode. Thus

the set of synchronized threads for a mode is fixed. In

order to manage this set more precisely we can asso-

ciate a set of mode’s event ports to each thread. The

synchronized property would define the set of tran-

sitions in which the thread would be considered as criti-

cal.

In order to define the priority of mode transitions we

can simply use the urgency property on event ports.

3.2.3 Connections and mode switch

In this paper we have mainly focused on the behavior of

a global system during a mode switch. But some other

points are also very important. We need to describe pre-

cisely how threads communicate when the system is in

mode transition 
connections available 
for zombies threads

Normal Behavior

event

waiting for hyperperiod

hyperperiod

waiting for zombies end normal behavior

stop old threads
start new threads

mode transition connections
transimission of data through

Figure 3. Time line of the mode transition

a mode transition. At the time of the actual mode switch

connections of threads of the old mode are disabled and

connections of the new mode are enabled. But managing

communications on this way can generate orphan mes-

sages. We want to specify that the results of the last

execution of threads of the old mode are taken into ac-

count in the new mode. Similarly we want to describe

how are initialized ports of threads of the new mode.

For those features AADL describes some specific con-

nections called mode transition connections. The source

of such a connection is a port of a thread of the old mode

and the destination is a thread of the new mode. Those

conditions are enabled at the time of the actual mode

switch.

The second problem is related to threads of the old

mode not present in the new one but still active (zombie

threads). Connections of such a thread are deactivated

but the thread is still computing results. The AADL

standard does not precisely define how such a thread

can communicate its result. The easiest way to specify

a connection between those threads and threads of the

new mode is to use mode transition connections.

3.2.4 Discussion

It is interesting to remark that mode mechanisms in

asynchronous systems requires more attention than in

synchronous systems [9, 13]; actually, since we do not

assume the basic hypothesis of the synchronous ap-

proach: zero time computation, deterministic concur-

rency and instantaneous communication, we have to

handle the transitional aspects related to these concepts.

From our point of view, the formal specification of these

aspects is challenging and is worth considering. In

this article we do not take into account issues linked to

scheduling and to shared ressources. Thoses points are

studied in the following articles [11] [10] in an ADA

framework.



4 Conclusion

In this paper, we have discussed about the mode con-

cept in asynchronous systems. We have presented an ab-

stract specification and assessed it through the mode no-

tions available in AADL and Giotto. This specification

can be seen as a list of the different possible behaviors

of a system during mode transition. We have also pre-

sented the whole formal model of the abstraction which

has been encoded in TLA.

We intend now to propose a formal specification of

AADL modes as a refinement [1] of our abstraction.

Another point that we intend to consider it the quantifi-

cation of timing aspects with respect to mode changes.

Actually, it appears that most timing properties are cur-

rently studied within a given mode; however little is said

when considering mode transitions.

The presented models are too abstract to perform pre-

cise verifications with respect to timing. Going further

requires to describe more precisely the scheduling of

threads, and the communication model. We have already

developed a model of the AADL execution platform that

includes scheduling, communications and behaviors [6].

By integrating a refinement of the presented specifica-

tions in this model we will be able to perform timing

evaluations of AADL models taking into account mode

transitions. Thanks to these enhanced models, we ex-

pect to be able to make schedulability analysis of the

system and to quantify the maximum duration of mode

transitions.
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