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Abstract— In this paper we consider the class of anti-uniform Huffman (AUH) codes for sources 

with infinite alphabet. Poisson, negative binomial, geometric and exponential distributions lead to 

infinite anti – uniform sources for some ranges of their parameters. Huffman coding of these 

sources results in AUH codes. We prove that as a result of this encoding, we obtain sources with 

memory. For these sources we attach the graph and derive the transition matrix between states, the 

state probabilities and the entropy. If c0 and c1 denote the costs for storing or transmission of 

symbols “0” and “1”, respectively, we compute the average cost for these AUH codes. 

Keywords: Huffman coding, average codeword length, code entropy, average cost. 

 

1. Introduction 

Consider a discrete source with infinite size alphabet  1 2: ( )ks s sξ A A

1 2 ... kp p≥ ≥ ≥
 and associated 

ordered probability distribution , where . It is well 

known that the Huffman encoding algorithm [1] provides an optimal prefix–free code for this 

source. A binary Huffman code is usually represented using a binary tree T, whose leaves 

correspond to the source messages. The two edges emanating from each intermediate tree node 

(father) are labelled either 0 or 1. The length between the root and a leaf is the length of the binary 

codeword associated with the corresponding message. 

1 2: ( )n kP p p pA A ...p ≥

Assuming that , is the codeword representing the message , we denote the 

length of  by . The optimality of Huffman coding implies that 

, 1,2,...kv k = ks

kv kl k jl l≤ , if k jp p> . 
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Anti uniform Huffman (AUH) codes representing a infinite source nξ  were firstly 

introduced in [2] and they are characterized by the fact that 1l kk = + , for . 0,1,2,= ...k

For this, the following condition has to be fulfilled [2]: 

2

,1 3k i

k i

p p i n
∞

= +
≤ ≤ ≤ −∑                                                        (1) 

The AUH codes have been extensively analysed, concerning bounds on average codeword 

length, entropy and redundancy for different types of probability distribution. In [3] it has been 

shown that these codes maximize the average length and entropy and tight lower and upper bounds 

on average codeword length, entropy and redundancy of finite and infinite AUH codes in terms of 

alphabet size are derived. Related topics are addressed in [4]-[6]. The problem of D-ary Huffman 

codes is analysed in [7], [8] and it is shown that for AUH codes, by a proper chose of the source 

probabilities, the average codeword length can be made closer to unity. The problem of bounding 

the average length of an optimal (Huffman) source code when only limited knowledge of the source 

symbol probability distribution is available is considered in [9]. 

The AUH sources appear in a wide variety of situations in the real world, because this class 

of sources have the property of achieving minimum redundancy in different situations and minimal 

average cost in highly unbalanced cost regime [10]-[12]. These properties determine a wide range 

of applications and motivate us to study these sources from an information theoretic perspective. 

Unequal cost letter problem modeling situations in which different characters have different 

transmission times or storage costs was addressed in [13], [14]. One example is the telegraph 

channel with the alphabet {. -} in which dashes are twice as long as dots [15]. Another example is 

the {a, b} run – length – limited codes used in magnetic and optical storage, in which the binary 

codewords are constrained so that each 1 must be preceded by at least a, and at most b, 0’s [16]. In 

[17] the authors have introduced a class of binary prefix codes having the property that each 

codeword ends in a one. In [18] an application of “1” – ended prefix codes is considered, where it is 

shown how to construct self-synchronizing codes and how to use them for group testing. A study 

 2



concerning the bounds on average codeword length for these codes is performed in [19]. As another 

example, binary codes whose codewords contain at most a specified number of 1’s are used for 

energy minimization of transmissions in mobile environments [20]. There is a large literature 

addressing the problem of cost for prefix-free codes with unequal letter cost encoding alphabet [21] 

and references therein.  

AUH sources can be generated by several probability distributions. It has been shown that 

Poisson, negative binomial, geometric, and exponential distributions lay in the class of AUH 

sources for some regimes of their parameters [2], [6], [22], [23]. Related topic was addressed in 

[24], where the authors studied weakly super increasing (WSI) and partial WSI sources in 

connection with Fibonacci numbers and golden mean, which appeared extensively in modern 

science and, in particular, have applications in coding and information theory.  

The rest of the paper is organized as follows. In Section 2 we present the Huffman encoding of 

an anti–uniform source with infinite alphabet and show that by Huffman binary encoding a source 

with memory results. For this source we compute the code entropy H(X). The average cost of the 

code is also derived. Sections 3, 4, 5 and 6 apply these results for infinite sources with Poisson, 

negative binomial, geometric and exponential distributions, respectively. We conclude the paper in 

Section 7. 

 

2. The entropy and the average cost of AUH codes for sources with infinite alphabet 

Let there be a discrete source with infinite alphabet, characterized by the distribution: 

( ) ( ) ( ) ( )

0 1 2

( ) ( ) ( ) ( )

0 1 2

:

t t t t

k

t t t t

k

s s s s

p p p p
ξ ⎛ ⎞⎜⎝ ⎠

A
A A⎟A

,                                             (2) 

We assume that the source is complete, that is 

( )

0

1t

k

k

p
∞

=
=∑                                                                (3) 

and relation (1) is fulfilled. 
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After a binary Huffman encoding of this source, the graph in Fig. 1 results, that is, an 

infinite anti – uniform code. The terminal nodes represent the messages resulting by binary 

Huffman encoding and 

( )t

ks

( )t

kp denote their probabilities. 

 

Fig. 1. The graph of Huffman encoding for the source ξ  with distribution in (2) 

We denote by  and ( )i

ks
( )i

kp the intermediate node “k” in the encoding graph and its 

probability, respectively. Unlike a leaf, an intermediate node is not corresponding to a source 

message, therefore no probability mass is associated. However, with slight abuse we can call the 

weight of the intermediate node also probability.  

Considering (3), the probabilities of intermediate nodes ( )i

kp are obtained recursively, as the 

sum of the two siblings. In this way, we get: 

( ) ( )

0

1 ; 0,1,2,...
k

i t

k j

j

p p k
=

= − =∑                                                      (4) 

The structure of the codewords resulting by Huffman binary encoding is: 
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m

0 0

1 1

2 2

1

01

001

........................

00...01

........................

k k

k

s v

s v

s v

s v

→ → ⎫⎪→ → ⎪⎪→ → ⎪⎬⎪→ → ⎪⎪⎪⎭

                                                             (5) 

The length of the codeword associated with the message  is the number of edges on the 

path between the root and the node  in the Huffman tree. 

kl
( )t

ks

( )t

ks

1, 0,1,2,...kl k k= + =                                                          (6) 

The average codeword length is determined with  

( )

0

t

k k

k

l p
∞

=
=∑ l .                                                                      (7) 

 The branches between succesive nodes have the probabilities equal to the ratio between the 

probability of the node in which the branch ends and the probability of the node from which it 

starts. 

 We note that the probabilities to deliver the symbols 1 1x =  or 0 0x =  depend on the node 

from which they are generated. In other words, as a result of Huffman encoding of the source, a 

new source 0 1{ , }X x x=  with memory is obtained. Its states correspond to terminal or intermediate 

nodes (excepting the root) in the graph in Fig. 1. When a terminal node is reached, the binary 

encoding Huffman procedure is resumed from the graph root. 

  The graph attached to the source with memory X can be obtained from the Huffman 

encoding graph of the source ξ , as follows: 

a) We link the terminal nodes in the graph of the source ξ  with ( )

0

tS  and ( )

0

iS through the graph 

root; 

b) The branch probabilities are the same as in the Huffman encoding graph; 
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c) Each terminal or intermediate node (excepting the graph root) will represent a state ( )t

kS  or 

 (as represented in Fig. 2). ( ) , 0,1,2,...i

kS k =

 

Fig. 2 The graph of the source with memory 

 

Let  be the state set of the source with 

memory. The probabilities of delivering the symbols 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 1 0 1 1{ , ,..., , ,..., , ,..., , ,...}t t t t i i i i

k k k kS S S S S S S S S−=
0 0x

−

=  or 1 1x =  from the state  

are equal to the probabilities of transition from the state  to the states  

and , respectively, i.e. 

( )

1, 1,2,...i

kS k− =
( ) , 1,2,...t

kS k =( )

1,
i

kS k−

, 1,2,...=
1,2,= ...

( )i

kS k

( )
( )

0 1 ( )

1

( | ) , 1,2,...
i

i k
k i

k

p
p x S k

p
−

−
= =                                                      (8) 

and 

( )
( )

1 1 ( )

1

( | ) , 1,2,...
t

i k
k i

k

p
p x S k

p
−

−
= =                                                    (9) 

The transition matrix between states is: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 2 0 1

( ) ( )

0 0

( ) ( )

0 0

( ) ( )

0 0

( ) ( )

1 1

( ) ( )

0 0

( ) ( )

( ) ( )

1 1

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

T

t t t t i i i

k k

t t

t t

t t

t i

i i

t i

k k

i i

k k

S S S S S S S

p p

p p

p p

p p

p p

p p

p p− −

−
−
−

=

A A A A

A A A A
A A A A

B B B B B A B B B B B
A A A A

B B B A B A B B A B A

A A A B

B B B A B A B A B A

A A A A

B B

( )

0

( )

1

( )

( )

0

( )

1

t

t

t

k

i

i

k

S

S

S

S

S −

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

B

B

B
B

BB A B A B B A B B

                                (12) 

Let ( )t

kπ and ( )i

kπ , , denote the state probabilities of the source with memory. They can be 

determined by means of [25]: 

0,1,2,...k =

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 0 1 0 1 0 1[ ... ... ... ...] [ ... ... ... ...]Tt t t i i i t t t i i i

k k k kπ π π π π π π π π π π π=                        (13) 

( ( ) ( )

0

1t i

k k

k

π π∞

=
)+ =∑                                                                  (14) 

Considering (7) and (12), from (13) and (14) we get the state probabilities as: 

( ) ( )1
, 0,1,2,...t t

k kp k
l

π = =                                                      (15) 

( ) ( ) ( )

0

1 1
1

k
i i

k k j

j

tp p
l l

π
=

⎛ ⎞= = −⎜⎝ ⎠∑ ⎟

)i

                                                     (16) 

Generally, the entropy of the source with memory is computed by [26] 

( ) ( ) ( ) (1 1
( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0

( ) log logt t t i i

k j k j k k j k j k

k j k j

H X p x S p x S p x S p x Sπ π∞ ∞

= = = =
= − ⏐ ⏐ − ⏐ ⏐∑∑ ∑∑              (17) 

Let and  be the costs associated to the bits 0 and 1, respectively. The average cost of a 

code is defined by [4] 

0c 1c

(( )

0 0 1 1

0

( ) ( )t

k

k

C p n k c n k c
∞

=
= +∑ ) ,                                                   (18) 

where we denote by and  the number of 0’s and 1’s in the codeword corresponding to 

the source symbol s . 

0 ( )n k

( )t

k

1( )n k
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Considering (5) and (6), the average cost is 

(( )

0 1

0

t

k

k

C p kc c
∞

=
=∑ )+                                                            (19) 

3. AUH sources with Poisson distribution 

Let there be a discrete source with infinite alphabet, characterized by Poisson distribution: 

( ) ( ) ( ) ( )

0 1 2

2
( ) ( ) ( ) ( )

0 1 2

:

1! 2! !

t t t t

k

k
t t t t

k

s s s s

p e p e p e p e
k

λ λ λ λξ λ λ λ− − − −

⎛ ⎞⎜ ⎟⎜ ⎟= = = =⎜ ⎟⎝ ⎠
A A

A A
,                        (20) 

In [22] it is shown that any Poisson distribution with parameter 1λ ≤  satisfies condition (1) 

and leads to an AUH code. 

The source is complete, because  

0

1
!

k

k

e
k

λ λ∞ −
=

=∑                                                               (21) 

Theorem 1 

The entropy and the average cost of the code resulting by binary encoding of AUH source with 

Poisson distribution are determined by: 

1

1
( ) log log log( !)

!

k

k

H X e e k
kl

λ λλ λ λ ∞−
=

⎛ ⎞= − +⎜ ⎟⎝ ⎠∑                                          (22) 

0C c cλ 1= +                                                                   (23) 

Proof 

 Considering (20) and (4), the probabilities of intermediate nodes are obtained by: 

( )

0

1 ; 0,1,2,...
!

jk
i

k

j

p e k
j

λ λ−
=

= − =∑                                            (24) 

The average codeword length is obtained considering (20) and (6) in (7)  

1l λ= + .                                                                      (25) 

The probabilities of delivering the symbols 1 1x =  or 0 0x =  from the state  are ( )

1, 1,2,...i

kS k− =

 8



( )
( )

1 1 ( ) 1

1

0

!( | ) , 1,2,...

1
!

k

t
i k
k ji k

k

j

e
p kp x S k
p

e
j

λ

λ

λ
λ

−

− − −−
=

= = =
−∑                                                    (26) 

and 

( )
0( )

0 1 ( ) 1

1

0

1
!

( | ) , 1,2,...

1
!

jk

i
ji k

k ji k

k

j

e
jp

p x S k
p

e
j

λ

λ

λ
λ

−
=

− − −−
=

−
= = =

−
∑
∑                                                  (27) 

respectively. 

The probabilities of delivering the symbols  1 1x =  or 0 0x =  from the state  are ( ) , 0,1,2,...t

kS k =
( )

1( | ) , 0,1,2,...t

kp x S e kλ−= =                                                     (28) 

and 

( )

0( | ) 1 , 0,1,2,...t

kp x S e kλ−= − =                                                   (29) 

respectively. 

Considering (20), (24) and (25) into (15) and (16), we get the stationary state probabilities: 

( ) 1
, 0,1,2,...

!

k
t

k e k
kl

λ λπ −⎛ ⎞= =⎜ ⎟⎝ ⎠                                                      (30) 

( )

0

1
1 , 0,1,2,...

!

jk
i

k

j

e k
jl

λ λπ −
=

⎛ ⎞= − =⎜ ⎟⎝ ⎠∑ .                                               (31) 

Substituting (26) - (31) into (17), we get the entropy of the source with memory in (22). 

The average cost of the AUH code for the source with Poisson distribution, given in (23), is 

obtained by substituting (20) into (19).  

4. AUH sources with negative binomial distribution 

Let there be a discrete source with infinite alphabet, characterized by the negative binomial 

distribution:   

( ) ( ) ( ) ( )

0 1 2

( ) 1 ( ) 1 ( ) 1 2 ( ) 1

0 1 1 2 1 1

:

t t t t

k

t r r t r r t r r t r r k

r r r k r k

s s s s

p C p p C p q p C p q p C p q
ξ − − − −− +

⎛ ⎞⎜ ⎟= = = =⎝ ⎠
A A
A A+ −

,       (32) 
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where q=1-p. 

The source is complete, because  

1

1

0

1r r k

r k

k

C p q
∞ −+ −=

=∑                                                   (33) 

Theorem 2 

The entropy and the average cost of the code resulting by binary encoding of AUH source with 

negative binomial distribution are determined by: 

1

1

1

1
( ) log log logr r k r

r k r k

k

qr
H X r p q p C q C

pl

∞ −+ − + −=
⎛ ⎞= − + +⎜ ⎟⎝ ⎠∑ 1

1

−                                       (34) 

0

qr
C c c

p
1= +                                                                  (35) 

Proof 

Considering (32) and (4), the probabilities of intermediate nodes are obtained by: 

( ) 1

1

0

1 ; 0,1,2,...
k

i r r j

k r j

j

p C p q k−+ −=
= − =∑                                          (36) 

The average codeword length is obtained considering (32) and (6) in relation (7)  

1

1

0

( 1) r r k

r k

k

rq p
l k C p q

p

∞ −+ −=
+= + =∑ .                                            (37) 

The probabilities of delivering the symbols 1 1x =  or 0 0x =  from the state  are ( )

1, 1,2,...i

kS k− =
( ) 1

( ) 1
1 1 1( )

11
1

0

( | ) , 1,2,...

1

t r r k
i k r k
k ki

r r jk
r j

j

p C p q
p x S k

p
C p q

−+ −− − −− + −=

= = =
−∑                                         (38) 

and 

1

1( )
0( )

0 1 1( )
11

1

0

1

( | ) , 1,2,...

1

k
r r j

r ji
ji k

k ki
r r jk
r j

j

C p q
p

p x S k
p

C p q

−+ −=
− − −− + −=

−
= = =

−
∑
∑                                        (39) 

respectively. 

The probabilities of delivering the symbols  1 1x =  or 0 0x =  from the state  are ( ) , 0,1,2,...t

kS k =
 10



( ) 1

1 1( | ) , 0,1,2,...t r r r

k rp x S C p p k−−= = =                                                     (40) 

and 

( ) 1

0 1( | ) 1 1 , 0,1,2,...t r r r

k r kp x S C p p k−+ −= − = − =                                             (41) 

respectively. 

Considering (32), (36) and (37) in (15) and (16), we get the stationary state probabilities: 

( )( ) 1

1

1
, 0,1,2,...t r r k

k r kC p q k
l

π −+ −= =                                                       (42) 

( ) 1

1

0

1
1 , 0,1,2,...

k
i r r j

k r j

j

C p q k
l

π −+ −=
⎛ ⎞= − =⎜ ⎟⎝ ⎠∑                                                 (43) 

Substituting (38) - (43) into (17), we get the entropy of the source with memory, given in (34). 

We obtain the average cost of the AUH code in (35) for the source with negative binomial 

distribution, by substituting (32) in (19). 

5. AUH sources with geometric distribution 

Let there be a discrete source with infinite alphabet, characterized by the geometric 

distribution: 

( ) ( ) ( ) ( )

0 1 2

( ) ( ) ( ) 2 ( )

0 1 2

:
t t t t

k

t t t t k

k

s s s s

p q p pq p p q p p q
ξ ⎛ ⎞⎜ ⎟= = = =⎝ ⎠

A
A A

A
,                               (44) 

where q=1-p. 

In [23] it is shown that geometric distribution with parameter 0 ( 5 1)p< ≤ − / 2  satisfies 

condition (1) and leads to an AUH code. 

The source is complete, because 

0

1k

k

p q
∞

=
=∑                                                                (45) 

Theorem 3 

The entropy and the average cost of the code resulting by binary encoding of AUH source with 

geometric distribution are determined by: 
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1
( ) log(1 ) log

1

p
H X p p

pl

⎛ ⎞= − − +⎜ −⎝ ⎠⎟                                            (46) 

0
1

p
C c c

p
1= +−                                                                (47) 

Proof 

Considering (44) and (4), the probabilities of intermediate nodes are obtained by: 

( ) 1; 0,1,2,...i k

kp p k+= =                                                  (48) 

The average codeword length is obtained considering (44) and (6) in (7)  

0

1
( 1)

1

k

k

l k qp
p

∞

=
= + = −∑ .                                                              (49) 

The probabilities of delivering the symbols 1 1x =  or 0 0x =  from the state  are ( )

1, 1,2,...i

kS k− =
( )

1 1( | ) 1 , 1,2,...i

kp x S q p k− = = − =                                                (50) 

and 

( )

0 1( | ) , 1,2,...i

kp x S p k− = =                                                  (51) 

respectively. 

The probabilities of delivering the symbols 1 1x =  or 0 0x =  from the state are ( ) , 0,1,2,...t

kS k =
( )

1( | ) 1 , 0,1,2,...t

kp x S p k= − =                                                     (52) 

and 

( )

0( | ) , 0,1,2,...t

kp x S p k= =                                                      (53) 

respectively. 

Considering (44), (48) and (49) in (15) and (16), we get the stationary state probabilities: 

( ) 1
(1 )t

k

kp p
l

π = −                                                       (54) 

( ) 11i

k

kp
l

π +=                                                           (55) 

Substituting (50) - (55) in (17), we get the entropy of the source with memory, given in (46). 
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We obtain the average cost of the AUH code in (47) for the source with geometric 

distribution substituting (44) in (19). 

6. AUH sources with exponential distribution 

Let there be a discrete source with infinite alphabet, characterized by the exponential 

distribution: 

( ) ( ) ( ) ( )

0 1 2

( ) ( ) ( ) 2 ( )

0 1 2

:
1 (1 ) (1 ) (1

t t t t

k

t t t t k

k

s s s s

p e p e e p e e p e eλ λ λ λ λ λ λξ − − − − − −
⎛ ⎞⎜ ⎟= − = − = − = −⎝ ⎠

A A
A A)

,   (56) 

In [6] it is shown that the discrete form of exponential distribution is anti – uniform iff 

ln{(1 5) / 2)} 0.4812λ ≥ + 0 . 

The source is complete, because 

0

(1 ) 1k

k

e eλ λ∞ − −
=

− =∑                                                                (57) 

Theorem 4 

The entropy of the source ξ , as well as the entropy and the average cost of the source with memory 

resulted by binary encoding of AUH source with exponential distribution are determined by: 

1
( ) log(1 )

1

e e
H X e

el

λ λλ
λ

− −−
−

⎛ ⎞= − − +⎜ −⎝ ⎠
log ⎟                                          (58) 

0
1

e
C c c

e

λ
λ

−
− 1= +−                                                       (59) 

Proof 

Considering (56) and (4), the probabilities of intermediate nodes are obtained by: 

( ) ( 1) ; 0,1,2,...i k

kp e kλ− += =                                                   (60) 

The average codeword length is obtained considering (56) and (6) in relation (7)  

0

1
( 1) (1 )

1

k

k

l k e e
e

λ λ
λ

∞ − −
−=

= + − = −∑                                                 (61) 

The probabilities of delivering the symbols 1 1x =  or 0 0x =  from the state  are ( )

1, 1,2,...i

kS k− =
( )

1 1( | ) 1 , 1,2,...i

kp x S e kλ−− = − =                                         (62) 
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and 

( )

0 1( | ) , 1,2,...i

kp x S e kλ−− = =                                          (63) 

respectively. 

The probabilities of delivering the symbols  1 1x =  or 0 0x =  from the state  are ( ) , 0,1,2,...t

kS k =
( )

1( | ) 1 , 0,1,2,...t

kp x S e kλ−= − =                                                     (64) 

and 

( )

0( | ) , 0,1,2,...t

kp x S e kλ−= =                                                   (65) 

respectively. 

Considering (56), (60) and (61) in (15) and (16), we get the stationary state probabilities as: 

( ) 1
(1 )t

k e e
l

kλ λπ − −= −                                                       (66) 

( ) ( 1)1i k

k e
l

λπ − +=                                                           (67) 

Substituting (62) - (67) in (17), we get the entropy of the source with memory, given in (58). 

We obtain the average cost of the AUH code in (59) for the source with exponential 

distribution, substituting (56) in (19). 

 

7. Conclusions 

In this paper we have considered the class of AUH sources with infinite alphabets. We have 

shown that performing a binary Huffman encoding of these sources, sources with memory result. 

For these sources we have build the encoding graph and have specified the rules for drawing the 

graph of the source with memory 0 1{ 0, 1X x x }= = = . The graph of the source with memory is 

obtained from the encoding graph by linking the terminal nodes with the states  and through 

the graph root. The states of the source with memory correspond to the terminal or intermediate 

nodes in the encoding graph, excepting the root. We have determined in the general case the state 

probabilities of the source with memory, as well as the transition probabilities between states.  The 

( )

0

tS ( )

0

iS
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entropy of this source with memory is computed. We assumed the costs c0 and c1 for the symbols 

“0” and “1”, respectively, and compute the average cost for these Huffman codes. Obviously, the 

Huffman encoding procedure assures minimum average length, but the average cost is not 

minimum. It can be easily verified that if the costs of symbols “0” and “1” are equal to unity, the 

average cost becomes equal to the average length. We applied the results for several AUH sources 

with Poisson, negative binomial, geometric and exponential distributions. 
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	 The branches between succesive nodes have the probabilities equal to the ratio between the probability of the node in which the branch ends and the probability of the node from which it starts.

