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Abstract

A linear stability analysis of a Rayleigh-Bénard Poiseuille flow is performed
for yield stress fluids whether we use the Bingham or regularized models. A
fundamental difference between those models is that the effective viscosity
is not defined in the plug zone for the Bingham model, while it is defined in
the whole domain for the regularized models. For these models, the viscosity
depends highly on a parameter ε near the axis and increases drastically in an
intermediate region. The convergence of the critical conditions between the
simple and the Bingham models is not obtained. However, we show that the
Bercovier and Papanastasiou models can tend to the exact Bingham results.

Keywords: Fluid mechanics, linear stability, yield stress fluids

1. Introduction

Different models are used in the literature to describe a yield stress fluid.
The simplest one is the Bingham model. It is commonly used to describe
the rheological behaviour of a large range of fluids as muds of drilling for
instance. It assumes that the material moves as a rigid solid prior to yielding
and behaves as a viscous fluid afterwards. By definintion, the sol-gel tran-
sition for a Bingham fluid is not continuous in terms of material behaviour.
The ”gel-like” region, called plug or unyielded zone, and the ”liquid-like”
region are separated by a distinct yield surface. Furthermore, except few

Preprint submitted to Elsevier December 3, 2010



simple configurations [1], the determination of the yield surface location is
the major difficulty in the numerical resolution of the Bingham fluid flow.
To avoid these limitations, several authors use regularized models. These
models consider a viscous behaviour in the whole flow domain and replace
the unyielded zone by an extremely viscous fluid past a transition in the
shear rate. The aim of our study is to compare the different models and
show the relevance of using either regularized models or Bingham model in
a particular situation: stability problems. In this paper, we investigate the
Rayleigh-Bénard Poiseuille (RBP) flow for yield stress fluids. This configu-
ration has already been studied for a Bingham fluid in [2] and [3] performing
linear stability analyses.

On the other hand, the usage of regularized models in stability analysis
has been studied recently by [4] and [5]. In [4], the authors treat a lin-
early stable flow: the plane Poiseuille flow of a Bingham fluid. The authors
show that the regularized models can exhibit spurious behaviour and can
give rise to unstable eigenmodes. The eigenvalues are called spurious in the
sense that they depend on the small parameter introduced in the regular-
ized model. These values can be detected by varying the number of nodes
in calculations. In [5], the linear stability of the circular Couette flow of
viscoplastic fluid leads to critical conditions for both the Bingham and a reg-
ularized models. The author indicates that the regularization has practically
no influence on critical conditions. Actually, it is not surprising that in the
case of plane Poiseuille flow, the regularized model leads to an instability
at finite Reynolds number. Indeed, replacing a rigid plug zone by a highly
viscous zone (whatever, the large value of the viscosity, i.e. the small is the
regularization parameter), leads to a problem fundamentally different from
that of a true plane Bingham Poiseuille flow. However, it is not clear in
Frigaard and Nouar [4] how the critical conditions depend on the regulariza-
tion model and on the regularization parameter. The analysis of the viscosity
profiles combined with the work of Govindarajan et al. [6] where it is shown
that the critical conditions depend mainly on the viscosity stratification in
the critical layer (region where the energy of fluctuations is produced by in-
teractions with the mean flow), may lead to the conclusion that the critical
conditions are mainly independent on the regularization parameter, when it
is sufficiently small.

In the case of the Taylor Couette problem, where the instability is driven
by the centrifugal force, it can be understood that here, replacing a rigid solid
(if it exists) by a hyghly viscous zone could be equivalent. Here, we want
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to clarify this point by considering an other situation. In this respect, we
propose to consider the linear stability of the RBP flow involving a yield stress
fluid whether a Bingham or regularized models are used. The framework of
this study concerns dominant buoyancy-driven source of instability compared
to the shear-driven one, i.e. we consider weak Reynolds values. In outline,
our paper proceeds as follows. In Section 2, the basic state of the RBP flow
is given for the Bingham model and the regularized models. A comparison
between the different models is performed. The linear stability analysis is
developed in § 3. The numerical results are presented in Section 4 as well as
a comparison between the viscoplastic models.

2. Fully developed Rayleigh-Bénard Poiseuille flow

We consider the plane Poiseuille flow of a yield stress fluid between two
horizontal walls separeted by a distance L. The system of coordinates as well
as the shape of the axial velocity component are represented on Fig.(1). As
classical, we assume that the lower wall is heated at temperature T0 + δT/2
while the upper wall is at T0 − δT/2. Using the Boussinesq approximation,
the problem is governed by the following equations:

∇ ·U = 0 , (1)

ReU t +Re2 Pr (U ·∇) U + ∇P −RaT ey −RePr∇ · τ = 0 , (2)

Tt + Pr Re (U ·∇)T −∇2T = 0 . (3)

They are rendered in dimensionless form using the centerline velocity U0 as
velocity scale, the width L of the plane channel as lengthscale, then (μ0U0)/L
as stress scale, the thermal diffusion time L2/a between the two walls as time
scale, where a is the thermal diffusivity, and (μ0a)/L

2 as the pressure scale.

The modified temperature is used T =
T − T0

δT
.

The Reynolds Re, the Prandtl Pr, and the Rayleigh Ra numbers are

defined by: Re =
ρU0L

μ0

, P r =
μ0

aρ
andRa =

gρ β δTL3

μ0a
. U is the velocity

field, p the pressure field, τ the deviatoric stress tensor, T the temperature,
ρ the density, β the thermal expansion and g the gravitational acceleration.
The velocity vector U is of the form U = U ex +V ey +W ez, where U, V,W
are the velocity components and ex,ey,ez are unit vectors in the streamwise
x, transversal y and spanwise z directions respectively. We write the no-slip
and imposed temperature conditions at the walls as follows:
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Figure 1: Fully developed Poiseuille flow for a yield stress fluid

U (±1/2) = 0 and
T (1/2) = −1/2, T (−1/2) = 1/2.

2.1. Bingham model

Employing the von Mises yield criterion, the Bingham model, in dimen-
sionless form can be written [1]:

τ = μγ̇ if τ > B , (4)

γ̇ = 0 if τ ≤ B . (5)

The parameter μ represents the effective viscosity and is defined by :

μ = 1 +
B

γ̇
, where B = τ0 L/ (μ0 U0), is the Bingham number. The second

invariant of the rate of strain tensor γ̇ and that of the deviatoric stress tensor
are respectively γ̇ and τ .

Equations (1)-(3) are satisfied in the whole flow domain. However, in
the region where the yield stress is not exceeded, the rate of strain tensor is
identically zero. This region moves then as a rigid solid and is called plug
zone. The interface separating the “liquid like” and the “gel like” domains
is a yield surface and is defined by the criterion τ = B, then γ̇ = 0.

For a one dimensional shear flow and fully developed thermal field, we
have V = W = 0 and UB = UB(y):

UB(y) =

⎧⎪⎪⎨
⎪⎪⎩

1 ; |y| ≤ 1
2
y0 ,

1−
(

2 |y| − y0

1− y0

)2

; 1
2
y0 <| y |< 1

2
,

(6)

4



Tb =
T0

δT
− 2y and Pb (x, y) = P0−Ra y2− 8

RePr

(1− y0)
2 x, with ± (1/2) y0,

the position of the yield surfaces. The velocity of the basic flow depends only
on B. The relation between y0 and B is given by: (2y0 − 1)2B − 4y0 = 0.

2.2. regularized models

In this paper, we consider three models which are commonly used in the
literature:
Simple model with a regularized parameter, for example used by Beris et al.

[7]:

τ = μsγ̇s =

(
1 +B

(
1

γ̇s + ε

))
γ̇s = (1 +B Fs (γ̇s, ε)) γ̇s . (7)

Papanastasiou model [8]:

τ = μpγ̇p =

(
1 +B

(
1− e−

γ̇p

ε

γ̇p

))
γ̇p = (1 +B Fp (γ̇p, ε)) γ̇p . (8)

Bercovier model [9] :

τ = μbe ˙γbe =

(
1 +B

(
1√

˙γbe
2 + ε2

))
˙γbe = (1 +B Fbe ( ˙γbe, ε)) ˙γbe , (9)

μs, μp and μbe represent the effective viscosity for each model respectively.
Here the Bingham model is recovered when the parameter ε tends to zero.

The velocity profile of the fully developed flow is completely defined by
Eqs. (2) and (7), (8) or (9). For a unidirectional shear flow, Ureg(y) satisfies:(

2B

y0

)
y = (1 +B F )DUreg , (10)

with D =
d

dy
. The velocity profile is determined numerically using finite

difference scheme.

2.3. Comparison between the different models

This section compares the main characteristics of the basic flow whether
the Bingham or the regularized models are used. For the axial velocity pro-
files, the numerical results indicate that the convergence is verified when
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Figure 2: Effective viscosity as a function of y for the different regularized models, with
y0 = 0.2, ε = 0.1 and ε = 0.01 (− − − and −−−− : simple model, � and � : Bercovier
model , ♦ and � : Papanastasiou model). The vertical long-dashed lines which bound the
transition zone are drawn only to illustrate the different zones and don’t characterize the
effective thickness δy.

ε→ 0. However the effective viscosity, firstly is not defined for the Bingham
model in the plug zone, and secondly for the regularized models, it behaves as
B/ε near the axis. Actually, the analysis of effective viscosity profile for the
regularized models (Fig.(2)) suggests that three zones can be distinguished:
the zone 1 around the axis, where τ << B and for which the effective vis-
cosity is very high. The zone 3 close to the wall, where τ >> B and for
which the effective viscosity is lower than in the previous zone. Finally, the
intermediate zone, zone 2, where τ ∼ B and for which the effective viscosity
varies drastically.

A characteristic scale δy of the intermediate zone thickness is estimated
using an asymptotic method. This method is detailed in Appendix A. It
consists on determining an approximation of γ̇ in the regions 1 and 3. Then,
approximations can be matched in the zone around y0/2. The results are
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Table 1: Asymptotic behaviour of the rate of strain and the thickness of zone 2

Simple model Papanastasiou model Bercovier model

Zone 1: τ << B γ̇s ∼ ε τ

(B − τ)
γ̇p ∼ −ε ln(1− τ

B
) γ̇be ∼ (ε2τ)

1

3

Zone 2: τ ∼ B γ̇s ∼
√
εB γ̇p ∼ δp ∼ −ε ln(1− γ̇p

B
) γ̇be ∼ (ε2B)

1

3

Zone thickness: δy δys
∼
(
2
y0

B

)√
εB δyp

∼
(
2
y0

B

)
δp δybe

∼
(
2
y0

B

)
(ε2B)

1

3

Zone 3: τ >> B γ̇s ∼ τ −B γ̇p ∼ τ −B ˙γbe ∼ τ −B

summarized in Table 1. It is noticeable that the transition zone thickness
depends on the model used, moreover for all the models, δy increases with ε
and B. Moreover, it is noticeable that for ε and B given, we have:
δyp
≤ δybe

≤ δys
.

3. Linear stability analysis

The linear stability analysis is developed for the Bingham model in Ref.[2].
For bidimensional perturbations, we introduce the stream function pertur-
bation ψ, defined by u = ∂yψ and v = −∂xψ, where (u, v) corresponds to the
velocity perturbation components. Furthermore, the perturbation solution
is seeked in normal mode form as follows:

(ψ, T ) = (f(y), θ(y)) eıα(x−ct) (11)

where the parameters α and c are respectively a real axial wave number and
a complex wave speed.

Then, the system of linearised perturbation equations writes:

In the two yielded zones,
1

2
y0 <| y |< 1

2
:

L1f + Pr Ra θ = cL2f, (12)

L3 θ + f = c θ, (13)

7



where the linear differential operators L1,L2 andL3 are defined as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L1 ≡ Pr Re

[
Ub(D

2 − α2)−D2Ub

]
+ i

Pr

α
(D2 − α2)2 − 4 i α Pr B D [D [FD]] ,

L2 ≡ D2 − α2,

L3 ≡ Pr ReU − iα+
i

α
D2,

(14)

In the unyielded zone, y ∈
[
−y0

2
,
y0

2

]
we have:

f = 0 and L3 θ = c θ. (15)

The boundary conditions, in terms of stream function, are:
f (±1/2) = fy (±1/2) = f (±y0/2) = fy (±y0/2) = 0 and θ (±1/2) = 0.

Concerning the regularized models, the linear stability analysis is similar
to the one developed in the yielded zone for the previous case. However two
fundamental differences remain: (i) the Bingham model leads to zero veloc-
ity perturbation at the interface and in the plug zone while the regularized
models do not lead to unyielded regions, (ii) compared with the Bingham
model, an additional viscous term appears in the Orr-Sommerfeld equation.
Finally we get :

(L1 + L∗1) f + Pr Ra θ = cL2f , (16)

L3 θ + f = c θ , (17)

where: L∗1 ≡ −i Pr B
[

1

α

(
D2 + α2

) (
G
(
D2 + α2

))]
and G = F + γ̇

dF

dγ̇
.

The boundary conditions are written at walls: f (±1/2) = fy (±1/2) = 0
and θ (±1/2) = 0.

In comparison with the Bingham model, an additional operator L∗1 ap-
pears in Orr-Sommerfeld equation. Actually, this latter induces numerical di-
verging results due to the function D2G, since abrupt variations are observed
at y = 0 and y = ±y0/2 (Fig.3). For convenience, logarithmic coordinates
are adopted, therefore the points for which D2G ≤ 0 are not represented.

4. Results and discussion

The discretization of the differential equations set is performed, for the
Bingham and the regularized models, by means of a second-order centered
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Figure 3: Second derivative of function G for y0/2 = 0.2 (B = 5.55), ε = 0.01 (◦ : simple
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Figure 4: Critical conditions as a function of the plug zone width for Re = 1, P r = 10:
Bingham model

finite difference scheme. A generalized eigenvalues problem is obtained and
is solved using QZ algorithm implemented in Matlab 6.5. For numerical val-
idation, we considered the classical Rayleigh-Bénard problem for Newtonian
fluid. For 200 nodes, the relative difference between the critical Rayleigh
number, Rac, obtained in this study and the well known result of 1708 is
0.5%. The results presented in this paper are obtained with 301 nodes.

Concerning the Bingham model, Figs. (4(a)) and (4(b)) give the evolution
of the critical conditions, Rac and αc respectively, as a function of y0, for
Re = 1 and Pr = 10.

These figures highlight the stabilizing effect of the Bingham number. Ac-
cording to [3], this is a consequence of the the unyielded region increasing,
in which the velocity perturbation vanishes, as well as the increase in the
effective viscosity in the flow domain. When y0 → 0, there is an outstanding
discrepancy, in terms of critical conditions, with those obtained for New-
tonian fluids. Métivier et al. [2] deal with this particular case. It is shown
that the discrepancy is due to the fact that, in the frame of the linear stability
analysis, the plug zone remains intact even when y0 → 0.

When regularized models are used, the abrupt variation of D2G near the
interface generates difficulties in the eigenvalues computation. In this case
and similarly to [4], spurious eigenvalues, are obtained as well as incoherent
results from physical point of view. In fact, these difficulties increase when
the thickness δy of the transition zone decreases. In order to improve con-
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verging computations, the operator L∗1 is artificially cancelled and the values
of ε are restricted to ε ≥ 0.01. The resulting equation can be seen as a
regularization of the Orr-Sommerfeld equation.

The regularization of the Orr-Sommerfeld operator leads to spectra shown
in Fig. (5). These spectra are obtained at criticality. Preliminary numerical
tests have been performed on the resulting spectra by varying N from 201
to 401. Results show that spectra are not modified with N , except some
eigenvalues. These eigenvalues are such that ci < 0 and min |ci| = O(102).
In this sense, these spurious values can’t be confused with the least stable
eigenvalues which are negative and close to 0. According to Fig. (5), one
observes that spectra are slightly different comparing each model. Actually,
the choice of the model modifies fundamentally the nature of the fluid via its
rheological properties comparing to another model. Concerning the Bercovier
and Papanastasiou models, one observes that for ε = 0.01, the tendency of
spectra are close to the Bingham one. Few modifications are observed using
the simple model by varying ε between 0.1 and 0.01.

Concerning critical conditions, Fig. (6) presents the Rac values obtained
for each model as a function of y0, for the case Pr = 10, Re = 1, ε = 0.1 and
ε = 0.01. As expected, one observes that considering y0 → 0, regularized
models allow to obtain the critical Rayleigh number corresponding to the
Newtonian case, i.e. RacNew = 1750 [10]. In addition, one can observe that
the increase in y0 has a stabilizing effect on the flow field for each model.
Indeed, increasing y0 increases the mean effective viscosity as well as the
thickness of zone 1 in which the viscosity is very large. It is also noticeable
that the critical conditions obtained with the regularized models can lead
to strongly different values from those obtained with the Bingham model.
The model leading to the largest difference is the simple model while the
Papanastasiou model leads to the smallest difference.

When y0 is fixed, decreasing ε makes the thickness δy smaller and the
effective viscosity larger in the zone 1. The increasing effective viscosity
tends to stabilize the flow which is in agreement with [3]. Concerning the
decrease of δy, it seems that it tends to destabilize the flow. The same
tendency was indicated in [11]. Figure (6) also shows the effect of ε on Rac

for the three regularized models. One observes that the variation in ε values
do not lead to converging critical conditions since ε modifies the rheological
properties of the fluid, in particular the mean viscosity as well as the viscosity
stratification in the flow. Actually, the decrease in ε stabilizes the flow for
the simple and Papanastasiou models, while it destabilizes the flow for the
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Bercovier model.
The representation of the perturbation modes are given for each regular-

ized model in Fig. (7). One can notice that the stream function has a non
zero flat profile in the very high viscosity region (zone 1) considering the sim-
ple model, figure 7(a). Furthermore, using the Bercovier and Papanastasiou
models, the stream function tends to vanish in this region similarly to the
critical modes obtained with the Bingham model as given in Fig. (8).

As a conclusion, the usage of regularized models in instability problems
leads to different results according to the chosen model. Indeed, the variation
in ε value can modify the rheological properties of the material. In order to
obtain physical results, the Orr-Sommerfeld equation has to be regularized,
neglecting the ε terms. The comparison between regularized models indicates
(i) that these models permit to recover the Newtonian critical conditions for
weak values of y0, (ii) that the Bercovier and Papanastasiou models can tend
to similar behaviour as the Bingham case, for y0 > O(10−1) and ε = 0.01.
In this last case, same tendencies in spectra and perturbation modes are
observed.

Finally, the RBP flow is unstable for both Newtonian and (exact) Bing-
ham cases such as the Taylor-Couette flow. It seems that in such a case, the
regularization can tend to the exact Bingham results, when the values of ε
are small enough.

Appendix A. Asymptotic analysis for the different regularized mod-

els

Appendix A.1. Simple model

Considering first the simple regularized model. This model is described
by Eq. (7). Developing it, we get a polynomial equation in power of γ̇s:

γ̇s
2 + (ε+B − τ) γ̇s − ε τ = 0, (A.1)

for which the solution is :

2γ̇s = + (τ − ε−B) +

√
(ε+B − τ)2 + 4ε τ . (A.2)

In the zone 1, where τ << B, Eq. (A.2) could be expanded as follow:

2γ̇s = + (τ − ε−B) + (ε+B − τ)

(
1 +

2ε τ

(ε+B − τ)2

)
+O(ε2). (A.3)
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Figure 7: Critical modes of the perturbation: temperature (left) and stream function
(right) ( −−−−−− : Real part) ; ( - - - : Imaginart part) ; y0 = 0.14, Re = 1 and Pr = 10.15
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Then, we get:

γ̇s =
ε τ

(B − τ)
+O(ε2). (A.4)

In the zone 3, where τ >> B, Eq. (A.2) could be also written as follow:

2γ̇s = + (τ − ε−B) +

√
(ε−B + τ)2 + 4εB. (A.5)

This equation gives asymptotically:

2γ̇s = + (τ − ε−B) + (ε−B + τ)

(
1 +

2εB

(ε−B + τ)2

)
+O(ε2). (A.6)

Finally we obtain:

γ̇s = (τ −B) +
εB

(τ −B)
+O(ε2). (A.7)

In the transition zone, where τ ∼ B, we write:

τ −B = δsx, (A.8)

with x ∈ [−1; 1]. Actually x = 0 corresponds to τ = B, i.e., y = y0/2.
Moreover, for x ∈ [0; 1], the solution for γ̇s satisfies:

γ̇s ∼ τ −B, (A.9)
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then
γ̇s ∼ δs. (A.10)

For x ∈ [−1; 0], γ̇s is such that:

γ̇s ∼ ετ

δs
∼ εB

δs
. (A.11)

Finally, we obtain for x ∈ [−1; 1] that:

δs ∼
√
εB. (A.12)

Appendix A.2. Papanastasiou model

We adopt the same procedure for the Papanastasiou model. In the region
1, where τ << B, we write:

γ̇p = −ε ln(1− τ

B
+
γ̇p

B
), (A.13)

neglecting the term
γ̇p

B
in the logarithm, we have:

γ̇p ∼ −ε ln(1− τ

B
). (A.14)

In the zone 3, we consider that the e−
γ̇p

ε is negligible as ε is weak and γ̇p

takes finite values. Then:
γ̇p ∼ τ −B. (A.15)

Considering the transition zone, τ ∼ B, the inner solution is not defined
close to y0/2. Actually, the term we have neglected is important in this zone.
In fact, we have to write for x ∈ [−1; 0]:

γ̇p ∼ −εln(
γ̇p

B
). (A.16)

For x ∈ [0; 1], similarly to previous models, we have:

γ̇p ∼ δp. (A.17)

Finally, for x ∈ [−1; 1], we get:

δp ∼ −εln(
δ

B
). (A.18)
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Appendix A.3. Bercovier model

Concerning the Bercovier model, we have:

τ
√
γ̇2

be + ε2 = γ̇be

√
γ̇2

be + ε2 +B γ̇be, (A.19)

multiplying this equation by
√
γ̇2

be + ε2, we get:

(γ̇2
be + ε2) τ − γ̇be(γ̇

2

be
+ ε2)−B γ̇be

√
γ̇2

be + ε2 = 0. (A.20)

In the zone 1, where τ << B, we apply the principle of least degeneration :

γ̇3
be ∼ ε2τ, (A.21)

then:
γ̇be ∼ (ε2τ)

1

3 . (A.22)

The zone where τ >> B concerns the case where γ̇be >> ε, then we write:

τ = γ̇be +B (1 +
ε2

γ̇2
be

)−
1

2 , (A.23)

= γ̇be +B (1− ε2

2 γ̇2
be

) +O(ε3) (A.24)

Finally, we obtain:
γ̇be ∼ τ −B. (A.25)

The method is similar as previous and permits to lead to:

γ̇be ∼ δbe, forx ∈ [0; 1], (A.26)

γ̇be ∼ (ε2τ)
1

3 , forx ∈ [−1; 0]. (A.27)

Finally, connecting the solutions, we get:

δbe ∼ (ε2τ)
1

3 . (A.28)
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Appendix A.4. Transition zone thickness

At this stage, we know the asymptotical behaviour of each model in the
different zones. Moreover, the dimension of the zone in which the viscosity
variation is the most important is defined by δ. Indeed, we have:

τ −B ∼ 2δ, (A.29)

that we can write in terms of y, replacing τ by its expression:

τ −B =
2B

y0

(y − y0). (A.30)

Finally, we introduce a characteristic variable defined as follow:

ychar = B
y − y0

y0 × δ
. (A.31)
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Stability of a Rayleigh-Bénard Poiseuille flow for yield stress fluids - Comparison between 
Bingham and regularized models 

by 
Christel Métivier and Chérif Nouar

- Comparison between the Bingham and regularized models on the stability of the RBP flow. 

- The effective viscosity is not defined in the plug zone for the Bingham model.  

- Regularized models lead to the Newtonian critical conditions for weak values of yield stress. 

- Convergence of the critical conditions between the simple and the Bingham 
models is not obtained. 

- The Bercovier and Papanastasiou models can tend to the exact Bingham results. 




