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Introduction

Different models are used in the literature to describe a yield stress fluid. The simplest one is the Bingham model. It is commonly used to describe the rheological behaviour of a large range of fluids as muds of drilling for instance. It assumes that the material moves as a rigid solid prior to yielding and behaves as a viscous fluid afterwards. By definintion, the sol-gel transition for a Bingham fluid is not continuous in terms of material behaviour. The "gel-like" region, called plug or unyielded zone, and the "liquid-like" region are separated by a distinct yield surface. Furthermore, except few simple configurations [START_REF] Bird | The rheology and flow of viscosplastic material[END_REF], the determination of the yield surface location is the major difficulty in the numerical resolution of the Bingham fluid flow. To avoid these limitations, several authors use regularized models. These models consider a viscous behaviour in the whole flow domain and replace the unyielded zone by an extremely viscous fluid past a transition in the shear rate. The aim of our study is to compare the different models and show the relevance of using either regularized models or Bingham model in a particular situation: stability problems. In this paper, we investigate the Rayleigh-Bénard Poiseuille (RBP) flow for yield stress fluids. This configuration has already been studied for a Bingham fluid in [START_REF] Métivier | Linear stability involving the Bingham model when the yield stress approaches zero[END_REF] and [START_REF] Métivier | On linear stability of Rayleigh-Bénard Poiseuille flow of viscoplastic fluids[END_REF] performing linear stability analyses.

On the other hand, the usage of regularized models in stability analysis has been studied recently by [START_REF] Frigaard | On the usage of viscosity regularisation method for visco-plastic fluid flow computation[END_REF] and [START_REF] Caton | Linear stability of circular Couette flow of inelastic viscoplastic fluids[END_REF]. In [START_REF] Frigaard | On the usage of viscosity regularisation method for visco-plastic fluid flow computation[END_REF], the authors treat a linearly stable flow: the plane Poiseuille flow of a Bingham fluid. The authors show that the regularized models can exhibit spurious behaviour and can give rise to unstable eigenmodes. The eigenvalues are called spurious in the sense that they depend on the small parameter introduced in the regularized model. These values can be detected by varying the number of nodes in calculations. In [START_REF] Caton | Linear stability of circular Couette flow of inelastic viscoplastic fluids[END_REF], the linear stability of the circular Couette flow of viscoplastic fluid leads to critical conditions for both the Bingham and a regularized models. The author indicates that the regularization has practically no influence on critical conditions. Actually, it is not surprising that in the case of plane Poiseuille flow, the regularized model leads to an instability at finite Reynolds number. Indeed, replacing a rigid plug zone by a highly viscous zone (whatever, the large value of the viscosity, i.e. the small is the regularization parameter), leads to a problem fundamentally different from that of a true plane Bingham Poiseuille flow. However, it is not clear in Frigaard and Nouar [START_REF] Frigaard | On the usage of viscosity regularisation method for visco-plastic fluid flow computation[END_REF] how the critical conditions depend on the regularization model and on the regularization parameter. The analysis of the viscosity profiles combined with the work of Govindarajan et al. [START_REF] Govindarajan | Stabilization of hydrodynamic flows by small viscosity variations[END_REF] where it is shown that the critical conditions depend mainly on the viscosity stratification in the critical layer (region where the energy of fluctuations is produced by interactions with the mean flow), may lead to the conclusion that the critical conditions are mainly independent on the regularization parameter, when it is sufficiently small.

In the case of the Taylor Couette problem, where the instability is driven by the centrifugal force, it can be understood that here, replacing a rigid solid (if it exists) by a hyghly viscous zone could be equivalent. Here, we want to clarify this point by considering an other situation. In this respect, we propose to consider the linear stability of the RBP flow involving a yield stress fluid whether a Bingham or regularized models are used. The framework of this study concerns dominant buoyancy-driven source of instability compared to the shear-driven one, i.e. we consider weak Reynolds values. In outline, our paper proceeds as follows. In Section 2, the basic state of the RBP flow is given for the Bingham model and the regularized models. A comparison between the different models is performed. The linear stability analysis is developed in § 3. The numerical results are presented in Section 4 as well as a comparison between the viscoplastic models.

Fully developed Rayleigh-Bénard Poiseuille flow

We consider the plane Poiseuille flow of a yield stress fluid between two horizontal walls separeted by a distance L. The system of coordinates as well as the shape of the axial velocity component are represented on Fig. [START_REF] Bird | The rheology and flow of viscosplastic material[END_REF]. As classical, we assume that the lower wall is heated at temperature T 0 + δT /2 while the upper wall is at T 0 -δT /2. Using the Boussinesq approximation, the problem is governed by the following equations:

∇ • U = 0 , (1) 
Re U t + Re 2 P r (U • ∇) U + ∇P -RaT e y -Re P r∇ • τ = 0 , (2) T t + P r Re (U • ∇) T -∇ 2 T = 0 . (3) 
They are rendered in dimensionless form using the centerline velocity U 0 as velocity scale, the width L of the plane channel as lengthscale, then (μ 0 U 0 )/L as stress scale, the thermal diffusion time L 2 /a between the two walls as time scale, where a is the thermal diffusivity, and (μ 0 a)/L 2 as the pressure scale.

The modified temperature is used T = T -T 0 δT . The Reynolds Re, the Prandtl P r, and the Rayleigh Ra numbers are defined by: Re = ρ U 0 L μ 0 , P r = μ 0 aρ and Ra = gρ β δT L 3 μ 0 a . U is the velocity field, p the pressure field, τ the deviatoric stress tensor, T the temperature, ρ the density, β the thermal expansion and g the gravitational acceleration.

The velocity vector U is of the form U = U e x + V e y + W e z , where U, V, W are the velocity components and e x , e y , e z are unit vectors in the streamwise x, transversal y and spanwise z directions respectively. We write the no-slip and imposed temperature conditions at the walls as follows: 

y U b (y) x y 0 /2 -y 0 /2 1/2 -1/2 ÔÐÙ ÞÓÒ ÔÐÙ ÞÓÒ
U (±1/2) = 0 and T (1/2) = -1/2, T (-1/2) = 1/2.

Bingham model

Employing the von Mises yield criterion, the Bingham model, in dimensionless form can be written [START_REF] Bird | The rheology and flow of viscosplastic material[END_REF]:

τ = μ γ if τ > B , (4) γ 
= 0 if τ ≤ B . (5) 
The parameter μ represents the effective viscosity and is defined by :

μ = 1 + B γ
, where B = τ 0 L/ (μ 0 U 0 ), is the Bingham number. The second invariant of the rate of strain tensor γ and that of the deviatoric stress tensor are respectively γ and τ .

Equations ( 1)-( 3) are satisfied in the whole flow domain. However, in the region where the yield stress is not exceeded, the rate of strain tensor is identically zero. This region moves then as a rigid solid and is called plug zone. The interface separating the "liquid like" and the "gel like" domains is a yield surface and is defined by the criterion τ = B, then γ = 0.

For a one dimensional shear flow and fully developed thermal field, we have V = W = 0 and U B = U B (y):

U B (y) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 1 ; |y| ≤ 1 2 y 0 , 1 - 2 |y| -y 0 1 -y 0 2 ; 1 2 y 0 <| y |< 1 2 , (6) 
T b = T 0 δT -2y and P b (x, y) = P 0 -Ra y 2 -8 Re P r (1y 0 ) 2 x, with ± (1/2) y 0 , the position of the yield surfaces. The velocity of the basic flow depends only on B. The relation between y 0 and B is given by: (2y 0 -1) 2 B -4y 0 = 0.

regularized models

In this paper, we consider three models which are commonly used in the literature: Simple model with a regularized parameter, for example used by Beris et al. [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF]:

τ = μ s γs = 1 + B 1 γs + ε γs = (1 + B F s ( γs , ε)) γs . (7) 
Papanastasiou model [START_REF] Papanastasiou | Flows of materials with yield[END_REF]:

τ = μ p γp = 1 + B 1 -e -γp ε γp γp = (1 + B F p ( γp , ε)) γp . (8) 
Bercovier model [START_REF] Bercovier | A finite element method for incompressible non-Newtonian flows[END_REF] :

τ = μ be γ be = 1 + B 1 γ be 2 + ε 2 γ be = (1 + B F be ( γ be , ε)) γ be , (9) 
μ s , μ p and μ be represent the effective viscosity for each model respectively.

Here the Bingham model is recovered when the parameter ε tends to zero. The velocity profile of the fully developed flow is completely defined by Eqs. ( 2) and ( 7), [START_REF] Papanastasiou | Flows of materials with yield[END_REF] or [START_REF] Bercovier | A finite element method for incompressible non-Newtonian flows[END_REF]. For a unidirectional shear flow, U reg (y) satisfies:

2B y 0 y = (1 + B F ) DU reg , (10) 
with D = d dy . The velocity profile is determined numerically using finite difference scheme.

Comparison between the different models

This section compares the main characteristics of the basic flow whether the Bingham or the regularized models are used. For the axial velocity profiles, the numerical results indicate that the convergence is verified when ε → 0. However the effective viscosity, firstly is not defined for the Bingham model in the plug zone, and secondly for the regularized models, it behaves as B/ε near the axis. Actually, the analysis of effective viscosity profile for the regularized models (Fig. [START_REF] Métivier | Linear stability involving the Bingham model when the yield stress approaches zero[END_REF]) suggests that three zones can be distinguished: the zone 1 around the axis, where τ << B and for which the effective viscosity is very high. The zone 3 close to the wall, where τ >> B and for which the effective viscosity is lower than in the previous zone. Finally, the intermediate zone, zone 2, where τ ∼ B and for which the effective viscosity varies drastically.

A characteristic scale δ y of the intermediate zone thickness is estimated using an asymptotic method. This method is detailed in Appendix A. It consists on determining an approximation of γ in the regions 1 and 3. Then, approximations can be matched in the zone around y 0 /2. The results are 

τ << B γs ∼ ε τ (B -τ ) γp ∼ -ε ln(1 - τ B ) γbe ∼ (ε 2 τ ) Zone 2: τ ∼ B γs ∼ √ εB γp ∼ δ p ∼ -ε ln(1 - γp B ) γbe ∼ (ε 2 B) Zone thickness: δ y δ ys ∼ 2 y 0 B √ εB δ yp ∼ 2 y 0 B δ p δ y be ∼ 2 y 0 B (ε 2 B) 1 3 Zone 3: τ >> B γs ∼ τ -B γp ∼ τ -B γ be ∼ τ -B
summarized in Table 1. It is noticeable that the transition zone thickness depends on the model used, moreover for all the models, δ y increases with ε and B. Moreover, it is noticeable that for ε and B given, we have: δ yp ≤ δ y be ≤ δ ys .

Linear stability analysis

The linear stability analysis is developed for the Bingham model in Ref. [START_REF] Métivier | Linear stability involving the Bingham model when the yield stress approaches zero[END_REF]. For bidimensional perturbations, we introduce the stream function perturbation ψ, defined by u = ∂ y ψ and v = -∂ x ψ, where (u, v) corresponds to the velocity perturbation components. Furthermore, the perturbation solution is seeked in normal mode form as follows:

(ψ, T ) = (f (y), θ(y)) e ıα(x-ct) [START_REF] Ern | Stability analysis of a shear flow with strongly stratified viscosity[END_REF] where the parameters α and c are respectively a real axial wave number and a complex wave speed. Then, the system of linearised perturbation equations writes:

In the two yielded zones, 1 2 y 0 <| y |< 1 2 :

L 1 f + P r Ra θ = c L 2 f, (12) 
L 3 θ + f = c θ, (13) 
where the linear differential operators L 1 , L 2 and L 3 are defined as:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ L 1 ≡ P r Re U b (D 2 -α 2 ) -D 2 U b + i P r α (D 2 -α 2 ) 2 -4 i α P r B D [D [F D]] , L 2 ≡ D 2 -α 2 , L 3 ≡ P r Re U -iα + i α D 2 , (14) 
In the unyielded zone, y ∈ -y 0 2 , y 0 2 we have:

f = 0 and L 3 θ = c θ. ( 15 
)
The boundary conditions, in terms of stream function, are:

f (±1/2) = f y (±1/2) = f (±y 0 /2) = f y (±y 0 /2) = 0 and θ (±1/2) = 0.
Concerning the regularized models, the linear stability analysis is similar to the one developed in the yielded zone for the previous case. However two fundamental differences remain: (i) the Bingham model leads to zero velocity perturbation at the interface and in the plug zone while the regularized models do not lead to unyielded regions, (ii) compared with the Bingham model, an additional viscous term appears in the Orr-Sommerfeld equation. Finally we get :

(L 1 + L * 1 ) f + P r Ra θ = c L 2 f , (16) 
L 3 θ + f = c θ , (17) 
where:

L * 1 ≡ -i P r B 1 α D 2 + α 2 G D 2 + α 2 and G = F + γ dF d γ .
The boundary conditions are written at walls: f (±1/2) = f y (±1/2) = 0 and θ (±1/2) = 0.

In comparison with the Bingham model, an additional operator L * 1 appears in Orr-Sommerfeld equation. Actually, this latter induces numerical diverging results due to the function D 2 G, since abrupt variations are observed at y = 0 and y = ±y 0 /2 (Fig. 3). For convenience, logarithmic coordinates are adopted, therefore the points for which D 2 G ≤ 0 are not represented.

Results and discussion

The discretization of the differential equations set is performed, for the Bingham and the regularized models, by means of a second-order centered These figures highlight the stabilizing effect of the Bingham number. According to [START_REF] Métivier | On linear stability of Rayleigh-Bénard Poiseuille flow of viscoplastic fluids[END_REF], this is a consequence of the the unyielded region increasing, in which the velocity perturbation vanishes, as well as the increase in the effective viscosity in the flow domain. When y 0 → 0, there is an outstanding discrepancy, in terms of critical conditions, with those obtained for Newtonian fluids. Métivier et al. [START_REF] Métivier | Linear stability involving the Bingham model when the yield stress approaches zero[END_REF] deal with this particular case. It is shown that the discrepancy is due to the fact that, in the frame of the linear stability analysis, the plug zone remains intact even when y 0 → 0.

When regularized models are used, the abrupt variation of D 2 G near the interface generates difficulties in the eigenvalues computation. In this case and similarly to [START_REF] Frigaard | On the usage of viscosity regularisation method for visco-plastic fluid flow computation[END_REF], spurious eigenvalues, are obtained as well as incoherent results from physical point of view. In fact, these difficulties increase when the thickness δ y of the transition zone decreases. In order to improve con-verging computations, the operator L * 1 is artificially cancelled and the values of ε are restricted to ε ≥ 0.01. The resulting equation can be seen as a regularization of the Orr-Sommerfeld equation.

The regularization of the Orr-Sommerfeld operator leads to spectra shown in Fig. [START_REF] Caton | Linear stability of circular Couette flow of inelastic viscoplastic fluids[END_REF]. These spectra are obtained at criticality. Preliminary numerical tests have been performed on the resulting spectra by varying N from 201 to 401. Results show that spectra are not modified with N , except some eigenvalues. These eigenvalues are such that c i < 0 and min |c i | = O(10 2 ). In this sense, these spurious values can't be confused with the least stable eigenvalues which are negative and close to 0. According to Fig. [START_REF] Caton | Linear stability of circular Couette flow of inelastic viscoplastic fluids[END_REF], one observes that spectra are slightly different comparing each model. Actually, the choice of the model modifies fundamentally the nature of the fluid via its rheological properties comparing to another model. Concerning the Bercovier and Papanastasiou models, one observes that for ε = 0.01, the tendency of spectra are close to the Bingham one. Few modifications are observed using the simple model by varying ε between 0.1 and 0.01.

Concerning critical conditions, Fig. [START_REF] Govindarajan | Stabilization of hydrodynamic flows by small viscosity variations[END_REF] presents the Ra c values obtained for each model as a function of y 0 , for the case P r = 10, Re = 1, ε = 0.1 and ε = 0.01. As expected, one observes that considering y 0 → 0, regularized models allow to obtain the critical Rayleigh number corresponding to the Newtonian case, i.e. Ra cN ew = 1750 [START_REF] Luijkx | Linear stability of mixed convection flows in horizontal rectangular channels of finite transversal extension heated from below[END_REF]. In addition, one can observe that the increase in y 0 has a stabilizing effect on the flow field for each model. Indeed, increasing y 0 increases the mean effective viscosity as well as the thickness of zone 1 in which the viscosity is very large. It is also noticeable that the critical conditions obtained with the regularized models can lead to strongly different values from those obtained with the Bingham model. The model leading to the largest difference is the simple model while the Papanastasiou model leads to the smallest difference.

When y 0 is fixed, decreasing ε makes the thickness δ y smaller and the effective viscosity larger in the zone 1. The increasing effective viscosity tends to stabilize the flow which is in agreement with [START_REF] Métivier | On linear stability of Rayleigh-Bénard Poiseuille flow of viscoplastic fluids[END_REF]. Concerning the decrease of δ y , it seems that it tends to destabilize the flow. The same tendency was indicated in [START_REF] Ern | Stability analysis of a shear flow with strongly stratified viscosity[END_REF]. Figure ( 6) also shows the effect of ε on Ra c for the three regularized models. One observes that the variation in ε values do not lead to converging critical conditions since ε modifies the rheological properties of the fluid, in particular the mean viscosity as well as the viscosity stratification in the flow. Actually, the decrease in ε stabilizes the flow for the simple and Papanastasiou models, while it destabilizes the flow for the Bercovier model.

The representation of the perturbation modes are given for each regularized model in Fig. [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF]. One can notice that the stream function has a non zero flat profile in the very high viscosity region (zone 1) considering the simple model, figure 7(a). Furthermore, using the Bercovier and Papanastasiou models, the stream function tends to vanish in this region similarly to the critical modes obtained with the Bingham model as given in Fig. [START_REF] Papanastasiou | Flows of materials with yield[END_REF].

As a conclusion, the usage of regularized models in instability problems leads to different results according to the chosen model. Indeed, the variation in ε value can modify the rheological properties of the material. In order to obtain physical results, the Orr-Sommerfeld equation has to be regularized, neglecting the ε terms. The comparison between regularized models indicates (i) that these models permit to recover the Newtonian critical conditions for weak values of y 0 , (ii) that the Bercovier and Papanastasiou models can tend to similar behaviour as the Bingham case, for y 0 > O(10 -1 ) and ε = 0.01. In this last case, same tendencies in spectra and perturbation modes are observed.

Finally, the RBP flow is unstable for both Newtonian and (exact) Bingham cases such as the Taylor-Couette flow. It seems that in such a case, the regularization can tend to the exact Bingham results, when the values of ε are small enough. -The effective viscosity is not defined in the plug zone for the Bingham model.

-Regularized models lead to the Newtonian critical conditions for weak values of yield stress.

-Convergence of the critical conditions between the simple and the Bingham models is not obtained.

-The Bercovier and Papanastasiou models can tend to the exact Bingham results.
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 1 Figure 1: Fully developed Poiseuille flow for a yield stress fluid
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 2 Figure 2: Effective viscosity as a function of y for the different regularized models, with y 0 = 0.2, ε = 0.1 and ε = 0.01 (--and ----: simple model, and : Bercovier model , ♦ and : Papanastasiou model). The vertical long-dashed lines which bound the transition zone are drawn only to illustrate the different zones and don't characterize the effective thickness δ y .
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 234 Figure 3: Second derivative of function G for y 0 /2 = 0.2 (B = 5.55), ε = 0.01 (• : simple model, : Bercovier model , : Papanastasiou model)
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 56 Figure 5: Spectra obtained at criticality for the regularized models and y 0 /2 = 0.14 Re = 1, P r = 10 (♦: Papanastasiou model ; O: Bercovier model and ∇: Simple model, with ε = 0.1 (white symbols) and ε = 0.01 (black symbols))

Figure 7 :

 7 Figure 7: Critical modes of the perturbation: temperature (left) and stream function (right) ( ------: Real part) ; ( ---: Imaginart part) ; y 0 = 0.14, Re = 1 and P r = 10.

Table 1 :

 1 Asymptotic behaviour of the rate of strain and the thickness of zone 2

	Simple model	Papanastasiou model	Bercovier model
	Zone 1:		
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Appendix A. Asymptotic analysis for the different regularized models

Appendix A.1. Simple model Considering first the simple regularized model. This model is described by Eq. [START_REF] Beris | Creeping motion of a sphere through a Bingham plastic[END_REF]. Developing it, we get a polynomial equation in power of γs :

for which the solution is :

In the zone 1, where τ << B, Eq. (A.2) could be expanded as follow: Then, we get:

In the zone 3, where τ >> B, Eq. (A.2) could be also written as follow:

This equation gives asymptotically:

Finally we obtain:

In the transition zone, where τ ∼ B, we write: 

In the zone 1, where τ << B, we apply the principle of least degeneration :

The zone where τ >> B concerns the case where γbe >> ε, then we write:

Finally, we obtain: γbe ∼ τ -B.

(A.25)

The method is similar as previous and permits to lead to:

Finally, connecting the solutions, we get: