
HAL Id: hal-00784917
https://hal.science/hal-00784917

Submitted on 5 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Load carrying capacity of systems within a global safety
perspective Part II. Attractor/basin integrity under

dynamic excitations
Stefano Lenci, Giuseppe Rega

To cite this version:
Stefano Lenci, Giuseppe Rega. Load carrying capacity of systems within a global safety perspective
Part II. Attractor/basin integrity under dynamic excitations. International Journal of Non-Linear
Mechanics, 2011, 46 (9), pp.1240. �10.1016/j.ijnonlinmec.2011.05.021�. �hal-00784917�

https://hal.science/hal-00784917
https://hal.archives-ouvertes.fr


www.elsevier.com/locate/nlm

Author’s Accepted Manuscript

Load carrying capacity of systems within a global
safety perspective Part II. Attractor/basin integrity
under dynamic excitations

Stefano Lenci, Giuseppe Rega

PII: S0020-7462(11)00150-8
DOI: doi:10.1016/j.ijnonlinmec.2011.05.021
Reference: NLM1892

To appear in: International Journal of Non-
Linear Mechanics

Received date: 20 February 2011
Revised date: 26 April 2011
Accepted date: 7 May 2011

Cite this article as: Stefano Lenci and Giuseppe Rega, Load carrying capac-
ity of systems within a global safety perspective Part II. Attractor/basin in-
tegrity under dynamic excitations, International Journal of Non-Linear Mechanics,
doi:10.1016/j.ijnonlinmec.2011.05.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/nlm
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.05.021


1 

 

LOAD CARRYING CAPACITY OF SYSTEMS WITHIN A 

GLOBAL SAFETY PERSPECTIVE. 
PART II. ATTRACTOR/BASIN INTEGRITY UNDER DYNAMIC EXCITATIONS 

 

Stefano Lenci 

Department of Architecture, Buildings and Structures 

Polytechnic University of Marche, Ancona, Italy, lenci@univpm.it 

 

Giuseppe Rega 

Department of Structural and Geotechnical Engineering 

Sapienza University of Rome, Rome, Italy, Giuseppe.Rega@uniroma1.it 

 

 
Abstract: The effects of the dynamic excitation on the load carrying capacity of mechanical systems are investigated 
with reference to the archetypal model addressed in Part I, which permits to highlight the main ideas without spurious 
mechanical complexities. First, the effects of the excitation on periodic solutions are analyzed, focusing on bifurcations 
entailing their disappearance and playing the role of Koiter critical thresholds. Then, attractor robustness (i.e., large 
magnitude of the safe basin) is shown to be necessary but not sufficient to have global safety under dynamic excitation. 
In fact, the excitation strongly modifies the topology of the safe basins, and a dynamical integrity perspective 
accounting for the magnitude of the solely compact part of the safe basin must be considered. By means of extensive 
numerical simulations, robustness/erosion profiles of dynamic solutions/basins for varying axial load and dynamic 
amplitude are built, respectively. These curves permit to appreciate the practical reduction of system load carrying 
capacity and, upon choosing the value of residual integrity admissible for engineering design, the Thompson practical 
stability. Dwelling on the effects of the interaction between axial load and lateral dynamic excitation, this paper 
supports and, indeed, extends the conclusions of the companion one, highlighting the fundamental role played by global 
dynamics as regards a reliable estimation of the actual load carrying capacity of mechanical systems. 

 
Keywords: Load carrying capacity, dynamic excitations, global safety, attractor-basin portraits, dynamical integrity, 
Koiter, Thompson. 

 

1. INTRODUCTION 

In the companion paper [1] we put the main contributions to the determination of the practical load 

carrying capacity of structures into an historical perspective, with the aim of showing how it is 

reduced by the loss of robustness of stable equilibria. In summary, we have recalled the works of 

Euler [2], who discovered branching (pitchfork and transcritical) bifurcations in elastic systems 

(talking in modern language, of course); of Koiter [3], who discovered the structural instability of 

those bifurcations, i.e. how model imperfections can lower the critical load or, equivalently, how 

pitchfork and transcritical (branching) bifurcations become saddle-node (snap) bifurcations; and, 

finally, of Thompson [4-6], who realized that classical stability, based on infinitesimal perturbations 

of initial conditions, is not enough for practical purposes. 
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We have mainly focused on Thompson’s contribution, which is the last one and which, in the 

authors’ opinion, is the decisive step toward the final understanding of the problem. Implicitly 

referring to a global safety approach, Thompson had a double intuition: 

(i) If the basin of attraction of a given attractor is not ‘large’ enough there will be no hope to 

observe it in real world applications. This can be reformulated by saying that classical local stability 

refers to infinitesimal changes in initial conditions, while global safety refers to finite changes in 

initial conditions. Thus, local stability must be complemented by robustness towards variations of 

initial conditions. In other words, safe basins must have a large enough magnitude. 

(ii) Basins of attraction must be topologically ‘uncorrupted,’ or dynamically integer, i.e., non-

fractal. More precisely, for a reliable estimation of the load carrying capacity we have to thrust only 

on the compact part of the safe basin, ruling out fractality, squeezing and other topological effects 

which reduce safety without appreciably affecting the magnitude of the safe basin. 

Of course, the overall transition from a local stability perspective to a global safety concept has 

also major implications as regards the involved kinds of global bifurcational events playing a 

meaningful role in engineering systems, on which possibly interventing – in addition – via a control 

procedure [7]. 

Before going on, it is useful to remark that with ‘attractor robustness’ we basically refer to the 

safe basin magnitude, while with ‘dynamical integrity’ we refer to the magnitude of the compact, 

uncorrupted, part of the safe basin. 

The first Thompson point can be addressed, and the main points highlighted, even in the absence 

of dynamic excitation. This has been done in Part I [1], where, after briefly dwelling on the Euler 

and Koiter theories, we focused on the reduction of load carrying capacity due to the loss of 

attractor robustness (Thompson approach). Note that, even if there is no external force, this analysis 

requires a truly dynamical approach, since it needs analyzing the effect of finite changes of initial 

conditions, or, equivalently, studying the evolution of safe basins for a growing governing 

parameters (e.g., the axial load of a beam). 

The main ideas have been illustrated in Part I with reference to an archetypal system (see Fig. 1 

of [1]), which is of course a crude approximation of real cases, but permits to highlight in a simple 

way the very basic underlying idea and the main mechanical issues. The simplicity of the model, 

and the absence of external excitation, have allowed us, for example, to address the matter without 

solving the equation of motion; not even the time history of the homoclinic orbit, which can be 

computed in principle (see Sect. 5 forward), has been used. 

The aim of this paper is to complement, and complete, Part I [1] by addressing the second 

Thompson point, which entails considering dynamic excitations. When dynamic excitations are 

added, in fact, the whole response picture is quite different, more complicate indeed, and, for 

example, numerical simulations are necessary. Accordingly, the global safety issue becomes more 
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involved, from both a theoretical and a practical point of view. The investigation of this issue 

constitutes the object of this paper, where we assume the lateral force q (the ‘imperfection’ in our 

archetypal model) to be of the form 

 )sin(1 tqq ω+ , (1) 

i.e., with an harmonic excitation of given frequency ω added to the static force. This is of course a 

simplification of the real excitations, but it is again archetypal and sufficient for our purposes. 

Furthermore, to simulate realistic situations we also consider a damping term acting on the 

structure, so that the equation of motion becomes (compare with eq. (3) of [1]) 

 0)cos())sin((
)sin(1

11)sin( 1 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

+
−+−+ βω

βα
βββ tqqpc . (2) 

The introduction of a dynamical excitation (and damping) has major effects: 

1) the equilibrium position becomes a periodic orbit (as far as the excitation amplitude is 

sufficiently small, otherwise more complex behaviours may occur); 
2) the topology of the safe basin, which becomes basin of attraction, is modified, with the overall picture of variable, 

local and global, dynamic response becoming very involved and requiring detailed considerations; 

3) the issue of dynamical integrity plays now a substantial role in determining the actual load 

carrying capacity of the system. 

These items will be analyzed separately in the following. More precisely, in Sect. 2, still keeping 

a Koiter point of view, we analyze the effects of the excitation on periodic solutions, focusing on 

bifurcations entailing their disappearance and thus playing the role of a Koiter critical threshold. No 

reference is done to basins of attraction. From the one side, this section is propaedeutic to the 

subsequent analysis, and from the other side, it confirms that the Thompson improvement to the 

Euler and Koiter ideas holds also, and especially, indeed, in the case of dynamically excited 

structures. 

The basins of attraction are instead considered in the remaining part of the paper. In Sect. 3 the 

main issues of dynamical integrity, including various adequate measures for evaluating it, are 

addressed, while in Sect. 4 the reduction of global safety – in terms of attractor robustness and/or 

basin erosion – is investigated by means of the so-called integrity profiles, an useful graphical tool 

which permits a visual appraisal of the reduction of load carrying capacity. The effects of both the 

axial load (Sect. 4.1) and the amplitude of the dynamical excitation (Sect. 4.2) are considered. 

The reduction of integrity is triggered by the global bifurcation of the homoclinic orbit 

surrounding the potential well, which allows penetration of eroding out-of-well fractal tongues into 

the safe basin of the in-well attractors. Thus, in Sect. 5 the homoclinic bifurcation of the hilltop 
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saddle is determined by means of the Melnikov method, which permits an analytical prediction of 

the threshold where the erosion starts. 

The paper ends with some conclusions (Sect. 6) of the present Part II and of the whole work. 

2. PERIODIC SOLUTION SCENARIO: THE KOITER LOAD CARRYING CAPACITY 

According to the ‘Koiter philosophy,’ which does not consider the basins of attraction in the 

definition of the load carrying capacity, we address in this section only periodic solutions and their 

range of existence and stability. We aim at highlighting how the stability threshold of the axially 

loaded system is affected by the transition from classical equilibria to periodic solutions, entailed by 

the dynamical excitation. 

Before proceeding in the detailed analysis of the periodic orbits, it is necessary to determine the 

resonant behaviour of the system. The undamped natural circular frequency Ω (simply frequency in 

the following) around the stable centre close to the rest position (see Fig. 5 of Part I) can be 

determined by assuming β(t)=βe+εsin(Ωt), c=0 and q1=0 in (2). Expanding in ε-series up to the first 

order in ε we find that the equilibrium point βe satisfies eq. (6) of Part I, while Ω is given by 

 322 )]tan(1[)cos(
2)cos( ee

e

pqp ββα
β

−−+
−

=Ω . (3) 

Note that for q=0 (perfect case) we have βe=0 and the simple expression 

 p−=Ω
2

2 α . (4) 

For α=0.8 and q=0.01, on the other hand, the natural frequency is reported in Fig. 1 as a function 

of the axial load p. We have Ω(p=0)=0.623 and clearly the frequency goes to zero in 

correspondence of p=0.302, i.e. of the Koiter critical load (see Sect. 4 of Part I). 

From Fig. 1 we can clearly distinguish three different regions for the forcing frequency ω: 

1) ω>0.623, where for every value of p there will be no resonance; 

2) 0.623>ω>0.3 (this number is indicative, see Fig. 1), where the resonance occurs for axial loads 

sufficiently far away from the Koiter threshold; 

3) 0.3> ω, where the resonance occurs for axial loads around the static buckling load. 

For each region, the periodic solutions scenario obtained by a path following algorithm starting 

from p=0 is reported in the following Figs. 2 (ω=0.8), 6 (ω=0.5) and 7 (ω=0.2). 
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Fig. 1. The natural frequency Ω as a function of the axial load p for q=0.01 and α=0.8. 
 

2.1. Out of the interval of system resonance frequency 

Let us first consider a value of excitation frequency (ω=0.8) out of the resonance range. 
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Fig. 2. (color online) Path following of periodic solutions for c=0.01, q=0.01, α=0.8 and ω=0.8. Blue=attractor, 

green/red=regular/flip saddles. 
 

Figure 2 confirms that for increasing axial load there is no resonance. For a very small excitation 

amplitude (q1=0.005) the path is similar (and practically can be superimposed) to the static one 

reported in Fig. 5 of Part I. For increasing q1 the paths maintain their general shape, but a period 

doubling (PD) bifurcation appears (point A, at about  p=0.1813 for q1=0.05; one eigenvalue exits 

from the unitary circle through –1) determining a temporary loss of stability of the main path, which 

then regains stability by an inverse PD bifurcation (point B; the eigenvalue re-enters the unit circle 

through –1) before undergoing the final saddle node (SN) bifurcation (point C). 
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The unstable (red) interval becomes larger when increasing q1, and eventually it reaches p=0, 

meaning that in the absence of axial load the system is unstable, due to dynamic excitation, and thus 

unable to carry any axial load. However, this latter case occurs for very large values of q1 

(q1=0.176, see the forthcoming Fig. 5), which can no longer be considered as irremovable 

‘imperfections’ and thus are out of the scope of the present work. 

The brute force bifurcation diagram of Fig. 3 shows that in correspondence of the PD bifurcation 

the solution jumps to the stable solution in the lateral potential well, around β=π (see Fig. 4 of Part 

I), and that, by further increasing p, it no longer jumps back to the upper stable part of the main path 

B-C. This global event, undetectable – though possibly conjecturable – via the sole local stability 

analysis of Fig. 2, highlights how the PD bifurcation value represents the ultimate load carrying 

capacity of the system, which is thus strongly reduced in the presence of dynamical excitations for 

this frequency value. 

 

0

0.4

3.5-0.5 β

p

 
Fig. 3. Brute force bifurcation diagram (for increasing p) for c=0.01, q=0.01, q1=0.05, α=0.8 and ω=0.8. 

 

There are two important consequences of the previous observation. The first is that in the case of 

(even small) dynamical excitations the load carrying capacity of the system (even in the ‘Koiter 

sense’) is strongly reduced, so that considering only static imperfections can be very unsafe. The 

second is that the load carrying capacity is still determined by local bifurcations. This is a 

peculiarity of the ‘Koiter approach,’ which is intrinsically confirmed by the fact that a large use of 

perturbation methods has been made in the past within the Koiter scientific environment. On the 

contrary, the ‘Thompson approach’ involves a global analysis. 

We now want to provide an analytical approximation of the equilibrium paths and of the related 

bifurcations reported in Fig. 2. The basic observation is that the PDs and the SN bifurcations occur 

for low values of β, so that we can consider the following approximate governing equation 
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obtained by expanding the governing equation (2) up to the second order in β. 

We use the harmonic balance method, so that the solution is approximated by the expression 

 ( ) ( )tbtbtbtbbt ωωωωβ cossin
2
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2

sin)( 43210 ++⎟
⎠
⎞

⎜
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⎛+⎟

⎠
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⎜
⎝
⎛+= . (6) 

The b1 and b2 terms are inserted in (6) to describe the PD bifurcations; indeed, these bifurcations 

entail a doubling of the period, which is captured by harmonic terms of pulsation ω/2. 

By inserting (6) in (5) we obtain 

 ( ) ( ) 0...cossin
2

cos
2

sin 43210 =+++⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+ tetetetee ωωωω . (7) 

According to the harmonic balance method, we equate to zero e0, e1, e2, e3 and e4, thus obtaining a 

nonlinear algebraic system of five equations in the five unknowns b0, b1, b2, b3 and b4. 

Equations e1=0 and e2=0 are, respectively, 

 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −++− 10

4
1

2
31

242
bbbkbq

Eε
ω 0

222 2
3

1
01 =⎟

⎠
⎞

⎜
⎝
⎛ −− bcbkbq ω , 

 +⎟
⎠
⎞

⎜
⎝
⎛ +− 1

3
1

01

222
bcbkbq ω 0

242 20
4

1

2
31 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−+− bbbkbq

Eε
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where 

 pE −=
2
αε ,    qk −=

4
3 2

1
α . (9) 

Equations (8) constitute a linear homogeneous system in b1 and b2 having only the solution 

b1=b2=0, apart when its determinant det (which contains the other unknowns b0, b3 and b4) vanishes. 

det=0 is the condition for branching of a period doubled solution from the main path, i.e., the 

condition for PD bifurcations. Therefore, in the following we assume b1=b2=0 to solve the 

remaining algebraic equations and then monitor det. When it vanishes, we have a PD bifurcation on 

the main path. 

Inserting b1=b2=0 in the equations e0=0, e3=0 and e4=0 we get, respectively, 

 0ˆ4ˆ4ˆ22 0301
2
4

2
3

2
0 =+−−++ qbbbqbbb Eε , 

 0ˆ8)ˆ(88ˆ)834( 43301
2
4

2
3

2
0 =−−+−−++ bcbbbqbbb E δε , 

 0)ˆ(4ˆ44ˆ 4340431 =−++− bbcbbbbq E δε , (10) 
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which is a system of algebraic quadratic (due to the approximation (5)) equations. In (10) we have 

defined 

 
1

1
1ˆ k

qq = , 
1

ˆ
k
qq = , 

1

ˆ
k
cc ω

= , 
1

2

k
ωδ = , 

1

ˆ
k

E
E

εε =  (11) 

to simplify the expressions. 

The system (10) can be easily solved numerically (indeed, it can even be solved analytically by 

an algebraic manipulator, but the expressions are so complex to be ineffective in practice). As an 

example, we report in Fig. 4 the solution for q=0.01, q1=0.05, ω=0.8, α=0.8, c=0.01 and for p∈[0, 

pcrit], which should be compared with the second (from the top) curve of Fig. 2. 

 

                                   
(a)                                                                                                   (b) 

 
(c) 

Fig. 4. (a) b0, (b) amp and (c) det as functions of p for q=0.01, q1=0.05, ω=0.8, α=0.8 and c=0.01. 
 

In Fig. 4a it is depicted b0, i.e. the average point of the oscillations. Note that due to the quadratic 

nonlinearities, for p=0 it does not coincide with the unexcited equilibrium position βe (although it is 
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numerically not so different; in fact, they coincide up to the first order in q1, see below). It has the 

same qualitative behavior as the corresponding curve of Fig. 2; however, the comparison cannot be 

also quantitative, because in Fig. 2 it is reported the point in the stroboscopic Poincarè map, while 

in Fig. 4a the middle point of the oscillations. 

The upper point of the curve of Fig. 4a corresponds to the SN bifurcation. From Fig. 4a we 

obtain pcrit=0.2978, which, when compared with pcrit≅0.296 obtained from the numerical 

simulations of Fig. 2, show the effectiveness of the theoretical prediction. Remember that in the 

static case pK=0.3014 (see Sect. 4 of Part I); this means that in this case the dynamic excitation 

entails only a slight decrease of the SN bifurcation. 

In Fig. 4b it is reported the amplitude 

 2
4

2
3 bbamp +=  (12) 

of the harmonic oscillations. It is worth to note that it decreases by increasing p, and reaches the 

value amp≅0.0798 when p→pcrit. This behavior has been confirmed by numerical simulations of the 

governing equation (2). 

Finally, in Fig. 4c it is depicted the determinant of system (8). It has clearly two zeros, for 

p=0.184 and p=0.227, in perfect agreement with the points A and B of Fig. 2, which are at 

p≅0.1823 and p≅0.2282, respectively. 

By drawing several curves like that of Fig. 4c, and by determining on them the zero points of det, 

it is possible to obtain the loci of PD bifurcations in the (q1, p) parameters space, which are reported 

in Fig. 5 together with the upper SN bifurcation. Note that the PD bifurcations exist for q1>0.007. 

 

0

0.32

0.180 q1

p

SN

PDup
stable

unstable

stable

PDlow

 
Fig. 5. The curves of SN, upper and lower PD bifurcations in the (q1, p) parameter plane. q=0.01, ω=0.8, α=0.8 and 

c=0.01. The dashed lines correspond to p and q1 values along which the integrity profiles of the forthcoming Figs. 10 
and 12 are built. Note that the thick line corresponds to the (discontinuous) Koiter threshold in the presence of dynamic 

excitation. 
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The zone below the lower (thicker) curve PDlow is the region of stability of the period 1 solution, 

which can be considered as the region of ‘Koiter’ dynamic admissibility. This identification could 

appear rough and too conservative at a first glance, because above PDlow periodic solutions do exist. 

In particular, for low values of q1, above PDlow there are period 2 attractors (see the forthcoming 

Fig. 9e), while above PDup the main period 1 attractor regains stability (see Fig. 2). However, the 

period 2 solution cannot always be considered as a safe (e.g., acceptable) solution, while the upper 

period 1 solution is not always reachable by increasing p. This means that PDlow is really the Koiter 

critical threshold in the presence of dynamic excitations. 

The interaction between the static (p) and dynamic (q1) causes of loss of load carrying capacity 

can be summarized as follows (Fig. 5). For q1<0.007 the dynamic excitation has practically no 

effect: the system fails at about pK (i.e. at about the SN obtained in Part I), since in this range the 

dynamic excitation lowers this threshold only slightly. At q1=0.007 there is a sudden fall down of 

the critical load, which then continues to decrease smoothly for increasing values of q1. 

It is also worth noting that, if the static (Koiter) imperfection q is also varied, the overall pattern 

of the threshold curves remains substantially unchanged from the qualitative viewpoint, although 

the regions of stable periodic solutions become lower and lower.  

2.2. Within the interval of system resonance frequency  

To illustrate the ‘middle’ region of excitation frequency, where resonance occurs sufficiently far 

away from the upper SN, we consider ω=0.5 and report in Fig. 6 the periodic solutions scenario. 

 

0

0.32

1.5-0.8 β

p

q1=0.001

0.005

0.003

0.01
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Fig. 6. (color online) Path following of periodic solutions for c=0.01, q=0.01, α=0.8 and ω=0.5. Blue=attractor, 
green/red=regular/flip saddles. 
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From (3) we have Ω=0.5 for p=0.131, and in fact for that value of p the classical nonlinear 

resonance behavior is observed in Fig. 6, with two SN bifurcations determining the loss of stability 

of the non-resonant solution (point A in Fig. 6) and the appearance of the resonant, large amplitude, 

solution (point B). The bending of the resonance curve is toward lower values of p, i.e. toward 

higher values of Ω (see Fig. 1). For increasing values of q1, the bending of the curve becomes 

higher and higher, along with the peak amplitude value. However, for ‘large’ values of q1 (for 

example for q1=0.03 in Fig. 6) the path is very complicated, and strongly enters the region p<0. 

In the upper part of the path, a double PD bifurcation is observed (points C and D) before the 

final SN (point E). Similarly to what happens in Fig. 2, they appear for a small value of q1 (for 

example they are not present in the path corresponding to q1=0.001), and then ‘propagate’ along the 

path for increasing q1. 

Determining the load carrying capacity in the present case (still in the ‘Koiter philosophy’) is 

quite difficult. In fact, for small values of q1 the resonance is not so developed, so that a jump from 

the non-resonant to resonant periodic attractor (occurring at point A) may not be actually 

dangerous. In this case the load carrying capacity is determined by the upper SN (point E) or, when 

present, by the lower PD (point C). 

For increasing values of q1, instead, and even remaining in the range of ‘small’ values (so that q1 

can still be considered as an irremovable imperfection), the jump at A may be unsafe, namely it can 

lead to a resonant solution too far away from the reference one, thus possibly representing the actual 

load carrying capacity of the system. This is likely to be the case of the ‘large’ q1=0.03 value, for 

which, in addition, the SN bifurcation value on the non-resonant path is so small that practically the 

system loses completely its load carrying capacity. Possibly, this excitation amplitude is too large 

for being considered of interest in practical applications, yet it is worth that this conclusion can be  

made based on the sole local analysis. Nevertheless, in all of these cases, a global analysis is 

evidently necessary to fully account for the effects of the dynamic excitation, so that we need to 

move from the ‘Koiter’ to the ‘Thompson’ approach. 

Also for the frequency value (ω=0.5) herein considered an analytical solution by the harmonic 

balance, or similar methods, is possible. It however requires more care to describe the nonlinear 

resonances. We do not pursue this point to limit the length of the paper. 

 

The most complicated situation is observed in the third region of excitation frequencies, where 

the resonance is close to the upper SN. A representative case is reported in Fig. 7 for ω=0.2. We 

have Ω=0.2 for p=0.294 (see Fig. 1), i.e. the resonance is really very close to the upper SN. 
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Fig. 7. (color online) Path following of periodic solutions for c=0.01, q=0.01, α=0.8 and ω=0.2. Blue=attractor, 
green/red=regular/flip saddles. 

 

For increasing values of p, at about p≅0.0264 we observe a resonance, which becomes visible 

and relatively important only for ‘large’ values of q1. By noticing that from (3) we have Ω=0.6 for 

p=0.0269 we see that this is an order-3 superharmonic resonance. It is not so pronounced because 

the quadratic nonlinearities are dominant in this system. 

When q1 is very small (e.g. q1=0.001), by increasing p we directly reach the upper SN 

determining the load carrying capacity of the system in this case. For larger (but still small) values 

of q1 we note a resonant behavior. For q1=0.005 this occurs at p≅0.209. Again we appeal to (3) to 

note that Ω=0.4 for p=0.212, so that this is an order-2 superharmonic resonance. Contrary to the 

previous order-3 resonance, and due to the quadratic-like behavior of the nonlinearity, it is now 

very pronounced, and its nonlinear effects become visible for increasing values of q1; for example, 

for q1=0.01 the two SN bifurcations determining the nonlinear hysteresis loop are still present (they 

are marked with points in Fig. 7). 

For larger values of q1 the nonlinear behavior becomes more and more important, and the 

bending of the resonance curves becomes predominant, and quite complicated, indeed. For 

example, in the case q1=0.03 (the last path completely within the window of Fig. 7), after the SN A 

where the small amplitude oscillation loses stability there is a long unstable path leading to the SN 

B where a large amplitude periodic orbit is born. Then, there is a small range where the resonant 

cycle is stable; it loses stability by a PD bifurcation (at C), then there are three other PDs at which 

alternatively the oscillation regains and loses stability, up to the upper SN D where stability is 

definitely lost. 

In all these cases, due to the occurrence of clearly unsafe jumps, the load carrying capacity is 

certainly given by the p threshold for the SN A, when present, i.e. for moderately large values of q1. 

It is evidently much lesser than the static Koiter load, and governed by a superharmonic resonance. 
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Here, in contrast to the case of Fig. 6 where it is dominant, the main resonance is too close to the 

upper SN to play a clearly visible role. More precisely, it is not even activated for ‘large’ values of 

q1, because in this case the path remains quite far apart from the threshold p=0.294. 

 

The main overall conclusion of this section is that in the presence of dynamical excitation the 

response scenario exhibiting periodic orbits becomes much more complex than the static one, even 

in the case of external frequencies out of the resonance interval. In fact, both secondary (PD) 

bifurcations and various jump phenomena ensuing from resonances reduce the load carrying 

capacity even for relatively small excitation amplitudes. 

But the situation is even more complex. In fact, as we already saw in Sect. 5 of Part I when 

considering the system global safety in the absence of dynamical excitations, close to local 

bifurcations the basins of attractions shrink to zero, so that the practical (Thompson) load carrying 

capacity is smaller than that discussed in this section. To determine it we need a global approach 

fully accounting for the actual dynamical integrity of the system. This will be the subject of the next 

two sections. 

3. ATTRACTOR-BASIN SCENARIO: THE DYNAMICAL INTEGRITY PERSPECTIVE 

In this section we want to reproduce the analysis in Sect. 5 of Part I in the presence of dynamical 

excitations. From a practical point of view the major novelty is that the safe basins, which are now 

basins of attraction, can no longer be computed analytically, and need heavy numerical simulations, 

so that the analysis becomes quite time consuming. 

The most important theoretical changes are instead associated with the possible fractalization of 

basins of attraction, which is illustrated in Fig. 8, where, by comparing Fig. 8a with Fig. 8b, it is 

clearly seen the fractalization due to dynamic excitation. The coexistence (and competition) of more 

attractors, which is another important consequence of the dynamic excitation, is also illustrated in 

Fig. 8b, where five different basins are visible (see the figure caption for their description). From 

Fig. 8b it is apparent how the basins of other attractors (in particular the red one) influence the basin 

(the white one) of the periodic attractor of interest (which is the perturbation of the rest position) 

through distributed fractalization. 
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(a)                                                                               (b) 

Fig. 8. (color online) Basins of attraction for c=0.01, q=0.01, α=0.8, p=0.05 and ω=0.8. (a) q1=0 (without dynamic 
excitation) and (b) q1=0.05 (with dynamic excitation). White = basin of a period 1 oscillation around β=0 - the attractor 
of interest; red = basin of a period 1 oscillation around β=π; blue = basin of a clockwise rotation ( 0>β ); cyan = basin 

of an anti-clockwise rotation ( 0<β ); green = basin of a period 6 oscillation around β=π (it is just after a PD 
bifurcation of a period 3 oscillation). 

 

As Fig. 8b clearly shows, due to fractality the whole  basin of attraction is no longer a safe, i.e. 

integer, region – as in the unexcited case – where the attractor is robust against dynamical 

perturbations constituted by changes in the initial conditions. In fact, smaller (with respect to the 

unexcited case) perturbations are sufficient to lead to another attractor. 

To overcome this point, full recourse has to be made to the dynamical integrity concept, by also 

properly addressing the matter of a reliable choice of how to measure the integrity. The Global 

Integrity Measure (GIM) [4, 8], already referred to in Part I [1] to deal with the robustness of stable 

equilibria, is the magnitude (the area in 2D) of the basin of attraction normalized with respect to a 

reference unexcited case. However, it is unable to take the fractality of the basin of attraction into 

account. The so-called Local Integrity Measure (LIM) [5] is the normalized minimum distance 

between the attractor and its basin boundaries (normalized means divided by a reference number, 

usually the unperturbed one, so that LIM is a dimensionless number, like GIM). This is a measure of 

the compact part of the basin around the attractor, so it succeeds in ruling out the fractal part of the 

basin from the dynamical integrity considerations. In spite of this valuable property, it also has two 

main drawbacks. The first is that it is computationally onerous, especially for chaotic attractors, 

while the second is that it works only for basins of attraction and cannot be generalized to different 

definitions of safe basins, which in a modern viewpoint can be considered also as subsets of the 

phase space sharing some common properties, e.g. a confined response, instead of the mere set of 

initial conditions approaching a common attractor. 

The previous disadvantages have been surmounted by the introduction of the so-called Integrity 

Factor (IF) [7-9], which is the normalized radius of the largest hyper-sphere (circle in 2D) 

belonging to the safe basin. Like LIM, this measure is able to rule out the fractal part of the basin 
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from the dynamical integrity, but contrary to LIM it is computationally easy (it requires just a 

command in MatlabTM) and is valid for any kind of safe basin, not only for basins of attraction. The 

circle related to the IF is reported in Fig. 8b for the attractor of interest. 

It is important to remark that in the absence of fractal basins boundaries GIM, LIM and IF are 

somehow equivalent; only in the presence of fractality the use of LIM or IF may become necessary. 

To illustrate qualitatively the reduction of dynamical integrity of the periodic attractors entailed 

in the axially loaded system by a lateral dynamical excitation, we report in Fig. 9 a succession of 

basins of attraction for increasing values of p and for fixed values of the other parameters. This 

picture is the ‘equivalent,’ in the dynamical case, of Fig. 7 of Part I. The comparison between these 

two figures highlights the more complex behaviour under dynamic excitation. The periodic attractor 

in the central part (which is the attractor of interest for being the perturbation of the rest position) in 

Fig. 9 corresponds to the curve q1=0.05 of Fig. 2 and to Fig. 4. 

 

(a) (b)

(c)  (d)

(e) (f) 

Fig. 9. (color online) Basins of attraction for c=0.01, q=0.01, α=0.8, q1=0.05, ω=0.8 and for increasing values of p. (a) 
p=0.00; (b) p=0.05; (c) p=0.10; (d) p=0.15; (e) p=0.20 and (f) p=0.25. The window is –π<β<π and 1.3< β <1.3 in every 

picture. 
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Apart from the overall reduction of size of the basin of attraction (both the overall size and the 

size of its compact part, see the circles related to IF) and the extended fractality, Fig. 9 highlights 

other interesting points, which are now illustrated. 

In Fig. 9a there are two attractors in the central potential well, one of period 1 and one of period 

3. Actually, the period 3 attractor soon disappears (it is no longer present in Fig. 9b), but its 

presence permits in any case to address a theoretical issue. In fact, in this and similar cases we can 

alternatively consider the basin of attraction of a single attractor, or the union of the basins of all 

attractors belonging to the potential well. In the first case we are addressing the dynamical integrity 

of a given attractor, in the latter the dynamical integrity of a potential well. Which one is the more 

interesting point of view depends on the application at hand, and there are no general rules; 

however, one must be aware of the difference. As an example, in Fig. 9a we have considered as safe 

basin the union of the basins of the two attractors belonging to the potential well (as clearly shown 

by the IF circle). 

In Fig. 9e the main period 1 attractor has lost stability by a PD bifurcation (see Figs. 2 and 4c) 

and, accordingly, a period 2 attractor is observed. This has strong consequences in terms of 

dynamical integrity. In fact, due to the fractal part separating the two compact parts of the basin 

(each one around the two points of the attractor in the stroboscopic Poincarè section), the radius of 

the largest circle, and the associated integrity, suddenly decreases. This fact, which is better 

detected by IF than by GIM, is one (representative) example of several mechanisms determining the 

sudden, dangerous, reduction of dynamical integrity. 

The qualitative analyses of Fig. 9 must be complemented by a quantitative analysis, which is 

achieved by the construction of integrity profiles which are actual dynamic counterparts of the 

robustness profiles of stable equilibria under finite-amplitude imperfections reported in Figs. 8 and 

9 of Part I [1]. Here, however, the governing parameters mainly influencing the dynamical integrity 

are two, the axial load p and the dynamic excitation q1 (see Fig. 5), and we have to address the 

effects of both of them. 

4. INTEGRITY PROFILES AND THE THOMPSON LOAD CARRYING CAPACITY 

Having in mind the reference case q=0 and q1=0, the curve GIM(p) is the upper one reported in Fig. 

9 of Part I [1]. Since there is no dynamical excitation, and thus no associated fractality, the curve 

IF(p) is not needed in this case, and indeed it was not reported therein. In fact, in Part I, the curve 

GIM(p) has been said to merely represent a profile of robustness of the stable equilibrium position 

under finite size perturbations. 
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4.1. Increasing axial load at fixed dynamic excitation: robustness profiles 

The aim of this subsection is to replay the analysis of Part I [1], i.e. to see how the global safety 

decreases when increasing the axial load, but now considering the effect of the dynamic excitation. 

In particular, we want to discuss how the dynamic excitation modifies the Thompson critical load. 

Both the GIM(p) and IF(p) for q1=0.05 are reported in Fig. 10, where the area and the radius of 

the circle are normalized with respect to the values for p=0 and q1=0. The GIM curve for the 

unexcited case q1=0 is also reported for comparison. Like that profile, the curves for q1≠0 basically 

represent profiles of robustness of the reference solution, which is now periodic. A difference is in 

the role possibly played by the fractal erosion, which is however, herein, a substantially localized 

phenomenon, as somehow expectable given the actual non-evolutionary, static indeed, character of 

the present control parameter. The profiles have been built by constructing several basins of 

attraction for increasing values of p, and measuring the area of the basin and the radius of the 

largest circle. The safe basin is the union of the basins of all attractors belonging to the potential 

well. Some of the basins used for its construction are reported in Fig. 9, while the periodic attractor 

scenario is reported in Fig. 2 (numerical) and Fig. 4 (analytical). 

 

 
Fig. 10. (color online) The robustness profiles for IF and GIM. c=0.01, q=0.01, α=0.8, q1=0.05 and ω=0.8. The GIM 

curve for the unexcited case q1=0 is also reported for comparison. 
 

The first observation which follows from Fig. 10 is that the GIM with dynamic excitation is 

systematically well below the corresponding GIM curve in the absence of excitation, although the 

two curves share a similar qualitative behaviour (only IF has a different qualitative behaviour). This 

shows the meaningful effects of the excitation in reducing the safety of the system. To have a 

quantitative idea of the decrement, let us suppose that the admissible GIM is 20%, which is quite a 

small value, indeed. We then obtain a ‘dynamic’ practical stability (Thompson) threshold 

pT(q1=0.05)=0.116 which is 66% of pT(q1=0)=0.175, namely the dynamic excitation almost halves 

the ‘static’ practical stability (Thompson) threshold. Note that pT(q1=0.05) is also 64% of the 
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practical (i.e., ‘dynamic’) Koiter critical load pK≅0.18 (corresponding to the PDlow bifurcation of 

the path of Fig. 2, see Sect. 2.1) and 39% of the theoretical (i.e., nearly ‘static’) Koiter critical load 

pK≅0.296 (corresponding to the final SN bifurcation of the path of Fig. 2). This means that, 

accounting for also the global effects which characterize the actual dynamic response, the practical 

stability threshold pT(q1=0.05) is about one third of the theoretical Koiter critical load. Overall, it is 

apparent that full consideration of the effects of a dynamic excitation entails a strong reduction of 

the actual critical threshold and of the structural performance. 

In Fig. 10, initially IF<GIM because we are around p=0 where this happens for every value of q1 

(see forthcoming Fig. 11). But when p increases above p≅0.035, GIM passes below IF and then 

decreases faster than IF. The temporary loss of stability of the period 1 attractor (see the path in Fig. 

2) is clearly highlighted by a strong reduction of the integrity, which almost vanishes, visible in 

both curves. In particular, GIM accounts for the progressive – yet smooth – reduction of robustness 

of the periodic attractor entailed by the  decreased magnitude of its basin (see Fig. 9), whereas IF  is 

able to catch the sudden reduction of basin compactness occurring at p≅0.18 (Figs. 9d and 9e). 

From a practical point of view this means that indeed, due to global effects, we cannot actually 

reach the upper stable part of the local bifurcation path by increasing p, so that, as previously 

anticipated, the practical Koiter critical threshold can be identified with the PDlow threshold. 

In terms of load carrying capacity, we can conclude again that the Thompson ‘critical threshold’ 

– now computed either referring to GIM or to IF and not only to GIM as in Part I – is lower, and 

possibly much lower, than the Koiter one. This is especially true for GIM because, as in the case 

q1=0, GIM reaches the Koiter threshold PDlow by a practically horizontal slope, which entails (and 

indeed is the root of the) sensitivity to dynamical perturbations. 

After the interval between the two PD bifurcations, the main period 1 oscillation recovers 

stability (Fig. 2) and integrity before definitely disappearing through the final SN bifurcation. This 

is particularly evident with IF which is again able to catch the recuperated compactness of the basin 

from about Fig. 9e to Fig. 9f. Yet, this behavior has no effects in terms of load carrying capacity 

since it practically ends (in the Koiter sense) at PDlow 

Figure 10 shows that GIM is the most conservative measure of integrity.  The inequality GIM<IF  

is quite uncommon and has not been systematically observed in other works [7-10], where, 

however, the driving parameter is usually the dynamic excitation amplitude. A justification is 

reported in the following Subsection 4.2, based on the different depth of the two potential wells. 

4.2. Increasing dynamic excitation at fixed axial load: erosion profiles 

The curves in Fig. 10 are robustness profiles for increasing axial load p, obtained at a fixed non-

vanishing value of the excitation amplitude q1. They also highlight some (minor) effect associated 
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with the topological erosion of the reference attractor basin. However, in terms of dynamical 

integrity, actual erosion profiles are obtained by increasing the excitation amplitude q1, at fixed 

values of the axial load p [7-10]. In the absence of axial load (p=0) both the GIM(q1) and IF(q1) are 

reported in Fig. 11, where again the area and the radius of the circle are normalized with respect to 

the values for p=0 and q1=0, and the safe basin is the union of the basins of all attractors belonging 

to the potential well. 

 

 
Fig. 11. (color online) The erosion profiles for IF and GIM. c=0.01, q=0.01, α=0.8, p=0 and ω=0.8. 

 

Both curves start from 1, due to the normalization, and end where the last attractor disappears at 

the value of the limiting (i.e., purely dynamic) ‘Koiter’ load carrying capacity q1,K≅0.177 (see Fig. 5 

at p=0): this is the escape load of the system. The central part of the two curves shows a quite 

distinct behaviour. In particular, IF is lower than GIM, sometimes much lower, meaning that there 

is a large fractal part of the basin which does not contribute to the dynamical integrity. This is an 

example in which using GIM would lead to unsafe conclusions, and IF is absolutely needed for a 

reliable integrity evaluation. This behaviour has been observed repeatedly in previous authors’ 

works [7-10], although it is not general, as we have seen in Fig. 10 which, however, is not an 

erosion profile. 

The curves in Fig. 11 confirm once more that the practical (Thompson) load carrying capacity is 

lower, and possibly much lower, than the Koiter one. This depends of course on the admissible 

value of residual integrity, and on the employed integrity measure. For example, if we admit that 

40% of the initial integrity is still acceptable, we have 14.0,1 ≅GIM
Tq  (corresponding to 79% of the 

Koiter threshold) and 08.0,1 ≅IF
Tq  (45% of the Koiter threshold). If, instead, one needs a practically 

uneroded situation (e.g. 80% of the initial value), then 115.0,1 ≅GIM
Tq  (corresponding to 65% of the 
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Koiter threshold) and 04.0,1 ≅IF
Tq  (22% of the Koiter threshold). These numbers further confirm 

that, in this case, IF is more conservative than GIM to a large extent. 

The GIM curve with q1=0 in Fig. 10 and the two (GIM and IF) curves in Fig. 11 refer 

respectively to the coordinate axes delimiting the stable region in the (q1, p) parameters space of 

Fig. 5, and correspond to the two limit cases of no dynamic excitation (q1=0) and no axial load 

(p=0). To have an idea of what happens in other parts of that region, in addition to the other curves 

in Fig. 10, we report in Fig. 12 the erosion profiles drawn along the horizontal dashed line of Fig. 5. 

Again we have used the case p=0 and q1=0 to normalize the curves – which therefore do not start 

from 1 for q1=0 (Fig. 12, where p=0.1) and for p=0 (Fig. 10, where q1=0.05) –  so that they are 

comparable with each other and with Fig. 11. 

 
Fig. 12. (color online) The erosion profiles for IF and GIM. c=0.01, q=0.01, α=0.8, p=0.1 and ω=0.8. 

 

The main difference between the curves of Figs. 11 and 12, which are both obtained for 

increasing q1 but for different values of p, is that now IF is always higher than GIM, and thus the 

latter is the most conservative measure.  

This different behaviour can be explained by noting that for p=0 the potential wells around β=0 

and β=π have the same depth, as shown in Fig. 2a of Part I. Thus, roughly speaking, they have the 

same ‘degree of attractivity,’ so that the latter does not capture the basin of the former by an 

‘unbalanced potential effect,’ and the safe basin (as well as its GIM) decreases ‘slowly.’ In parallel, 

however, the reciprocal fractalization, triggered by the homoclinic bifurcation of the hilltop saddle 

proceeds, so that IF strongly reduces. IF is thus lesser than GIM. 

For p=0.1, on the other hand, the potential well around β=π is much deeper than that around β=0 

(Fig. 2a of Part I), and thus it is much more ‘attractive.’ So attractive, evidently, to capture the area 

of the safe basin from the other well for whatever q1 value, thus entailing an overall reduced value 

of its GIM. An example is reported in Fig. 8 (which however refers to p=0.05), where the red area – 

already larger than the white area for q1=0 (Fig. 8a) –  tends to progressively erode it for q1≠0 (Fig. 
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8b). This phenomenon is certainly amplified by the approximation of the numerical simulations, 

whose outcomes in the fractal basin boundaries are more ‘attracted’ toward the deeper, more robust, 

well. 

The fractalization of course proceeds also in this case (we are above the hilltop homoclinic 

bifurcation threshold, see Sect. 5), but evidently it is not so fast to cancel the ‘unbalanced potential 

effect’ before getting to the final escape, so that GIM<IF in the whole q1 range. This occurs also for 

higher values of p, where the lateral well becomes deeper and deeper (Fig. 2a of Part I), see Fig. 10. 

To confirm the previous interpretation, we have built also the robustness profiles of the attractor 

in the lateral potential well (Fig. 13) and, as expected, we obtain IF<GIM. Note that, in this case, 

both profiles increase with p. This highlights the competition occurring between the safe basins of 

the two coexisting potential wells: the integrity of the central one (around β=0), which is actually 

eroded, decreases, whereas the integrity of the lateral well (around β=π) increases. This shows how, 

in general, the matter of system dynamic integrity is rather involved and has to be evaluated also 

with respect to the operating conditions to be considered acceptable for the system at hand, in 

practical situations. 

 
Fig. 13. (color online) The robustness profiles for IF and GIM for the attractor in the lateral well. c=0.01, q=0.01, α=0.8, 

q1=0.05 and ω=0.8. 
 

To close this section we summarize in Fig. 14 the integrity profiles obtained so far using GIM, 

which provide a measure either of the reduction of attractor robustness (for varying p) or of the 

extent of basin erosion (for varying q1). The figure highlights the coupling effects entailed on the 

system load carrying capacity by the coexistence of axial load and lateral dynamic excitation, and 

provides a clear view of how the integrity decreases up to vanishing when approaching the limit 

curve in the (q1,p) parameters plane, which is just the PDlow curve of Fig. 5. This limit curve 

highlights the strong reduction both of the (Koiter) practical critical load owed to the presence of a 

dynamic excitation (q1≠0) and of the (Thompson) escape dynamic excitation owed to the presence 

of a static axial load (p≠0). 
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Fig. 14. A tridimensional view of the robustness-integrity profiles. c=0.01, q=0.01, α=0.8 and ω=0.8. 

 

Finally, we note that in Sects. 3 and 4 only the case of a non-resonant excitation frequency (see 

Sect. 2.1) has been analyzed in terms of dynamical integrity. The two cases of resonant frequency 

discussed in Sect. 2.2 can be analyzed along the same lines, but this is not reported to limit the 

length of the paper. We only note that the considered case is the simplest one (compare Figs. 2, 6 

and 7), yet it exhibits already a quite complex integrity behavior. The other cases will be certainly 

more involved. 

5. ANALYTICAL PREDICTION OF THE HOMOCLINIC BIFURCATION 

In the previous sections we have seen the major role played by the fractality of the basins of 

attraction in the dynamical integrity issue, and in determining the associated Thompson load 

carrying capacity. This phenomenon is triggered by the global bifurcation of the homoclinic loop 

surrounding the potential well, a topological event which can be studied analytically by the 

Melnikov method [11, 12]. To this aim, we recover the treatment of the homoclinic orbit sketched 

in Part I [1] to accomplish the relevant, limited, goals, and analyze its dependence on the system 

parameters thus obtaining a suitable theoretical prediction of the homoclinic bifurcation. 

Before going on, it is worth to note that the homoclinic bifurcation of certain saddles is the 

threshold for the onset not only of fractal basins boundaries, as already said, but also of other 

related complex phenomena such as chaotic saddles, chaotic transients and sensitivity to initial 

conditions. 

To apply the Melnikov method we rewrite (2) in the form ( cc ˆε=  and 11 q̂q ε= ) 
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i.e., as the sum of the conservative system equation plus small perturbations accounting for the 

damping and the dynamical excitation (V is the system potential, see Part I [1]). The unperturbed 

system has an homoclinic orbit βh(t) (see Fig. 6a and Fig. 7 of Part I) encircling the stable 

equilibrium point βe. This solution is homoclinic to the saddle βs just on the right of βe (see Fig. 4 of 

Part I, for the general case of non-zero static imperfection), and it can be obtained by solving 

 ))](()([2)( tVVt hsh βββ −±= , (14) 

an equation which comes from the energy balance upon considering that β =0 at the saddle. Let βo 

be the first solution of V(βs)=V(β) on the left of βe; it is the minimum value attained by the 

homoclinic orbit. Without loss of generality we can assume βh(t)=βh(–t) (symmetry condition) so 

that βh(0)=βo. Eq. (14) then provides the inverse function t=t(β): 

 ∫
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The Melnikov function, which measures the first order (with respect to ε) distance between the 

perturbed stable and unstable manifolds is given by [11, 12] 
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By using the symmetry condition and after some simplifications we get 
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The first integral, which is always positive, can be rewritten in the form 
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which shows that it is just (half) the area inside the unperturbed homoclinic loop (see Eq. (18) and 

Fig. 7 in Part I). It is the value which has been used therein in the computations of the GIM (see 

Figs. 8 and 9). 

The second integral 

 ∫=
∞

0
2 ))(cos()sin()(),,,( dttttqpF hh βωβαω  (19) 

represents the Fourier transform of the function ))(cos()( tt hh ββ ; care must be used in its numerical 

computation. The Melnikov function is then 

 211 )cos(ˆ2ˆ2)( FmqFcmM +−= . (20) 
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We have manifolds intersection (and the associated fractalization of the basin of attraction) if 

there exists an m such that M(m)=0 and M'(m)≠0. This is possible if and only if 
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or, equivalently, 
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an inequality which confirms that we need small damping and/or large excitation amplitude to have 

complex behaviour. The equality in (22) corresponds to the homoclinic bifurcation threshold 

triggering the fractalization of basins boundaries, and thus triggering the erosion of the basin of 

attraction of the periodic orbit close to the rest position. 

For α=0.8 and q=0.01 (providing pK=0.301, see Tab. 1 of Part I) the function f(ω) is reported in 

Fig. 15 for various values of p. The region below f(ω) is where fractal basin boundaries do occur, 

while in the region above the critical curve the homoclinic intersection and the related chaotic 

behaviour is prevented. In the former case it is expected to observe differences between IF and 

GIM, while in the latter case the differences should be minor. 
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Fig. 15. The function f(ω) for α=0.8, q=0.01 and for different values of p. Note that pK=0.301. 

 

The main feature highlighted by Fig. 15 is that when p approaches the critical threshold pK, the 

‘chaotic’ area (below the curves) increases very much, thus facilitating the fractalization of basin 

boundaries and the associated reduction of dynamical integrity. This proves why the Thompson 

load carrying capacity is commonly much lower than the Koiter load carrying capacity. 

The function f(ω) has a sequences of zeros (the first one is scarcely visible – due to the scale of 

the picture – in Fig. 15 in the interval ω=1.2÷1.3), meaning that there are also very narrow ranges of 

‘anti-chaotic’ frequencies in between successive regions of ‘chaotic’ frequencies. Fig. 15 clearly 
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shows that the first chaotic region is the most important, while the higher ones are negligible from a 

practical point of view. Unfortunately, this region (ω∈[0,1.2÷1.3]) overlaps with the resonance 

region (ω∈[0,0.623], see Fig. 1), so that there is an interaction between resonance and 

fractalization, which is one further motivation to expect a considerable decrease of the (Thompson) 

load carrying capacity of the structure also for the two resonant cases not considered in Sect. 4. 

The effectiveness of the Melnikov predictions, which is a perturbative technique valid only for 

small values of ε, has to be checked with computer simulation results. This is done in Fig. 16 just 

for a case of resonant excitation frequency (ω=0.5) occurring well below the Koiter threshold. The 

analysis of the manifolds behaviour as obtained numerically before the theoretically predicted 

global bifurcation (Fig. 16a), at the bifurcation (Fig. 16b) and after the bifurcation (Fig. 16c), shows 

just the expected outcomes and fully supports the reliability of the Melnikov asymptotic 

predictions. 
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Fig. 16. (color online) The stable and unstable manifolds behaviour for α=0.8, q=0.01, p=0.10, ω=0.5 (so that f(ω)= 
2.391) and c=0.01. (a) q1=0.003 < q1,cr=0.00418; (b) q1=0.0042 ≅ q1,cr and (c) q1=0.005 > q1,cr. Note that ω=0.5 is close 

to the resonant value Ω=0.532. 
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6. CONCLUSIONS 

Referring to a simple archetypal mechanical model from the stability theory, the global safety of 

structures subjected to dynamic excitations has been addressed with the aim of showing that, for  

practical stability, robust and integer basins are needed. 

First, the attractors scenario has been determined, in the case of external non-resonant or 

resonant excitation, by means of a path following algorithm allowing us to identify the snap or 

bifurcation points responsible for the loss of stability (in classical sense) of the small oscillations 

ensuing from the rest position. In the non-resonant case, an approximate analytical solution has 

been obtained by means of the harmonic balance method, which permits to detect both the saddle-

node and the period-doubling bifurcations. In the resonant case, on the other hand, a completely 

numerical analysis has been performed in the cases of non-interacting or interacting resonance and 

critical load, the latter case being of course the most involved and the most dangerous from a 

practical point of view. 

Next, the dynamical integrity of the basins of attraction has been investigated. First, it has been  

shown how the presence of dynamic excitation induces, for certain value of the control parameters, 

fractal basin boundaries and thus very complicated basins topologies. This entails the so-called 

erosion of the safe basin, which practically consists in a strong reduction of its compact part without 

an equivalent reduction of its magnitude (in fact, most of the area remains in the fractal zones, thus 

not contributing to the safety of the attractor). The non-trivial issue of measuring the integrity, 

which requires the use of different measures with respect to the sole one used in Part I, has been 

also discussed. Two different integrity measures previously proposed in the literature have been  

used. 

The integrity profiles, i.e. the integrity measure as a function of a varying parameter, have then 

been determined, both for increasing static axial load and for increasing dynamic excitation; the 

former are substantially profiles of attractor robustness, the latter represent actual erosion profiles. 

Robustness profiles in the presence of dynamic excitation show that the practical (Thompson) 

critical threshold is lower, and possibly much lower, than the Koiter one, thus extending to the case 

of periodic attractors the general conclusion drawn in Part I in terms of robustness of the stable 

equilibria solely occurring in the absence of external excitation. In turn, the erosion profiles 

highlight how the dynamical integrity of the system close to the Koiter load carrying capacity is 

merely residual, so that to have a safe behavior a lower, and possibly much lower, practical 

(Thompson) load carrying capacity must be considered in applications. 

As expected, it has also been found that the larger the amplitude of dynamic excitation, the 

smaller the Thompson load. This highlights the difference, and the interaction, between actual 

dynamic excitation (time varying force acting on the system) and mere dynamic perturbations (i.e. 

finite changes in initial conditions), a fact that complicates the global safety analysis. 
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As already said, the results of the present paper do confirm and complete those of the companion 

paper [1], fully accounting for the effects of actual dynamic excitations. The general conclusion to 

be drawn from the double paper is that, for a safe system design, the robustness and the integrity of 

its attractors/basins must be properly addressed via global analyses and extensive numerical 

simulations; a circumstance that is currently overlooked in engineering design, as well as in code 

prescriptions. 

It is the authors’ opinion that the global approach is the last theoretical step needed for a full 

understanding of the load carrying capacity of structures. Now the challenge stands in properly 

evaluating the dynamical integrity of real structures, where more degrees of freedom may play a 

role, thus requiring the determination of safe basins in dimensions higher than 2. This is 

computationally very expensive, and calls for new or improved numerical tools. 

At the same time, an open problem is the determination of the acceptable level of residual 

robustness/integrity, which is required for the effective computation of the Thompson load carrying 

capacity. This requires a lot of further studies and experiments as well as, possibly, a stochastic 

approach to the whole matter. 
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In this paper the dynamical integrity ideas have been applied to the problem of load carrying 

capacity of structures.  

While the examples refer to an archetypal problem, the underlying ideas are very general  

It is believed that they can applied in many applications, even far away from the engineering 

context. 
 




