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Abstract: The problem of the practical stability of structures is addressed in a modern way by considering the effects of 
both static and dynamic perturbations. The major historical contributions, due to Euler, Koiter and Thompson, are 
reviewed and illustrated by an archetypal model permitting to highlight the main mechanical and dynamical points. It is 
found that a global approach is necessary for a reliable safety estimation, especially in the neighborhood of (static) 
critical loads. Considering that the admissible load threshold has to account for robustness to finite perturbations, the 
Koiter critical load must be lowered, obtaining the so called Thompson critical load. It is shown how these two 
thresholds share some properties (e.g. both depend in a sensitive way on imperfections, which must be known for 
practical calculations), while having a deep different meaning: the former is related to static imperfections, and requires 
only a local analysis, while the latter is related to dynamical imperfections, and requires a global analysis. It is shown 
that critpEuler ≥

critpKoiter ≥
critpThompson , i.e., that the advancement of knowledge leads to a lower estimation of the actual critical 

load. 
 
Keywords: Practical stability, static imperfections, global safety, robustness of equilibria, Euler, Koiter, Thompson. 

 

1. INTRODUCTION 

Determining the load carrying capacity of a compressed structural element (columns, frames, shells, 

etc.) is an old problem which dates back at least to Euler [1]. It was a long history of successes and 

defeats of scientists which, in the authors’ opinion, still extends over the present time. 

The first fundamental contribution was due to Euler [1] which determined the famous Euler 

buckling load of a column. The loss of load carrying capacity was identified as the bifurcation point 

from an equilibrium path in the parameters space – talking, of course, in modern language. 

Although the concept of stability was formulated in a rigorous way only much later, with the major 

contribution, among others, of Lyapunov [2], it is felt that the main idea of loss of stability was 

already lurking in Euler’s background. We quote [3] for an interesting historical note on the 

development of the stability concepts. 
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The second outstanding contribution was due to Koiter [4], who realized that imperfections are 

crucial in lowering the critical load. This basic idea, and successive developments, were so 

important that investigations in this direction continue up to date [5]. In practice, due to 

imperfections, the branching point becomes a snap point, which occurs at a lower load threshold. 

Later on, the bifurcation theory has provided a mathematical background to this engineering 

intuition, by rigorously showing that transcritical and pitchfork bifurcations (responsible for 

branching) are structurally unstable events, which become saddle-node bifurcations (responsible for 

snap) after system perturbations (imperfections in mechanical language). Structural stability 

concepts are part of the more general catastrophe theory [6, 7]. In this context, though the general 

theorems are very complex and abstract, the basic idea is simply that of studying perturbations of 

the system with respect to parameters and not to initial conditions, as in classical local stability. 

Although at Koiter’s time it was clear that stability is a dynamical concept [8], the major initial 

contributions were concerned with a “static” stability approach [9, 10]. When ‘flutter’ or ‘galloping’ 

came to the attention of researchers, dynamics entered the question of loss of stability (see [11] for a 

theoretical approach and [12] for a practical approach). In the bifurcation theory language, the Hopf 

bifurcation was ‘discovered’ to exist in practice, and this agrees with the fact that it is a structurally 

stable event which can be actually seen to occur as, e.g., in the dramatic failure of the Tacoma 

Bridge or in other aero-elastically induced collapses of structures. 

This basic, and necessarily over-summarized, evolution of knowledge is clearly understood (see, 

e.g., [13]), and it is apparent that only local bifurcational events were concerned, indeed. 

It was Thompson that, around the 90’s [14-16], discovered that (local) stability is not enough, 

and that the relevant results do not actually guarantee the load carrying capacity of systems. By 

considering a global approach, and by truly considering the dynamical behavior (even in the 

absence of an external excitation), Thompson introduced the notion of dynamical integrity, which in 

the authors’ opinion is fundamental for properly pursuing the safety of structures in an evolutionary 

context, although to date it is not yet a commonly addressed concept. 

The basic idea is that perturbations can be also of dynamical nature, and not only of static nature 

as in Koiter’s vision. This means that not only the system parameters and equations can be modified 

by the imperfections, but that also the initial conditions of the system may change (in this respect 

somehow embedding the classical stability concepts into a structural stability perspective). From 

this observation, Thompson realized two main points. 

(i) If the safe basin of a given, desirable, solution is not ‘large’ enough, even if the solution is stable 

there will be no hope to observe it in real world applications – maybe only in extremely accurate 

experiments. This was his first fundamental understanding, which can be reformulated by saying 

that classical local stability refers to infinitesimal changes in initial conditions, while global safety 
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refers to finite changes in initial conditions. Thus, local stability must be complemented by 

robustness towards variations of the initial conditions. 

(ii) A second fundamental requirement for actual global safety is that the safe basin, or the basin of 

attraction under an actual dynamic excitation, must be ‘uncorrupted’ (or dynamically integer, i.e., 

non-fractal) in order to achieve a reliable load carrying capacity. 

Since the safe basin shrinks to the equilibrium solution when a saddle-node bifurcation is 

approached, the saddle-node (Koiter) threshold is expected to overestimate the actual critical load in 

the presence of (even transient) dynamical perturbations. 

Within the above mentioned overall framework, this paper, which is the Part I of this work, aims 

at addressing the sole first point of the two Thompson’s achievements, by embedding it into an 

historical perspective and showing how, as  Koiter lowered the buckling load prediction of Euler, 

Thompson lowers the buckling load prediction of Koiter. Indeed, the analysis of the robustness of 

stable equilibria can be investigated by considering the global dynamics of the system even in the 

absence of dynamical excitation, which therefore is not considered in this Part I. A goal consists of 

highlighting how the problem of the load carrying capacity of structures can be actually understood 

in all of its implications, at least from a theoretical point of view, only if finite dynamical 

perturbations are taken into account. This is addressed herein by considering an archetypal single 

degree-of-freedom model which exhibits a transcritical static bifurcation in perfect (Euler) 

conditions, a fold static bifurcation in imperfect (Koiter) conditions, and competing families of in-

well and cross-well oscillations in dynamic (Thompson) conditions. It is shown how the 

consideration of finite dynamical perturbations, in addition to static ones, notably affects the system 

safety, giving rise to a Thompson critical load which is always considerably lower than the Koiter 

one (and, of course, than the Euler one). 

Dynamic excitations, on the other hand, entail strong modifications to the topology of the basins, 

which are related to their dynamical integrity and which further reduce the safety of the system. 

This issue, which constitutes the second point of the Thompson achievements, entails properly 

addressing the dynamical integrity concept in all of its implications, which are indeed quite delicate 

because of the strange dynamical phenomena (e.g., fractals) which may occur. This will be 

considered in the companion paper [17], by also addressing the so-called integrity (or basin erosion) 

profiles, which are very useful instruments to achieve the reliability threshold, as well as the most 

important practical information ensuing from the analysis of system dynamics. Part II [17] 

complements this one and concludes the analysis of the global safety. 

The paper is organized as follows. In Sect. 2 the archetypal problem is illustrated together with 

the governing equations and relevant mechanical properties. In Sect. 3 the Euler critical load is 

determined in the perfect case, while in Sect. 4 the imperfections are added and the Koiter critical 
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load computed. The Thompson analysis, taking care of possible (dynamic) finite perturbations of 

initial conditions, is performed in Sect. 5. In this framework, an asymptotic analysis highlighting 

the sensitivity of the problem to both static and dynamic perturbations is developed in Sect. 5.1. The 

paper ends with some conclusions (Sect. 6). 

2. THE ARCHETYPAL MODEL 

Let us consider the single degree-of-freedom mechanical system described in Fig. 1, where I is the 

moment of inertia with respect to the hinge B, K the stiffness of the linear spring, H the length of 

the rigid beam, L the horizontal distance between the hinge B and the extreme point of the spring A, 

and β is the angle of rotation which describes the system configuration. 

 

A B
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β
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Fig. 1. The mechanical model. 
 

By considering the dimensionless time IKLHtt /ˆ= , vertical p=P/KL and horizontal q=Q/KL 

loads, and by introducing the dimensionless parameter α=2LH/(L2+H2) (which satisfies 0<α≤1 and 

α=1 if and only if L=H) the dimensionless kinetic energy, elastic potential energy and load potential 

work are given by 
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where the dot means derivative with respect to the dimensionless time t. The stationariety of the 

action integral 
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with respect to β(t) yields the equation of motion 
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In general both p and q can be time dependent. However, when they are time independent the 

system is conservative and the energy E=T+U�W, 
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is constant along trajectories. The potential V=U�W, 
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is drawn in Fig. 2 for various values of the parameters. The zoom of Fig. 2b shows that the rest 

position is not an equilibrium, due to the imperfection q≠0, and how the non null equilibrium 

position loses stability for increasing p. 

The equilibrium points are given by 
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and the associated bifurcation diagrams for perfect (q=0) and imperfect cases (q≠0 but constant) are 

reported in Figs. 3 and 4, respectively. A joint zoom, permitting to visualize the effects of the 

imperfections, is reported in Fig. 5. 
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(a)                                                                                  (b) 

Fig. 2. The potential V(β) for q=0.01, α=0.8 and for different values of p. (a) Large view, which in particular underlines 
the 2π periodicity with respect to β, and (b) zoom around β=0. 
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Fig. 3. The complete bifurcation diagram in the perfect case q=0. α=0.8, continuous = stable, dashed = unstable. 
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Fig. 4. (color online) The complete bifurcation diagram in the imperfect case q=0.01. α=0.8, continuous = stable, 
dashed = unstable. 
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Fig. 5. (color online) Zoom of the bifurcation diagrams of both perfect and imperfect (q=0.01) cases around the 
bifurcation point. α=0.8, continuous = stable, dashed = unstable. 

 

3. THE EULER CRITICAL LOAD 

The Euler buckling load pE corresponds to the bifurcation point in the perfect case q=0. By noting 

that 
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we obtain that the equilibrium equation in the perfect case becomes 
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so that 

 
2
α

=Ep . (9) 

Note that pE=0.4 for α=0.8, a value that will be used in the following for reference. 

By defining εE=pE–p we then obtain from (8)-(9) that approaching the bifurcation point the 

unstable saddle on the right of the rest position has the asymptotic expression 

 Es ε
α

β 23
8

≅ , (10) 

i.e., it linearly approaches the rest position, as can be seen in Fig. 5. 
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4. THE KOITER CRITICAL LOAD 

The Koiter buckling load pK corresponds to the maximum point of the right branch of equilibrium 

points (see Figs. 4 and 5). To approximate it for small values of q (and thus for small values of β, 

see Fig. 5) we note that 
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2
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2
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so that the equilibrium equation now provides 
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The maximum point can be obtained by solving dp/dβ=0, which gives 
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and (α=0.8 in the last expression) 
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2
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Note that the difference between the Euler and the Koiter critical loads depends on the square root 

of the imperfection, a fact that is well known in the literature (see for example [18, pag. 21]) and 

which is at the base of the sensitive dependence of the critical load on the imperfections. 

For α=0.8 and q=0.01 we obtain pK=0.302. The Koiter critical load in this case is 75% of the 

Euler prediction. The previous estimation of pK is very accurate, since by numerically solving 

dp/dβ=0 without approximations we get pK=0.3014. 

By defining εK=pK–p we obtain from (12)-(14) that approaching the bifurcation point the saddle 

has the asymptotic expression 

 KKs
q ε
α

ββ 2/3

4/1
4/1

3
46+≅ , (15) 

i.e., it approaches the bifurcation point as the square root of the load, as can be seen in Fig. 5. The 

different asymptotic behaviour of the saddle in the perfect (Euler, eq. (10)) and imperfect (Koiter, 

eq. (15)) case explains the ‘singular’ behaviour of the perfect case, and the associated sensitivity to 
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imperfections. Mathematically, this is a consequence of the fact that the point (p,q)=(pE,0) is a 

singular point, in which the limit depends on the direction we approach it. 

The asymptotic development method used in this and in the previous section has been largely 

used in the past in the ‘Koiter analysis’ of various structures [9, 19], thus having an ‘historical’ link 

with the Koiter theory. 

5. GLOBAL SAFETY, OR THE THOMPSON CRITICAL LOAD 

From (4) we get, in the conservative case, 

 )]([2 ββ VE −±=
[ ]

⎪⎭

⎪
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⎪
⎨
⎧

+−+
+−

−±= )sin()]cos(1[)sin(112
2

ββ
α

βα qpE , (16) 

an expression which permits to draw the phase portrait without actually solving the equation of 

motion. An example is reported in Fig. 6a, together with the associated potential V(β) (Fig. 6b). 
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(a)                                                                                   (b) 

Fig. 6. (a) The phase portrait and (b) the potential V(β) for p=0.05, q=0.01 and α=0.8. Thick lines in (a) are homoclinic 
and heteroclinic orbits. 

 

There are five types of solution, which are ordered for increasing values of the energy: 

1) in-well periodic orbits, both in the well around β=0 (left well), which is the one of interest for the 

present analysis, and in the well around β=π (right well); 

2) two orbits homoclinic to the inner hilltop saddle, at βs=1.366 in Fig. 6, one on the right of the 

saddle and surrounding the right potential well, the other on the left and surrounding the left 

potential well (this will be of interest in the following); 

3) cross-well periodic oscillations, turning around the two potential wells; 
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4) two heteroclinic orbits of the outer hilltop saddle at β=4.753 in Fig. 6, one in the lower part of the 

phase space, implying anti-clockwise rotation, and the other in the upper part of the phase space, 

implying clockwise rotation; 

5) clockwise and anti-clockwise rotations, encompassing all wells. 

We are interested in the (left) potential well containing the equilibrium point close (in the 

perturbed case) to β=0, and in the associated homoclinic orbit. 

The area within the left homoclinic orbit, which is reported in grey in Fig. 6a, is the safe region 

of the equilibrium position, which will become its “basin of attraction” if adding an infinitesimal 

damping. Borrowing concepts and tools from the dynamical integrity environment [20, 21], the 

magnitude of this region represents a measure of the global safety of the system, and provides 

information about its robustness with respect to dynamical imperfections, i.e., with respect to finite 

variations of initial conditions. It is clear that the larger is that area, the safer is the equilibrium 

position with respects to disturbances. 

The main underlying idea of the global viewpoint (Thompson) ensues from the observation that 

the area of the safe basin shrinks as the axial load approaches the critical load, as clearly shown in 

the example reported in Fig. 7. Note that this property is true even in absence of perturbations (in 

fact, Fig. 7 corresponds to q=0), and thus, in some sense, the Thompson reasoning is independent 

of, and somehow bypasses, the Koiter approach (but this does not mean that the Koiter contribution 

was unimportant, of course!). 
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Fig. 7. The homoclinic loops for q=0, α=0.8 and for different values of p. Note that the critical load is pE=0.4. The dots 
are the saddle points βs for each loop. 

 

Figure 7 clearly shows that, e.g., for p=0.35 the area is so small that the solution is unsafe for 

practical applications, as in the real word there are always finite, although small, disturbances. 



 

11 

Note that the area is very small, but it is not null, in agreement with the fact that the solution is 

stable from a mathematical point of view. This observation clarifies the difference between the 

classical stability viewpoint (infinitesimal changes in initial conditions → the safe region is 

assumed to be infinitesimal) and the Thompson viewpoint (small but finite changes in initial 

conditions → the safe region must have a finite – though possibly small – extent). 

Also note that, within a reliable global safety perspective, in the presence of actual dynamic 

excitations the occurrence of a finite safe region around the equilibrium point (i.e. the finite 

magnitude of the area of the safe basin) is not enough to guarantee the real dynamical integrity of 

the system, as it will be clarified in Part II of this work [17]. However, it is a sufficient concept for 

the goal pursued herein. 

Since the area A of the safe basin, and thus the global safety and practical reliability of the 

system, decrease as the axial load increases, to have an idea of the load carrying capacity of the 

system it is useful to draw the function A(p). 

To compute the area inside the homoclinic loop we note that on the homoclinic orbit the total 

energy E (see eq. (4)) is that of the saddle βs (asymptotic expressions for βs are given in (10) for q=0 

and in (15) for q≠0). But since the saddle is an equilibrium point, its kinetic energy vanishes and we 

have E=V(βs). Thus, from (16) we get that on the homoclinic orbit 

 )]()([2)( ββββ VV sh −±= . (17) 

Now let βo be the highest solution below βs of the transcendental equation V(βs)=V(β). βo is the 

lowest point reached by the homoclinic orbit, and thus the area inside the homoclinic loop is, by 

symmetry with respect to the 0=β  axis, 

 ∫ −=
s

o

dVVpA s

β

β
βββ )]()([22)( . (18) 

This function is plotted in Fig. 8, where in the vertical axis we have reported the normalized area, 

i.e., A(p)/A(0) (A(0)=1.720792 for α=0.8). In the Thompson’s dynamical integrity perspective, it 

represents a Global Integrity Measure (GIM) [20, 21] profile providing a (dimensionless) measure 

of the percentage reduction (with respect to the reference unloaded case) of the magnitude of the 

safe region with increasing load. Herein, it plays the simpler role of a measure of  robustness of the 

stable equilibrium position under finite size perturbations. 

Figure 8 much better than Fig. 7 shows that in the neighbourhood of the critical load pE=0.4 the 

safe region is merely residual, and thus actually unsafe. The practical (Thompson) load carrying 

capacity is much less than pE=0.4. For example, if we assume that 10% of the initial area is still 
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acceptable (and this is of course a very low value in practice), then we have that the Thompson 

critical load is pT=0.238 (see Fig. 8), i.e. 59% of the Euler prediction. 
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Fig. 8. The normalized area inside the homoclinic loops of Fig. 7 as a function of p. q=0 and α=0.8. Note that the 
critical load is pE=0.4, and that GIM(0.238)=0.1. 

 

The general picture delineated above for the perfect case q=0 does not change so much in the 

imperfect case, as shown in Fig. 9. We note that curves for q≠0 shift toward lower GIM values of a 

quantity which is roughly independent of p, and is instead proportional to q. The latter circumstance 

highlights how the static imperfection parameter q (Koiter) already reduces the safe region extent, 

and thus the robustness of stable equilibria. This obviously entails that, for a given vertical load p, a 

dynamical imperfection (Thompson) lower than the one needed in the perfect case is sufficient to 

globally break the system safety. 
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Fig. 9. The normalized area inside the homoclinic loops for α=0.8 and for different values of q. The horizontal line at 
GIM=10% schematically show how to compute the corresponding Thompson critical loads. 
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The Koiter and Thompson critical loads are reported in Tab. 1, from which it is possible to 

appreciate even quantitatively the reduction of the load carrying capacity, with respect to the Euler 

one of the perfect system, due to Koiter perturbation, which has the historical primacy, and, 

independently, to Thompson one. 

 

 
Koiter load

Thompson load
q GIM=5% GIM=10% GIM=20% 

0.00 0.4 
(100%)

0.277
(69%)

0.238
(59%)

0.184
(46%)

0.01 0.301
(75%)

0.242
(61%)

0.210
(52%)

0.163
(41%)

0.02 0.261
(65%) 

0.215
(54%) 

0.187
(47%) 

0.145
(36%) 

0.03 0.230
(57%)

0.192
(48%)

0.167
(42%)

0.128
(32%)

Tab. 1. Different critical loads (in parentheses the percentage with respect to the Euler load pE, reported in the gray 
cell). The column GIM=10% is illustrated in Fig. 9. 

 

The values in Tab. 1 show that the dynamical imperfections have a really major effect towards 

decreasing the critical load in the absence of static imperfection (q = 0), whereas their consequences 

are comparatively and progressively less important as the static imperfection increases. However, in 

such cases, they still produce meaningful additional reductions of the critical load with respect to 

that already entailed by the sole static imperfection. 

Note that, while the Koiter critical load can be quantitatively determined upon fixing the value of 

the static imperfection q, the Thompson critical load can be determined only upon choosing the 

admissible residual safe region, i.e. after fixing the acceptable GIM, as clearly illustrated in Tab. 1. 

This corresponds just to fix the maximum allowed dynamical imperfections (change in initial 

conditions) which can be safely supported by the system. In this respect, both Koiter and Thompson 

theories share the property of being practically determinable with the exact knowledge (or an 

estimation) of the static (q) and dynamical imperfection (GIM), respectively, an issue which is not 

easily achieved in practice, where the magnitude of imperfections is usually unknown and, 

moreover, has a large statistical dispersion. 

Remark. It is interesting to see what happens to the GIM function and to the associated Thompson 

critical load by a nonlinear change of the system generalized coordinate. 

To investigate this point, in addition to the variable β used in the paper, which has the mechanical 

meaning of rotation angle (Fig. 1), we consider also δ=sin(β), which has the mechanical meaning of 

lateral displacement of the top of the rod, and χ, defined by β=χ+χ3, which has no mechanical 
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meaning, but is one of the easiest nonlinear changes of variable. It has also the linear part otherwise 

it is singular for β=χ=0. The three corresponding GIM(p) curves for α=0.8 and q=0 are reported in 

Fig. 10. 

 

0

1

0.40 p

GIM

pE

β
δ
χ

 

Fig. 10. The curves GIM(p) for α=0.8 and q=0, for different system generalized coordinates. 
 

Figure 10 shows that the three curves are distinct, and this confirms that from a mathematical 

point of view the robustness profile (i.e. the GIM as a function of the driving parameter) depends on 

the coordinate system, although all of them seem to have the same asymptotic behavior for p→pcr. 

However they are close, and from a mechanical point of view the differences are not so marked. Of 

course, for particular – let’s say “special” – changes of coordinate the differences may be larger. So, 

our conclusion is that from a practical point of view, and certainly as far as we stay close to 

coordinate systems having a mechanical meaning, the GIM is almost independent of it. This means 

that the Thompson critical threshold is substantially independent, too. 

The problem might arise if considering a “strange” change of coordinates possibly giving rise to 

very different curves. In such a case, one has any way to consider that the critical level on GIM (the 

one which provides the Thompson critical load) cannot be defined without referring to the 

mechanical nature of the perturbations themselves. In fact, for example, engineers may require that 

“the structure should support an accidental impulse equal to ….”. This impulse is a quantity with 

physical dimensions, which may correspond to different abstract quantities assumed as generalized 

coordinates. However, when changing the coordinate systems, the threshold of admissibility must 

be changed accordingly in order for the mechanical Thompson threshold, i.e. the safety threshold 

against changes in physical initial conditions, to remain fixed. So, a unique information is obtained 

for the mechanical Thompson critical threshold while describing it through possibly different 

mathematical models. 
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5.1. Asymptotic developments of the safe region 

As Figs. 8 and 9 show, the most important part of the GIM(p) curves is the final one, where they 

approach the Euler or Koiter critical loads. In fact, it is just this part which determines how much 

the Thompson critical load is lesser than the bifurcation point (Euler or Koiter), and it is just the rate 

of convergence which determines the sensitivity to dynamic perturbations. Thus, it is interesting to 

study this part carefully. 

The ending behaviour of the curves GIM(p) can be detected analytically by an asymptotic 

analysis. As smallness parameters we assume, as in Sects. 3 and 4, εE=pE–p=α/2–p in the perfect 

(Euler) case q=0, and εK=pK–p in the imperfect (Koiter) case q≠0. Thus, both these parameters are 

positive and measure the closeness to the bifurcation point, i.e. the closeness of p to the end of the 

curves GIM(p). 

To obtain the asymptotic expressions of the area we start by developing V(β) up to the third order 

in β around the hilltop saddle βs. This is motivated by the fact that close to the bifurcation point the 

homoclinic loop occurs in a close neighbourhood of βs, as shown in Fig. 7. We have 

 +−+≅ ))((')()( sss VVV βββββ 32 )(
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)(''')(
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Since βs is a hilltop saddle, we have V'(βs)=0 and V''(βs)<0. Furthermore, in the neighbourhood of 

β=0 we have V'''(βs)=3α2/4 up to infinitesimal ε- and q-terms; this leading order value is used in the 

following. 

Expression (18) becomes 
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To the same order of approximation we have that βo is given by (it is just the solution of the 

radicand of (20) equated to zero) 
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With this expression the integral in (20) can be computed in closed form, and the result is 
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In the perfect (Euler) case q=0 we have the asymptotic expression (10) for βs. By inserting this 

expression in (22) and by developing the result in εE series we have that the asymptotic expansion 

of the area A(p) of the safe region around pE is (α=0.8 in the second expression) 

 2/5
4

2/5

 83.20
15

128)( E
EpA ε
α
ε

=≅ . (23) 

This expression shows how fast GIM goes to zero when p→pE (remember that εE=pE–p). It is 

worthy to note that the asymptotic exponent 5/2 is more severe than the asymptotic exponent 1/2 of 

the Koiter imperfections (see eq. (14)), showing how in the present case the system is more 

sensitive to global safety requirement than to the static Koiter perturbations, and confirming that the 

Thompson critical load is always lower than the Koiter critical load. 

In turn, in the imperfect (Koiter) case q≠0 we have the asymptotic expression (15) for βs. By 

inserting this expression in (22), remembering that pK has the asymptotic expansion (14), and by 

developing the result in εK and q series we have that the asymptotic expansion of the area A(p) of 

the safe region around pK is (α=0.8 in the second expression) 

 4/58/54/5
4/11

8/5
8/5  48.306

15
128)( KK qqpA εε

α
=≅ , (24) 

an expression which shows how fast GIM goes to zero when p→pk (remember that εK=pK–p). Note 

that now the power is 5/4 instead of 5/2, namely, the reduction of critical load corresponding to a 

given residual safe region is lower for the imperfect system (Koiter) than for the perfect one (Euler) 

– as confirmed by the numerical results in Tab. 1 –, the former being thus less sensitive than the 

latter to dynamical imperfections. This difference, which can be appreciated in Fig. 9, ensues from 

the different asymptotic behaviour of the saddles, which can be seen by comparing (10) with (15). 

The effectiveness of asymptotic expressions (23) and (24) is shown in Fig. 11, where the real 

expressions (coming from Fig. 9) and the asymptotic ones are compared. 

Finally, to further underline the differences between the three critical loads, and their dependence 

on the (small) magnitude of imperfections, we summarize the previously obtained asymptotic 

behaviours (eqs. (14), (23) and (24)): 

 2/1
1qcpp KE ≅− , 

 5/2
2 crTE GIMcpp ≅− , 

 2/1

5/4

3 q
GIMcpp cr

TK ≅− . (25) 

These expressions show that pE is a singular point with respect to both q and GIMcr, i.e., that pE 

is strongly sensitive to (static and dynamic) imperfections. Again, it is confirmed that the 
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Thompson critical load is the most severe, being the lowest one (c1, c2 and c3 are positive 

constants). 

 

0

0.2

0.40.15 p
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Fig. 11. The exact curves GIM(p) (thick) compared with their asymptotic approximations (thin and dashed) for α=0.8 
and for two different values of q. 

 

6.   CONCLUSIONS 

The problem of load carrying capacity of axially loaded elastic structures has been reconsidered. 

Following an historical perspective corresponding to the advancements in the knowledge, three 

major contributions, due to outstanding researchers, have been identified. 

1) Euler, who was the first to discover the loss of stability of equilibrium configurations. He 

considered perfect structures and obtained a bifurcation (buckling) of branching type (in the 

reference model of Fig. 1 it is a transcritical bifurcation due to the asymmetry of the system, but in 

the original Euler problem the bifurcation was a pitchfork due to the symmetry). 

2) Koiter, who was the first to discover that the load carrying capacity is sensitive to static 

perturbations or imperfections, and that the actual bifurcation is of jumping type (saddle-node); in 

some sense he was a precursor – in the mechanical community – of the unfolding concept of the 

bifurcation theory, as well as of the structural stability issue. 

3) Thompson, who was the first to highlight the importance of dynamic perturbations, which can be 

adequately described by the novel concept of dynamical integrity. He understood that stability is not 

enough for practical applications, since the perturbations of initial conditions are always of finite, 

although small, magnitude in the reality, and not infinitesimal as in the mathematical definition. 

Consequently, he understood that a local analysis is no longer sufficient, and that a global analysis 

is needed, with more complicated theoretical and practical treatments. 
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By means of an archetypal unsymmetrical mechanical system, the principal aspects involved in 

the three estimations of the critical load have been highlighted in detail. The simplicity of the model 

permitted an analytical approach without the use of numerical simulations, even for the global 

analysis requested in the Thompson approach, a fact that allows a deep understanding of the 

phenomena occurring in the dynamical perspective. 

Similarities and differences between the Koiter and Thompson ‘corrections’ to the Euler analysis 

have been highlighted. 

By means of an asymptotic analysis it has been shown the sensitivity of the unperturbed (Euler) 

problem to the static (Koiter) and dynamic (Thompson) perturbations, as well as the sensitivity of 

the statically perturbed (Koiter) problem to dynamic perturbations. This is at the base of the fact 

that the Koiter critical load is significantly lower than the Euler critical load, and that the Thompson 

critical load is significantly lower than both Euler and Koiter critical loads. 

Exploiting concepts and tools obtained in terms of system integrity within the nonlinear 

dynamics community, the basic concept of global safety of axially loaded systems has been 

discussed, along with its measure and its difference with respect to the classical stability concept, 

showing how fast the safe region shrinks to zero as the load approaches the critical threshold. In 

fact, only the basic aspect of the dynamical integrity perspective, which consists of allowing for 

finite size perturbations, has been used in this paper, since it is sufficient for highlighting the actual 

robustness of stable equilibria. As it will be shown in Part II of this work [17], the issue of system 

load carrying capacity and global safety in the presence of actual dynamic excitations requires full 

consideration of its highly variable dynamic response, with the ensuing effects in terms of reduction 

of dynamical integrity due to the erosion phenomena entailed by the possible occurrence of fractal 

basins of attraction. 

However, as far as the problem of practical stability of structures is concerned, it is the authors’ 

opinion that upon assuming the Thompson global viewpoint it can be considered as definitely 

understood from a theoretical point of view, although much work is still needed in the direction of 

practical applications of the underlying ideas. 
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In this paper the dynamical integrity ideas have been applied to the problem of load carrying 

capacity of structures.  

While the examples refer to an archetypal problem, the underlying ideas are very general  

It is believed that they can applied in many applications, even far away from the engineering 

context. 
 




