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Abstract 

In this paper, we investigate the steady momentum and heat transfer of a viscous fluid 

flow over a stretching/shrinking sheet. Exact solutions are presented for the Navier-

Stokes equations. The new solutions provide a more general formulation including the 

linear stretching and shrinking wall problems as well as the asymptotic suction velocity 

profiles over a moving plate. Interesting nonlinear phenomena are observed in the current 

results including both exponentially decaying solution and algebraically decaying 

solution, multiple solutions with infinite number of solutions for the flow field, and 

velocity overshoot. The energy equation ignoring viscous dissipation is solved exactly 

and the effects of the mass transfer parameter, the Prandtl number, and the wall 

stretching/shrinking strength on the temperature profiles and wall heat flux are also 

presented and discussed. The exact solution of this general flow configuration is a rare 

case for the Navier-Stokes equation. 

  

Keywords: Navier-Stokes equation; Similarity equation; Stretching surface; Shrinking 

sheet; Exact solution; Analytical solution; Heat transfer.  

 

1. Introduction 

The fluid dynamics over a stretching surface is important in many practical 

applications, such as extrusion of plastic sheets, paper production, glass blowing, metal 

spinning, drawing plastic films, the cooling of metallic plates in a cooling bath, polymer 

sheet extruded continuously from a dye and heat-treated materials that travel between 

feed and wind-up rolls, to name just a few. Apparently, the quality of the final product 

depends on the rate of heat and mass transfer between the stretching surface and fluid 

flow of such processes as explained by Karwe and Jaluria [1]. Since the pioneering study 

by Crane [2] who presented an exact analytical solution for the steady two-dimensional 

stretching of a surface in a quiescent fluid with a velocity varying linearly with distance 

x  from a fixed point, many authors have considered various aspects of this problem, such 

as consideration of mass transfer, power-law variation of the stretching velocity and 

temperature, magnetic field, application to non-Newtonian fluids, and obtained similarity 

solutions. Exact solutions for self-similar boundary layer flows induced by a stretching 



surface with velocity proportional to mx , where m  is a constant were reported by Banks 

[3] for an impermeable surface, and by Magyari and Keller [4] for a permeable surface. 

Liao and Pop [5] solved the case of a linearly stretching surface using the homotopy 

analytic method (HAM). Carragher and Crane [6], and Grubka and Bobba [7] 

investigated heat transfer in the above flow in the case when the temperature difference 

between the surface and the ambient fluid is proportional to a power of distance from the 

fixed point. Dutta et al. [8] have considered the case of temperature distribution in the 

flow over a stretching sheet with uniform wall heat flux. Gupta and Gupta [9] analyzed 

the heat and mass transfer corresponding to the similarity solution for the boundary layers 

over an isothermal stretching sheet subject to suction or blowing. Bataller [10] performed 

a numerical analysis in connection with the boundary layer flow and heat transfer of a 

quiescent fluid over a nonlinearly stretching surface. On the other hand, Magyari and 

Weidman [11] studied the thermal characteristics of the flow over a semi-infinite flat 

plate driven by a uniform shear in the far field. Similarity solutions of the thermal and 

momentum boundary layer flow for a power-law shear driven flow over a semi-infinite 

flat plate has been reported also by Cossali [12] and Fang [13].  Magyari and Keller [14] 

presented very interesting results for the boundary layer flow and heat transfer 

characteristics induced by continuous isothermal surfaces stretched with prescribed skin 

friction. Andersson [15] has considered the slip-flow of a viscous and incompressible 

fluid past a linearly stretching sheet. Chakrabarti and Gupta [16], and Pop and Na [17] 

investigated the flow along a permeable stretching sheet under the effect of a constant 

transverse magnetic field of a Newtonian fluid, while Anderson et al. [18] considered the 

case of a power-law fluid, respectively. Quite recently the flow adjacent to a stretching 

permeable sheet in a Darcy-Brinkman porous medium has been considered by 

Pantokratoras [19]. Wang [20] analyzed the steady three-dimensional flow of a viscous 

fluid over a plane surface, which is stretched in its own plane in two perpendicular 

directions. He also studied the flow caused by the axisymmetric stretching of the surface. 

Some interesting mathematical results on multiple (dual) solutions for the boundary layer 

flow over a moving semi-infinite flat plate have been reported by Afzal et al. [21], Afzal 

[22], Weidman et al. [23], Fang [13] and Ishak et al. [24].  



However, little work has been done about the problem of shrinking sheet where 

the velocity on the boundary is towards a fixed point. Miklavčič and Wang [25] studied 

the flow over a shrinking sheet with mass flux (suction or injection), which is an exact 

solution of the Navier-Stokes equations. It has been shown that mass suction is required 

to maintain the flow over a shrinking sheet. This phenomenon can be found, for example, 

on a rising and shrinking balloon. This new type of shrinking sheet flow is essentially a 

backward flow as discussed by Goldstein [26]. Physically, there are two conditions that 

the flow towards the shrinking sheet is likely to exist: whether an adequate suction on the 

boundary is imposed (Miklavčič and Wang [25]) suction is required to maintain the flow 

over a shrinking sheet. Problems of boundary layer flow over shrinking sheets with mass 

transfer have been studied by Fang [27], Fang et al. [28], Fang and Zhang [29] and Fang  

et al. [30,31]. Fang [27] considered the flow over a continuously shrinking sheet with a 

power-law surface velocity and mass transfer. The similarity equations with a controlling 

parameter )1/(2 )12 mm  were obtained and solved numerically. Exact solutions were 

derived for 11 and 22, and also for the power-law index 11m . The 

stagnation flow over a shrinking sheet was investigated by Wang [32]. Finally, we 

mention the papers by Hayat et al. [33] on the magnetohydrodynamic and rotating flow 

over a permeable shrinking sheet and by Lok et al. [34] on the MHD stagnation-point 

flow towards a shrinking sheet. 

Motivated by the above-mentioned investigations and applications, we investigate 

in this present paper, the behavior of the steady boundary layer flow and heat transfer of a 

viscous and incompressible fluid towards a permeable (with mass flux) shrinking sheet in 

a quiescent fluid. The sheet shrinking velocity is )(xuu wu  and the constant wall mass 

suction velocity is wvv v , which will be specified later. The partial differential equations 

in two variables are transformed into ordinary differential equations and are solved both 

analytically and numerically for some values of the physically governing parameters. 

 

2. Basic equations and exact solutions 

Consider the steady two-dimensional flow of a viscous and incompressible fluid 

on a continuously stretching or shrinking sheet with mass transfer in a stationary fluid. It 



is assumed that the velocity of the stretching sheet is Cbxxuw Cb)( , where 00b is the 

stretching rate and 00b  is the shrinking rate, respectively, and C  is a constant velocity 

component. It is also assumed that constant mass transfer velocity is wv  with 00wv  for 

suction and 00wv  for injection, respectively. The sheet surface temperature is kept 

constant at wT  and the ambient fluid temperature is a constant at T . The x axis is 

measured along the stretching surface and the y axis is perpendicular to it. Under these 

assumptions the basic steady equations of this problem can be written as 
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where u  and v  are the velocity components along the x  and y  axes, p is the 

pressure,  is the density,  is the kinematic viscosity of the fluid,  is the thermal 

diffusivity of the fluid, and T is the fluid temperature. In the above energy equation, the 

viscous dissipation term is neglected. The boundary conditions of these equations are 
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 We assume that Eqs. (1) to (4) subject to the boundary conditions (5) admit the 

similarity solutions,  
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 where primes denote differentiation with respect to  with a being a positive constant. 

We also denote axxur a)(  as a reference velocity for this problem and  

)()(')( )()( gCfxuu r Cu . Using Eq. (3) and the boundary conditions (5), we obtain the 

following expression for the pressure p  
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where 0p  is the stagnation pressure. Substituting (6) and (7) into Eqs. (2) and (4), we get 

the following ordinary differential equations 

                                                 0'''''' 2 0ffff                                             (8) 

                                                   0'''' 0gfgfg                                              (9) 

   0'Pr'' 0P '' f                                              (10) 

subject to the boundary conditions 

           
0)(,0)(,0)('

1)0(,1)0(,/)0(',)0(
0)0)0)

11
(

0(,
gf

gabfsf
                          (11) 

Where s is the mass transfer parameter with 00s  for mass suction and 00s  for mass 

injection, respectively. Also 00 is the stretching parameter and 00  is the shrinking 

parameter, respectively. Pr is the Prandtl number of the fluid with /Pr . 

 A physical quantity of interest is the skin friction coefficient fC  which is defined 

as 
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where ww  is the skin friction or shear stress and is given by 
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Using the similarity variables (6), we obtain 
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where /Re xurx u  is the local Reynolds number. 

For this flow, the normalized streamlines ~  can be defined as 
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where 2/1)/(~ 1)/~ a  with  defined in the usual way as zu z//  and 

xw x// . 

  There exists an exact solution for Eq. (8) together with the boundary conditions 

(11) as follows: 

eesf )()(                                         (16) 

and  

eesf )()(' .                                  (17) 

with  

2
42 44ss .                                            (18) 

Then Eq. (9) becomes 

                 0)('])(['' 0([ gesgesg g] )()                  (19) 

There is a special solution for efg )(')( . The general solution for Eq. (19) 

reads 
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where 
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t
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t

exEi )(  is the Exponential integral function, and A and B are two 

integration constants. Since it requires that 0)( 0)(g  as . It is obtained 00B  

and 11A . Thus the solution of )( )(g  becomes   
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Therefore the velocity fields become 
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and  
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The non-dimensional stream function becomes 
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Further scrutiny of the momentum equation yields an algebraically decaying 

solution as 
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It is seen that the algebraically decaying function only exists for a shrinking sheet with 

00 . Then the mass suction at the sheet is  
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Accordingly, Eq. (9) becomes 

                 0
)/6(

6'
/6

6''
2

0
6(6

ggg
)(

g .                 (27) 

 There is a general solution for Eq. (27) as 
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Applying the boundary conditions (11)  for )( )(g  yields 
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where 1C  is a free parameter, which means there are infinite number of solutions for 

)( )(g  for a given value of  and the solution is an algebraically decaying function. Then 

the velocity fields are given as 
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The non-dimensional stream function for the algebraically decaying case becomes 
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The energy equation (10) can be solved by direct integration as 
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The heat transfer rate at the wall is related to the temperature gradient at the wall as 
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We can obtain  
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The definite integral in the denominator can be expressed explicitly as follows, 
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where ),( xa(a  is the incomplete Gamma function. However, the above solutions for 

energy equation pose some difficulty in finding explicit integration for the temperature 

distribution. Another approach to the solution can be conducted using a variable 

transformation technique. In order to solve this equation, a new variable as 2Pr 2P e  is 

introduced and substituting it to Eq. (10) yields 
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with the boundary conditions as 

1)(Pr/ 2 12(P   and 0)0( 00( .                    (38a, 38b) 

The solution for Eq. (37) reads 
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Then the temperature solution becomes 
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This solution is consistent with the previous results for 11 [35]. The first derivative 

of )( )((  with respect to  becomes 
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Then the heat transfer flux at the wall is given as 
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Equation (42) is equivalent to Eq. (35), which further proves the used approach is correct. 

For the algebraically decaying solution, the energy equation becomes 
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The solution can be found as follows, 
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In order to match the BC at , it is required that 6/1Pr 1 . The heat flux at the wall 

reads 
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3. Results and discussion 

The exact solution in this work provides a general formulation for both the 

stretching sheet (Crane problem [2]) and the shrinking sheet (Miklavčič and Wang 

problem [25]). In addition, the current results extend the sheet velocity from a pure linear 

velocity to a more general condition with a constant wall translating velocity. In the 



current results, C can be either positive or negative. Therefore, the sheet motion can be 

shrinking in a certain range of distance from the slot then change to a stretching one or to 

the opposite. For the current constant wall and ambient temperature conditions, the 

temperature field does not depend on the horizontal velocity component and only be 

determined by the vertical velocity field. Also the results offer a type of exact solutions of 

the full 2-D Navier-Stokes equations, which is rare in the literature. In the following 

section, some examples will be presented and results will be discussed to show the effects 

of different parameters on the fluid flow and heat transfer characteristics. 

 

3.1 Momentum equation solution 

For the momentum equation, the velocity fields are mainly determined by the 

mass transfer parameter, s, and the wall stretching/shrinking parameter, . For a given 

combination of s and , the solution is given by Eq. (18). In order to have a physical 

finite velocity, the value of β must be positive. Thus it is found that there is one positive 

root of  for 00 and two positive roots of  for 00 . For 00, there is no fluid 

motion in the x-direction due to the linear sheet motion and ss  for 00s  and 00  

for 00s . In either case, we obtain sf s)( )(  and there is only one velocity component in 

the y direction. However, due to the constant velocity component, there exists an 

asymptotic suction velocity profile over a moving plate as follows, 
seCu sC .                                                        (46) 

It is also seen that there is no asymptotic solution for mass injection. Based on this 

finding, it is concluded that the current exact solution provide a general flow solution for 

the 2-D Navier-Stokes equations by integrating the stretching/shrinking plate and the 

asymptotic suction solutions.  

Solution domains of  for different  as a function of s are shown in Fig. 1. It is 

clear there are more than one solution for 00  and solutions only exist for mass suction 

with 44s . The solution domain moves towards a large mass suction for a stronger 

shrinking rate (smaller values of ). For a given negative value of , the upper branch 

solution (“+” sign in Eq. (18)) results in a lager value of  with increasing mass suction 

parameter. However, for the lower branch solution (“-” sign in Eq. (18)), the value of  



decreases with the increase of mass suction parameter. For a positive value of , there is 

only one solution and solution exists for both mass suction and mass injection. The value 

of  increases with the increase of mass suction parameter . The value of  directly 

determines the penetration distance of velocity into the fluid. The boundary layer 

thickness for the wall stretching/shrinking problem can be defined as the distance from 

the wall at which the velocity is 1% of the wall velocity. Then it is obtained 

/6052.4/)100ln(01.0 4ln .                                 (47) 

The boundary layer thickness is inversely proportional to the value of . In addition, for 

a given value of mass suction, the upper branch solution of  decreases with the 

decrease of a negative , which means stronger shrinking rate at the sheet. But for the 

lower solution branch,  decreases with the increase of a negative . When 

4/2s2s , there is no solution for the given flow under similarity form. At the critical 

value of  with one solution, the value of  is given by 2/s . Another 

special case is for an impermeable wall with 00s . For this case,  and there is 

only similar solution for the stretching problem. It is worth mentioning at this end that as 

in similar physical situations, we postulate that the upper branch solutions are physically 

stable and occur in practice, whilst the lower branch solutions are not physically 

obtained. This postulate can be verified by performing a stability analysis but this is 

beyond the scope of the present paper. 

To illustrate the effects of the stretching/shrinking parameters on the velocity 

fields, some velocity profiles are shown in Figs. 2 and 3. As seen in Fig. 2(a) for the 

upper solution branch, the value of  changes from 0.5 to the one solution value for 

0.44s , namely 44. It is found the velocity profiles penetrate deeper into the fluid 

for a smaller value of . However, the lower solution branch is quite different from the 

upper solution branch, where velocity penetrates deeper for a larger value of . There 

exists crossover points among the velocity profiles for different values of  for the lower 

solution branch under shrinking conditions, namely 00. In addition, the upper solution 

branch has much shorter velocity penetration than the lower solution branch for the same 

values of s and . For the stretching sheet problem as shown in Figs. 3(a) and 3(b), 

solutions exist for both mass suction and mass injection. Under mass suction conditions, 



the velocity penetration is quite short and the effects of  on the penetration distance are 

not so obvious. However, based on Eq. (28), under certain mass suction, the penetration 

distance becomes shorter for a larger value of positive . But under certain mass 

injection, the penetration distance becomes obviously shorter for a larger value of 

positive . There are cross-over points among the velocity profiles.  

In order to show the flow patterns, examples of dimensionless stream functions 

are plotted in Figs.4 and 5 for different mass transfer and stretching/shrinking parameters 

as well as // aC . Without loss of generality, we set /a  to be one with yy . The 

streamlines for wall shrinking problem are shown in Figs. 4(a)-4(d) for different solution 

branches. For the shrinking sheet problem, with a negative value of // aC , the fluid is 

stretched toward the slot for both solution branches. However, for a positive value of 

// aC , the sheet is first stretched out of the slot and then it moves toward the slot after 

a certain distance from the slot. There is a point with 00u  on the sheet for both solution 

branches at )()/()/(/ ))/)
a
CaCbCx (CC . For the stretching sheet problem, as 

shown in Figs. 5(a)-5(d) for different combinations of parameters, the flow patterns are 

quite different for mass injection and mass suction. Under mass suction, there exists a 

point for 00u  with a combination of a positive  and a negative // aC . The fluid is 

first stretched towards the slot and the stretched away from the slot after passing that 

point. The fluid is always stretched away from the slot when both  and // aC  are 

positive. When mass injection is applied at the wall, the vertical velocity becomes zero at 

a certain distance from the wall with 
)/1ln(

0

s
v

sln
0 . Again for such a condition, the 

fluid is always moving away from the slot when both  and // aC  are positive. 

Interesting flow pattern is observed for the stretching sheet with a negative value of 

// aC  under mass injection as shown in Fig. 5(d). There exists a saddle point for this 

condition with both 00u  and 00v  at )()/()/(/ ))/)
a
CaCbCx (CC  and 
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The algebraically decaying solution is quite different from the exponentially 

decaying solution. In this part, some examples of the algebraically decaying solution will 

be presented. As shown in Figs. 6(a) and 6(b) for the plot of )( )(f  and )(' )(f , it is seen 

the velocity profiles have quite deep flow penetration to the ambient fluid. Interesting 

observations are found for the flow due to constant velocity component at the wall for 

function )( )(g . Based on Eq. (29), when 01 0C , the solution reduces to a very simple 

form, 
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and for /61 6C , it becomes 
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For other arbitrary values of 1C , the profiles of )( )(g  can be quite complicated. To 

illustrate this, some plots for different values of 1C  and  are shown in Figs. 7 and 8. In 

Fig. 7, the plots show the effects of positive 1C  and  on the velocity profiles. One 

interesting findings is the velocity overshoot near the wall. The overshoot velocity 

becomes more obvious and larger for a larger value of positive 1C  and . However, for 

a negative 1C  as shown in Figs. 8(a) and 8(b), there also exists velocity overshoot to the 

negative direction with reversal flows in the boundary layer. These kinds of flow 

behaviors have not been observed in previous publications for the algebraically decaying 

solutions. In order to further analyze the variation characteristics of the profile, the first 

derivative of )( )(g  can be obtained as 
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By setting )(' )(g zero, we can get the local extreme value (EV) as 
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Then it is seen that there might exist a positive velocity overshoot for a positive value of 

1C  and a negative velocity overshoot for a negative value of 1C . Some typical 



streamlines for the algebraically decaying flow fields in Figs. 9(a) and 9(b) for a positive 

value of aC /  and a negative value of aC /  respectively. Again, in the plots, it is 

assumed 1/ 1a . It is obvious that there is certain point with zero velocity at the wall 

for a positive value of aC / . It is also seen that the variation of 1C  does not affect the 

flow pattern near the wall, while the flow field far away from the wall is greatly 

influenced. 

 

3.2 Heat transfer solution 

Now let’s look at the heat transfer problem. The dimensionless temperature and 

heat transfer flux at the wall are given by Eqs. (40) and (42) for exponentially decaying 

flow and given by Eqs. (44) and (45) for the algebraically decaying flow. In order to 

illustrate the temperature distribution and heat flux at the wall under the effects of 

different combinations of mass suction parameter, stretching parameter, and Prandtl 

number, some typical examples will be presented and discussed in this section. 

The effects of the Prandtl number on the temperature profiles are shown in Figs. 

10 and 11. The non-dimensional temperature profiles for a shrinking sheet configuration 

with 22 and 44s  are shown in Figs. 10(a) and 10(b) for the two solution branches 

at different values of Prandtl number. Generally, the thermal boundary layer thickness 

becomes thinner with the increase of the Prandtl number. Compared with the upper 

solution branch, the lower solution branch has slightly thicker thermal boundary layer. 

For the stretching wall problem with mass suction as shown in Fig. 11(a), the thermal 

boundary layers are quite similar to the shrinking problem with the same wall motion and 

mass suction as seen in Fig. 10(a).  However, the mass injection case provides very 

different results (Fig. 11-b). Under mass injection, the boundary layer is blown away 

from the wall and the heat flux at the wall becomes very small. The boundary layer 

thickness is still thinner for a higher value of the Prandtl number, but the temperature 

distribution is quite interesting. With the increase of the Prandtl number, the wall heat 

flux becomes smaller with a flatter temperature near the wall and the temperature drops 

fast to the ambient temperature. A higher dropping slope is observed for a higher value of 

Pr in the fluid at a distance from the wall. Due to mass injection, the thermal penetration 

is much deeper than the mass suction cases. 



Figures 12(a), 12(b) and 12(c) show the influence of mass transfer parameter on 

the temperature profiles. For a stretching problem, solutions exist for both mass suction 

and mass injection (Fig. 12-a). Under certain stretching strength and Prandtl number Pr , 

the wall heat flux reduces with increasing mass injection. The boundary layer thickness 

(thermal penetration) becomes thicker into the fluid. However for a shrinking sheet 

problem, solutions only exist for 44s . For both solution branches (Figs. 12-b and 

12-c), the thermal boundary layer thickness and wall heat flux are quite similar. With the 

increase of mass suction, the temperature drops faster and the boundary layer becomes 

thinner for both branches. However, there are some crossovers among the temperature 

profiles under different mass suction for the lower solution branch, which does not occur 

for the upper solution branch. 

The effects of wall stretching or shrinking strength are illustrated in Figs. 13 and 

14. For the shrinking problem, both the upper solution (Fig. 13-a) and the lower solution 

(Fig. 13-b) show similar trend with boundary layer thicker for a high magnitude of 

shrinking strength. For the lower solution branches, some crossover points are observed 

for among certain temperature profiles. Quite different variation trends are observed for 

the stretching problem in Figs. 14(a) and (b). For both mass suction and mass injection, 

the boundary layers become thinner with the increase of stretching strength at the wall 

and the wall heat flux becomes higher. 

The contour plot for )0('('  as a function of s and Pr are shown in Figs. 15(a) 

and (b) for 22  and 22 , respectively. The results are consistent with the findings 

in the temperature profiles. For the stretching problem (Fig. 15-a) with mass suction at 

the wall, the heat flux increases with the increase of both Pr and s. But for mass injection, 

the variation trend becomes quite complicated under the effect of Pr. The heat flux still 

increases with the reduction of mass injection. For the Prandtl number under a certain 

mass injection, the heat flux first increases and then decreases with the increase of the 

Prandtl numbers. For the shrinking sheet problem, the variation trend is quite 

straightforward. As seen in Fig. 15(b), the wall heat flux increases with the increase of Pr 

and s for the lower solution branch. The results for the upper solution branch are very 

similar to the lower solution branch. 



Some examples of the algebraically decaying temperature profiles are shown in 

Figs. 16(a) and (b). Under a certain shrinking strength, the boundary layer thickness 

becomes thinner for a higher value of Pr. With a certain Pr value, the boundary layers 

becomes thinner for a high magnitude of wall shrinking and the heat flux becomes 

higher. The wall heat flux as a function of Pr and  is straightforward as given in Eq. 

(45). The wall heat flux increases linearly with the increase of Pr and .  

 

4. Conclusion 

In this work, a general viscous fluid flow over a stretching/shrinking sheet was 

investigated. Exact solutions were obtained for the steady governing Navier-Stokes 

equations. The new solutions provide a more general formulation combining the 

stretching and shrinking wall problems as well as the asymptotic suction velocity profiles 

over a moving plate. The current results illustrate both exponentially and algebraically 

decaying solutions, multiple solution branches with infinite number of solutions for the 

flow field, and velocity overshoots. The energy equation ignoring viscous dissipation was 

solved exactly and the effects of the mass transfer parameter, the Prandtl number, and the 

wall stretching/shrinking strength on the temperature profiles and wall heat flux were also 

analyzed. The exact solution of this general flow configuration is a rare case for the 

Navier-Stokes equations and greatly enriches the understanding of the complicated 

nonlinear behavior. 
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Fig. 1 The solution domain for  at different values of �  as a function of the mass 

suction parameter,  
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Fig. 2  Velocity profiles of the upper solution branch (a) and the lower solution branch 

(b) at 4�s  under different negative values of �   
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Fig. 3  Velocity profiles of different positive values of �  under mass suction (a) and 

mass injection (b) 
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Fig. 4  Some typical dimensionless streamlines of the two solution branches for the 

shrinking sheet problem under different combinations of control parameters  
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Fig. 5  Some typical dimensionless streamlines of the stretching sheet problem for 

different combinations of control parameters under mass suction (a-b) and mass injection 

(c-d) 
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Fig. 6 Profiles of )(' �f  (a) and )(�f (b) for the algebraically decaying solutions under 

different values of �   
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Fig. 7 Profiles of )(�g  for the algebraically decaying solutions under different values of 

�  (a) and positive 1C  (b) 
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Fig. 8 Profiles of )(�g  for the algebraically decaying solutions under different values of 

�  (a) and negative 1C  (b) 

(b) 

(a) 



x

y

�= -2, C/a= 2, C1= -10

0 1 2 3 4 5
0

5

10

x

y

�= -2, C/a= 2, C1= 0

0 1 2 3 4 5
0

5

10

x

y

�= -2, C/a= 2, C1= -6/�

0 1 2 3 4 5
0

5

10

x
y

�= -2, C/a= 2, C1= 10

0 1 2 3 4 5
0

5

10

 
(a) 

x

y

�= -2, C/a= -2, C1= 10

0 1 2 3 4 5
0

5

10

x

y

�= -2, C/a= -2, C1= -6/�

0 1 2 3 4 5
0

5

10

x

y

�= -2, C/a= -2, C1= 0

0 1 2 3 4 5
0

5

10

x

y

�= -2, C/a= -2, C1= -10

0 1 2 3 4 5
0

5

10

 
(b) 

Fig. 9 Some examples of non-dimensional streamlines for the algebraically decaying 

solution under positive aC /  (a) and negative aC /  (b)  
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Fig. 10 Temperature profiles of the upper solution branch (a) and the lower solution 

branch (b) for a shrinking sheet problem under different values of Pr 
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Fig. 11 Temperature profiles of a stretching sheet problem under mass suction (a) and 

mass injection (b) for different values of Pr 
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Fig. 12 Effects of mass transfer parameter on the temperature profiles: (a) stretching 

sheet, (b) upper solution of a shrinking sheet, and (c) lower solution of a shrinking sheet 
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Fig. 13 Effects of wall shrinking strength on the temperature profiles: (a) upper solution 

branch and (b) lower solution branch 
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Fig. 14 Effects of wall stretching strength on the temperature profiles: (a) mass suction 

and (b) mass injection 
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Fig. 15 Contour plots of )0('��  as a function of Pr and s for the stretching sheet problem 

(a) and the lower solution branch of the shrinking sheet problem 
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Fig. 16 Effects of the Prandtl number (a) and wall shrinking strength (b) on the 

temperature profiles of the algebraically decaying solution  
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