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Flow and heat transfer over a generalized stretching/shrinking wall problem -exact solutions of the Navier-Stokes equations
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In this paper, we investigate the steady momentum and heat transfer of a viscous fluid flow over a stretching/shrinking sheet. Exact solutions are presented for the Navier-Stokes equations. The new solutions provide a more general formulation including the linear stretching and shrinking wall problems as well as the asymptotic suction velocity profiles over a moving plate. Interesting nonlinear phenomena are observed in the current results including both exponentially decaying solution and algebraically decaying solution, multiple solutions with infinite number of solutions for the flow field, and velocity overshoot. The energy equation ignoring viscous dissipation is solved exactly and the effects of the mass transfer parameter, the Prandtl number, and the wall stretching/shrinking strength on the temperature profiles and wall heat flux are also presented and discussed. The exact solution of this general flow configuration is a rare case for the Navier-Stokes equation.

Introduction

The fluid dynamics over a stretching surface is important in many practical applications, such as extrusion of plastic sheets, paper production, glass blowing, metal spinning, drawing plastic films, the cooling of metallic plates in a cooling bath, polymer sheet extruded continuously from a dye and heat-treated materials that travel between feed and wind-up rolls, to name just a few. Apparently, the quality of the final product depends on the rate of heat and mass transfer between the stretching surface and fluid flow of such processes as explained by Karwe and Jaluria [START_REF] Karwe | Numerical simulation of thermal transport associated with a continuous moving flat sheet in materials processing[END_REF]. Since the pioneering study by Crane [START_REF] Crane | Flow past a stretching plane[END_REF] who presented an exact analytical solution for the steady two-dimensional stretching of a surface in a quiescent fluid with a velocity varying linearly with distance

x from a fixed point, many authors have considered various aspects of this problem, such as consideration of mass transfer, power-law variation of the stretching velocity and temperature, magnetic field, application to non-Newtonian fluids, and obtained similarity solutions. Exact solutions for self-similar boundary layer flows induced by a stretching surface with velocity proportional to m x , where m is a constant were reported by Banks [START_REF] Banks | Similarity solutions of the boundary layer equations for a stretching wall[END_REF] for an impermeable surface, and by Magyari and Keller [START_REF] Magyari | Exact solutions for self-similar boundary-layer flows induced by permeable stretching surfaces[END_REF] for a permeable surface.

Liao and Pop [START_REF] Liao | Explicit analytic solution for similarity boundary layer equations[END_REF] solved the case of a linearly stretching surface using the homotopy analytic method (HAM). Carragher and Crane [START_REF] Carragher | Heat transfer on a continuous stretching sheet[END_REF], and Grubka and Bobba [START_REF] Grubka | Heat transfer characteristics of a continuous stretching surface with variable temperature[END_REF] investigated heat transfer in the above flow in the case when the temperature difference between the surface and the ambient fluid is proportional to a power of distance from the fixed point. Dutta et al. [START_REF] Dutta | Temperature field in flow over a stretching sheet with uniform heat flux[END_REF] have considered the case of temperature distribution in the flow over a stretching sheet with uniform wall heat flux. Gupta and Gupta [START_REF] Gupta | Heat and mass transfer on a stretching sheet with suction or blowing[END_REF] analyzed the heat and mass transfer corresponding to the similarity solution for the boundary layers over an isothermal stretching sheet subject to suction or blowing. Bataller [START_REF] Bataller | Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface[END_REF] performed a numerical analysis in connection with the boundary layer flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface. On the other hand, Magyari and

Weidman [START_REF] Magyari | Heat transfer on a plate beneath an external uniform shear flow[END_REF] studied the thermal characteristics of the flow over a semi-infinite flat plate driven by a uniform shear in the far field. Similarity solutions of the thermal and momentum boundary layer flow for a power-law shear driven flow over a semi-infinite flat plate has been reported also by Cossali [START_REF] Cossali | Similarity solutions of energy and momentum boundary layer equations for a power-law shear driven flow over a semi-infinite flat plate[END_REF] and Fang [START_REF] Fang | Flow and heat transfer characteristics of the boundary layers over a stretching surface with a uniform-shear free stream[END_REF]. Magyari and Keller [START_REF] Magyari | Heat transfer characteristics of boundary-layer flows induced by continuous surfaces stretched with prescribed skin friction[END_REF] presented very interesting results for the boundary layer flow and heat transfer characteristics induced by continuous isothermal surfaces stretched with prescribed skin friction. Andersson [START_REF] Andersson | Slip flow past a stretching surface[END_REF] has considered the slip-flow of a viscous and incompressible fluid past a linearly stretching sheet. Chakrabarti and Gupta [START_REF] Chakrabarti | Hydromagnetic flow and heat transfer over a stretching sheet[END_REF], and Pop and Na [START_REF] Pop | A note on MHD flow over a stretching permeable surface[END_REF] investigated the flow along a permeable stretching sheet under the effect of a constant transverse magnetic field of a Newtonian fluid, while Anderson et al. [START_REF] Andersson | Magnetohydrodynamic flow of a power-law fluid over a stretching sheet[END_REF] considered the case of a power-law fluid, respectively. Quite recently the flow adjacent to a stretching permeable sheet in a Darcy-Brinkman porous medium has been considered by Pantokratoras [START_REF] Pantokratoras | Flow adjacent to a stretching permeable sheet in a Darcy-Brinkman porous medium[END_REF]. Wang [START_REF] Wang | The three-dimensional flow due to a stretching flat surface[END_REF] analyzed the steady three-dimensional flow of a viscous fluid over a plane surface, which is stretched in its own plane in two perpendicular directions. He also studied the flow caused by the axisymmetric stretching of the surface.

Some interesting mathematical results on multiple (dual) solutions for the boundary layer flow over a moving semi-infinite flat plate have been reported by Afzal et al. [START_REF] Afzal | Momentum and transport on a continuous flat surface moving in a parallel stream[END_REF], Afzal [START_REF]Momentum transfer on power law stretching plate with free stream pressure gradient[END_REF], Weidman et al. [START_REF] Weidman | The effect of transpiration on self-similar boundary layer flow over moving surfaces[END_REF], Fang [START_REF] Fang | Flow and heat transfer characteristics of the boundary layers over a stretching surface with a uniform-shear free stream[END_REF] and Ishak et al. [START_REF] Ishak | Flow and heat transfer characteristics on a moving flat plate in a parallel stream with constant surface heat flux[END_REF]. (1)
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where u and v are the velocity components along the x and y axes, p is the pressure, is the density, is the kinematic viscosity of the fluid, is the thermal diffusivity of the fluid, and T is the fluid temperature. In the above energy equation, the viscous dissipation term is neglected. The boundary conditions of these equations are
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We assume that Eqs. ( 1) to (4) subject to the boundary conditions (5) admit the similarity solutions,
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where primes denote differentiation with respect to with a being a positive constant.

We also denote ax x u r a ) ( as a reference velocity for this problem and
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. Using Eq. ( 3) and the boundary conditions where 0 p is the stagnation pressure. Substituting ( 6) and ( 7) into Eqs. ( 2) and (4), we get the following ordinary differential equations
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Where s is the mass transfer parameter with 0 0 s for mass suction and 0 0 s for mass injection, respectively. Also 0 0 is the stretching parameter and 0 0 is the shrinking parameter, respectively. Pr is the Prandtl number of the fluid with / Pr .

A physical quantity of interest is the skin friction coefficient f C which is defined

as 2 r w f u C u w ( 12 
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where w w is the skin friction or shear stress and is given by 0 0 y w y u w [START_REF] Fang | Flow and heat transfer characteristics of the boundary layers over a stretching surface with a uniform-shear free stream[END_REF] Using the similarity variables (6), we obtain
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is the local Reynolds number.

For this flow, the normalized streamlines ~ can be defined as There exists an exact solution for Eq. ( 8) together with the boundary conditions [START_REF] Magyari | Heat transfer on a plate beneath an external uniform shear flow[END_REF] as follows:
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Then Eq. ( 9) becomes
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There is a special solution for
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The non-dimensional stream function becomes
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Further scrutiny of the momentum equation yields an algebraically decaying solution as
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It is seen that the algebraically decaying function only exists for a shrinking sheet with 0 0 . Then the mass suction at the sheet is
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Accordingly, Eq. ( 9) becomes
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There is a general solution for Eq. ( 27) as
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Applying the boundary conditions (11) for ) ( ) ( g yields 
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where 1 C is a free parameter, which means there are infinite number of solutions for
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for a given value of and the solution is an algebraically decaying function. Then the velocity fields are given as
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The non-dimensional stream function for the algebraically decaying case becomes
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The energy equation ( 10 

The heat transfer rate at the wall is related to the temperature gradient at the wall as
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We can obtain This solution is consistent with the previous results for 1 1 [35]. The first derivative (42)

Equation ( 42) is equivalent to Eq. ( 35), which further proves the used approach is correct.

For the algebraically decaying solution, the energy equation becomes (45)

Results and discussion

The exact solution in this work provides a general formulation for both the stretching sheet (Crane problem [START_REF] Crane | Flow past a stretching plane[END_REF]) and the shrinking sheet (Miklavčič and Wang problem [START_REF] Miklavčič | Viscous flow due to a shrinking sheet[END_REF]). In addition, the current results extend the sheet velocity from a pure linear velocity to a more general condition with a constant wall translating velocity. In the current results, C can be either positive or negative. Therefore, the sheet motion can be shrinking in a certain range of distance from the slot then change to a stretching one or to the opposite. For the current constant wall and ambient temperature conditions, the temperature field does not depend on the horizontal velocity component and only be determined by the vertical velocity field. Also the results offer a type of exact solutions of the full 2-D Navier-Stokes equations, which is rare in the literature. In the following section, some examples will be presented and results will be discussed to show the effects of different parameters on the fluid flow and heat transfer characteristics.

Momentum equation solution

For the momentum equation, the velocity fields are mainly determined by the mass transfer parameter, s, and the wall stretching/shrinking parameter, . For a given combination of s and , the solution is given by Eq. ( 18). In order to have a physical finite velocity, the value of β must be positive. Thus it is found that there is one positive root of for 0 0 and two positive roots of for 0 0 . For 0 0, there is no fluid motion in the x-direction due to the linear sheet motion and s s for 0 0 s and 0 0 for 0 0 s . In either case, we obtain
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and there is only one velocity component in the y direction. However, due to the constant velocity component, there exists an asymptotic suction velocity profile over a moving plate as follows, . The solution domain moves towards a large mass suction for a stronger shrinking rate (smaller values of ). For a given negative value of , the upper branch solution ("+" sign in Eq. ( 18)) results in a lager value of with increasing mass suction parameter. However, for the lower branch solution ("-" sign in Eq. ( 18)), the value of . It is obvious that there is certain point with zero velocity at the wall for a positive value of a C / . It is also seen that the variation of 1 C does not affect the flow pattern near the wall, while the flow field far away from the wall is greatly influenced. (45). The wall heat flux increases linearly with the increase of Pr and .

Heat transfer solution

Conclusion

In x Momentum and heat transfer of flow over a stretching/shrinking sheet are investigated

x Exact solutions of the NavierͲStokes equations are found

x Both exponentially and algebraically decaying solutions are observed

x Multiple solutions with infinite number of solutions for the flow field are obtained

  However, little work has been done about the problem of shrinking sheet where the velocity on the boundary is towards a fixed point. Miklavčič and Wang[START_REF] Miklavčič | Viscous flow due to a shrinking sheet[END_REF] studied the flow over a shrinking sheet with mass flux (suction or injection), which is an exact solution of the Navier-Stokes equations. It has been shown that mass suction is required to maintain the flow over a shrinking sheet. This phenomenon can be found, for example, on a rising and shrinking balloon. This new type of shrinking sheet flow is essentially a backward flow as discussed by Goldstein[START_REF] Goldstein | On backward boundary layers and flow in converging passages[END_REF]. Physically, there are two conditions that the flow towards the shrinking sheet is likely to exist: whether an adequate suction on the boundary is imposed (Miklavčič and Wang[START_REF] Miklavčič | Viscous flow due to a shrinking sheet[END_REF]) suction is required to maintain the flow over a shrinking sheet. Problems of boundary layer flow over shrinking sheets with mass transfer have been studied by Fang[START_REF] Fang | Boundary layer flow over a shrinking sheet with power-law velocity[END_REF], Fang et al.[START_REF] Fang | A new solution branch for the Blasius equation -A shrinking sheet problem[END_REF], Fang and Zhang[START_REF] Fang | Closed-form exact solutions of MHD viscous flow over a shrinking sheet[END_REF] and Fang et al.[START_REF] Fang | Viscous flow over an unsteady shrinking sheet with mass transfer[END_REF][START_REF] Fang | Slip MHD viscous flow over a stretching sheet-an exact solution[END_REF]. Fang[START_REF] Fang | Boundary layer flow over a shrinking sheet with power-law velocity[END_REF] considered the flow over a continuously shrinking sheet with a power-law surface velocity and mass transfer. The similarity equations with a a shrinking sheet was investigated by Wang[START_REF] Hayat | Three-dimensional rotating flow induced by a shrinking sheet for suction[END_REF]. Finally, we mention the papers by Hayat et al.[START_REF] Lok | MHD stagnation-point flow towards a shrinking sheet[END_REF] on the magnetohydrodynamic and rotating flow over a permeable shrinking sheet and by Lok et al.[START_REF] Wang | Stagnation flow towards a shrinking sheet[END_REF] on the MHD stagnation-point flow towards a shrinking sheet. Motivated by the above-mentioned investigations and applications, we investigate in this present paper, the behavior of the steady boundary layer flow and heat transfer of a viscous and incompressible fluid towards a permeable (with mass flux) shrinking sheet in a quiescent fluid. The sheet shrinking velocity is ) which will be specified later. The partial differential equations in two variables are transformed into ordinary differential equations and are solved both analytically and numerically for some values of the physically governing parameters.
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 2 Basic equations and exact solutionsConsider the steady two-dimensional flow of a viscous and incompressible fluid on a continuously stretching or shrinking sheet with mass transfer in a stationary fluid. It is assumed that the velocity of the stretching sheet is rate, respectively, and C is a constant velocity component. It is also assumed that constant mass transfer velocity is w v respectively. The sheet surface temperature is kept constant at w T and the ambient fluid temperature is a constant at T . The x axis is measured along the stretching surface and the y axis is perpendicular to it. Under these assumptions the basic steady equations of this problem can be written as

  integral function, and A and B are two integration constants. Since it requires that 0

  ) can be solved by direct integration as

  definite integral in the denominator can be expressed explicitly as follows, the incomplete Gamma function. However, the above solutions for energy equation pose some difficulty in finding explicit integration for the temperature distribution. Another approach to the solution can be conducted using a variable transformation technique. In order to solve this equation, a new variable as

  Then the heat transfer flux at the wall is given as

  order to match the BC at , it is required that 6 / 1 Pr 1 . The heat flux at the wall reads

  is also seen that there is no asymptotic solution for mass injection. Based on this finding, it is concluded that the current exact solution provide a general flow solution for the 2-D Navier-Stokes equations by integrating the stretching/shrinking plate and the asymptotic suction solutions. Solution domains of for different as a function of s are shown in Fig. 1. It is clear there are more than one solution for 0 0 and solutions only exist for mass suction with 4 4 s
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 471 Fig. 7, the plots show the effects of positive 1 C and on the velocity profiles. One interesting findings is the velocity overshoot near the wall. The overshoot velocity becomes more obvious and larger for a larger value of positive 1 C and . However, for a negative 1 C as shown in Figs. 8(a) and 8(b), there also exists velocity overshoot to the negative direction with reversal flows in the boundary layer. These kinds of flow behaviors have not been observed in previous publications for the algebraically decaying solutions. In order to further analyze the variation characteristics of the profile, the first derivative of ) ( ) ( g can be obtained as

  Now let's look at the heat transfer problem. The dimensionless temperature and heat transfer flux at the wall are given by Eqs. (40) and (42) for exponentially decaying flow and given by Eqs. (44) and (45) for the algebraically decaying flow. In order to illustrate the temperature distribution and heat flux at the wall under the effects of different combinations of mass suction parameter, stretching parameter, and Prandtl number, some typical examples will be presented and discussed in this section. The effects of the Prandtl number on the temperature profiles are shown in Figs. 10 and 11. The non-dimensional temperature profiles for a shrinking sheet configuration with Figs. 10(a) and 10(b) for the two solution branches at different values of Prandtl number. Generally, the thermal boundary layer thickness becomes thinner with the increase of the Prandtl number. Compared with the upper solution branch, the lower solution branch has slightly thicker thermal boundary layer.For the stretching wall problem with mass suction as shown in Fig.11(a), the thermal boundary layers are quite similar to the shrinking problem with the same wall motion and mass suction as seen in Fig.10(a). However, the mass injection case provides very different results (Fig.11-b). Under mass injection, the boundary layer is blown away from the wall and the heat flux at the wall becomes very small. The boundary layer thickness is still thinner for a higher value of the Prandtl number, but the temperature distribution is quite interesting. With the increase of the Prandtl number, the wall heat flux becomes smaller with a flatter temperature near the wall and the temperature drops fast to the ambient temperature. A higher dropping slope is observed for a higher value of Pr in the fluid at a distance from the wall. Due to mass injection, the thermal penetration is much deeper than the mass suction cases.

Figures 12 (

 12 Figures 12(a), 12(b) and 12(c) show the influence of mass transfer parameter on the temperature profiles. For a stretching problem, solutions exist for both mass suction and mass injection (Fig. 12-a). Under certain stretching strength and Prandtl number Pr , the wall heat flux reduces with increasing mass injection. The boundary layer thickness (thermal penetration) becomes thicker into the fluid. However for a shrinking sheet problem, solutions only exist for 4 4 s . For both solution branches (Figs. 12-b and 12-c), the thermal boundary layer thickness and wall heat flux are quite similar. With the increase of mass suction, the temperature drops faster and the boundary layer becomes thinner for both branches. However, there are some crossovers among the temperature profiles under different mass suction for the lower solution branch, which does not occur for the upper solution branch. The effects of wall stretching or shrinking strength are illustrated in Figs. 13 and 14. For the shrinking problem, both the upper solution (Fig. 13-a) and the lower solution (Fig. 13-b) show similar trend with boundary layer thicker for a high magnitude of shrinking strength. For the lower solution branches, some crossover points are observed for among certain temperature profiles. Quite different variation trends are observed for the stretching problem in Figs. 14(a) and (b). For both mass suction and mass injection, the boundary layers become thinner with the increase of stretching strength at the wall and the wall heat flux becomes higher. The contour plot for ) 0 ( '( ' as a function of s and Pr are shown in Figs. 15(a) and (b) for 2 2 and 2 2 , respectively. The results are consistent with the findings in the temperature profiles. For the stretching problem (Fig. 15-a) with mass suction at the wall, the heat flux increases with the increase of both Pr and s. But for mass injection, the variation trend becomes quite complicated under the effect of Pr. The heat flux still increases with the reduction of mass injection. For the Prandtl number under a certain mass injection, the heat flux first increases and then decreases with the increase of the Prandtl numbers. For the shrinking sheet problem, the variation trend is quite straightforward. As seen in Fig. 15(b), the wall heat flux increases with the increase of Pr and s for the lower solution branch. The results for the upper solution branch are very similar to the lower solution branch.
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 1234789 Fig. 1 The solution domain E of at different values of D as a function of the mass transfer parameter Fig. 2 Velocity profiles of the upper solution branch (a) and the lower solution branch (b) at 4 s under different negative values of D Fig. 3 Velocity profiles of different positive values of D under mass suction (a) and mass injection (b) Fig. 4 Some typical dimensionless streamlines of the two solution branches for the shrinking sheet problem under different combinations of control parameters Fig. 5 Some typical dimensionless streamlines of the stretching sheet problem for different combinations of control parameters under mass suction (a-b) and mass injection (c-d) Fig. 6 Profiles of ) ( ' K f (a) and ) (K f (b) for the algebraically decaying solutions under different values of D Fig. 7 Profiles of ) (K g for the algebraically decaying solutions under different values of D (a) and positive 1 C (b) Fig. 8 Profiles of ) (K g for the algebraically decaying solutions under different values of D (a) and negative 1 C (b) Fig. 9 Some examples of non-dimensional streamlines for the algebraically decaying solution under positive a C / (a) and negative a C / (b) Fig. 10 Temperature profiles of the upper solution branch (a) and the lower solution branch (b) for a shrinking sheet problem under different values of Pr Fig. 11 Temperature profiles of a stretching sheet problem under mass suction (a) and mass injection (b) for different values of Pr Fig. 12 Effects of mass transfer parameter on the temperature profiles: (a) stretching sheet, (b) upper solution of a shrinking sheet, and (c) lower solution of a shrinking sheet
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 13 Fig. 13 Effects of wall shrinking strength on the temperature profiles: (a) upper solution branch and (b) lower solution branch Fig. 14 Effects of wall stretching strength on the temperature profiles: (a) mass suction and (b) mass injection
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 13714516 Fig. 13 Effects of wall shrinking strength on the temperature profiles: (a) upper solution branch and (b) lower solution branch