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Abstract 

An analytical method for the treatment of the elastic buckling problem of continuous 

beams with intermediate unilateral constraints is presented, which is based on the 

fundamental theory of elastic stability. The study focuses on the unilateral contact 

buckling problem of beams in the presence of initial geometric imperfections. The 

mathematical Euler approach, based on the fundamental solution of the boundary value 

problem of the buckling of continuous beams, is appropriately modified in order to take 

into account the unilateral contact conditions. Furthermore, in order the obtained 

analytical solutions to be applicable for practical design cases, the actual strength of the 

cross section of the beam under combined compression and bending is considered. The 

implementation of the proposed method is demonstrated through a characteristic 

example.  

Keywords: Buckling; Unilateral contact; Initial geometric imperfections. 

1. Introduction 

In many cases engineers deal with practical problems where, besides classical 

boundary conditions (bilateral constraints), unilateral support conditions are also 

possible. It is obvious that classical structural or mechanical problems with a certain 

level of complexity become even more complex to be solved when unilateral constraints 

should also be taken into account. Buckling involving unilateral contact is encountered 
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in a variety of different practical applications. The unilateral contact buckling problem 

of delaminated plates in a composite member, the possible contact buckling phenomena 

in metal forming processes, the buckling of the compressive plates of the steel sheeting 

in a composite slab, are some of the many structural and mechanical problems where 

the beginning and the evolution of the buckling phenomena are strongly affected by 

unilateral contact conditions.  

Problems of that type are usually handled using computational techniques based on 

variational formulations of the governing differential equations ([1], [2], [3], [4], [5], 

[6], [7], [8]). For the solution of some specific problems in the area of civil engineering, 

simplified mathematical models have also been developed by Ma et al. [9],[10]. 

Furthermore, some researchers ([11], [12], [13], [14], [15]) have studied the 

aforementioned problem from a more theoretical point of view, giving analytical 

solutions for some classes of problems.  

Additionally, the stability and strength of structures in real life applications is 

influenced by the existence of initial geometric imperfections which develop due to a 

variety of reasons, as e.g. manufacturing processes, member handling from the factory 

to the construction site, etc. For this reason, the design against buckling in all the 

structural design codes considers initial geometric imperfections having certain shapes 

and amplitudes. 

In the present paper an analytical method is developed which can be applied in 

common practical problems. The aforementioned methodology is based on the linear 

elastic stability theory, appropriately extended in order to take into account the 

unilateral constraints. More specifically, the Euler equilibrium method [16], [17] of 

finding the instability load of continuous beams in the presence of initial geometric 

imperfections, is applied. The considered continuous beams, besides bilateral 

constraints, are subjected to unilateral ones.  

For the implementation of the proposed method, first arbitrary initial geometric 

imperfections compatible with the function of the unilateral constraint are introduced in 

the structure. Then, the governing differential equations describing the bending 

behaviour of the beam are constructed. The boundary conditions of the problem are 

formulated appropriately, in order to take into account the unilateral constraints. In the 

sequel, the arising Boundary Value Problem (BVP)  is examined under all the possible 

contact situations. The solution of the BVP gives the deflection curve of the beam as a 

function of the applied load. The so-called instability load is the one that leads the 

values of the obtained deflection curve of the beam to infinity. On the other hand, it 
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should be noticed that the maximum  load that a beam can sustain is affected by the 

actual strength of the beam's section. In this case, the ultimate load is the one which 

marginally satisfies the design strength criteria and depends also on the shape and 

amplitude of the initial imperfections.  

In the following paragraphs the formulation and the implementation of the described 

method are presented. Without losing generality, in Section 2, the non-homogeneous 

BVP of a simply supported continuous geometrically imperfect beam with two unequal 

spans and one intermediate unilateral constraint, subjected to axial compressive load is 

formulated and investigated. The next part of the paper (Section 3) is devoted to the 

consideration of the actual strength of the beam under axial compression and bending. 

In the last part of the paper (Section 4) the implementation of the proposed method is 

presented through a characteristic example. Due to the fact that the solution of the non-

homogeneous BVP is strongly connected with the eigenvalues of the corresponding 

homogeneous BVP, i.e. the buckling loads of the unilateral contact buckling problem of 

the geometrically perfect beam, useful details concerning the latter are given in the 

Appendix.    

2. Formulation of the elastic contact buckling of the geometrically imperfect 

continuous beam 

2.1 Formulation 

A geometrically imperfect continuous beam with an intermediate constraint is 

considered, subjected to an axial compressive load (Fig. 1). The beam is divided into 

two spans, Span I and Span II, having lengths aL and (1 )a L� respectively, where L is 

the total length of the continuous beam. The two spans are equipped with the coordinate 

systems 1 1,x w  and 2 2,x w , as it is shown in Fig.1. Here 1 2,x x  measure the position along 

the axis of the beam and 1 2,w w denote the transverse deflections of the beam in the two 

spans.  

The initial shape of the imperfect beam is assumed to be described by a Fourier sine 

series having the following form: 

0
1

( ) sin     [0, ]
n

k
k

k xw x b x L
L
�

�

� �� �� 	

 �

� .                                                                           (2.1) 
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In the above relation, L  is the total length of the beam and 0w  the initial deflections due 

to the existence of the imperfection. The arbitrary initial geometric imperfection has to 

be compatible with the unilateral constraint, therefore, the following inequality should 

be satisfied: 

0 ( ) 0w aL 
 .                                                                                                                  (2.2) 

Due to the fact that the method is applied on a continuous beam, the initial geometric 

imperfection has to be separated into two functions, one for each span of the beam 

(Span I and Span II): 

1
1,0 1 1

1
( ) sin                   [0, ]

n

k
k

k xw x b x aL
L
�

�

� �� �� 	

 �

�                                                        (2.3) 

2
2,0 2 2

1
( ) sin ( 1)       [0, (1 ) ]

n
k

k
k

k xw x b x a L
L
�

�

� �� � � � �� 	

 �

� .                                             (2.4) 

Inequality (2.2) imposes that the Fourier coefficients kb  of the above relations should, 

in turn, satisfy the following inequalities: 

� � � �
1 1

sin 0  or  sin (1- ) 0.
n n

k k
k k

b k a b k a� �
� �


 �� �                                                            (2.5) 

Then, for the description of the bending behaviour of the beam, the well known 

Euler’s equilibrium method can be applied, which leads to a fourth-order non-

homogeneous linear differential equation for the two spans of the beam respectively: 

4 2
2 41 1 1

14 2
11 1

( ) ( ) ( ) sin( )                   [0, ]
n

k
k

d w x d w x k xkb x aL
dx dx L L

���
�

� � ��                         (2.6) 

4 2
2 42 2 2

24 2
12 2

( ) ( ) ( ) sin( )( 1)         [0, (1 ) ].
n

k
k

k

d w x d w x k xkb x a L
dx dx L L

���
�

� � � � � ��               (2.7) 

In the above fundamental equations the  parameter� is determined through the 

following equation: 

P
EI

� � .                                                                                                                      (2.8) 
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In relation (2.8), E denotes the Young's modulus of the material of the beam, I

denotes the moment of inertia of the beam's cross-section for in plane bending and P  is 

the axial compressive load applied on the beam.  

The boundary conditions of the problem are formulated taking into account the 

essential boundary conditions, the natural boundary conditions and the unilateral 

conditions at the point of the support. Fig. 2 shows the convention for the positive 

internal forces and the positive transverse deflections. 

1. Essential boundary conditions 

� Zero vertical displacement at the positions of the classical supports (points A, B): 

1(0) 0w �     (2.9) 

2 (0) 0w �  .    (2.10) 

� Common vertical displacement at the points of the unilateral support (point C): 

1 2( ) ((1 ) )w aL w a L u� � �  .   (2.11) 

2. Natural boundary conditions 

� Common rotation at the position of the unilateral support (point C): 

1 2( ) ((1 ) )w aL w a L� �� � �  .    (2.12)

� Zero bending moment at the positions of the classical supports (points A, B): 

1(0) 0EIw��� �     (2.13) 

2 (0) 0EIw��� � .    (2.14) 

� Moment equilibrium at the position of the unilateral support (point C): 

1 2( ) ((1 ) ) 0EIw aL EIw a L�� ��� � � � .   (2.15) 

� Forces equilibrium at the position of the unilateral support (point C). 

In order to formulate the boundary conditions that correspond to the unilateral 

constraint, the support reaction R  should be considered with an unknown value 
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(Fig.2). Obviously the existence of this reaction force R  depends on whether the 

unilateral constraint is active or not.                      

� � � �1 1 2 2( ) ( ) ((1 ) ) ((1 ) )EIw aL Pw aL EIw a L Pw a L R��� � ��� �� � � � � � � � .  (2.16)

3. Unilateral contact boundary conditions at the position of the unilateral constraint 

The unilateral constraint may be represented through the following inequality 

conditions [18],[19]: 

1 2( ) ((1 ) ) 0w aL w a L u� � � 
     (2.17) 

0R 
                (2.18) 

0Ru � .               (2.19) 

The solution of equations (2.6), (2.7) with respect to the boundary conditions of the 

problem gives the transverse deflection w at each point of the beam as a function of the 

axial compressive load P. Consequently, the unilateral contact elastic buckling problem 

of the geometrically imperfect continuous beam with one intermediate constraint is 

formulated through the differential equations (2.6), (2.7), the equations (2.9)-(2.16) 

which represent the boundary conditions, the additional inequality conditions (2.17), 

(2.18) and the complementarity condition of equation (2.19). 

It has to be noticed that the fundamental equations (2.6) and (2.7) do not take into 

account the stress in the lateral direction of the beam (Euler-Bernoulli beam 

assumption). Therefore, they can also be derived by the consideration of the one-

dimensional von Karman model [20]. Moreover, these types of models are suitable for 

pre-buckling analysis under the assumption of infinitesimal deformations. For problems 

where large deformations have to be considered, different types of beam models should 

be taken into account [21], [22]. Such models lead to non-linear ordinary differential 

equations and are suitable for the analysis and simulation of a variety of mechanical 

problems. However, bifurcation problems of that type are very difficult to be solved 

analytically and, therefore, computational methods are usually employed.  
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2.2 Solution of the BVP of the geometrically imperfect beam for all the possible 

contact situations 

For the above described geometrically imperfect structure, the BVP is expected to have 

one unique solution that gives the deflection curve of the beam. This solution depends 

on the type and amplitude of the initial imperfections considered. In this case the critical 

state is denoted by disproportionate large transverse deflections, developing when the 

axial compressive load P  is approaching a certain value, the so-called instability load 

( iP ). Due to the existence of the initial imperfection, the beam has a bending deflection 

even from the initial stage of loading, in contrast with the perfect structure where the 

critical state is indicated by a sudden passing from the stable initial straight line 

configuration to the bended deformed configuration (bifurcation equilibrium state).  

The arising solution of the BVP of the imperfect structure is a superposition of a 

general solution and of a particular solution related with the type of the initial 

imperfection, i.e.: 

1
1 1 1 1 1 1 1 1 1 1

1
( ) cos sin sin ,  [0, ]

n

k k
k

k xw x A x B x C x D b F x aL
L
�� �

�

� �� � � � � �� 	

 �

�             (2.20) 

2 2 2 2 2 2 2 2 2( ) cos sinw x A x B x C x D� �� � � � �

2
2

1
                                                     sin ( 1) ,     [0, (1 ) ].

n
k

k k
k

k xb F x a L
L
�

�

� �� � � �� 	

 �

�    (2.21) 

It is noticed that the solutions 1 2,w w  give the total transverse deflections of the beam, 

i.e. initial deflections are included in them. In the above solutions the terms kF are 

functions of the axial compressive load P, known in the bibliography as magnification 

factors, which are given by the following relation: 

1

1
k

k

F P
P

�
�

 .                                                                                                               (2.22) 

In the above, kP  are the eigenvalues of the elastic buckling problem of the simply 

supported beam, i.e.: 

2 2

2k
kP

L
� ��

� .                                                                                                              (2.23) 
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The full expression of the deflection curve of the continuous beam is given after the 

determination of the coefficients A1, B1, C1, D1, A2, B2, C2, D2 . These coefficients are 

calculated through the boundary conditions of the problem. Applying the boundary 

conditions at the ends of the beam, the coefficients 1 2 1 2, , ,A A D D  are all taking zero 

values, while the usage of relations (2.11), (2.12), (2.15), (2.16) leads to the 

determination of the unique values of the coefficients 1 2 1 2, , ,B B C C . However, due to the 

presence of the inequality conditions, the calculation of the above coefficients requires 

an appropriate examination. Obviously, the solution of the BVP of the structure depends 

on the different contact situations which can occur. There exist three possible deformed 

configurations compatible with the unilateral constraint. The first corresponds to the 

situation that the unilateral constraint is inactive. In this case the contact reaction force

R=0 and the transverse deflection u<0. When R<0 the unilateral constraint is active, 

therefore the transverse deflection u is equal to zero. Finally, there exists the limit 

situation, where the beam is in contact with the constraint without producing any 

reaction force (R=0, u=0). It is obvious that the values of the coefficients 1 2 1 2, , ,B B C C

depend on the above contact situation. The solution procedure for each one of them is 

described in the following. 

2.2.1 Case of inactive constraint and of neutral contact status (R=0 and u
 0)

In the case where the unilateral constraint is inactive, the normal contact force is equal 

to zero. Then, applying the necessary conditions 0R � and 0u 
  to the BVP, the 

coefficients 1 2 1 2, , ,B B C C of the general solution are all taking zero values, therefore the 

final solution is derived through the particular solution only. Notice that this case 

includes both the case of inactive constraint ( 0R � , 0u � ) and the case of neutral 

contact status ( 0,  =0R u� ). The arising solution of the BVP is given by the following 

equations: 

1
1 1 1

1
( ) sin( )    [0, ]

n

k k
k

k xw x b F x aL
L
�

�

� ��                                                                     (2.24) 

2
2 2 2

1
( ) sin( )( 1)     [0, (1 ) ]

n
k

k k
k

k xw x b F x a L
L
�

�

� � � � ��  .                                              (2.25) 

The above solution is valid only if the restriction introduced by the following inequality 

is satisfied: 
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1
( ) 0 sin( ) 0     0

n

k k
k

u aL b F k a P�
�


 � 
 � ��                                                              (2.26) 

or equivalently, 

1
((1 ) ) 0 sin( (1 ))( 1) 0     0.

n
k

k k
k

u a L b F k a P�
�

� 
 � � � � � ��                                     (2.27) 

The previous inequalities imply that a specific value of the axial load P that makes the 

inequality untrue is possible to exist. This load value causes the development of the 

reaction contact force R  and is termed as cP . This characteristic value of loading is 

calculated from the limit case where (2.26) (or equivalently (2.27)), holds as equality, 

i.e. 

1
( ) 0 sin[ ] 0

n

k k
k

u aL b F k a�
�

� � ��                                                                              (2.28) 

or equivalently, 

1
((1 ) ) 0 sin[ (1 )]( 1) 0.

n
k

k k
k

u a L b F k a�
�

� � � � � ��
                                                     

(2.29)

The latter equations derive an (n-1) order polynomial algebraic equation with respect to 

the variable P. Obviously, negative or complex values of load P cannot be admissible 

solutions. It should also be pointed out that more than one real positive solutions may 

exist, from which only the smallest is of interest.

2.2.2 Active constraint, R<0 and u=0 

In the case where the unilateral constraint is active and the normal contact force is R<0,

the arising solution of the BVP is described  by the following equations: 

1
1 1 1 1 1 1 1

1
( ) sin sin( )    [0, ]

n

k k
k

k xw x B x C x b F x aL
L
��

�

� � � ��                                        (2.30) 

2
2 2 2 2 2 2 2

1
( ) sin sin( )( 1)        [0, (1 ) ]

n
k

k k
k

k xw x B x C x b F x a L
L
��

�

� � � � � ��                  (2.31) 
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1
1

sin( ) sin[ (1 ) ]

(1 ) sin[ ] sin[ ]sin[ (1 ) ]

n

k k
k

b F k a a L
B

a a L L aL a L

� �

� � � �
�

� �
�� � !�

� � �

�
                                                     (2.32) 

1
2

sin[ ]
sin[ (1 ) ]

B aLB
a L

�
�

�
�

                                                                                                    (2.33) 

1
1

1

sin[ ] sin( )
n

k k
k

B aL b F k a
C

aL

� �
�

� �
�

�
                                                                        (2.34) 

1
2 (1 )

C aLC
a L

�
�

.                                                                                                             (2.35) 

Clearly, the above solution is valid only if the restriction introduced by the inequality 

condition 0R � , is satisfied, i.e.: 

1 2cos( ) cos( (1 ) ) 0     0B aL B a L P� �� � � � � .                                                 (2.36) 

If a value of load P exists so that left side of inequality (2.36) tends to zero, then the 

beam develops the tendency to be separated from the unilateral constraint. This axial 

load is termed as sP . Obviously, the admissible values of sP  should belong into the set 

of the positive real numbers ( �� ). From all the admissible solutions, only the smallest 

value is of interest. 

2.3 Calculation of the instability loading 

In the previous section the formulation and the solution of the BVP of the unilateral 

contact elastic buckling problem of a geometrically imperfect continuous beam with 

two equal spans and one intermediate unilateral constraint, was presented. This solution 

is actually the elastic transverse deflection curve of the beam which is dependent on the 

axial loading and on the initial imperfection. As it was aforementioned, the critical 

equilibrium state for an imperfect beam is denoted by disproportionate large values in 

the deflection curve when the loading tends to the value of the instability load � �iP P" . 

The calculation of this load is accomplished via the determination of the poles of the 

function of the deflection curve. Depending on the contact situation (e.g. active 

constraint, inactive constraint or neutral condition) the poles of the deflection curve are 

actually the eigenvalues of the buckling equations of the corresponding bifurcation 
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problem (i.e. the  homogeneous BVP of the geometrically perfect beam) and therefore 

they have to be determined. The necessary calculations are based on the same 

considerations as in the already studied case of the imperfect beam. The details 

concerning the case of the unilateral contact buckling problem of the geometrically 

perfect beam are given in the Appendix .   

As it is obvious from the functions which describe the solution for each case (equations 

(2.24), (2.25) and (2.30), (2.31)) , it is not clear which value of load is able to cause 

instability, because this value is strongly dependent on the shape of the initial 

imperfection. Therefore, the following procedure is proposed in order to determine the 

instability load. 

Step 1 

The initial imperfection is applied and the deflection at the position of the unilateral 

support is examined (i.e. if  0u �  or if 0u � ).  

Step 2 

 If 0u � , then relations (2.24)-(2.27) hold. It is then checked whether there exists a 

valid value cP  yielded by relations (2.28) or (2.29) when they hold as equalities. 

a) If these relations do not produce a valid value for  cP , then it is sure that the beam 

will never come in contact with the unilateral support. In this case the procedure 

continues with Step 5. 

b) If these relations produce a valid value for cP , then it is examined if there exists an 

eigenvalue of the corresponding BVP of the perfect structure, producing 

disproportionate large deflections, located inside the interval [0, ]cP . If such an 

eigenvalue does not exist, the beam is able to sustain more loading till the unstable 

equilibrium state and the procedure continues with Step 4. On the other hand, if such 

eigenvalue exists inside the interval [0, ]cP , then this is actually the instability load of 

the beam with the given imperfection and the procedure is terminated. In this case the 

instability load of the imperfect beam coincides with the critical load of the 

corresponding bifurcation problem. 

Step 3 

 If 0u � , then the beam is in contact with the constraint and relations (2.30)-(2.36) 

hold. Then, it is checked whether there exists a valid value sP  yielded by relation (2.36) 
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when it holds as equality (R=0). In this case the beam develops the tendency to be 

separated from the unilateral support.  

a) If relation (2.36)  does not produce a valid value for  sP , then it is sure that the beam 

will never lose contact with the unilateral support. In this case the procedure is 

continued with Step 4. 

b) If relation (2.36) produces a valid value for sP , then it is examined if there exists an  

eigenvalue of the corresponding BVP of the perfect structure that produces 

disproportionate large deflections, located inside the interval [0, ]sP . If not, the 

procedure continues with Step 5. If yes, then this eigenvalue is the instability load and 

the procedure is terminated. Similarly, also in this case, the instability load coincides 

with the critical load of the corresponding bifurcation problem. 

Step 4 

Having reached in this step, the deflection curve is in contact with the unilateral support 

and will remain in contact till the maximum value of the loading which leads to unstable 

equilibrium state has been attained, therefore, 0u �  and 0R � and relations (2.30)-

(2.36) hold. Now, two different cases are considered depending on the previous step 

which led to the specific situation. More specifically: 

� Case of arriving in Step 4 from Step 2b 

In this case the beam has come in contact with the unilateral support for P=Pc and 

has the ability to sustain more loading. For loads cP P# , the bending behavior of 

the beam is described by the set of equations (2.30)-(2.36). Now, the deflection 

shape that was produced by the relations in Step 2 for  P=Pc , should be used as 

initial geometric imperfections in equations (2.30)-(2.36). All the eigenvalues which 

are produced by the corresponding bifurcation problem are possible critical loads. 

The critical eigenvalue � �_cr eigP  is the one that produces deflections tending to 

infinity. Finally, the instability load results as the sum of Pc  and _cr eigP , i.e.: 

_i c cr eigP P P� �                                                                                                    (2.37) 

� Case of arriving in Step 4 from Step 3a 

As in the previous case, the beam will undergo disproportionate large deflections for 

one of the eigenvalues of the corresponding bifurcation problem � �_cr eigP . This is 

eigenvalue is also the instability load.  
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Step 5 

The deflection curve is not in contact with the unilateral support and this situation will 

not change till the unstable equilibrium state will been attained, therefore 0u 
 and

0R �  and relations (2.24)-(2.27) hold. The determination of the instability load is based 

on the following: 

� Case of arriving in step 5 from Step 2a 

In this case the bending behavior of the beam is described by equations (2.24) and 

(2.25) until the unstable equilibrium state. The possible critical loads are 

eigenvalues, of the bifurcation problem of Section 2.2.1. Depending on the initial 

imperfection, the critical eigenvalue � �_cr eigP , is the one for which the beam 

develops extremely large deflections. This is also the instability load of the beam for 

the considered imperfection.   

� Case of arriving in Step 5 from Step 3a 

In case where the beam separates from the unilateral support (Step 3a), the bending 

behavior of the beam for a load sP P#  is described by equations (2.24)-(2.25). In 

order to apply correctly the specific relations, the deflected shape which has been 

produced from Step 3a for sP P� ,  has to be considered as the “new” initial 

imperfection. Then, in order to obtain the instability load of the beam, the load sP

should be added to the value of the critical eigenvalue of the corresponding 

bifurcation problem (determined as before), thus: 

_i s cr eigP P P� �                                                                                                    (2.38) 

The solution procedure which has been described in this Section will be clearly 

demonstrated in the example treated in Section 5.  

3. Failure axial load of the continuous beam considering the strength of the beam's 

section 

3.1 Generalities 

Even though the methodology described in the previous section is able to handle the 

unilateral contact elastic buckling problem of continuous beams with geometric initial 

imperfections, from a practical point of view, the calculated instability load is not the 
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ultimate load that the beam can sustain. As it is obvious from the previous paragraphs, 

two types of loads causing instability can be calculated so far. The first one, the critical 

load, is the smallest eigenvalue (compatible with the restriction introduced by the 

unilateral constraint) calculated from the BVP of the perfect continuous beam (see the 

Appendix). This load surely does not reflect the realistic buckling load of the beam, due 

to the fact that it does not take into account the inevitable initial geometric 

imperfections which are present in real structures. For this reason, a second type of load, 

the instability load, should be determined for the general case of the imperfect 

continuous beams. Nevertheless, this load cannot be considered as the maximum load 

that the beam can sustain when a real design case is under study, due to the fact that it 

does not take into account the beam’s actual strength. Clearly, as the loading increases, 

the transverse deflections of the beam increase disproportionately, leading eventually to 

the exhaustion of the ultimate strength of the cross-sections of the beam.  Moreover, the 

exhaustion of the capacity of the beam’s cross section should be examined under the 

coexistence of the compressive axial load with the second order bending moment 

which, in turn, depends on the magnitude of the developed deflections. Therefore, the 

ultimate load of a real life problem depends on the specific shape of the initial 

imperfections, their amplitudes and on the strength of the actual cross-section of the 

beam. For the determination of this ultimate load, the proposed method should be 

equipped with design criteria connected with the strength of the cross-sections. Without 

losing generality, it is assumed here that the beam is made of steel and, therefore, the 

provisions of Eurocode 3 [23] apply. Therefore, the design criterion is related with the 

bending moment resistance .N RdM which is computed considering also the effect of the 

axial compressive force P. More specifically, at each point of the beam the following 

relation should be fulfilled 

.Ed N RdM M
  ,                                                                                                              (3.1) 

where EdM  is the design second order bending moment that can be determined through 

the following equations:  

1 1, 1 1 1,0 1 1( ) = ( ( ) ( ))    [0, ]Ed pM x EIw EI w x w x x aL�� �� ��� � � � �                                           (3.2) 

2 2, 2 2 2,0 2 2( ) = ( ( ) ( ))     [0, (1 ) ]Ed pM x EIw EI w x w x x a L�� �� ��� � � � � �                                (3.3) 

where 1, pw�� and 2, pw�� are the second derivatives of the elastic transverse deflection which 

are attributed solely to the axial loading P.  The calculation of the bending moment 
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resistance .N RdM  depends on the type of the cross section and the appropriate relations 

can be found in Eurocode 3 [23].  

3.2 Calculation of the second order bending moment as a function of the unilateral 

constraint conditions 

Using the expressions obtained in Section 2 for the deflections 1w  and 2w , the 

following equations are obtained that give the function of the bending moment when the 

constraint is inactive and active, respectively.  

1. Inactive unilateral constraint and neutral contact status, i.e. R=0 and 0u 


� � � �
2

1
1 1

1
( ) 1 sin     0,

n

Ed k k
k

k xkM x EI b F x aL
L L

��
�

� �� �� �� � � �� �� 	 � 	

 � 
 �� � !

�                                  (3.4) 

� � � �
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2
2 2

1
( ) 1 sin ( 1)     0, (1 )

n
k

Ed k k
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k xkM x EI b F x a L
L L

��
�

� �� �� �� � � � � �� �� 	 � 	

 � 
 �� � !

�                (3.5) 

 

2. Active unilateral constraint, i.e. R<0 and u=0 

� � � � � �
2

2 1
1 1 1 1

1
( ) sin 1 sin     0,

n

Ed k k
k

k xkM x EI B x b F x aL
L L

��� �
�

� �� �� �� � � � � �� �� 	 � 	

 � 
 �� � !

�      (3.6) 

� � � � � �
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( ) sin 1 sin ( 1)   0, (1 )
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Ed k k
k

k xkM x EI B x b F x a L
L L

��� �
�

� �� �� �� � � � � � � �� �� 	 � 	

 � 
 �� � !

�
                           (3.7)       

4. Implementation of the described method through a characteristic example 

For the implementation and the better comprehension of the described method, an 

example of calculating the critical, the instability and the ultimate load of a certain 

continuous beam with a unilateral support is studied. For this reason the continuous 

beam of Fig. 3 is considered having a total length of 6m. The beam is divided into two 
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unequal spans by a unilateral contact support which is positioned in a distance of 4.7 m 

away from the left end of the beam so that the parameter 0.783a $ . The stiffness 

rigidity of the beam is EI=16989 kNm2. This value corresponds to a HEB220 steel 

section. The quality of the steel used is S46O N with a yield stress equal to 

460 yf Mpa� . The bifurcation problem of the perfect continuous beam is first studied 

and the critical load is obtained according to relations given in the Appendix.  Then, 

the similar buckling problem of the imperfect beam using an arbitrary initial geometric 

imperfection is considered and the instability load is calculated. In the sequel, the 

actual strength of the beam’s section is considered and the ultimate load that the 

imperfect beam is able to sustain is determined. It is noticed that bending and stability 

are considered only with respect to the strong axis of the cross-section. However, the 

method can easily be generalized in order to treat the case of biaxial bending and 

stability with respect to both axes of the cross-section. 

4.1 Calculation of the critical load of the perfect continuous beam 

In this contact buckling problem there exist infinite deformed configurations 

(eigenmodes) different from the straight line, for which the beam is in equilibrium with 

the corresponding applied critical loads (eigenvalues). Depending on each possible 

contact situation, the corresponding buckling equations are applied and the eigenvalues 

are derived according to relations of Appendix A. The first five eigenmodes of the 

studied case are presented in Fig. 4. Obviously, the calculated critical loads and the 

corresponding eigenvalues, apart from the first, critical, mode, are mathematical 

solutions without any value from the engineering point of view. Nevertheless, when the 

corresponding imperfect structure is considered, all the eigenvalues are significant and 

may affect the instability load and the final buckling shape of the unilateral buckling 

problem, due to the fact that they are poles of the arising deflection curve. The above 

remark is clearly demonstrated in the following paragraph. 

4.2 Calculation of the instability load of the imperfect continuous beam 

In the demonstrated example a rather unusual imperfection is taken into account in 

order to reveal some details of the presented methodology. It is supposed that the initial 

imperfection of the beam is described by a Fourier sine series of five terms (Fig.5): 
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0
2 3( ) 0.00125sin( ) 0.0025sin( ) 0.0033sin( )

6 6 6
x x xw x � � �

� � � �
     

4 5                                                  0.0065sin( ) 0.00125sin( )   [0,6].
6 6

x x x� �
� � �

     
(4.1) 

The initial imperfection does not violate the intermediate unilateral constraint due to the 

fact that it satisfies the requirement of inequality (4.2). At the position of the unilateral 

support there exists a gap equal to 1.68 mm. The above problem is described through 

equations (2.6) and (2.7). In order to determine the instability load of the beam and the 

final buckling shape, the following steps are followed according to the calculation 

procedure of Section 2.3: 

� Application of step 1 and step 2 of the procedure described in Section 2.3 

Initially, it is checked which of the three sets of equations described in Section 2.2 is 

satisfied. It is noticed that in the beginning of the loading the constraint is inactive   

( 0, 0)u R� �  thus the equations of section 2.2.1 hold and take the form: 

5
1

1 1 1
1

( ) sin     [0,3]
6k k

k

k xw x b F x�
�

� �� �� 	

 �

�                                                                          (4.2) 

5
2

2 2 2
1

( ) sin ( 1)     [0,3]
6

k
k k

k

k xw x b F x�
�

� �� � � �� 	

 �

� .                                                             (4.3) 

However, the deflection curve of the beam derived by the solution of the BVP 

and given by the above equations, is not valid for every value of loading P. The 

validity of this set of equations has a limit which is defined when inequality (2.27) is 

not fulfilled. This means that if during the increase of the loading there exists a load 

P which makes (2.27) untrue, then the beam will come in contact with the unilateral 

constraint and a contact reaction force will appear. The load P for which the beam 

will come marginally in contact with the unilateral constraint without producing any 

reaction force (neutral contact status) is calculated through equation (2.28) or (2.29). 

The calculations for the case treated here give 3391.365 kNcP � .  Therefore the 

previous set of equations is valid only for .cP P


It is noticed that the smallest eigenvalue of the corresponding bifurcation 

problem is larger than cP . Therefore, the applied load can be increased and the 

deflection of the beam will be described by a different set  of equations, as follows. 
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� Application of step 4 of the procedure described in Section 2.3 

For cP P# , the set of equations of Section 2.2.2 hold. The deflection curve of the 

beam is given by the following equations: 

5
1

1 1 1 1 1 1 1
1

( ) sin sin     [0,3]
6k k

k

k xw x B x C x b F x��
�

� ��� � � � 	

 �

�                                               (4.4) 
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2 2 2 2 2 2 2
1

( ) sin sin (-1)     [0,3]
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k
k k

k

k xw x B x C x b F x��
�

� ��� � � � 	

 �

�                                   (4.5)

where: 

1

1
k k k k

c

k

b b F b P
P

� � �
�

.                                                                                              (4.6) 

In the above equations the initial imperfection is actually the deflection curve 

produced by the equations considered in the previous step for cP P� .

The coefficients 1 2 1 2, , ,B B C C  are calculated through equations (2.32)-(2.35) in 

which kb  should be substituted with kb� from (4.6). It is noticed that in the above 

equations, the value of P should be initialized, because they are not "aware" of the 

developments in the beam till the moment at which the beam came into contact with 

the unilateral support.  Therefore, when in the above equations 0P � , the total axial 

load in the beam is equal to cP . As the loading increases (starting from zero load), 

the restriction (2.36) for the present set of equations is satisfied for any value of  P.

When the value of the load P approaches to the value: 

_ 13108.87 kNcr eigP �                                                                                                         (4.7) 

which is one of the eigenvalues of the corresponding BVP, the deflections tend to 

infinity. Obviously, the instability load of the structure for the given imperfection is 

equal to: 

_ 16500.235i c cr eigenP P P� � �                                                                                        (4.8) 

It is noticed that the load _cr eigenP  corresponds to the second eigenvalue of Fig. 4 due to 

the fact that the buckling equation which corresponds to the contact case of the active 
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constraint is activated (see Appendix A). Fig. 6 presents the deflections of the beam for 

characteristic values of the axial load P.

It is clearly concluded from the previous example that the methodology proposed in 

Section 2.3 for the calculation of the instability load in cases where unilateral 

constraints and arbitrary initial geometric imperfections are present, leads directly to the 

exact solution, after the elaboration of simple mathematical operations. Similar results 

could have been derived by using some advanced finite element software, able to take 

into account geometric nonlinearity phenomena together with the contact conditions. 

The solution in this case should have been obtained after the consideration of a load 

incrementation scheme together with a Newton-Raphson iterative procedure. However, 

it is well known that the simultaneous consideration of the different types of 

nonlinearities involved in the examined problem, require a careful selection of the load-

incrementation scheme (which, of course, is case dependent), otherwise the 

convergence of the iterative procedure would be questionable. On the contrary, the 

proposed methodology avoids the utilization of such techniques and it is able to lead to 

the exact solution after the application of certain steps, which are based on specific 

formulas. All the necessary mathematical operations can be carried out easily, without 

the application of any kind of advanced software, offering in that way an extra 

advantage to engineers who deal with real life applications.  

4.3 Calculation of the ultimate load 

For the certain initial geometric imperfection, the instability load which was calculated 

in the previous Section is not actually the ultimate load that the continuous beam is able 

to sustain, due to the fact that the development of large deformations causes stresses that 

eventually will exceed the capacity of the cross-section. Therefore, in order to calculate 

the ultimate load of the beam, its actual strength should be taken into account. The axial 

force-bending moment interaction diagram for the HEB 220 cross-section is given in 

Figure 7. The values of this diagram were computed following the provisions of 

Eurocode 3 [23].  

Here, the bending moments along the beam are calculated for the example of the 

imperfect beam treated in the previous Section. The same steps are followed as before: 

� For cP P
  the function of the bending moment is given by applying equations (3.4) 
and (3.5). More specifically, 
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� For cP P#  the function of the bending moment is given by applying equations (3.6) 
and (3.7): 
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                      (4.12) 

Then, for each pair of values ( , )EdP M it can be checked if the strength criterion of 

equation (3.1) is satisfied. If a value of the axial load P exists such as the criterion (3.1) 

holds as equality and, simultaneously, is smaller than the instability load iP , then this 

load represents the ultimate load of the beam and is termed as ultP . In case for which 

such load does not exist the instability load is also the ultimate load of the beam. 

Fig.  8, presents the values of the bending moments for various characteristic values of 

the load P  up to failure, which occurs for =3440.965 ultP kN . For this value of the axial 

force, the maximum value of the bending moment at the beam is equal to M=52.60kNm. 

This pair of axial force and bending moment lies on the boundary of the interaction 

diagram, signaling the failure of the beam. Therefore, the ultimate load capacity of the 

specific continuous beam, is far away from the theoretical instability load found earlier 

� �16500.235kNiP � . This means that in the certain studied case the maximum loading 

is defined from the failure of the material rather than from instability. 

Figure 9, presents the results of a parametric study in which the imperfection amplitude 

increases, while keeping the shape of the imperfection curve the same. All the 

imperfection shapes applied here do not violate the unilateral contact support. It is 

noticed that the failure load decreases as the amplitude of the imperfection curve 

increases.  
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5. Conclusions 

A method for calculating the buckling loads and the buckling shapes of continuous 

beams with unilateral intermediate constraints was presented. The paper is based on the 

theory of elastic stability using the Euler equilibrium method. This method is 

appropriately modified in order to take into account both the existence of the unilateral 

support and the presence of arbitrary initial geometric imperfections which do not 

violate the unilateral constraints. As a result, the instability loads are calculated, 

depending on the type and amplitude of the initial imperfections. Due to the fact that the 

increase of the deflections lead to a rather significant development of the second order 

bending moments, the ultimate load that the beam is able to sustain is calculated after 

the consideration of the actual strength of the beam's cross section in compression and 

bending. The method can be easily implemented without the usage of advanced finite 

element software and can be extended in order to handle continuous beams with more 

than one unilateral constraints. 
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APPENDIX: The case of the geometrically perfect beam – A homogeneous 
constrained BVP 

A.1 Formulation 

As it was shown in the paper, the solution of the geometrically imperfect structure 

(case of a non-homogeneous constrained BVP) is strongly connected with the 

eigenvalues of the corresponding homogeneous BVP, i.e. with the case of the 

geometrically perfect beam. This conclusion results from the fact that the poles of the 

deflection curve of the geometrically imperfect beam constitute eigenvalues of the 

bifurcation problem of the geometrically perfect beam. Additionally, the utilization of 

the proposed calculation procedure of Section 2.3, requires the calculation of these 

eigenvalues.   

Following the same considerations as described in the formulation of the unilateral 

contact buckling problem of the geometrically imperfect beam, the next two 

homogeneous equations can be constructed for the case of the geometrically perfect 

beam: 

4 2
21 1 1 1

14 2
1 1

( ) ( ) 0            [0, ]d w x d w x x aL
dx dx

�� � �                                                             (A.1) 

4 2
22 2 2 2

24 2
2 2

( ) ( ) 0           [0, (1 ) ]d w x d w x x a L
dx dx

�� � � �      .                                                       (A.2) 

If a non-trivial solution for the above equations exists, the beam can be in equilibrium in 

a bended configuration different from the initial straight line one (bifurcation 

equilibrium state). Therefore, the solution of the above equations gives the transverse 

deflections 1w , 2w of the beam at any point, as a function of the compressive load P .

The boundary conditions of the problem are the same as in the case of the imperfect 

beam. Due to the fact that the intermediate constraint at point C (Fig 1) is of unilateral 
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type, the buckling problem of the continuous beam with the unilateral constraint is 

transformed to a constrained BVP, defined by equations (A.1), (A.2), the additional 

equations (2.9)-(2.16) which describe the equality boundary conditions of the problem, 

the inequality constraints (2.17) and (2.18) and the complementarity condition (2.19).  

A.2 Examination of the BVP for all the possible contact situations 

The BVP discussed in the previous paragraph consists of homogeneous fourth order 

differential equations, which have, respectively, general solutions of the following form: 

1 1 1 1 1 1 1 1 1( ) cos sinw x A x B x C x D� �� � � �                                                                                 (A.3) 

2 2 2 2 2 2 2 2 2( ) cos sinw x A x B x C x D� �� � � �    .                                                           (A.4) 

Due to the existence of the unilateral constraint, an examination of the solution for all 

the possible contact situations is required, which is presented in the sequel. 

A.2.1 Inactive constraint, R=0 and u<0

In the case where the unilateral constraint is inactive ( 0R � and 0u � ) the BVP 

produces infinite number of solutions. More specifically, the demand of having non-

trivial solution leads to: 

1 2 1 2 1 2 1 2
sin( (1 ) )=0  and  0

sin( )
a LA A C C D D B B

aL
�

�
�

� � � � � � %                                        (A.5) 

and to the following buckling equation: 

cot( ) cot( (1 ) ) 0aL a L� �� � � .                                                                                        (A.6) 

The existence of solution for this specific situation indicates a bended deformed 

equilibrium configuration different from the initial straight line one (bifurcation). The 

buckling equation (A.6) gives the eigenvalues of the BVP which are the buckling loads

of the problem under consideration. From the obtained eigenvalues, only these which 

produce eigenmodes that satisfy the following restrictions are accepted:    

1 2sin( ) 0  and  sin( (1 ) ) 0B aL B a L� �� � �    .                                                            (A.7) 
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A.2.2 Active constraint, R<0 and u=0

When the constraint is active (e.g. 0R � and 0u � ) the BVP leads to: 

1 1
1 2 1 2 1 2 1 2

sin( )sin( (1 ) )=0, 0,  C ,  C
sin( ) 1

B aL aCa LA A D D B B
aL aL a

��
�

��
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�
     (A.8) 

and to the following buckling equation: 

1cot( ) cot( (1 ) )
(1 )

aL a L
a aL

� �
�
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�

.                                                                    (A.9) 

The extracted eigenvalues are accepted only if the corresponding eigenmodes fulfill the 

following restriction: 
3

1 20 [ cos( ) cos( (1 ) )] 0R EI aL a L� � �� � & �& � � .                                                (A.10)  

A.2.3 Neutral contact status, R=0 and u=0

This is a special case, where the reaction force R and the transverse displacement u at

the position of the unilateral support are simultaneously equal to zero. The solution 

leads to: 

1 2 1 2 1 2 1 2
cos( (1 ) )0  and  0.

cos( )
a LA A C C D D B B

aL
�

�
�

� � � � � � � � %                          (A.11) 

In this particular contact situation the infinite number of eigenvalues is calculated 

directly through the following formula: 

� �2 2

( ) 2 ,   ,k n

k n EI
P k n

L
�

�

�
� �� .                                                                              (A.12) 

The eigenvalues obtained from the utilization of equation (A.12) are accepted only if the 

corresponding eigenmodes satisfy the complementarity condition (2.19). 
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Figure Captions 

Fig.1 The buckling problem of the continuous beam with the unilateral constraint. 

Fig.2.The considered conventions for the positive internal forces and displacements. 

Fig. 3. The beam of the considered example. 

Fig. 4. The first five eigenvalues and the corresponding eigenmodes of the perfect 

continuous beam. 

Fig. 5. The imperfect continuous beam. 

Fig. 6. Progressive deflection of the beam due to increasing loading. 

Fig. 7. Interaction diagram for the HEB 220 cross-section according  

to the provisions of Eurocode 3. 

Fig. 8. Variation of the second order bending moment for various loading until failure. 

Fig. 9. Axial failure load vs. maximum imperfection amplitude. 
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Research highlights 
> Analytical treatment of the unilateral buckling problem. 
> Arbitrary geometric imperfections can be considered. 
> General formulation, considering the actual strength of the beam. 
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Fig.1 The buckling problem of the continuous beam with the unilateral constraint. 
 

 
 
 

Figure 1



 

RM
V

N

M+dM

V+dV

N+dN

MV

N

M+dM

V+dV

N+dN

x

1
w1'

w2

x1 x2

P

1 1

+u

x + dx1 2x + dx2

w2'

x2

aL (1-a)L
 
 

Fig.2.The considered conventions for the positive internal forces and displacements. 
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Fig. 3. The beam of the considered example. 
 
 
 

Figure 3



�1
=0.5236

�2
=0.8784

�3
=1.0472

�4
=1.5708

�5
=2.08263

Fig. 4. The first five eigenvalues and the corresponding eigenmodes of the perfect 
continuous beam.
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Fig. 5. The imperfect continuous beam. 
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Fig. 6. Progressive deflection of the beam due to increasing loading. 

 
 
 
 

Figure 6
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Fig. 7. Interaction diagram for the HEB 220 cross-section according  

to the provisions of Eurocode 3. 
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Fig. 8. Variation of the second order bending moment for various loading until failure. 
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Fig. 9. Axial failure load vs. maximum imperfection amplitude. 

Figure 9




