
HAL Id: hal-00784898
https://hal.science/hal-00784898v1

Submitted on 4 Feb 2013 (v1), last revised 25 Apr 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebras, automata and logic for languages of labeled
birooted trees

David Janin

To cite this version:
David Janin. Algebras, automata and logic for languages of labeled birooted trees. 40th Inter-
national Colloquium on Automata, Languages and Programming (ICALP), Jul 2013, Riga, Latvia.
�hal-00784898v1�

https://hal.science/hal-00784898v1
https://hal.archives-ouvertes.fr

LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-1467-13

Algebras, automata and logic for languages of labeled

birooted trees

February 4, 2013

David Janin,

LaBRI, IPB, Université de Bordeaux

2

Algebras, automata and logic for languages of

labeled birooted trees

David Janin

Université de Bordeaux, LaBRI UMR 5800,
351, cours de la Libération,
F-33405 Talence, FRANCE

janin@labri.fr

Abstract. In this paper, we study languages of labeled finite birooted
trees: Munn’s birooted trees extended with vertex labeling. We define
a notion of finite state birooted tree automata that is shown to cap-
ture the class of languages that are upward closed w.r.t. the natural
order and definable in Monadic Second Order Logic. Then, relying on
the inverse monoid structure of labeled birooted trees, we derive a no-
tion of recognizable languages by means of (adequate) premorphisms into
finite (adequately) ordered monoids. This notion is shown to capture fi-
nite boolean combinations of languages as above. As a particular case,
a simple encoding of finite (mono-rooted) labeled trees in an antichain
of labeled birooted trees shows that classical regular languages of finite
(mono-rooted) trees are also recognized by such premorphisms and finite
ordered monoids.

Introduction

Motivations and background

Semigroup theory have demonstrated for years its considerable strength for the
study and the fine grain analysis of languages of finite words, that is subsets of
the free monoid A∗. Among the simplest known results, this can be illustrated
by the fact that a language L ⊆ A∗ is regular if and only if there is a finite
monoid S and a monoid morphism θ : A∗ → S such that L = θ−1(θ(L)). In this
case, we say that the language L is recognized by the finite monoid S (and the
morphism θ).

Even better, for every language L ⊆ A∗, this notion of recognizability in-
duces a notion of syntactic congruence ≃L for the language L such that the
monoid SL = A∗/ ≃L is the smallest monoid that recognizes L. Many structural
properties of the language L can be decided by analyzing the properties of its
syntactic monoid SL, e.g. regularity, start freeness, etc (see [11] for some more
examples of such properties).

These results motivated the development of entire algebraic theories of lan-
guages of various structures by considering richer algebraic frameworks such
as, among many others, ω-semigroups for languages of infinite words [16, 9],

preclones or forest algebra for languages of trees [3, 2], or ω-hyperclones for
languages of infinite trees [1]. Aiming at deciding more subtle properties of lan-
guages, several extensions of the notion of recognizability by monoids and mor-
phisms were also considered, e.g. recognizability by monoids and relational mor-
phisms [10] or recognizability by ordered monoids and monotonic morphisms [12].

A recent study of languages of overlapping tiles [7, 5, 4], that is subsets of
the (inverse) monoid of McAlister [8], has led to consider the notion of quasi-
recognizability : recognizability by means of (adequate) premorphisms into (ad-
equately ordered) ordered monoids. As (monotonic) morphisms are particular
case of premorphisms, this notion can be seen as a generalization of recogniz-
ability by (ordered) monoids and (monotonic) morphisms [12].

However, the notion of quasi-recognizability is yet not settled for one need
to restrict both the class of allowed premorphisms and the class finite ordered
monoids for that notion to be effective. Without any restriction, the inverse
image by a premorphism of a finite subset of a finite ordered monoid may even
not be computable. Even more, there are several incomparable candidates for
defining such a notion as illustrated, for instance, by a recent study of walking
birooted tree automata with invisible pebbles [6].

We aim in this paper at stabilizing the notion of recognizability by adequate
premorphisms by applying it to the study of languages of labeled birooted trees.
Doing so, it appears that this notion admits a robust logical characterization in
terms of languages of birooted trees definable in Monadic Second Order Logic:
a typical yardstick to measure and analyse the expressiveness of notions of de-
finability.

Outline

Birooted labeled trees, called birooted F -trees, are presented in Section 1.
Equipped with an extension of Scheiblich’s product of (unlabeled) birooted trees
[13], the resulting structure is an inverse monoid. As such, birooted trees can be
ordered by the natural order relation that is stable under product: the inverse
monoid B(F) of labeled birooted F -trees is also a partially ordered monoid.

Birooted tree automata are defined and studied in Section 2. By construction,
languages recognized by these finite automata are upward closed in the natu-
ral order. It follows that they fail to capture languages definable by means of
Monadic Second Order (MSO) formulae. However, this loss of expressive power
is shown to be limited to that upward closure properties. Indeed, we prove (The-
orem 2) that every language of birooted trees upward closed and MSO definable
is recognized by a finite state birooted tree automata.

As a particular case, when F is seen a functional signature, embedding the
classical F -terms (see [15]) into birooted F -trees, we show (Theorem 3) that the
birooted tree image of every regular language L of F -terms is of the form UL ∩
DL with UL (resp. DL) some upward (resp. downward) closed MSO definable
language.

4

The algebraic counterpart of birooted tree automata is presented in Section 3
where the notion of adequately ordered monoids and adequate premorphisms are
defined. The induced notion of quasi-recognizable languages of birooted F -trees
is shown to be effective (Theorem 4).

Concerning expressive power, it is shown that every birooted tree automa-
ton simply induces an adequate premorphism that recognizes the same language
(Theorem 5) and that every quasi-recognizable languages is MSO definable (The-
orem 6). The picture is made complete by proving (Theorem 7) that quasi-
recognizable languages of birooted trees exactly correspond to finite boolean
combinations of upward closed MSO definable languages.

Together with Theorem 3, this last result tells that our proposal can also be
seen as yet another algebraic characterization of regular languages of trees that
complete the one previously obtained by means of preclones [3], forest algebras [2]
or ordered monoids and admissible premorphisms [6].

Related works

It must be mentioned that the notion of birooted F -tree automaton defined above
extends the one already defined [4] for languages of one-dimensional overlapping
tiles that is subsets of McAlister monoids [8].

Though strongly related, one can observe that such an extension is by no
mean straightforward. Of course going from the linear structure of overlapping
tiles to the tree shaped structure of birooted F -trees already induces a real
increase of complexity. However, the main difference comes from directed edges.
In overlapping tiles, they all goes in the same direction while, in birooted F -
trees, edges may (almost) arbitrarily go back and forth. Proving Theorem 2 is
thus much more involved than proving an analogous result for overlapping tiles.

Comparing our proposal with other known algebraic characterizations of lan-
guages of (mono-rooted) F -trees [3, 2] is not easy.

At first sight, our proposal seems to induce a bigger class of definable lan-
guages since we deal with birooted F -trees. However, a more relevant comparison
would be to compare the classification of languages one can obtain, in every ap-
proach, by restricting even further the allowed recognizers: be them preclones
as in [3], fortest algebras [2] or adequately ordered monoid as proposed here.
Though quasi-recognizability could lead to simpler extension of the known tools
for languages of words - recognizers are just finite monoids - the theory is yet
not sufficiently developed for such a comparison to be possible.

Another source of difficulty comes from the fact that adequate premorphisms
are not morphisms : only (some notion of) disjoint products are preserved by pre-
morphisms. To some extent, the notion of quasi-recognizability by premorphisms
presented here is, compared to classical recognizability by morphisms, what un-
ambiguous non deterministic automata are compared to deterministic automata.
On the negative side, this means that the notion of quasi-recognizability is yet
not completely understood. On the positive side, this means that it may lead to
radically new outcomes.

5

1 Semigroups and monoids of birooted F -trees

Simply said, a labeled birooted tree is a (non empty) finite connected subgraph
of the Cayley graph of the free group FG(A) with labeled vertices on some finite
alphabet F and with two distinguished vertices respectively called the input
root and the output root of the labeled graph. This definition and some of the
associated properties are detailled in this section.

1.1 The free groups

Formally, let A be a finite (edge) alphabet and let Ā be a disjoint copy of A
with, for every letter a ∈ A, its copy ā ∈ A. Let u 7→ u be the mapping from
(A + Ā)∗ to itself inductively defined by 1̄ = 1 and ua = ā ū and uā = a ū, for
every u ∈ (A + Ā)∗, every a ∈ A. This mapping is involutive, i.e. u = u for every
u ∈ (A + Ā)∗, and it is an anti-morphism, i.e.uv = v̄ ū for every word u and
v ∈ (A + Ā)∗.

The free group FG(A) generated by A is the quotient of (A + Ā)∗ by the
least congruence ≃ such that, for every letter a ∈ A, aā ≃ 1 and āa ≃ 1. This
is indeed a group since, for every u ∈ (A + Ā)∗, we have [u][ū] = [1] hence [ū] is
the group inverse of [u].

It is known that every class [u] ∈ FG(A) contains a unique element red(u)
(the reduced form of u) that contains no factors of the form aā nor āa for a ∈ A.
In the sequel, every such class [u] ∈ FG(A) is thus represented by its reduced
form red(u). Doing so, the product u · v of every two reduced words u and
v ∈ FG(A) is directly defined by u · v = red(uv).

Elements of FG(A), when seen as reduced words, can then be ordered by
the prefix order relation ≤p defined, for every (reduced word) u and v ∈ FG(A)
by u ≤p v when there exists (a reduced word) w ∈ FG(A) such that uw = v.
The associated predecessor relation ≺p is defined, for every v and w ∈ FG(A),
by v ≺p w when v <p w and w = vx for some x ∈ A + Ā.

1.2 Labeled birooted trees

A labeled birooted tree on the edge alphabet A and the vertex alphabet F is a
pair B = 〈t, v〉 where t : FG(A) → F is a partial maps which domain dom(t) is
a prefix closed subset of FG(A) such that v ∈ dom(t).

In such a presentation, 1 ∈ dom(t) is the input root vertex and u ∈ dom(t) is
the output root vertex. Assuming the edge alphabet A is implicit, these labeled
birooted trees are called birooted F -trees or, when F is also implicit, simply
birooted trees.

Examples of birooted F -trees are depicted in Figure 1 below. With a dangling
input edge marking the input root and a dangling output edge marking the
output root.

For every birooted tree B = 〈t, u〉, for every v ∈ dom(t), let tv : FG(A) → F
be the partial function defined by dom(tv) = v̄ · dom(t) and tv(vw) = t(uvw)

6

for every w ∈ dom(tv). Accordingly, let Bv = 〈tu, v̄u〉 be the v translation of the
birooted tree B.

Observe that such a translation slightly differs from the classical notion of
subtrees since dom(tv) = v̄·dom(t) contains as many vertices as dom(t). A notion
of sub-birooted tree Bp

v , with fewer vertices and thus more closely related with
the classical notion of subtree, is defined below when proving a decomposition
property (Lemma 1).

g
in

f

a
out

g

a

f

b
f

in

g

a
f

b

g

c

f
b

g

b
out

Fig. 1. Two birooted F -trees B1 and B2

The partial product 〈r, u〉 · 〈s, v〉 of two birooted F -tree 〈r, u〉 and 〈s, v〉
is defined, when it exists, as the birooted F -tree 〈t, w〉 defined by w = u · v,
dom(t) = dom(r) ∪ u · dom(s), t(u′) = r(u′) for every u′ ∈ dom(r) and tu(v′) =
s(v′) for every v′ ∈ dom(s).

Observe that such a product exists if and only if the tree ru and the tree
s agree on dom(ru) ∩ dom(s), i.e. for every v′ ∈ dom(ru) ∩ dom(s), we have
ru(v′) = r(uv′) = s(v′). It follows that undefined products may arise when F is
not a singleton.

g
in

f

a

g

a

f

b
f

g

a
f

b

g

c

f
b

g

b
out

Fig. 2. The product B1 · B2 of the two birooted F -trees B1 and B2

A (defined) product of two birooted F -trees is depicted in Figure 2 above. In
that picture, the cercle marks the synchronization vertex that results from the
merging of the output root of B1 and the input root of B2. The a-labeled edge
f

a
→ g emanating from that vertex is the common edge resulting from the fusion

of the two (synchronized) birooted F -trees.

7

The product is completed by adding a zero element for the undefined case
with 0 · 〈t, v〉 = 〈t, v〉 · 0 = 0 · 0 = 0 for every (defined) birooted tree 〈t, v〉.

One can easily check that the resulting product is associative. The resulting
structure is thus a semigroup denoted by B(F): the semigroup of birooted F -trees.

In the case F is a singleton, every birooted F -tree can be redefined as a pair
(P, u) with an non empty prefix closed domain P ⊆ FG(A) and an output root
u ∈ P . Then, following Scheiblich presentation [13], the semigroup B(F) is the
free monoid FIM(A) generated by A. When F is not a singleton, we extend
extended the set B(F) with a unit denoted by 1. The resulting structure is a
monoid B1(F) : the monoid of birooted F -trees.

The monoid of birooted F -trees is an inverse monoid, i.e. for every B ∈ B1(F)
there is a unique B−1 ∈ B1(F) such that BB−1B = B and B−1BB−1 = B−1.
Indeed, we necessarily have 0−1 = 0, 1−1 = 1 and, for every non trivial birooted
F -tree 〈t, u〉 one can check that 〈t, u〉−1 = 〈tu, ū〉.

As an inverse monoid, elements of B1(F) can be ordered by the natural order
defined, for every B and C ∈ B1(F) by B ≤ C when B = BB−1C (equivalently
B = CB−1B). One can check that 0 is the least element and, for every defined
birooted F -trees 〈r, u〉 and 〈s, v〉 we have 〈r, u〉 ≤ 〈s, v〉 if and only if u = v,
dom(r) ⊇ dom(s) and, for every w ∈ dom(s), t(w) = s(w).

Observe that, as far as trees only are concerned, the natural order is the
reverse of the (often called) prefix order on trees. In particular, the bigger is the
size of a birooted tree, the smaller is the birooted tree in the natural order.

1.3 Strong decomposition of birooted trees

One can easily check that the monoid of birooted F -trees is finitely generated. We
prove here a stronger statement that will be extensively used in the remainder
of the text.

A birooted tree is said elementary when it is either 0 or 1, or of the from
Bf = 〈{1 7→ f}, 1} for some f ∈ F or of the form Bfxg = 〈{1 7→ f, x 7→ g}, 1}
for some vertex label f and g ∈ F and some letter x ∈ A + Ā.

f

g

a

in

out

f
in out

f

g

a

in

out

Fig. 3. The elementary birooted F -trees Bfag, Bf and Bfāg

The left projection BL (resp. the right projection BR) of a birooted tree
B = 〈t, u〉 is defined by BL = B−1B (resp. BR = BB−1) or, equivalently,
BL = 〈tu, 1〉 (resp. BR = 〈t, 1〉).

8

The product B1 · B2 of two birooted trees B1 and B2 is a disjoint product
when B1 · B2 6= 0 and 1 is the unique birooted F -tree such that BL

1 ≤ 1 and
BR

2 ≤ 1, i.e. BL
1 ∨ BR

2 = 1.
This restricted product is called a disjoint product because, when B1 =

〈t1, u1〉 and B2 = 〈t2, u2〉, the product B1 · B2 is a disjoint product if and only if
t(u1) = t2(1) and dom(t1) ∩ u1 · dom(t2) = {u1}, i.e. the set of edges in B1 · B2

is the disjoint union of the set of edges of B1 and the set of (translated) edges
of B2.

Lemma 1 (Strong decomposition). For every B ∈ B(F), the birooted F -
tree B can be decomposed into a finite combination by disjoint product and right
resets of elementary birooted trees.

Proof. Let B = 〈t, u〉 be a birooted F -tree. We aim at proving it can be decom-
posed as stated above. We first define some specific sub-birooted trees of B that
will be used for such a decomposition.

For every vertex v and w ∈ dom(t) such that v ≺p w, let Bp
v,w be the two

vertices birooted F -tree defined by Bp
v,w = Bfxg where f = t(v), g = t(w) and

vx = w.
Let U = {v ∈ dom(t) : 1 ≤p v ≤p u} be the set of vertices that appears

on the shortest path from the input root 1 to the output root u. For every
v ∈ dom(t), let Dp(v) = {w ∈ dom(t) : v ≤p w, (v = w ∨ w /∈ U)} be the set of
vertices above (on the prefix order) v and, except from v itself, that are not in U .
Then, for every v ∈ dom(t), let Bp

v = 〈tv|Dp(v), 1〉 be the idempotent birooted
tree obtained from B by restricting the subtree tv rooted at the vertex v to the
domain Dp(v).

Then, given u0 = 1 <p u1 <p u2 <p · · · <p un−1 <p un = u the increasing
sequence (under the prefix order) of all the prefixes of the output root u, we
have

B = Bp
u0

Bp
u0,u1

Bp
u1

· · · Bp
un−1

Bp
un−1,un

Bp
un

with only disjoint products.
In order to conclude the proof, It remains to prove, by induction on the size

of birooted trees, that every idempotent sub-birooted tree of the form Bp
v for

some v ∈ dom(t) can also be decomposed into a finite combination by disjoint
product and right projection of elementary birooted trees.

Let then v ∈ dom(t). In the case v is a leaf (w.r.t. the prefix order) then
Bp

v = Bt(v) and we are done. Otherwise, we have Bp
v = 〈r, 1〉 for some F -tree r

and we observe that

Bp
v =

∏

{
(

Bp
v,w · Bp

w

)R
: w ∈ dom(r), v ≺p w}

with only disjoint products. This concludes the proof. 2

The above decomposition of B as a combination of elementary birooted trees
by disjoint products and right projections is called a strong decomposition of the
birooted F -tree B.

9

2 Birooted F -tree automata

In this section, we define the notion of birooted F -tree automata that is shown to
capture the class of languages of birooted F -trees that are upward closed w.r.t.
the natural order and definable in Monadic Second Order Logic (MSO).

2.1 Definition

A birooted F -tree (finite) automaton is a quintuple A = 〈Q, δ, ∆, W 〉 defined by
a (finite) set of states Q, a (non deterministic) state table δ : F → P(Q), a (non
deterministic) transition table ∆ : A → P(Q × Q) and an acceptance condition
W ⊆ Q × Q.

A run of the automaton A on a non trivial birooted F -tree B = 〈t, u〉 is a
mapping ρ : dom(t) → Q such that for every v ∈ dom(t):

⊲ State coherence: ρ(v) ∈ δ(t(v)),

⊲ Transition coherence: for every a ∈ A, if va ∈ dom(t) then (ρ(v), ρ(va)) ∈
∆(a) and if vā ∈ dom(t) then (ρ(vā), ρ(v)) ∈ ∆(a).

The run ρ is an accepting run when (ρ(1), ρ(u)) ∈ W . The set L(A) ⊆ B(F) of
birooted F -tree B such that there is an accepting run of A on B is the language
recognized by the automaton A.

2.2 Expressive power

Every non trivial birooted F -tree B = 〈t, u〉 can be seen as a (tree-shaped)
FO-structure MB with domain dom(MB) = dom(t), constant inB = 1 and
constant outB = u, unary relation Sf = t−1(f) for every f ∈ F and binary
relation Ra = {(v, w) ∈ dom(t) × dom(t) : va = w} for every a ∈ A.

We say that a language L ⊆ B(F) is definable in monadic second order
logic (MSO) when there exists a closed MSO formula ϕ on the FO-signature
{in, out} ∪ {Sf }f∈F ∪ {Ra}a∈A such that L = {B ∈ B(A) : MB |= ϕ}.

The following theorem gives a rather strong characterization of the languages
recognized by finite state birooted F -tree automata.

Theorem 2. Let L ⊆ B(F) be a language of birooted F -trees. The language is
recognized by a finite birooted F -tree automaton if and only if L is upward closed
(in the natural order) and MSO definable.

Proof. Let L ⊆ B(F) be a language of birooted F -trees. We first prove the easiest
direction, from birooted tree automata to MSO. Then, we prove the slightly more
difficult direction from MSO to birooted tree automata.

10

From birooted tree automata to MSO. Assume that L is recognizable by a finite
state birooted tree automaton A. Without loss of generality, since A is finite,
we assume that the set Q of states of A is such that Q ⊆ P([1, n]) for some
n ≥ log2 |Q|.

Then, checking that a birooted tree 〈t, u〉 belongs to L(A) just amounts to
checking that there exists an accepting run. This can easily be described by an ex-
istential formula of monadic second order logic of the form ∃X1X2 · · · Xnϕ(in, out)
with n set variables X1, X2, . . . , Xn and a first order formula ϕ(in, out).

Indeed, every mapping ρ : dom(v) → Q is encoded by saying, for every vertex
v ∈ dom(t), that ρ(v) = {k ∈ [1, n] : v ∈ Xk}. Then, checking that the mapping
ρ encoded in such a way is indeed an accepting run amounts to checking that
it satisfies state and transition coherence conditions and acceptance condition.
This is easily encoded in the FO-formula ϕ(x, y).

From MSO to birooted tree automata. Conversely, assume that L is upward
closed for the natural order and that L is definable in MSO. Observe that every
B = 〈t, u〉 can just be seen as a (deterministic) tree rooted in the input root
vertex 1 with edges labeled on the alphabet A + Ā (with edge “direction” being
induced by the prefix order on FG(A)), vertices labeled on the alphabet F ×
{0, 1} (with 1 used to distinguish the output root u from the other vertices). An
example of such an encoding of birooted trees into trees is depicted in Figure 4.

f
in

g

a
f

b

g

c

f
b

g

b
out

(f, 0)
in

(g, 0)

a
(f, 0)

b

(g, 0)

c̄

(f, 0)
b

(g, 1)

b̄

Fig. 4. From a birooted F -tree to a mono-rooted tree with (A + Ā)-labeled edges

Since L is definable in MSO, applying (an adapted version of) the theorem
of Doner, Thatcher and Wright (see for instance [15]), there exists a finite state
tree automaton A that recognizes L. We conclude our proof by defining from
the (finite) tree automaton A a (finite) birooted tree automaton A′ such that
L(A) = L(A′).

The major difficulty defining A′ is that the (one root) tree automaton A
reads a tree from the (input) root to the leaves hence following the prefix relation
order ≤p. Moreover, in birooted trees, such a prefix order in not encoded in the
direction of edges. It follows that, translating the tree automaton A into an
equivalent birooted tree automaton A′, we need to encode (and propagate) that
direction information into states.

11

But this can be achieved by observing that for every vertex v and w such
that v ≺p w, the edge from v to w is uniquely defined by the letter x ∈ (A + Ā)
such that vx = w. It follows that every such a vertex w (distinct from the input
root 1) will be marked in automaton A′ by a state that will encode that letter
x; distinguishing thus the unique predecessor vertex v of w from all successor
vertices w′ such that w ≺p w′. This argument is detailled below.

The (mono-rooted) tree automaton A recognizing L. Let A be a non deterministic
a top down tree automaton on the edge alphabet A + Ā that recognizes L.

Adapting classical definitions to birooted trees seen as trees, we can define
A by A = 〈Q, I0, δ, T 〉 with a finite set of states Q, an set of initial states I ∈ Q
(though a priori reducible to a single initial state, this possibility is used below
for normalizing A), a (non deterministic) transition function δ : Q×F ×{0, 1} →
P(P((A + Ā) × Q)) and a specification of accepting states T : F → P(Q) that
recognized the birooted tree language L with birooted trees interpreted as trees
as described above.

With these notations, an accepting run of automaton A on a birooted F -tree
B = 〈t, u〉 (seen as a tree rooted in 1) is a mapping ρ : dom(t) → Q such that
ρ(1) ∈ I0 and, for every vertex v ∈ dom(t) :

⊲ inner vertex condition: if v is non maximal (in the prefix order) then the set
of pairs {(x, ρ(vx)) ∈ A × Q : x ∈ (A + Ā), v <p vx, vx ∈ dom(t)} either
belongs to δ(ρ(v), t(v), 0) when u 6= v or belongs to δ(ρ(v), t(v), 1) when
u = v,

⊲ leaf vertex condition: if v is maximal (in the prefix order) then ρ(v) ∈ T (t(v)).

The language of birooted trees L(A) ⊆ B(A) recognized by A is defined as the
set of birooted trees for which there exists an accepting run of A on B. By
assumption, we have L = L(A).

We observe that, for every p ∈ Q, every f ∈ F and every m ∈ {0, 1}, the
following assumptions can be done on δ(p, f, m) without altering the language
L(A).

Since all the trees are deterministic in the edge alphabet A+Ā we can assume
that for every X ∈ δ(p, f, m) and x ∈ A+Ā, there exists at most one state q ∈ Q
such that (x, q) ∈ X, i.e. X models a partial function from A + Ā to Q.

Since we are only interested in accepting runs, we can also assume that we
have ∅ ∈ δ(p, f, x) if and only if p ∈ T (f). This means that the inner vertex
condition and the leaf vertex condition can be merged into a single condition :
the inner vertex condition extended to all vertices.

Since L is upward closed w.r.t. the natural order, we may also assume that
δ(p, f, m) ⊆ P((A + Ā) × Q) is closed under taking non empty subsets, i.e. for
every set non empty X ∈ P((A + Ā) × Q), if there is Y ∈ δ(p, f, m) such that
X ⊆ Y then X ∈ δ(p, f, m).

A little harder, we can also assume that Q = Q0 ⊎ Q1 ⊎ Q2 such that I0 ⊆
Q0 ⊎ Q1 and for every for every p ∈ Q, every f ∈ F :

12

⊲ if p ∈ Q0 then δ(p, f, 1) = ∅ (henceforth such a transition is unrealizable)
and, for every X ∈ δ(p, f, 0) there exists one and only one pair (x, q) ∈ X
such that q ∈ Q0 ∪Q1, and, for every other pair (y, q′) ∈ X we have q′ ∈ Q2,

⊲ if p ∈ Q1 then δ(p, f, 0) = ∅ (idem) and δ(p, f, 1) ⊆ P((A + Ā) × Q2,
⊲ if p ∈ Q2 then δ(p, f, 1) = ∅ (idem) and δ(p, f, 0) ⊆ P((A + Ā) × Q2.

Indeed, possibly taking Q×{0, 1, 2} with Q0 = Q×{0}, Q1 = Q×{1} and Q2 =
Q × Q as new set of states with I0 × {0, 1} as new set of initial states, this just
amounts to extending the transition function in such a (quite straightforward)
way that, for every accepting run ρ : dom(t) → Q on a birooted tree B = 〈t, u〉,
for every v ∈ dom(t), if v <p u then ρ(v) ∈ Q0, if v = u then ρ(v) ∈ Q1 and
ρ(v) ∈ Q2 in all other cases.

In other words, the states of Q0 can only be used on the vertices encountered
along the (shortest) path from the input root (included when distinct from the
output root) to the output root (excluded), states of Q1 can only be used on
the output root, and states of Q2 can only be used on all other vertices. This
situation is depicted in the Figure 5 below.

(f, (q0, 0))
in

(g, (q1, 0))

a (f, (q2, 2))
b

(g, (q3, 2))

c̄

(f, (q4, 2))
b

(g, (q5, 1))

b̄

Fig. 5. A run of A on a tree (A + Ā)-labeled edges

It follows that the definition of automaton A can be simplified into A =
〈Q, Q1, I0, δ〉 with set of states Q = Q0 ⊎ Q1 ⊎ Q2 as above, initial states I0 ⊆
P(Q0 ⊎Q1), transition table δ : Q×F → P(P((A+ Ā)×Q)) restricted as above,
with the additional condition that, in accepting runs, the output root must be
labeled by a state of Q1.

We are now ready to simulate the tree automaton A, with the distinguished
set of state Q1 for the output root by a birooted tree automaton A′.

The birooted tree automaton A′ simulating A. Let A′ = 〈Q′, δ′, ∆′, W ′〉 be the
birooted tree automaton defined as follows:

⊲ the set of states Q′ ⊆ (1+A+ Ā)×Q×F ×P((A+ Ā)×Q) is defined as the
set of triples of the form (x, p, f, X) such that any of the following condition
is satisfied:

• input root vertex states: x = 1, p ∈ I0 and X ∈ δ(p, f),
• inner vertex states: x 6= 1 and X 6= ∅ with X ∈ δ(p, f).

13

• leaf vertex state: no condition on x (since the root can be a leaf), p ∈ T
and X = ∅ with X ∈ δ(p, f).

⊲ the state table δ′ : F → Q′ is defined, for every f ∈ F by δ′(f) ⊆ Q′ is the
set of states of A′ that are of the form (x, p, f, X),

⊲ the transition table ∆′ : A → P(Q′ × Q′) is defined, for every a ∈ A by
∆′(a) ⊆ Q′ ×Q′ is the set of pairs states of the form ((x, p, f, X), (y, q, g, Y))
such that:

• either y = a and (a, q) ∈ X (and X ∈ δ(p, f) by definition of states),
• or x = ā and (ā, p) ∈ Y (and Y ∈ δ(q, f) by definition of states),

⊲ the acceptance condition W ′ is defined as the set of states of A′ of the form
((1, p, X), (y, q, Z)) in Q′ × Q′ such that p ∈ I0 and q ∈ Q1.

We conclude the proof by showing that L(A′) = L(A). In order do so, let B =
〈t, u〉 be a birooted F -tree.

From a tree run to a birooted tree run. Let ρ : dom(t) → Q be an accept-
ing run of automaton A on the birooted tree B (hence with ρ(u) ∈ Q1). We
define ρ′ : dom(t) → Q′ by taking, for every v ∈ dom(t), the state ρ′(v) =
(x, ρ(v), t(v), X) ∈ Q′ with:

⊲ if v = 1 then x = 1 and if v 6= 1 then x ∈ A + Ā with v = wx for some
w <p v,

⊲ X = {(x, p) ∈ (A + Ā) × Q : vx ∈ dom(t), v <p vx, p = ρ(vx)}.

By definition of A′, the mapping ρ′ built from ρ as above is indeed an accepting
run of A′ on B.

From birooted tree run to tree run. Conversely, let ρ′ : dom(t) → Q′ be an
accepting run of automaton A′ on B. We define ρ : dom(t) → Q by taking, for
every v ∈ dom(t), ρ(v) = p when ρ′(v) is of the form (x, p, f, X).

The following fact is easily proved by induction on the distance of vertices
from the root. For every v ∈ dom(t):

⊲ if the state ρ′(v) is of the form (1, p, f, X) then v = 1, p = ρ(v), t(v) = f ,
and X ∈ δ(p, f),

⊲ if the state ρ′(v) is of the form (x, p, f, X) with x ∈ A + Ā, then, given
w = vx (in FG(A)) we have w <p v = wx̄, p = ρ(v), f = t(v) and, given
α(t, x) = {y ∈ A + Ā : y 6= x, vy ∈ dom(t)}, for every y ∈ B, v ≤p vy and
X = {(y, ρ(vy)) ∈ (A + Ā) × Q : y ∈ α(t, x)} with X ∈ δ(ρ(v), f).

These properties explicit how indeed the automaton A′ in the accepting run ρ′

marks the shortest path from every vertex to the (input) root. These properties
also prove that the mapping ρ defined from ρ′ is indeed an accepting run of A
on the birooted tree B. 2

From now on, a language of birooted F -trees that is definable by a finite
birooted F -tree automaton is called a regular language of birooted F -trees.

14

2.3 Tree languages vs birooted tree languages

We aim now at relating languages of birooted F -trees and languages of F -trees.
Assume till the end of that section that the set F is now a finite functional
signatures that is a finite set of symbols equipped with some arity mapping
ρ : F → P(A) that maps every function symbol f the set of its arguments’
names ρ(f) ⊆ A.

A F -tree (also called F -term) is a function t : A∗ → F with prefix closed
finite domain dom(t) such that for every u ∈ dom(t), every a ∈ A, if ua ∈ dom(t)
then a ∈ ρ(t(u)). Such a finite tree t is said to be complete when, moreover, for
every u ∈ dom(t), for every a ∈ A, if a ∈ ρ(t(u)) then ua ∈ dom(t).

Every F -tree t is encoded into a birooted F -tree 〈t, 1〉 called the birooted
image of tree t. By extension, for every set X of F -tree, the language LX =
{〈t, 1〉 ∈ B(F) : t ∈ X} of birooted tree images of trees of X is called the
birooted tree image of the language X.

Theorem 3. For every regular language X of complete finite F -trees, we have
LX = UX ∩ DX for some regular language UX of birooted F -trees and the com-
plement DX of some regular language B(F) − DX of birooted F -trees.

Proof. Let X be a regular language of finite F -tree. We observe first that for
every complete F -tree t1 and t2, their birooted images 〈t1, 1〉 and 〈t2, 1〉 are
incomparable in the natural order. It follows that the element of LX form an
anti-chain in the natural order. It follows that, given Ux = {y ∈ B(F) : ∃x ∈
LX , x ≤ y} the upward closure of LX and DX = {y ∈ B(F) : ∃x ∈ LX , y ≤ x}
the downward closure of LX , we have LX = UX ∩LX . We conclude the proof by
observing that if X is regular then it is definable in MSO. This implies that the
languages LX , DX and UX are also definable in MSO. We conclude by applying
Theorem 2, that ensures that both UX and B(X) − DX are regular languages of
birooted trees. 2

3 Quasi-recognizable languages of birooted F -trees

In [5] (also generalized in [4]), a notion of recognizability by premorphisms, called
quasi-recognizability, is proposed to define languages of positive (or arbitrary)
overlapping tiles. This notion is extended here to languages of birooted F -trees.

3.1 Definition

Let S be a monoid partially ordered by a relation ≤S (or just ≤ when there is no
ambiguity). We always assume that the order relation ≤ is stable under product,
i.e. if x ≤ y then xz ≤ yz and zx ≤ zy for every x, y and z ∈ S. The set U(S) of
subunits of the partially ordered monoid S is defined by U(S) = {y ∈ S : y ≤ 1}.

A partially ordered monoid S is an adequately ordered monoid when all sub-
units of S are idempotents, and for every x ∈ S, both the minimum of right

15

local units xL = min{y ∈ U(S) : xy = x} and the minimum of left local units
xR = min{y ∈ U(S) : yx = x} exist and belong to U(S).

For every x ∈ S, the subunits xL and xR are also called the left projection
and the right projection of x. Since subunits are assumed to be idempotents,
one can check that they commute and thus, ordered by the monoid order, form
a meet semilattice with the product as the meet operator. It follows that when
x is itself a subunit, we have x = xL = xR. In other words, in an adequately
ordered monoid, both left and right projection mappings are indeed projections
from S onto U(S).

Examples. Every monoid S extended with the trivial order x ≤ y when x = y
is a adequately ordered monoid with xL = xR = 1 for every x ∈ S. These
adequately ordered monoids are called trivial.

Every inverse monoid S ordered by the natural order is also an adequately
ordered monoid with xL = x−1x and xR = xx−1 for every x ∈ S. As a particular
case, the monoid B1(F) ordered by the natural order is also an adequately or-
dered monoid. The subunits of B1(F) are, when distinct from 0 or 1, the birooted
F -trees of the form 〈t, 1〉 and, indeed, for every birooted F -tree B = 〈t, u〉 we
have BR = 〈t, 1〉 and BL = 〈tu, 1〉.

For every set Q, the relation monoid P(Q×Q) ordered by inclusion is also an
adequately ordered monoid with, for every X ⊆ Q × Q, XL = {(q, q) ∈ Q × Q :
(p, q) ∈ X} and XR = {(p, p) ∈ Q × Q : (p, q) ∈ X}.

A mapping θ : S → T between two adequately ordered monoids is a premor-
phism when θ(1) = 1 and, for every x and y ∈ S, we have θ(xy) ≤T θ(x)θ(y) and
if x ≤S y then θ(x) ≤T θ(y). A premorphism θ : S → T is an adequate premor-
phism when for every x and y ∈ S we have θ(xL) = (θ(x))L, θ(yR) = (θ(y))R

and, if xy 6= 0 with xL ∨ yR = 1, i.e. the product xy is a disjoint product, then
θ(xy) = θ(x)θ(y).

A language L ⊆ B(F) of birooted tree is a quasi-recognizable language when
there exists a finite adequately ordered monoid S and an adequate premorphism
θ : B(F) → S such that L = θ−1(θ(L)).

Theorem 4. Let θ : FIM(A) → S be an adequate premorphism with finite S.
For every B ∈ B(F) the image θ(B) of the birooted F -tree B by the adequate
premorphism θ is uniquely determined by the structure of B, the structure of S
and the image by θ of elementary birooted F -trees.

Proof. This essentially follows from the adequacy assumption and the strong
decomposition property (Lemma 1). 2

3.2 From birooted tree automata to quasi-recognizable languages

Now we want to show that every finite state birooted automaton induces an
adequate premorphism that recognizes the same language.

16

Theorem 5. Let L ⊆ B(F) be a language of birooted F -trees. If L is recognizable
by a finite state birooted tree automaton then it is recognizable by an adequate
premorphism into a finite adequately ordered monoid.

Proof. Let L ⊆ B(F) and let A = 〈Q, δ, ∆, T 〉 be a finite birooted tree automaton
such that L = L(A).

We define the mapping ϕA : B(F) → P(Q × Q) by saying that ϕA(B) is, for
every birooted F -tree B = 〈t, u〉 ∈ B(F), the set of all pairs of state (p, q) ∈ Q×Q
such that there exists a run ρ : dom(t) → Q such that p = ρ(1) and q = ρ(u).
The mapping ϕA is extended to 0 by taking ϕA(0) = ∅ and, to 1 by taking
ϕ(1) = IQ = {(q, q) ∈ Q × Q : q ∈ Q}.

The fact P(Q × Q) is an adequately ordered monoid have already been de-
tailled in the examples above. By definition we have L = ϕ−1(X) with X =
{X ⊆ Q × Q : X ∩ T 6= 0}. It remains to show that ϕA is indeed an adequate
premorphism.

The fact ϕA is monotonic is immediate. Indeed, for every birooted F -tree
〈s, u〉 and 〈t, v〉, if 〈s, u〉 ≤ 〈t, v〉 this means that u = v thus, for every run
ρ : dom(s) → Q of A on 〈s, u〉, the mapping ρ restricted to dom(t) is clearly a
run of A on 〈s|dom(t), u〉 = 〈t, u〉.

Left and right projections preservation immediately follows from their char-
acterizations in both B(F) and P(Q × Q) and the definition of ϕA.

It remains to show that ϕA is submultiplicative and preserves disjoint prod-
uct. Let 〈s, u〉 and 〈t, v〉 be two birooted trees. In the case 〈s, u〉 · 〈t, v〉 = 0
we are done, since ϕA(0) = ∅. Otherwise, let ρ be a run of A on the product
〈s, u〉 · 〈t, v〉. By definition of the product, the mapping ρ1 : dom(s) → Q defined
by ρ1(w) = ρ(w) for every w ∈ dom(s) is clearly a run of A on 〈s, u〉. Similarly,
the run ρ2 : dom(t) → Q defined by ρ2(w) = ρ(uw) for every w ∈ dom(s) is also
a run of A on 〈t, v〉. Now, since ρ1(u) = ρ2(1) and that construction applies for
every run ρ, this shows that ϕA(〈s, u〉 · 〈t, v〉) ⊆ ϕA(〈s, u〉) · ϕA(〈t, v〉).

Last, assume that the product 〈s, u〉·〈t, v〉 is disjoint. This means that s(u) =
t(1) and dom(s) ∩ u · dom(t) = {u}.

Let (p, q) ∈ ϕA(〈s, u〉) · ϕA(〈t, v〉). By definition of the product of relations,
this means that there exists q′ ∈ Q, such that (p, q′) ∈ ϕA(〈s, u〉) and (q′, q) ∈
ϕA(〈t, v〉). But then, by definition of ϕA this means that there exists a run
ρ1 : dom(s) → Q of A on 〈s, u〉 and a run ρ2 : dom(t) → Q of A on 〈t, v〉 such
that ρ1(1) = p, ρ1(u) = q′, ρ2(1) = q′ and ρ2(v) = q.

Let then ρ : dom(s) ∪ u · dom(t) :→ Q defined by ρ(w) = ρ1(w) for every
w ∈ dom(s), and ρ(uw) = ρ2(w) for every w ∈ dom(t). Since the product of the
two birooted F -trees is a disjoint product, we have dom(s) ∩ u · dom(t) = {u}
with ρ1(u) = q′ = ρ2(1) hence ρ is well defined. As it is clearly a run of A on
the (non zero) product 〈s, u〉 · 〈t, v〉 with ρ(1) = p and ρ(uv) = q, this means we
indeed have (p, q) ∈ ϕA(〈s, u〉 · 〈t, v〉).

As this holds for arbitrary pair of states (p, q) ∈ ϕA(〈s, u〉) · ϕA(〈t, v〉) this
proves that ϕA(〈s, u〉) · ϕA(〈t, v〉) ⊆ ϕA(〈s, u〉 · 〈t, v〉) and thus concludes the
proof. 2

17

3.3 From quasi-recognizability to MSO

The following theorem tells how quasi-recognizability and MSO definability are
related.

Theorem 6. Let θ : FIM(A) → S be an adequate premorphism with finite S.
For every X ⊆ S, the language θ−1(X) is definable in Monadic Second Order
Logic.

Proof. Let θ : FIM(A) → S as above and let X ⊆ S. Uniformly computing
the value of θ on every birooted tree by means of an MSO formula is done by
adapting Shelah’s decomposition techniques [14]. More precisely, we show that
the strong decomposition provided by Lemma 1 is indeed definable in MSO.
Then, the computation of the value of θ on every birooted rooted B can be
done from the value of θ on the elementary birooted trees and the sub-birooted
F -trees that occur in such a decomposition.

More precisely, we first show that the predecessor relation ≺p (and thus,
by transitive closure, the prefix relation ≤p as well) is definable in MSO. This
amounts to saying that there exists an MSO formula ϕp(x, y) such that, for every
birooted tree 〈t, u〉, for every vertex v and w ∈ dom(t), we have 〈t, u〉 |= ϕp(v, w)
if and only v ≺p w.

Indeed, defining ϕp(x, y) amounts to saying that there exists a partition of
dom(t) in three sets of vertices X0, X1 and X2 such that the (input) root 1
belongs to X0, all its neighbors (or immediate successors) belong to X1, and for
every vertex z ∈ Z distinct from the input root, given i ∈ {0, 1, 2} such that
z ∈ Xi, given j = i − 1 mod 3 and k = i + 1 mod 3, the vertex z has a single
neighbor in Xj (the unique predecessor of z in the predecessor relation ≺p) and
all other neighbors of z belong to Xk (the successors of z in the predecessor
relation ≺p).

As a consequence, since the reflexive and transitive closure of a definable
binary relation is also definable in MSO, there exists a formula ϕ∗

p(x, y) such
that 〈t, u〉 |= ϕ∗

p(v, w) if and only v ≤p w.

This also means that for every birooted tree B = 〈t, u〉, the set U = {z ∈
dom(t) : 1 ≤p z ≤p u} is also MSO definable in every birooted tree 〈t, u〉 and, as
well, for every vertex v ∈ dom(t), the sub-birooted tree Bp

v . Here, by saying the
birooted F -tree Bp

v is definable in MSO we mean that its domain Dp(v) (defined
in the proof of Lemma 1) is definable and thus its structure: the vertex labels
and the edge relations, is just obtained by restricting those of B to the domain
Dp(v).

The next step is then the following. Given a finite collection of set variables
{Ys}s∈U(S), one variable Ys per element s ∈ U(S), writing Y for the tuple of

such variables, we claim that there exists a formula ϕ(Y) such that for every
birooted F -tree 〈t, u〉 for every v ∈ dom(t), for every subunit s ∈ U(S), we have
〈t, u〉 |= ∃Y (v ∈ Ys ∧ ϕ(Y)) if and only if θ(Bp

v) = s.
Indeed, this amounts to saying that {Ys}s∈U(S) form a partition (with pos-

sible empty sets) of dom(t) such that, for every vertex v ∈ dom(t), if v is a

18

leaf w.r.t. the prefix order ≤p then s = θ(Bp
v) = θ(Bt(v)) and we check that v

belongs to Ys or, if v is not a leaf, then we must have v ∈ Xs with, by adequacy
assumption on θ, s uniquely determined by

s =
∏

{(θ(Bp
v,w) · sw)R : v ≺p w}

with sw ∈ S is the unique element of S such that w ∈ Ysw
. Indeed, by the proof

of Lemma 1, we known that Bp
v =

∏

{
(

Bp
v,w · Bp

w

)R
: w ∈ dom(r), v ≺p w} with

disjoint products only and the adequacy assumption applies. As the product is
of a bounded size, we can check that v ∈ Ys.

Then, for every birooted tree B = 〈t, u〉, given the ordered prefixes of u
described by u0 = 1 <p u1 <p u2 <p · · · <p un−1 <p un = u the value of θ(B)
can be computed as the element s ∈ S defined by

s = θ(Bp
u0

)θ(Bp
u0,u1

)θ(Bp
u1

) · · · θ(Bp
un−1

)θ(Bp
un−1,un

)θ(Bp
un

)

Indeed, by Lemma 1 we have B = Bp
u0

Bp
u0,u1

Bp
u1

· · · Bp
un−1

Bp
un−1,un

Bp
un

with
disjoint product only hence, by adequacy of θ, the claim. As all these values are
computable, either as image by θ of elementary birooted trees, or, by induction,
by observing that for every prefix u′ of u we have θ(Bp

u′) = s′ if and only if
u′ ∈ Ys′ . Then, checking that v ∈ Ys by “computing” in MSO the value s can
be done, say, by a left to right “traversal” of the path from 1 to u, simulating
the underlying finite state word automaton induced by S on the (images of)
elementary birooted trees. This concludes the proof. 2

3.4 Quasi-recognizable languages vs MSO definable languages

For the picture to be complete, it remains to characterize the class of quasi-
recognizable languages w.r.t. the class of languages definable in Monadic Second
Order Logic.

Theorem 7. Let L ⊆ B(F) be a language of birooted F -trees. The following
properties are equivalent:

(1) the language L is quasi-recognizable,
(2) the language L is a finite boolean combination of upward closed MSO defin-

able languages,
(3) the language L is a finite boolean combination of languages recognized by

finite state birooted tree automata.

Proof. Let L ⊆ B(F) be a language of birooted F -trees.

(1) implies (2). We assume that L is recognized by some adequate premorphism
θ : B(F) → S. By definition, we have L = θ−1(θ(L)) hence

θ−1(θ(L)) =
⋃

x∈θ(L)

θ−1(Dx) ∩ θ−1(Ux)

19

with Ux = {y ∈ S : x ≤ y} and Dx = {y ∈ S : y ≤ x} for every x ∈ S. Indeed,
for every x ∈ S, we have θ−1(x) = θ−1(Ux) ∩ θ−1(Dx). The inclusion θ−1(x) ⊆
θ−1(Ux) ∩ θ−1(Dx) is immediate. Conversely, let B ∈ θ−1(Ux) ∩ θ−1(Dx). Since
B ∈ θ−1(Ux) we have x ≤ θ(B) and since B ∈ θ−1(Dx) we have θ(B) ≤ x hence
θ(B) = x and thus B ∈ θ−1(x).

We prove (2) by observing that both θ−1(Ux) and θ−1(Dx) = θ−1(S − Dx)
are upward closed (and recognized by θ) hence, by Theorem 6, they are MSO
definable.

(2) implies (3). This immediately follows from Theorem 2 that ensures that
every upward closed languages MSO definable is recognized by a finite state
birooted tree automaton.

(3) implies (1). Assume that L is a finite boolean combination of languages rec-
ognized by birooted tree automata. We want to show that L is quasi-recognizable.

By Theorem 5, every such a regular language is quasi-recognizable. Since the
class of quasi-recognizable languages is obviously closed under complement it
suffices to prove that it is closed under intersection.

But this is easily done using classical algebraic tools on monoids [12]. Indeed,
given two adequate premorphisms θ1 : B(F) → S1 and θ2 : B(F) → S2, the
mapping θ : B(F) → S1 × S2 defined by ϕ(B) = (ϕ1(B), ϕ2(B)) is an adequate
premorphism in the product monoid S1×S2 ordered by the product order. Then,
for every X ⊆ S1 and Y ⊆ S2 we have ϕ−1

1 (X) ∩ ϕ−1
2 (Y) = ϕ−1(X × Y). This

concludes the proof. 2

Corollary 8. The birooted image of every regular languages of F -tree is recog-
nizable by an adequate premorphism in a finite adequately ordered monoid.

Proof. This follows from Theorem 3 and Theorem 7. 2

4 Conclusion

Studying languages of birooted F -trees, structures that generalize F -terms, we
have thus defined a notion of automata, a related notion of quasi-recognizability
and we have characterized quite in depth their expressive power in relationship
with language definability in Monadic Second Order Logic (Theorem 7).

As a particular case, this provided a new algebraic characterization of the
regular languages of finite F -trees that, at first sight, seems incomparable with
the preclones approach [3] or the forest algebra approach [2] (Corollary 8).

Still, recognizability by adequate premorphism needs to be better under-
stood. For instance, an intriguing alternative notion of premorphisms, called
admissible premorphisms, arises when studying walking automata on birooted
trees. Though unrelated with the notion of adequate premorphisms, the recog-
nizability by admissible premorphisms is just as expressive as recognizability by
adequate premorphisms [6].

20

This suggests that some more general notion of MSO definable premorphisms
could be studied in place of both notions of adequate or admissible premor-
phisms.

References

1. A. Blumensath. Recognisability for algebras of infinite trees. Theor. Comput. Sci.,
412(29):3463–3486, 2011.

2. M. Bojańczyk and I. Walukiewicz. Forest algebras. In Logic and Automata, pages
107–132, 2008.

3. Z. Ésik and P. Weil. On logically defined recognizable tree languages. In Found. of
Soft. Techno. and Theoretical Computer Science (FSTTCS), pages 195–207, 2003.

4. D. Janin. Overlaping tile automata. Technical Report RR-1465-12, LaBRI, Uni-
versité de Bordeaux, 2012.

5. D. Janin. Quasi-recognizable vs MSO definable languages of one-dimensional over-
laping tiles. In Mathematical Foundations of computer Science (MFCS), volume
7464 of LNCS, pages 516–528, 2012.

6. D. Janin. Walking automata in the free inverse monoid. Technical Report RR-
1464-12 (revised february 2013), LaBRI, Université de Bordeaux, 2012.

7. D. Janin. On languages of one-dimensional overlapping tiles. In International
Conference on Current Trends in Theory and Practice of Computer Science (SOF-
SEM), volume 7741 of LNCS, pages 244–256, 2013.

8. M. V. Lawson. McAlister semigroups. Journal of Algebra, 202(1):276 – 294, 1998.
9. D. Perrin and J.-E. Pin. Semigroups and automata on infinite words. In J. Foun-

tain, editor, Semigroups, Formal Languages and Groups, NATO Advanced Study
Institute, pages 49–72. Kluwer academic, 1995.

10. J.-E. Pin. Relational morphisms, transductions and operations on languages. In
Formal Properties of Finite Automata and Applications, volume 386 of LNCS,
pages 34–55. Springer, 1989.

11. J.-E. Pin. Finite semigroups and recognizable languages: an introduction. In
J. Fountain, editor, Semigroups, Formal Languages and Groups, NATO Advanced
Study Institute, pages 1–32. Kluwer academic, 1995.

12. J-.E. Pin. Chap. 10. Syntactic semigroups. In G. Rozenberg and A. Salomaa,
editors, Handbook of formal language theory, Vol. I, pages 679–746. Springer Verlag,
1997.

13. H. E. Scheiblich. Free inverse semigroups. Semigroup Forum, 4:351–359, 1972.
14. S. Shelah. The monadic theory of order. Annals of Mathematics, 102:379–419,

1975.
15. W. Thomas. Chap. 7. Languages, automata, and logic. In G. Rozenberg and

A. Salomaa, editors, Handbook of Formal Language Theory, Vol. III, pages 389–
455. Springer Verlag, 1997.

16. T. Wilke. An algebraic theory for regular languages of finite and infinite words.
Int. J. Alg. Comput, 3:447–489, 1993.

21

