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Abstract

In evolutionary robotics, plastic neural network models proved to be promising for evolving adaptive behaviors.
In particular, neurocontrollers incorporating hebbian synapses have been shown to be useful for implementing
conflicting sub-behaviors. Numerous interesting complex tasks assume such flexibility. However, those evolved
controllers often exhibit behavioral instability, as simulation time is extended beyond the short limit used during
evolution. In this paper, we propose constrained plastic models inspired by neural homeostasis phenomena, in
order to evolve flexible and stable pattern generators for single-legged locomotion. Comparative results show that
constrained controllers perform better than unconstrained ones in both terms of evolvability and behavioral
stability. Functional analyses of the best evolved controller unveil the adaptivity, robustness and homeostasis
arising from the statically constrained plasticity. Interestingly, homeostasis evolved implicitly without relying on
any active homeostatic mechanisms and is implemented through hebbian plasticity, usually considered

destabilizing.
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I. Introduction

A key issue of evolutionary robotics is to seek conve-
nient control building blocks for specific behaviors
(Harvey, Husbands, Cliff, Thompson, & Jakobi,
1996; Jakobi & Quinn, 1998; Floreano & Urzelai,
2000). In particular, many efforts have been carried
out in exploring new neural network models intended
to be more evolvable, scalable and adaptive. Among
them, Continuous Time Recurrent Neural Networks
(CTRNNSs) (Beer, 1995), GasNets (Husbands et al.,
1998) and Plastic Neural Networks (PNNs)
(Floreano & Mondada, 1996) received most attention.
Comparing, hybriding and refining these models, as ini-
tiated by McHale and Husbands (2004a, 2004b),
turn out to be essential for better defining their areas
of applicability (Bullock, 2006). Ultimately, it could
allow us to predict which neural networks are suitable
to evolve which behaviors. Here, we propose to study
particular refinements applied to a CTRNN/PNN
hybrid model.

The standard PNN model involves hebbian learning
rules used to make each synapse adaptive. It was first
introduced by Floreano and Mondada (1996) to
explore evolution of plasticity, rather than evolution
and plasticity. One of their later results (Urzelai &
Floreano, 2001) was to show, through a Khepera per-
forming a light-switching task, that evolved controllers
embedding adaptive synapses can sequentially exhibit
multiple possibly conflicting sub-behaviors. Such
behavioral versatility constitutes a desired trait of
autonomy and adaptivity. This contrasts with the
monotonic and minimalistic behaviors usually obtained
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in prior works (Urzelai & Floreano, 2001; Doncieux,
2003). Subsequently, on evolving conflicting phototac-
tic behaviors, Di Paolo (2003) obtained a similar
result using another kind of adaptive-synapse control-
lers, based on spike-timing dependent plasticity
(STDP).

However, PNNs face also several shortcomings. For
example, Stanley, Bryant, and Miikkulainen (2003)
reported that PNNs evolved slower than fixed-weight
networks, for a dangerous food foraging task.
Furthermore, Tuci and Quinn (2003) were unable to
evolve PNNs to solve a learning task. This appears
very surprising when one considers the many links
observed in nature between hebbian plasticity
and learning. Finally, for our concern in this paper,
there are several evidences that PNN-controlled
robots are inherently subject to some behavioral insta-
bility. First, none of the PNNs evolved by Urzelai
and Floreano (2001) have retained permanently the
desired light-switching behavior. That is, these control-
lers were unable to lead the Khepera to put the light
on more than once, i.e. more than required during
evolution. Second, PNNs evolved by McHale and
Husbands (2004a, 2004b) for quadrupedal and
bipedal locomotions tend to generate unstable gaits,
as simulation time is extended beyond the limit
used during evolution. We suggest that this last
issue is an instance of the flexibility/stability
dilemma. In other words, one can wonder how
to evolve robot controllers that are plastic — thus pro-
viding some flexibility — and yet bearing behavioral
stability?

In (Hoinville & Hénaff, 2004a, 2004b), we proposed
to take inspiration from neurophysiological observa-
tions, which suggest that neurons counteract the desta-
bilizing influence of hebbian plasticity using several
homeostatic plasticity mechanisms (Turrigiano &
Nelson, 2000). Practically, we have shown, for a
single-legged locomotion task, that CTRNN/PNN
hybrid models constrained by static rules inspired
by homeostatic mechanisms are more evolvable and
behaviorally stable than unconstrained ones. In this
paper, we detail these results and extend them by per-
forming functional analyses of the best evolved control-
ler, so as to uncover the actual roles of the so-called
homeostatic constraints we proposed.

This paper is organized as follows. The next section
gives, first, the biological background that inspired our
work and second, a state of the art of evolving homeo-
static neurocontrollers for robots. The third section
describes the neuronal models we compared in evolving
single-legged locomotion controllers. Results are pre-
sented in the fourth section and discussed later in the
fifth section. Then, we conclude in the last section by
giving some perspectives.

2. Background

In this section, we draw the biological background that
inspired our work and review how neuronal homeosta-
sis has been addressed in evolutionary robotics.

2.1. Homeostasis in neurophysiology

Hebbian plasticity is known as a ubiquitous phenom-
enon involved in major cognitive and adaptive func-
tions, like learning and memory. Moreover, it plays
a key role in refining synaptic connections during
brain development. Thus, by reinforcing correlation
between simultaneously active neurons, hebbian plas-
tic rules participate in the significant flexibility of ner-
vous systems. However, raw modeling of this principle
comes with serious instability issues, since reinforcing
neuronal correlations increases likelyness of simulta-
neous activations and so on. Early modeling studies
yielded many mathematical adjustments intended
to cope with synaptic saturation impacting the basic
Hebb’s rule (Miller & MacKay, 1994). Some exper-
imental observations supported more plausible
advanced auto-stabilizing hebbian rules, like the
BCM law (Bienenstock, Cooper, & Munro, 1982)
or some forms of STDP (Kepecs, van Rossum,
Song, & Tegnér, 2002).

A more general perspective has emerged around the
notion of neuronal homeostasis. Homeostasis refers to
all phenomena that contribute to preserve some entity’s
internal physiological state (e.g. temperature) from
internal or external disturbances (e.g. weather)
(Kitano, 2007). Applied to neurons, this notion can
be defined as the capacity, of a neuron or a network,
to maintain a characteristic activity (i.e. state).

In the following sections, we will focus on two
homeostatic phenomena, namely excitability regulation
and synaptic scaling, which have inspired the present
work. These are believed to take a great part in counter-
acting the destabilizing effect of hebbian plasticity on
neuronal activity (Turrigiano & Nelson, 2000). The
first one operates on intrinsic properties of neurons
for regulating their excitability. The second one
occurs at synaptic level to regulate the total synaptic
input strength of each neuron.

2.1.1. Excitability regulation. The excitability of a
neuron can be defined as its probability to fire action
potentials according to input signal levels it receives.
Neuronal excitability can be illustrated by a sigmoidal
curve that relates the total synaptic drive received in
input to the mean firing rate obtained in output
(Figure 1). According to Turrigiano and Nelson
(2000), excitability regulation can be described as a pro-
cess that shifts this curve to maintain a long term
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Figure |. Homeostatic regulation of neuronal excitability. Typically, for a neuron, a sigmoid activation function can be used to relate
the total synaptic drive received as input to the mean firing rate (i.e. activity) obtained as output. Depending on the range of synaptic
drive received (vertical gray strips), only a part of the activation function is used (darkened curve parts). If this part corresponds to too
high (left example) or too low (right example) neuronal activity, the activation function is shifted (i.e. excitability is tuned) in order to

get back to a target activity level (horizontal gray strips).
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Figure 2. Interaction between hebbian plasticity and synaptic scaling. One post-synaptic neuron is receiving excitatory inputs from
two pre-synaptic neurons. VWhen one of the latters fires enough for activating the post-synaptic neuron, the synapse involved is
potentiated via hebbian plasticity, resulting in higher post-synaptic activity and so on. If this too high post-synaptic activity lasts too
long, then synaptic scaling acts on all input synapses proportionally to their weights in order to get back to a normal activity. It leads to
synaptic competition in that one potentiated synapse induces depression of the other.

“normal’ activity. When input excitation induces too
high firing rate for a long time, excitability is decreased
(left example on Figure 1). Conversely, if input excita-
tion is not sufficient, thus making the considered cell
silent for a long while, then its excitability is increased
(right example on Figure 1).

2.1.2. Synaptic scaling. This homeostatic phenome-
non consists of scaling the global synaptic input gain

of a neuron, that counteracts prolonged perturbation of
its activity (Figure 2). Thus, when activity remains too
low for a long while, all excitatory inputs are potenti-
ated and all inhibitory inputs are depressed. Opposite
modifications are expressed when lasting over-activity
occurs. Moreover, as reported by Turrigiano and
Nelson (2000), synaptic scaling appears to be multipli-
cative, i.e. input synapses are potentiated or depressed
in proportion to their strength. As such, synaptic


http://adb.sagepub.com/

scaling has been shown to induce synaptic competition
(Figure 2) and to overlay hebbian plasticity in a very
complementary way (Turrigiano & Nelson, 2000).

2.2. Neuronal homeostasis in evolutionary robotics

2.2.1. Models and main results. Evolution of
homeostatic neurocontrollers has been mostly per-
formed by Di Paolo and his colleagues. The first
model proposed in (Di Paolo, 2000) implements
homeostasis through conditional activation of various
hebbian plasticity rules. Some activation bounds are
defined so as to divide neuronal activation in homeo-
static and non-homeostatic ranges. Whenever any
neuron fires out of the homeostatic bounds, geneti-
cally-specified hebbian laws are triggered on all its
input synapses in order to recover a normal activity.
This model has been used to evolve controllers for sim-
ulated Braitenberg-like agents equipped with two actu-
ated wheels and two light sensors. The targeted task
was to reach light sources in a 2D infinite space (this
behavior will be referred in the following as
“phototaxis™).

Then, this model has been slightly modified in fur-
ther studies (two homeostatic ranges instead of one;
other hebbian plasticity formulations). These ones still
involved phototactic tasks, but following more complex
scenarios designed to address some questions about
cognition:

e modeling perseverative reaching in infants (Wood &
Di Paolo, 2007);

e minimal dynamics for behavioral preference (lizuka
& Di Paolo, 2007);

e linkage between internal and behavioral stability
(lizuka & Di Paolo, 2008).

In another work aiming for simpler phototactic
behavior, Di Paolo (2002a) proposed a model of
“homeostatic ~ oscillators”  based on standard
CTRNN:Ss incorporating a fast mechanism of excitabil-
ity regulation. This one consists of turning the bias of
each neuron into a dynamic variable, which acts to
keep constant its average firing rate to a given homeo-
static value. Because of the fast speed of this plasticity,
neurons tend to oscillate.

Di Paolo (2002b) also considered a more complex
model based on spiking neurons, where each synapse
is subject to both spike-timing dependent plasticity
(STDP) and synaptic scaling. Basically, STDP drives
synaptic weight changes according to the time differ-
ence between pre- and post-synaptic potentials.
Among the compared models, one implements in addi-
tion to STDP a mechanism of synaptic scaling. Spike
trains of each neuron are leaky integrated to estimate

the current firing rate which is then compared to a given
reference firing rate. The difference is minimized by
scaling up or down the weights of afferent synapses,
depending on whether they are excitatory or inhibitory.
Here again, the controllers based on these mechanisms
were evolved to satisfy simple phototaxis.

All the above homeostatic models have shown
improved evolvability compared to the control
models, in term of both final scores and evolving
speeds. The resulting neurocontrollers performed pho-
totactic tasks more reliably and adaptively. For exam-
ple, some proved to be robust to neural noise or
randomization of initial state. Most of them were
even able to adapt to strong sensorimotor disruptions
never seen during evolution, like motor distortions,
sensor swapping or removal (Di Paolo, 2000, 2002a,
2002b; lizuka & Di Paolo, 2008). Besides, it appears
that such homeostatic models provide some behavioral
stability. In fact, except in (Di Paolo, 2000, 2002b), the
obtained behaviors showed extended durability or
readaptability (i.e. recovering from cancelling the sen-
sorimotor perturbations).

In contrast, Williams (2005, 2006) reported poor
evolvability results using another homeostatic network
model. This one consists of a CTRNN model endowed
with an excitability regulation and a synaptic scaling
mechanism. Like in (Di Paolo, 2002a), excitability reg-
ulation is implemented by an adaptive bias. However,
the dynamics involved here are slower and the plasticity
just operates when neuronal activity goes outside a
homeostatic range (i.e. activity is not constrained to a
unique value as in Di Paolo’s model). In the same way,
if a neuron fires outside this given homeostatic range,
all its afferent synapses are multiplied down or up,
depending on their sign and in way to return the
neuron to a normal firing activity.

This model was assumed to be more evolvable than
the classic CTRNNSs because of the network-level prop-
erties it provides: increased sensitivity, better signal
propagation and increased likelihood of oscillations
(Williams & Noble, 2007). Nevertheless, evolution
attempts made by Williams (2005, 2006) on a task of
1D catching falling objects (with or without shape dis-
crimination) showed that homeostatic plastic CTRNNs
were generally outperformed by non-plastic CTRNNS,
although the formers evolved quicker and with more
consistency. Williams (2005, 2006) showed however
that such homeostatic plasticity, when used as develop-
mental mechanism rather than lifetime plasticity,
sometimes led to more evolvable controllers than non
pre-developed ones.

2.2.2. Discussion. While enforcing the idea that neu-
ronal homeostasis promotes evolution of adaptive
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behaviors, the previous studies can be discussed in rela-
tion to their methods.

Firstly, in order to fit with short-duration simula-
tions required for affordable fitness computation, all
the modeled homeostatic mechanisms have been
parameterized such as to act much faster than the
inspiring biological processes. Although most authors
ensured to significantly separate timescales of neuronal
activation and homeostatic plasticity, we think that
this approximation tends to denaturate the given mech-
anisms and lowers biological relevance of the
results. For example, in (Di Paolo, 2002a) and (Di
Paolo, 2002b), fast excitability regulation gives rise to
rapid rhythmic neuronal activity. It hardly relates to
nature considering the slow dynamics of the real mech-
anism, yet this function is useful here and evolutionary
robotics in general may not be adapted to achieve bio-
mimetic results.

Secondly, except in (Di Paolo, 2002b), homeostatic
plasticity is envisaged as a solution to implement short-
term behavioral adaptivity or robustness (which again
is unrealistic given its slowness), rather than as a stabi-
lizing counterpart to other plasticities, like it has been
argued for the hebbian one (Turrigiano & Nelson,
2000).

Thirdly, the phototactic tasks may inherently
favor the homeostatic models. In fact, even randomly
generated homeostatic CTRNNS (i.e. before any evolu-
tion is applied) were shown in significant proportion to
perform phototaxis when embobied in Braitenberg
agents (Williams, 2004, 20006).

3. Methods

3.1. Models

All the models we have reviewed involve homeostatic
plastic mechanisms that dynamically monitor neuronal
activity and trigger some parameter changes to recover
homeostasis when needed. In contrast, we propose to
follow an approach based on static mathematical con-
straints intended to decrease the likelihood of neuronal
activity being satured or silent. These “homeostatic
constraints” restrict the dynamical neural networks to
parameter subspaces similar to those asymptotically
reached using homeostatic plasticity. This keeps
unchanged the dimension of the dynamics space (i.e.
no new state variables) and discards the issue of slow
timescale dynamics. We expect this would encourage
evolutionary search to focus on richer dynamics
(Mathayomchan &  Beer, 2002) which also show
proper behavioral stability, although in the presence
of disturbing plasticity such as the hebbian one.

Furthermore, an open question is whether this
approach could implicitly lead to evolve some
homeostasis.

In particular, our present work investigates the
impact of two specific homeostatic constraints on the
evolvability, behavioral stability and the internal
dynamics of CTRNN/PNN hybrid controllers. The
first one mimics the outcome of excitability regulation.
The second one is inspired from synaptic scaling.

3.1.1. CTRNN/PNN hybrid model. Firstly proposed
in (McHale & Husbands, 2004a, 2004b) and (Hoinville
& Hénaff, 2004a, 2004b), this model combines the
leaky integrator neurons of CTRNNs with the hebbian
synapses of PNNs.

Adapted from (Beer, 1995), neurons are modeled by

At u
YA =yl + — <_y1[' + ki Z £jiw};0; + If) (1)
m; j=1
i=12,,N
where y/™2" and y! are the ith node’s states at respec-

tively times ¢ + At and #; At is the simulation time slice
(set to 10 ms); t; is the time constant of the ith node;
ki = 1/(21-/\/:1 | £;i ) is a normalizing factor; % is the
sign of the connection from the jth to the ith nodes
(1: excitatory, —1: inhibitory, 0: off); wj’-l- € [0, 1] is the
corresponding connection strength which is subject to
plastic changes; 7] is the input value in case of a sensory
neuron, otherwise it is set to 0; of is the output of the ith
node computed through a sigmoid activation function,
such as

1
t
0. =
"1+ exp(—gi(yi +6)

with g; and 6, are respectively the ith node’s gain and
bias.

)

According to the PNN model (Floreano &
Mondada, 1996), connection weights are updated
through time as follows:

At
i = g ®

where 1, is the plasticity time constant (the equivalent
learning rate is n; = At/ty;) of the connection from the
jth to the ith nodes and Aw}i is one of the following four
hebbian rules:

1. Plain Hebb rule
Aw}i =(1- v@f][.l.)q;of 4

2. Post-synaptic rule
r_ [AWN I\
Awy = wi(=1+ 07)o; + (1 — wj)oj0; (5)
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3. Pre-synaptic rule

Awj; = wioi(—=1 4 0)) + (1 — w})ojo; (6)
4. Covariance rule
1 — wi)F(o!, 0! si F(ol,0l) >0
aw = [ (= W70 )
Ji t f(gj[’ ot otherwise

where the function F(o! 0;, o) = tanh[4(1 — |0 —0f])—2]
measures the similarity between pre- and post synaptlc
activities.

3.1.2. Excitability regulation by center-crossing
constraint. Homeostatic regulation of neuronal excit-
ability can be achieved by providing the sigmoid acti-
vation function with an adaptive bias. Such a solution
has been carried out in (Di Paolo, 2002a; Williams &
Noble, 2007). Moreover, there is evidence that this
mechanism tends to maintain CTRNNs close to the
so-called “‘center-crossing position” of the parameter
space (Williams & Noble, 2007; Williams, 2006).

Center-crossing CTRNNs are defined as satisfying a
special condition on neuronal bias given by

97 — Z} 21:|: W (8)
which insures that the operating range of each neuron is
centered on the most sensitive region of its activation
function (Mathayomchan & Beer, 2002).

Here, we propose to use this condition to constrain
the neurons, rather than possibly reach homeostatic
states through dynamic implementation of excitability
regulation. However, setting 6; to 6} is quite restrictive
and reduces the number of parameters. Therefore, to
keep the parameterization unchanged between our
models and let evolution seeck the nearby center-
crossing condition, we chose the more flexible solution
of correcting the activation function asymmetry:

YA =yl 4 ? (—y§ + k; Z £wi(200 — 1) + 1;) Q)
mi j=

Indeed, for symmetric odd activation functions such as
(20]’- — 1), the center-crossing condition is verified for
o7 = 0.' So, in this model, by both keeping evolving
0; and symmetrizing the activation function (yet just for
neuronal summation, not for output), we center the
evolutionary search around the center-crossing condi-
tion and keep our models homogeneous.

3.1.3. Synaptic  scaling by  normalization
constraint. As we have seen before, synaptic scaling
regulates global input gain of neurons to maintain a
typical activity. Besides, it can lead to synaptic compe-
tition that properly complements hebbian plasticity.

Normalization constraints have been proposed in
the past (Miller & MacKay, 1994) for modeling syn-
aptic competition that takes place notably during
ocular dominance column development The principle
is to keep either Z/ | Ejiw); or Z/ 1 (w constant, the
latter giving usually more uniform synaptic distribu-
tions (Miller & MacKay, 1994)

We propose to use Z (lw = 1. Indeed, we
assume that constraining synaptic input gains to unity
would balance information propagation throughout
neurons and so would promote maintaining meaningful
neuronal activity, i.e. not saturing, neither silent.

To be consistent with synaptic scaling observations,
we implemented the normalization constraint in a mul-
tiplicative way, as follow:

oAt '
Wi 1, AWji

2
N t t ot
\/ D k=1 (wki tig wki)

+Ar _
wy o=

(10)

and

At N
ylt+m i+ o (—yf + \/E Z: :I:ﬁw,’-[o} + If) (11)
! J=

3.1.4. Summary. 1t is important to note that, con-
trary to the usual approach, we do not introduce any
new dynamics for enforcing homeostasis. That is, the
neuronal activity is not monitored and there is no
mechanism that dynamically corrects any parameter.
In fact, homeostasis is not ensured to be maintained
in the short- or long-term. However, our hypothesis is
that the chosen constraints would make homeostasis
more likely and lead to evolve plastic controllers imple-
menting stable behaviors.

To evaluate this hypothesis, we compared four neu-
ronal models instantiated from the two homeostatic
constraints defined above:

e CTRL, the plain CTRNN/PNN hybrid model (our
control model);

e CC, the CTRNN/PNN model with center-crossing
neurons;

e NS, the CTRNN/PNN model with normalized
adaptive synapses;

e CCNS, the CTRNN/PNN model with both center-
crossing neurons and normalized adaptive synapses.

3.2. Application

We compared the performances of these four models as
substrates for evolving controllers for a single-legged
locomotion task. Such a test bed is preferred to the
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phototactic tasks usually found in related works for
two main assumptions.

Firstly, as we pointed out in the background section,
phototactic tasks might inherently suit to homeostatic
networks, as the success of random homeostatic
CTRNNs in (Williams, 2004, 2006) tends to show.
Although adaptation to unseen perturbation like sen-
sory swapping (Di Paolo, 2000) requires non trivial
dynamics, phototaxis of Braitenberg-like agents can
rely at low level on basic sensory-motor reactions.
On the contrary, even involving a single leg, locomotion
requires generating rhythmic pattern, possibly from
scratch, for coordinating several degrees of freedom.
Possible control strategies are multiple since they rely
on adapting any combination of frequencies, ampli-
tudes and phases.

Secondly, considering homeostasis, maintaining a
“normal” oscillatory activity underlying some locomo-
tor behavior appears challenging. Defining simple
homeostatic activity ranges, as usually proposed,
would not be enough to keep stable a specific neuronal
activity pattern. To be effective, active homeostatic
mechanisms would thus require to monitor several
oscillatory signal properties such as phases and fre-
quencies. Here, our approach based on homeostatic
parameter constraints avoids this issue.

3.2.1. Single-legged robot. The simulated robot* we
used consists in a cuboid base supporting a leg articu-
lated about three degrees of freedom (Figure 3). The
hip and knee are universal and hinge joints respectively,
allowing protraction/retraction, elevation/depression
and extension/flexion of the leg.

In addition, a linear joint between the base and the
ground constrains the robot to move along a horizontal
straight line (y-axis, 12cm high). This rail generates
viscous friction that brakes the robot sliding. The fric-
tion force Fy(f) is proportional to the base’s instanta-
neous speed V(¢), such as

Ffr(l) = —kgy V(l)

where ki, is the viscous friction coefficient.

(12)

3.2.2. Fitness. The task of the robot is to respect
an instantaneous desired velocity Vy4(7). In addition,
the robot must cope with an external perturbation that
consists in sudden increase of the friction coefficient kp,.

In order to evolve controllers satisfying this behav-
ior, we defined a fitness based on three evaluation sce-
narios. As shown in Table 1, each scenario is defined by
time-varying profiles of the desired speed V4(7) and the
friction coefficient k(7):

e the scenario A aims to follow a triangular desired
speed profile;

(@)

(b) I
I
Protraction
v
Base K #r}ro-Ferormsanneens
}r 90"
A
Y | Retraction
zé)—-x |
/
| Extension
(c)
| Elevation /
Base
I?l
Z % / Flexion
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! /] .
Y X é Depression

PSS LA T LSS

Figure 3. The single-legged robot model. The base is a box of
20 x 20 x 10 cm and 3 kg. The leg segments are cylinders of

I5 x @4 cm and 0.5 kg. In the initial comfiguration (i.e.

q1,92,93 =0), the thigh is parallel to the ground and the tibia is
bent to 45° toward the ground. From this configuration, all
rotation ranges are +90°. (a) Simulation (b) Top view

(c) Back view.
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Table I. The three evaluation scenarios (T=10 s)

Scenario A Scenario B Scenario C
40 40 —— -
Vy(t) [em/s] 30
0 T/9 0 O w1 314
20
ke(t) [kg/s] 10 10
10 )

e the scenario B rewards the capacity to inhibit the
locomotion behavior;

e the scenario C promotes adapting to the
perturbation.

Each scenario involves simulating 7= 10 seconds of
real time (i.e. 1000 timesteps), during which the mean
error E between the desired velocity Vy(f) and the
instantaneous mean velocity V,(7) is computed accord-
ing to

1 T
E=r /0 V() = V(D] dt (13)

where V', (f) is measured through applying a second
order low-pass filter on the raw velocity V(¢). This fil-
tering discards the high amplitude variations of V(7)
occurring at each stride of the robot.

From the mean errors E,, Eg, Ec obtained in the
three scenarios, the fitness of a controller, which should
be minimized, is given by:

fitness = ,/Ef\ + E% + E% (14)

This quadratic combination encourages minimizing
error in all the three scenarios by reducing the local
optima corresponding to solving one or two scenarios
only.

This fitness function has been built empirically by
several evolution trials. Gathering these three scenarios
allows to reward controllable and generalizing closed-
loop locomotor behaviors. Note that, since each sce-
nario lasts for a short time of ten seconds, the fitness
function does not reward for long-term behavioral
stability.

3.3. Controllers architecture and genetic encoding

For all the four models, we used the same control archi-
tecture of eight neurons (Figure 4). As we will describe
further, the network topology was encoded in the geno-
type of each controller. We only kept fixed the connec-
tions with sensors and actuators. The neurons no. 1
and 2 are sensorineurons. The first is fed by the instan-
taneous error e(f) = Vq(f) — Vin(?) between the desired
velocity and the current average velocity. The second
neuron receives boolean value from a ground contact
sensor at the tip of the leg. Activations of the neurons
no. 6, 7 and 8 give, after linear scaling, the angles of the
three articulations®. The three remaining neurons are
hidden interneurons.

As our controller models share the same parameter-
ization and architecture, we used a common genetic
encoding scheme (Figure 5). Each genotype is com-
posed of eight neuron blocks. Each neuron block i
includes the intrinsic properties (i.e. Tn; g; and 6,) of
the coded neuron and a list of eight synapse blocks.
These are coding for the neuron inputs (including the
connection from itself). Each synapse block j of the
neuron block i codes: whether the connection exists
or not (thereby it defines the network topology), the
synapse sign £;, one of the four hebbian rules and
the plasticity time constant tg;.

In total, each genotype consists in 280 genes. Each
numerical gene can take one value among five
(Table 2). Hence, there are 3.74 x 10'*® possible geno-
types in the search space.

3.4. Genetic algorithm

We evolved the controllers using a classical generational
and elitist genetic algorithm (Goldberg, 1989). That is,
populations were initially randomly generated and
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Figure 5. Genetic encoding scheme.

entirely renewed at each generation (except the best per-
forming individual). To avoid premature convergence,
we used stochastic universal sampling (Baker, 1987) and
linear ranking selection with selective pressure of 1.1
(Goldberg, 1989). New individuals were generated
using two genetic operators: simple allelic mutation
(Pmut =0.001) and uniform crossover (Pe.oss = 0.6).

4. Results

For each of the four controller models, we performed
ten independent evolutionary runs, initialized with dis-
tinct populations of 200 random individuals. Each evo-
lution was conducted for 2000 generations.

4.1. Evolvability

Figure 6 shows, for each model, the fitness profile of the
best controllers averaged across all evolutionary runs.
The non-homeostatic model (CTRL) is less evolvable
than all the homeostatic models (CC, NS, CCNS) both
in terms of final result and convergence speed
(p-values < .01). Final performances of the CC and
NS models are not significantly different (p-value > .1),
meaning that one homeostatic constraint does not out-
perform the other. In contrast, the CCNS model com-
bining both constraints appears to be the most
evolvable especially regarding results consistency
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Table 2. Allele sets of numerical genes

Genes Alleles
Tm, 0.02 0.165 0.31 0.455 0.6
gi 2.46 3.53 5.34 9.43 31.26
0; —-0.2 —0.1 0.0 0.1 0.2
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Figure 6. Average best fitness for each neuronal model.

(indicated by the lower standard deviation) and conver-
gence speed. Although, considering average final per-
formances, the difference between the CC and CCNS
model is not significant enough (p-value = .06).

4.2. Behavioral stability and robustness

In order to verify whether the homeostatic constraints
promote behavioral stability or not, we evaluated the
fitness of every best controller in time-extended simula-
tion lasting ten times the evolutionary one (i.e. 7= 100
seconds). Figure 7 shows the obtained global fitness
and errors specific to each scenario.

Leading to the lowest error values, the scenario A
appears to be the least challenging. For all models, pro-
longed simulations drop the global fitness. This is espe-
cially marked for the CC model (whose fitness got
worse by 72%) and less important for the CTRL, NS
and CCNS models (resp. 43%, 33% and 20% worse).
In term of absolute performance, the superiority of the
CCNS is confirmed, whereas the CTRL model displays
the worst results. Again, differences between the CC
and NS models are not significant, although we notice
a slight but systematic inversion in their relative fitness
whatever the scenario, compared to evolutionary
fitness.

To focus on robustness to the friction perturbation,
we further evaluated the behavioral stability of the best

controllers using a custom test based on the scenario C.
In that test, controllers were given a constant desired
speed V4=30 cm/s. A controller would succeed in the
test if the robot reached the distance of 150 meters in
less than 1000 seconds. Notice that, for a perfect con-
troller continually respecting the desired velocity, this
distance should be covered in 500 seconds. Compared
to the previous fitness-based test, this custom test is
more demanding on behavioral stability, since it
involves longer simulated time.

We perfomed this test in perturbed condition and
control condition. In the latter, we held constant the
friction coefficient at kp. = 10 kg/s, whereas with pertur-
bation, we increased it twofold such as kn =20 kg/s at
the instant 1 =250 s.

Table 3 shows the success rate and average time-
to-goal of each controller type in both environments.
These results confirm and refine the previous ones.
Showing almost optimal performances in both environ-
ments, CCNS controllers are more stable and robust
than the others. The CTRL model gives the worst results,
especially poor in the perturbed environment. CC and
NS controllers display similar average success and good
time-to-goal as long as the perturbation does not occur.
However, in the perturbed environment, the success rate
of the CC model drops critically, whereas NS controllers
performances are only slightly affected, thus showing a
great robustness (comparable to the CCNS one).

4.3. Behavioral analysis

In order to understand why homeostatic constraints led
to improved performances, we analyzed both the
behavior and internal dynamics (in the next section)
characterizing the best obtained CCNS controller
(whose phenotype is depicted on Figure 4). We first
verified the capacity of this controller to follow entirely
new desired velocity profiles, with and without pertur-
bations. For instance, Figure 9a shows that the control-
ler is able to respect a sinusoidal command while being
perturbed. In Figure 9b, the square signal example
clearly demonstrates the three basic capabilities of
“speed control”, “‘stop-and-go” and ‘‘perturbation
compensation”, which correspond to the three evolu-
tionary scenarios.

To achieve such behaviors, the controller strategy is
the following. For propulsion, the three leg’s degrees of
freedom oscillate in phase at a constant frequency
about 2 Hz. Amplitudes are small compared to the
available ranges. Very simply, the locomotion cycle
splits in two alternating phases: a stance phase (protrac-
tion, elevation and flexion) and a swing phase (retrac-
tion, depression and extension).

For braking, the controller uses a passive method.
Thus, when the actual velocity is high above the desired
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Figure 7. Mean performances (+ std dev.) of the best controllers in long-lasting scenarios (T = 100 s). For every model, each best
controller of each evolutionary run was evaluated ten times with different random initial synaptic weights.

Table 3. Success rate of the best controllers in reaching 150 m distance at desired speed V4=30 cm/s, without and with friction
perturbation (i.e. kg = 10 — 20 kg/s at t =250 s). Average times-to-goal of the successful controllers are also reported. For every
model, each best controller of each evolutionary run was evaluated ten times with different random initial synaptic weights

Without perturbation

With perturbation

Models Success [%] Time-to-goal [s] Success [%] Time-to-goal [s]
CCNS 90 537 80 586
NS 72 597 70 669
CC 64 576 37 675
CTRL 55 792 20 849

velocity, the controller triggers a reflex similar to a high
amplitude swing phase. This lifts the leg off the ground
and let the friction force brakes the robot advance.
Quickly after the reflex occurred, the leg stabilizes off
the ground in a stationary configuration (¢; =—4°,
qr= 210, 43z = —760).

For compensating the friction perturbation, as well
as adjusting the robot velocity to the desired value, the
best CCNS controller uses a common strategy. The
latter consists in shifting and modulating the amplitude
of both protraction and extension oscillations.
As shown in Figure 8, this results in modulating the
stride length. Then, because the gait frequency remains
constant, it ends up by either changing the overall robot
speed or compensating the varying friction force.

4.4. Functional analysis

Functional analyses were conducted on the same
CCNS controller, in order to understand how the plas-
tic and homeostatic mechanisms it integrates work in

concert for giving rise to the efficient behavior previ-
ously described.

4.4.1. Neuronal and synaptic dynamics. The first
question we addressed was how the controller’s internal
dynamics correlate to the exhibited behavior. Figure 10
shows timeplots of the neurons activities and synaptic
weights obtained for the square velocity command of
Figure 9(b). None of the eight neurons is saturing or
silent. Synaptic weights spread uniformly over the
whole value range. Propulsion and stopping phases
are characterized by two clearly different synaptic con-
figurations. During propulsive behavior, both neuronal
and synaptic dynamics are oscillatory, at a unique fre-
quency matching the gait cycle. In contrast, during
stops, both neuronal and synaptic configurations are
mostly stationary. In addition, whether the friction per-
tubation occurs or not during propulsive phases also
influences controller’s dynamics, yet to a small extent.
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Figure 8. Trajectories of leg’s knee and tip, with and without
the friction perturbation. (a) Side view (b) Top view.

4.4.2. Synaptic  plasticity and  homeostatic
constraints. In order to uncover the specific roles of
synaptic plasticity and each homeostatic constraint,
we disrupted each mechanism independently. Here
again, we used the square velocity example.

Figure 11(a) shows the behavior arising from a
random synaptic configuration not ever modified by
any plastic rules (yet respecting both the NS constraint
and the sign £ in the genotype). Whatever the random
configuration generated, the controller was not able to
properly control the robot speed. However, it likely led
to oscillatory regimes moving the robot. Moreover,
oscillation frequencies obtained were often similar to
the normal controller’s one.

We then investigated freezing the synaptic plasticity
during both propulsive and stopping phases
(Figure 11(b) and 11(c)). In the former case, the
CCNS controller is still capable of respecting a high
velocity, yet compensating a bit worse for the friction
perturbation. But, interestingly, the controller is then
unable to inhibit entirely the gait when the command
becomes null. In the case of freezing the plasticity
during a stopping phase, gait inhibiting is still per-
formed well, whereas the controller is not more able
to reach a high speed command.

Using the same method, we tested relaxing each
homeostatic constraint in different contexts. For both
constraint relaxations, consequences did not depend on
the moment (i.e. on the controller state) we elicited
them. Thus, here we only report results obtained for
initial suppression of each constraint.

As shown in Figure 12, relaxing one constraint or
the other induces totally distinct effects. On one hand,
removing synaptic normalization (NS) still results in a
working controller yet it has poor performance. In par-
ticular, the controller is unable to stop the robot when
asked. In addition, as one could expect, this saturates
several synapses. In contrast, as for neuronal activity,
no saturation or silencing is induced. On the other
hand, removing the center-crossing constraint (CC),
by switching from the mixed equation (9) and equation
(11) to equation (11), results in a controller that does
not work at all. Logically, most neurons become either
saturated or silent, paralysing the whole robot.

4.4.3. Plasticity dynamics. We further investigated
how the plasticity dynamics impacts the emerging
behavior, by achieving two more experiments on the
same best CCNS controller.

First, we increased tenfold every plastic time constant
7,5, to slow down the plasticity dynamics. Figure 13(a)
shows that this modification does not significantly affect
the asymptotic behaviors. In particular, notice that the
frequency of oscillatory regimes remains unchanged.
However, behavioral transitions take much more time
to finish and are easier to observe. Interestingly, this
confirms that compensating the friction perturbation
relates more to small parameter adjustments, than to
an actual change in the dynamics.

Second, we tested whether individual differences in
the dynamics of adaptive synapses were relevant to
proper operation of the controller. Thus, we set all
the plastic time constants to their mean value
7, = 1.56 seconds. Results (Figure 13(b)) show that
the controller is still able to generate a performing
walking gait. However, some instability arises in the
presence of the friction perturbation. Furthermore,
the controller is unable to inhibit the locomotion
cycle when subjected to a null command.
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Figure 9. Velocity control and joint angles of the best CCNS controller with and without friction perturbation: (a) Sinusoidal
velocity command of period |0 seconds; (b) Square velocity command of period 24 seconds. Instantaneous mean velocity V,, is
oscillating (yet damped by the low-pass filter) according to every robot stride. An initial transitory phase lasting three seconds is
noticeable. Gray stripes denote joint angle amplitudes characterizing the locomotion at V4= 30 cm/s without friction perturbation
(i.e. k¢-= 10 kg/s). Applying and removing the friction perturbation (highlighted by the vertical dash lines) induces undershoots and
overshoots of the robot velocity respectively, which are quickly corrected by the controller.

4.4.4. Robustness. We ended our functional analysis
of the best CCNS controller by studying its robustness
to internal perturbation. While interacting with the
environment, we disrupted the whole synaptic configu-
ration by setting every synaptic weight to a new

random value. As shown in Figure 14, the controller
proved to be very robust whatever the context in which
we did the randomization. In every instance, the per-
formance, activity and synaptic steady states are
quickly recovered (in two to three seconds).
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5. Discussion

5.1. Hebbian plasticity underlies behavioral
adaptivity
From the plasticity blocking tests performed on the

best CCNS controller (Figure 11), we can first infer
that adaptive synapses are not taking part in oscillatory

pattern generation. Actually, the contrary would have
been possible given the relatively fast dynamics of the
learning rules (yet slower than the neuronal activation
dynamics). Pattern generation arises instead from the
particular network topology and tuning of neuronal
time constants, as confirmed by the fact that ran-
dom fixed synaptic configurations still lead to effective
propulsive behavior (Figure 11(a)). Furthermore,
changes in plasticity speed (Figure 13) do not stop
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Figure 11. Effects of synaptic plasticity suppression: (a) Keeping the random initial synaptic configuration (yet normalized) makes the
controller unable to control the robot speed, but a locomotion behavior is still exhibited. (b) Synaptic plasticity freezed during
propulsion phase (from t=6 s): The controller is then unable to inhibit the robot locomotion. (c) Synaptic plasticity freezed during
stop phase (from t= 18 s): The controller is then unable to fully respect a high speed command. (Gray stripes corresponding to the
intact controller behavior are reported here and in subsequent figures for comparison).

gait generation, neither do they modify oscillation fre-
quency or phase.

The plasticity blocking tests however clearly show
the role of synaptic plasticity in on-line behavior adap-
tation. The controller displays two distinct dynamics
according to the required velocity: one for high speed
propulsion and one for movement inhibition. Freezing
all the synaptic weights in one dynamics prevents
switching afterwards to the other (Figure 11). Besides,
this relation between behavior transitions and internal
plasticity becomes obvious when slowing down all
adaptive synapses (Figure 13(a)).

On the other hand, adaptivity is less apparent when
the controller compensates for the friction perturba-
tion. In fact, small variations in synaptic weights are
noticeable (Figure 10(b)) and induce only some
changes in leg movement amplitude (Figure 8),
whereas frequency and phase remain constant.
Moreover, blocking the plasticity while being in the

propulsive regime without perturbation does not
impair the later controller performance significantly,
when the friction coefficient is to be doubled
(Figure 11(b)). Therefore, plasticity does not seem
involved in compensating such a perturbation. One
possible explanation might be that the friction pertur-
bation is not that demanding. Another explanation,
which may add to the previous one, lies in that, in
our setup, controllers could hardly detect this pertur-
bation. Indeed, both friction perturbation and some
increase in required velocity lead to similar rise in
the control error perceived by controllers. In this
way, a null velocity command makes a greater pertur-
bation for controllers to deal with.

To summarize, the plasticity due to adaptive synap-
ses is involved in adapting the control to big changes in
required velocity, rather than in compensating the
probably trivial friction perturbation. Consistent with
previous work (Urzelai & Floreano, 2001), this result
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Figure 12. Effects of homeostatic constraint suppression: (a) Synaptic normalization constraint relaxation: The initial transitory
regime is lengthened. The controller is unable to stop the robot. A significant part of synaptic weights is saturating (c), whereas
neuronal activity remains oscillatory without saturating (b). (d) Center-crossing constraint relaxation: Almost all neurons display flat

saturated activity, resulting in a non functional controller.

supports that the adaptive synapses model allows
evolving controllers implementing conflicting sub-
behaviors.

5.2. Synaptic normalization supports multistability

As pointed out in the introduction, the adaptivity of
controllers evolved with adaptive synapses (namely
the PNN model) has been offset by some behavioral
instability before (McHale &  Husbands, 2004a,
2004b; Urzelai & Floreano, 2001). This drawback is
confirmed by our stability tests (Table 3) performed on
the CTRL controllers (i.e. unconstrained CTRNN/
PNN hybrid model), which display poor results espe-
cially in perturbed environment. On the other hand,
evolving controllers with normalized synapses (i.e. NS
and CCNS controllers) led to far more reliable behav-
iors with and without perturbation (Table 3).

Our functional analyses of the best CCNS control-
ler give more insight into how the normalization con-
straint interacts with plasticity. Indeed, relaxing this
constraint results in the controller inability to stop
the robot when asked (Figure 12(a)). That is, synaptic

normalization seems to help stable coexistence of the
two conflicting regimes underlying propulsion and
movement inhibition. To explain such a multistabil-
ity, we hypothesize a canalizing effect of the normal-
ization constraint on synaptic plasticity. In particular,
the induced synaptic competition might contribute to
a global self-organization of individual plastic rules.

On the other hand, synaptic normalization does not
seem to implicitly constrain neuronal activity as
expected. If it does effectively prevent synaptic weights
from saturating (Figure 12(c)), its effect on neuronal
activity is not significative. In fact, when synaptic nor-
malization is removed (Figure 12(b)), neuronal activity
is left oscillating in the proper range for effective pro-
pulsion and there is not any saturated or silenced
neuron.

5.3. Center-crossing constraint prevents neuronal
saturation, but not robustness
In contrast to synaptic normalization, the center-cross-

ing constraint obviously contributes to the sensitivity of
the best CCNS controller. Indeed, suppressing this
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constraint leads to neuronal activity saturation, and the
controller becomes fully paralized (Figure 12(d)).

However, the center-crossing constraint does not
appear to promote the evolution of robust behaviors.
Thus, as shown in our comparative analyses, perfor-
mance of CC controllers drops critically in long lasting
simulations when friction perturbation is triggered
(Table 3). So, the enhanced evolvability of CC control-
lers likely comes from focusing evolutionary search on
more sensitive and/or oscillating neural networks
(Mathayomchan & Beer, 2002).

5.4. Robustness through homeostatic hebbian
plasticity

As shown by the quick recovery from synaptic random-
ization perturbations (Figure 14), dynamics of the best
CCNS controller is governed by very stable dynamic
attractors, which are shaped by each specific plastic
rule and rate tuned at every synapse (Figure 13(b)).
Furthermore, in each condition of desired speed and

friction coefficient, the dynamics perturbed by
random synaptic values return to the same previous
steady state.

Therefore, the best CCNS controller clearly demon-
strates the property of homeostasis as defined in the
background section (Kitano, 2007). Moreover, this
homeostasis underlies behavioral robustness, as it
results in maintaining the evolved locomotor perfor-
mance. Interestingly, homeostasis is here supported
by hebbian plasticity, which is often considered desta-
bilizing as being of positive-feedback nature. This may
be due to the multistability, canalizing and sensitivity
properties provided by the static constraints we
proposed.

Another interesting point is that, compared to pre-
vious works, homeostasis evolved implicitly without
relying on any active regulation mechanism explicitly
homeostatic. Hence, it blends the distinction between
homeostatic and non homeostatic mechanisms, leaving
this property for rather characterizing controller
dynamics.
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Figure 14. Robustness and homeostasis of the best CCNS controller: All synaptic weights were set to new random values, at
t=6s, 185,42 s and 54 s. Whatever the behavior phase in which we triggered this perturbation, the controller quickly got back to the
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5.5. Task-independence

So far, our findings are valid for the single-legged loco-
motion task only. However, we would assume that our
models could be used for other problems. By being
based on CTRNNs and adaptive synapses, our model
should be practicable for evolving behaviors that have
already been tackled in former investigations.
Moreover, the proposed constraints are not related to
locomotion, nor to any other task. Admittedly, more
results are required to better define the area of applic-
ability of the model.

6. Conclusion

In this paper, we have shown that plastic neurocontrol-
lers based on adaptive synapses are more evolvable
when subjected to static parameter constraints inspired
from homeostatic processes of biological neurons.
In particular, we could evolve both flexible and multi-
stable pattern generators, leading to both adaptive and
robust single-legged robot locomotion. Moreover, we

have seen that homeostasis can evolve implicitly with-
out any active homeostatic mechanisms and be imple-
mented through constrained hebbian plasticity.

As stable flexibility is required in many interesting
behaviors, more investigations in constraining neural
network models seem promising. This is especially
true for plastic models which hold more potential for
adaptivity but also for instability.

Further progress could be achieved through mathe-
matical analyses of model parameter spaces
(Mathayomchan & Beer, 2002; Beer, 2006; Beer &
Daniels, 2010; Prinz, Bucher, & Marder, 2004; Achard
& De Schutter, 2006). Unfortunately, for some complex
models this might not be practical. Another approach,
that we followed here, is to take inspiration from how
biological neural networks tune their parameters.
However, although we know developmental process
and homeostatic plasticity are involved, a global under-
standing is not yet available (Marder, Tobin, &
Grashow, 2007; Goaillard, Taylor, Schulz, & Marder,
2009). Then, how to abstract these experience-dependent
processes in static parameter constraints? For a given
task, which constraints would promote to evolve
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homeostasis, multistability, robustness and adaptivity?
A comparison between static constraints and active
homeostatic mechanisms would be very helpful.

Notes

1. For a CTRNN defined with an odd activation function
o(y!+6;), the center-crossing condition is verified if
there is an equilibrium point for which the activations of
all neurons are zero (Beer, 1995; Mathayomchan & Beer,
2002). Since o(0) =0, this condition occurs when y! = —6,.
After substitution into equation 1 and solving for 6; in
steady state (with I = 0), we obtain that the center-cross-
ing condition is given by 6" = 0.

2. Rigid body dynamics simulation has been carried out
using the open source, high performance library Open
Dynamics Engine (opende.sourceforge.net).

3. Each angle was set by applying a torque computed
through a PD control loop.
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