Controllability of quantum systems with a polarizability term

Nabile Boussaïd Marco Caponigro Thomas Chambrion

CDC 2012, December 10-13, 2012

Outline of the talk

(1) Quantum systems
(2) Controllability results
(3) Conclusion

Bilinear quantum systems

- The system is described by the Schrödinger equation:

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=(-\Delta+V(x)) \psi(x, t) \quad, x \in \Omega
$$

- Ω : real manifold (\mathbf{R}^{d}, Euclidean sphere,...);
- ψ complex valued wave function (with constant L^{2} norm)

Bilinear quantum systems

- The system is described by the Schrödinger equation:

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=(-\Delta+V(x)) \psi(x, t)+\mu(x, u) \psi(x, t), x \in \Omega
$$

- Ω : real manifold (\mathbf{R}^{d}, Euclidean sphere,...);
- ψ complex valued wave function (with constant L^{2} norm)
- $\mu(x, u(t))$ account for an external field
- u is the real valued (time variable) control

Bilinear quantum systems

- The system is described by the Schrödinger equation:

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=(-\Delta+V(x)) \psi(x, t)+\mu(x, u) \psi(x, t), x \in \Omega
$$

- Ω : real manifold (\mathbf{R}^{d}, Euclidean sphere,...);
- ψ complex valued wave function (with constant L^{2} norm)
- $\mu(x, u(t))$ account for an external field
- u is the real valued (time variable) control

Different models:

- Usually, dipolar approximation $\mu(x, u)=u(t) W(x)$ is enough.
- For better accuracy, we have to consider second order terms $\mu(x, u)=u(t) W_{1}(x)+u^{2}(t) W_{2}(x)$.

Bilinear quantum systems

- The system is described by the Schrödinger equation:

$$
\mathrm{i} \frac{\partial \psi}{\partial t}=(-\Delta+V(x)) \psi(x, t)+\mu(x, u) \psi(x, t), x \in \Omega
$$

- Ω : real manifold (\mathbf{R}^{d}, Euclidean sphere,...);
- ψ complex valued wave function (with constant L^{2} norm)
- $\mu(x, u(t))$ account for an external field
- u is the real valued (time variable) control

Different models:

- Usually, dipolar approximation $\mu(x, u)=u(t) W(x)$ is enough.
- For better accuracy, we have to consider second order terms $\mu(x, u)=u(t) W_{1}(x)+u^{2}(t) W_{2}(x)$.

Finite dimensional space: Coron, Rouchon, Beauchard,.. Infinite dimensional space: Morancey (Lyapunov methods with W_{1} and W_{2} bounded, Ω compact subset of \mathbf{R}^{d})

Semi-linear quantum systems: abstract form

- The state is described by the wave function, a point in some Hilbert space.
- Dynamics given by the Schrödinger equation

$$
\frac{d}{d t} \psi=A \psi+u(t) B \psi\left(+u^{2}(t) C \psi\right)
$$

A, B and C are skew-adjoint operators (not necesseraly bounded).

Some standard assumptions

- A has purely discrete spectrum $\left(-i \lambda_{k}\right)_{k}, \lambda_{k} \rightarrow+\infty$;
- $\left(\phi_{k}\right)_{k}$, Hilebrt basis of H made of eigenvectors of A, $A \phi_{k}=-\mathrm{i} \lambda_{k} \phi_{k}$;
- for every k, ϕ_{k} belongs to the domains of B and C;
- for every u in $\mathbf{R}^{+}, A+u B+u^{2} C$ is skew-adjoint.

Outline of the talk

(1) Quantum systems

(2) Controllability results

3 Conclusion

Controllability of bilinear quantum systems

$$
\frac{d}{d t} \psi=\boldsymbol{A} \psi+u(t) B \psi
$$

Controllability of bilinear quantum systems

$$
\frac{d}{d t} \psi=A \psi+u(t) B \psi
$$

Non-degenerate transition

A couple (j, k) in \mathbf{N}^{2} is a non degenerate transition of (A, B) if $\left\langle\phi_{j}, B \phi_{k}\right\rangle \neq 0$ and $\left|\lambda_{j}-\lambda_{k}\right|=\left|\lambda_{m}-\lambda_{n}\right|$ implies $\{j, k\}=\{m, n\}$ or $\left\langle\phi_{m}, B \phi_{n}\right\rangle=0$.

Controllability of bilinear quantum systems

$$
\frac{d}{d t} \psi=A \psi+u(t) B \psi
$$

Non-degenerate transition

A couple (j, k) in \mathbf{N}^{2} is a non degenerate transition of (A, B) if $\left\langle\phi_{j}, B \phi_{k}\right\rangle \neq 0$ and $\left|\lambda_{j}-\lambda_{k}\right|=\left|\lambda_{m}-\lambda_{n}\right|$ implies $\{j, k\}=\{m, n\}$ or $\left\langle\phi_{m}, B \phi_{n}\right\rangle=0$.

Periodic excitations of bilinear systems

Let (j, k) be a non-degenerate transition of (A, B). If u is $2 \pi /\left|\lambda_{j}-\lambda_{k}\right|$ periodic with non zero first Fourier coefficient and zero Fourier coefficient for every frequency associated with a transition (m, n), $\left|\lambda_{m}-\lambda_{n}\right| \in \mathbf{N} \backslash\{1\}\left|\lambda_{j}-\lambda_{n}\right|$. Then, there exists T such that $\left|\left\langle\phi_{j}, \Upsilon_{n T}^{u / n} \phi_{k}\right\rangle\right| \rightarrow 1$ as n tends to infinity.

Weakly-coupled systems

Definition

A pair (A, B) of linear operators if weakly-coupled if there exists $\alpha<1$ such that $\|B \psi\| \leq\left\||A|^{\alpha} \psi\right\|$ for every ψ in $D\left(|A|^{\alpha}\right)$ and there exists $C_{A, B}$ such that $|\Im\langle\boldsymbol{A} \psi, \boldsymbol{B} \psi\rangle| \leq \boldsymbol{C}_{\boldsymbol{A}, \boldsymbol{B}}|\langle\boldsymbol{A} \psi, \boldsymbol{B} \psi\rangle|$ for every ψ in $D(\boldsymbol{A})$.

Good Galerkin approximations

Let (A, B) be weakly-coupled. Then for every ψ in $H, \varepsilon, K>0$, there exists N in \mathbf{N} such that $\|u\|_{L^{1}}<K \Longrightarrow\left\|X_{(N)}^{u}(t) \psi-\Upsilon_{T}^{u} \psi\right\|<\varepsilon$

All the systems presented in the physics litterature are weakly-coupled.

Result

$$
\frac{\mathrm{d} \psi}{\mathrm{~d} t}=\boldsymbol{A} \psi+u(t) \boldsymbol{B} \psi+u^{2}(t) \boldsymbol{C} \psi
$$

Good Galerkin approximation

If (A, B) and (A, C) are weakly-coupled, then for every ψ in H, $\varepsilon, K>0$, there exists N in \mathbf{N} such that
$\|u\|_{L^{1}}+\left\|u^{2}\right\|_{L^{1}}<K \Longrightarrow\left\|X_{(N)}^{u}(t) \psi-\Upsilon_{T}^{u} \psi\right\|<\varepsilon$

Result with general C (possibly unbounded)

Let (A, B) and (A, C) be weakly-coupled. Let (j, k) be a non-degenerate transition of (A, B). For allmost every α in \mathbf{R}, for every $\varepsilon>0$, there exists $u_{\varepsilon}:\left[0, T_{\varepsilon}\right] \rightarrow\{0, \alpha\}$ such that $\left\|\Upsilon_{(A, B, C)}^{u_{\varepsilon}}\left(T_{\varepsilon}\right) \phi_{j}-\phi_{k}\right\|<\varepsilon$.

Idea of the proof

$$
\frac{\mathrm{d} \psi}{\mathrm{~d} t}=\boldsymbol{A} \psi+u(t) \boldsymbol{B} \psi+u^{2}(t) \boldsymbol{C} \psi
$$

A bilinear result

Let (j, k) be a non-degenerate transition of (A, B). For allmost every α in \mathbf{R}, for every $\varepsilon>0$, there exists $u_{\varepsilon}:\left[0, T_{\varepsilon}\right] \rightarrow\{0, \alpha\}$ such that $\left\|\Upsilon_{(A, B)}^{u_{\varepsilon}}\left(T_{\varepsilon}\right) \phi_{j}-\phi_{k}\right\|<\varepsilon$.

Idea of the proof

$$
\frac{\mathrm{d} \psi}{\mathrm{~d} t}=\boldsymbol{A} \psi+u(t) B \psi+u^{2}(t) \boldsymbol{C} \psi
$$

A bilinear result

Let (j, k) be a non-degenerate transition of (A, B). For allmost every α in \mathbf{R}, for every $\varepsilon>0$, there exists $u_{\varepsilon}:\left[0, T_{\varepsilon}\right] \rightarrow\{0, \alpha\}$ such that $\left\|\Upsilon_{(A, B)}^{u_{\varepsilon}}\left(T_{\varepsilon}\right) \phi_{j}-\phi_{k}\right\|<\varepsilon$.

Proof of the semi-linear controllability result: For allmost every α in \mathbf{R}, (j, k) is a non-degenerate transition of $(A, B+\alpha C)$. Apply the preceeding (bilinear) result to ($A, B+\alpha C$) and notice that

$$
u(t)(B+\alpha C)= \begin{cases}\alpha B+\alpha^{2} C & \text { if } u(t)=\alpha \\ 0 & \text { if } u(t)=0\end{cases}
$$

Particular case: C bounded

$$
\begin{array}{ll}
\Upsilon^{n}, \text { propagator of } & \frac{\mathrm{d} \psi}{\mathrm{~d} t}=A \psi+u(t) / n B \psi+u^{2}(t) / n^{2} C \psi \\
Y_{n}, \text { propagator of } & \frac{\mathrm{d} \psi}{\mathrm{~d} t}=A \psi+u(t) / n B \psi
\end{array}
$$

Since Y_{n} and Υ^{n} are unitary propagators and u is $2 \pi /\left|\lambda_{2}-\lambda_{1}\right|$ periodic, one gets

$$
\left|\Upsilon_{n t, 0}^{u / n} \phi_{1}-Y_{n}(n t, 0) \phi_{1}\right| \leq \underbrace{\frac{\|C\|}{n}}_{\rightarrow 0} \underbrace{\left(\frac{t\left|\lambda_{2}-\lambda_{1}\right|}{2 \pi}+1\right) \int_{0}^{\frac{2 \pi}{\lambda_{1}-\lambda_{2} \mid}}|u(s)|^{2} \mathrm{~d} s}_{\text {bounded }}
$$

Numerically: it converges faster with the semi-linear example than with the bilinear system!

Outline of the talk

(1) Quantum systems

(2) Controllability results
(3) Conclusion

Conclusion

Take home message

- Semi-linear conservative quantum systems can be treated with tools of geometric control theory.
- Results are obvious when the quadratic term C is bounded.
- Proof for general quadratic terms relies on precise time estimates for the finite dimensional Galerkin approximations.

Future works and open question

- Generalization to systems that are not weakly-coupled.
- Generalization to semi-linear systems (not only quadratic).
-What about controllability time?

