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Bilinear quantum systems

The system is described by the Schrödinger equation:

i
∂ψ

∂t
= (−∆ + V (x))ψ(x , t)

+ µ(x ,u)ψ(x , t)

, x ∈ Ω

Ω: real manifold (Rd , Euclidean sphere,...);
ψ complex valued wave function (with constant L2 norm)

µ(x ,u(t)) account for an external field
u is the real valued (time variable) control

Different models:

Usually, dipolar approximation µ(x ,u) = u(t)W (x) is enough.
For better accuracy, we have to consider second order terms
µ(x ,u) = u(t)W1(x) + u2(t)W2(x).

Finite dimensional space: Coron, Rouchon, Beauchard,..
Infinite dimensional space: Morancey (Lyapunov methods with W1
and W2 bounded, Ω compact subset of Rd )
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Semi-linear quantum systems: abstract form

The state is described by the wave function, a point in some
Hilbert space.
Dynamics given by the Schrödinger equation

d
dt
ψ = Aψ + u(t)Bψ(+u2(t)Cψ)

A, B and C are skew-adjoint operators (not necesseraly
bounded).

Some standard assumptions

A has purely discrete spectrum (−iλk )k , λk → +∞;
(φk )k , Hilebrt basis of H made of eigenvectors of A,
Aφk = −iλkφk ;
for every k , φk belongs to the domains of B and C;
for every u in R+, A + uB + u2C is skew-adjoint.
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Controllability of bilinear quantum systems

d
dt
ψ = Aψ + u(t)Bψ

Non-degenerate transition

A couple (j , k) in N2 is a non degenerate transition of (A,B) if
〈φj ,Bφk 〉 6= 0 and |λj − λk | = |λm − λn| implies {j , k} = {m,n} or
〈φm,Bφn〉 = 0.

Periodic excitations of bilinear systems

Let (j , k) be a non-degenerate transition of (A,B). If u is 2π/|λj − λk |
periodic with non zero first Fourier coefficient and zero Fourier
coefficient for every frequency associated with a transition (m,n),
|λm − λn| ∈ N \ {1}|λj − λn|. Then, there exists T such that
|〈φj ,Υ

u/n
nT φk 〉| → 1 as n tends to infinity.
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Weakly-coupled systems

Definition

A pair (A,B) of linear operators if weakly-coupled if there exists α < 1
such that ‖Bψ‖ ≤ ‖|A|αψ‖ for every ψ in D(|A|α) and there exists cA,B
such that |=〈Aψ,Bψ〉| ≤ cA,B|〈Aψ,Bψ〉| for every ψ in D(A).

Good Galerkin approximations

Let (A,B) be weakly-coupled. Then for every ψ in H, ε,K > 0, there
exists N in N such that ‖u‖L1 < K =⇒ ‖X u

(N)(t)ψ −Υu
Tψ‖ < ε

All the systems presented in the physics litterature are
weakly-coupled.
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Result

dψ
dt

= Aψ + u(t)Bψ + u2(t)Cψ

Good Galerkin approximation

If (A,B) and (A,C) are weakly-coupled, then for every ψ in H,
ε,K > 0, there exists N in N such that
‖u‖L1 + ‖u2‖L1 < K =⇒ ‖X u

(N)(t)ψ −Υu
Tψ‖ < ε

Result with general C (possibly unbounded)

Let (A,B) and (A,C) be weakly-coupled. Let (j , k) be a
non-degenerate transition of (A,B). For allmost every α in R, for
every ε > 0, there exists uε : [0,Tε]→ {0, α} such that
‖Υuε

(A,B,C)(Tε)φj − φk‖ < ε.
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Idea of the proof

dψ
dt

= Aψ + u(t)Bψ + u2(t)Cψ

A bilinear result

Let (j , k) be a non-degenerate transition of (A,B). For allmost every α
in R, for every ε > 0, there exists uε : [0,Tε]→ {0, α} such that
‖Υuε

(A,B)(Tε)φj − φk‖ < ε.

Proof of the semi-linear controllability result: For allmost every α in R,
(j , k) is a non-degenerate transition of (A,B + αC). Apply the
preceeding (bilinear) result to (A,B + αC) and notice that

u(t)(B + αC) =

{
αB + α2C if u(t) = α
0 if u(t) = 0
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Particular case: C bounded

Υn, propagator of dψ
dt = Aψ + u(t)/nBψ + u2(t)/n2Cψ

Yn, propagator of dψ
dt = Aψ + u(t)/nBψ

Since Yn and Υn are unitary propagators and u is 2π/|λ2 − λ1|
periodic, one gets

∣∣∣Υu/n
nt,0φ1 − Yn(nt ,0)φ1

∣∣∣ ≤ ‖C‖
n︸︷︷︸
→0

(
t |λ2 − λ1|

2π
+ 1
)∫ 2π

|λ1−λ2|

0
|u(s)|2ds︸ ︷︷ ︸

bounded

Numerically: it converges faster with the semi-linear example than
with the bilinear system!
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Conclusion

Take home message

• Semi-linear conservative quantum systems can be treated with
tools of geometric control theory.
• Results are obvious when the quadratic term C is bounded.
• Proof for general quadratic terms relies on precise time estimates
for the finite dimensional Galerkin approximations.

Future works and open question

• Generalization to systems that are not weakly-coupled.
• Generalization to semi-linear systems (not only quadratic).
•What about controllability time?
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