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Abstract— This paper is concerned with the controllability
of quantum systems in the case where the standard dipolar
approximation, involving the permanent dipole moment of
the system, has to be corrected by a so-called polarizability
term, involving the field induced dipole moment. Sufficient
conditions for controllability between eigenstates of the free
Hamiltonian are derived and control laws are explicitly given.
As an illustration, the results are applied to the planar rotation
of the HCN molecule.

I. INTRODUCTION
A. Control of quantum systems

The state of a quantum system evolving on a Riemannian
manifold Ω is described by its wavefunction ψ, an element of
the unit sphere of L2(Ω,C). When the system is submitted
to an electric field, the time evolution of the wavefunction is
given by the Schrödinger equation

i
∂ψ

∂t
= (−∆ + V (x))ψ + µ(u, x)ψ(t), x ∈ Ω,

where ∆ is the Laplace-Beltrami operator on Ω, V : Ω→ R
is a potential describing the system in absence of control, u
is the scalar (time variable) intensity of the electric field and
µ : Ω×R→ R describes the effect of the external field. In
the dipolar approximation we expand µ to the first order in
u and we then represent µ(u, x) as uW (x), where W is a
real function.

Although the dipolar approximation usually gives excel-
lent results, it is sometimes necessary (see [1], [2]) to
consider a better approximation of µ involving the first
two terms of its expansion in u. We approximate µ(u, x)
with uW1(x) + u2W2(x) for two real functions W1(x)
and W2(x). An example of this approximation is given by
problem of orienting a rotating HCN molecule as presented
in Section IV.

The aim of this work is to derive controllability properties
for the controlled Schrödinger equation, by means of the
dipolar term uW1 and the polarizability term u2W2.

This question has already been tackled by various authors
in [3], [4] (for finite dimensional approximations) and in [5]
(for the infinite dimensional version of the problem, when Ω
is a bounded set of Rn and W1,W2 are smooth functions).
All these contributions rely on Lyapunov methods.

The novelty of our contribution is that we are able to
deal with some unbounded or not continuous potentials

W1 and W2. Moreover, when considering the physically
relevant problem of transferring the quantum system from
an energy level to another in the case where W2 is bounded,
all our methods are constructive and allow easy numerical
simulations.

B. Framework and notations

We set the problem in a more abstract framework. In
a separable Hilbert space H , endowed with the Hermitian
product 〈·, ·〉, we consider the following control system

d

dt
ψ = (A+ u(t)B + u2(t)C)ψ, (1)

where (A,B,C, k) satisfies Assumption 1 for some k.
Assumption 1: k is an integer and (A,B,C) is a triple of

(possibly unbounded) linear operators in H such that
1) A is skew-adjoint with pure point spectrum (−iλj)j∈N

with λj 6= 0, λj →∞;
2) for every (u1, u2) in R2, A+u1B+u2C is essentially

skew-adjoint with domain D(A);
3) for every (u1, u2) in R2, |A + u1B + u2C|k/2 has

domain D(|A|k/2));

4) sup
ψ∈D(|A|k)\{0}

|<〈|A|kψ,Bψ〉|
|〈|A|kψ,ψ〉|

+
|<〈|A|kψ,Cψ〉|
|〈|A|kψ,ψ〉|

<+∞;

5) there exist d > 0 and 0 ≤ r < k such that ‖Bψ‖ ≤
d‖|A|r/2ψ‖ and ‖Cψ‖ ≤ d‖|A|r/2ψ‖ for every ψ in
D(|A|r/2).

If (A,B,C, k) satisfies Assumption 1, we define c(A,B,C,k)
as the lower bound of the set of every real c such that for
every ψ in D(|A|k), |<〈|A|kψ,Bψ〉| ≤ c|〈|A|kψ,ψ〉| and
|<〈|A|kψ,Cψ〉| ≤ c|〈|A|kψ,ψ〉|.

From Assumption 1, we deduce that there exists an Hilbert
basis (φk)k∈N of H made of eigenvectors of A. For every
j, Aφj = iλjφj . As A is skew-adjoint and diagonalizable,
|A| is self-adjoint positive and diagonalizable in the same
basis as A. The eigenvalues of |A| are the moduli of the
eigenvalues of A. We define the k-norm of an element ψ of
D(Ak) as ‖ψ‖k = ‖|A|kψ‖. When Ω is a compact manifold
and A = i∆, the k-norm is equivalent to the H2k norm on
Ω.

If (A,B,C, k) satisfies Assumption 1, for every u in R,
A + uB + u2C generates a group of unitary propagators
t 7→ et(A+uB+u2C). By concatenation, one can define the



solution of (1) for every piecewise constant u, for every
initial condition ψ0 given at time t0. We denote this solution
t 7→ Υu

t,t0ψ0.
We define PC, the set of piecewise constant functions u

such that there exists two sequences 0 = t1 < t2 < . . . <
tp+1 and u1, u2, . . . , up > 0 with

u =

p∑
j=1

uj1[tj ,tj+1).

Set τj = tj+1 − tj , we write u = (uj , τj)1≤j≤p.
The operators B and C can be seen as infinite dimensional

matrices in the basis (φj)j∈N. For every j, l ∈ N, we denote
bjl = 〈φj , Bφl〉 and cjl = 〈φj , Cφl〉. For every N , the
orthogonal projection πN : H → H on the space spanned
by the first N eigenvectors of A is defined by

πN (x) =

N∑
l=1

〈φl, x〉φl for every x in H.

Let LN be the range of πN . The compressions of A, B and
C at order N are the finite rank operators A(N) = πNA�LN ,
B(N) = πNB�LN and C(N) = πNC�LN respectively. The
Galerkin approximation of (1) of order N is the system in
LN

ẋ = (A(N) + uB(N) + u2C(N))x. (2)

A couple (j, l) in N2 is a non-degenerate transition of
(A,B,C) if |bjl|+ |cjl| 6= 0 and, for every m,n, |λj−λl| =
|λn − λm| implies {j, l} = {m,n} or {m,n} ∩ {j, l} = ∅
or |bmn|+ |cmn| = 0.

A subset S of N2 is a chain of connectedness of (A,B,C)
if there exists α in R such that, for every m,n ∈ N, there
exists a finite sequence p1, p2, . . . , pr ∈ S such that p1 =
m, pr = n, and 〈φpl+1

, (B + αC)φpl〉 6= 0 for every l =
1, . . . , r−1. A chain of connectedness S of (A,B,C) is non-
degenerate if every (m,n) in S is a non-degenerate transition
of (A,B,C).

C. Main results

Theorem 1: Assume that (A,B,C) admits a non-
degenerate chain of connectedness. Then, for every ε > 0,
for almost every δ > 0, for every ψ0, ψ1 in the Hilbert unit
sphere of H , there exists uε : [0, Tε] → {0, δ} such that
‖Υuε

Tε,0
ψ0 − ψ1‖ < ε.

Theorem 2: Assume that (1, 2) is a non-degenerate tran-
sition of (A,B,C). Then, for every ε > 0, for almost every
δ > 0, there exists uε : [0, Tε]→ {0, δ} such that

‖uε‖L1 ≤ 5π

4|b12 + δc12|
and ‖Υuε

Tε,0
φ1 − φ2‖ < ε.

This result is constructive when C is bounded (see Section
III-D for the construction of u).

D. Content of the paper

The first part of the paper (Section II) concerns the
proof of some finite dimensional preliminary results. In
Section III, we first give some consequences of Assumption
1 in term of approximation of the system (1) by its finite

dimensional Galerkin approximations (Section III-A). Then,
we use an infinite dimensional tracking result (Section III-
B) to prove Theorems 1 and 2 (Section III-C). For the
physically important case of quantum transfer between two
eigenstates when C is bounded, an explicit construction of
control law is proposed in Section III-D, using averaging
theory. Finally, we present in Section IV a case study inspired
by the rotational state of the HCN molecule.

II. FINITE DIMENSIONAL PRELIMINARY
RESULTS

We consider the finite dimensional control problem in
LN = span(φ1, . . . , φN )

ẋ = (A(N) + u(t)B(N))x (3)

Since B(N) is bounded, for every locally integrable u, we
can define the solution (in the sense of Carathéodory) t 7→
Xu

(N)(t, t0)x0 of (3) with initial condition, at time t0, x0 in
LN .

A. Time reparametrization

We define the mapping P : PC → PC by

P ((uj , τj)1≤j≤p) =

(
1

uj
, ujτj

)
1≤j≤p

for every u = (uj , τj)
p
j=1 in PC.

The mapping P is a reparametrization of the time with
the L1 norm of the control. Indeed, benoting by X̂u

(N)(t, s)

the propagator of ẋ = uA(N)x + B(N)x, then, for every u
in PC,

X̂Pu(N)

(∫ T

0

|u(τ)|dτ, 0

)
= Xu

(N)(T, 0).

Indeed, for α > 0,

exp(t(A(N) + αB(N))) = exp

(
tα

(
1

α
A(N) +B(N)

))
.

B. A tracking result

Proposition 3: For every a < 0, b > 0, for every T >
0, for every piecewise constant function u∗ with support
in [0, T ], there exists a sequence (un)n∈N of piecewise
constant functions un : [0, Tn] → {a, 0, b} such that
Xun

(N)(Tn, 0) tends to Xu∗

(N)(T, 0) as n tends to infinity and
‖un‖L1 ≤ ‖u∗‖L1 . If, moreover, u∗ is nonnegative, the
sequence (un)n∈N can be chosen such that un takes value
in {0, b} for every n.

Remark 1: The approximation result in Proposition 3 is
classical and it can be obtained, for instance, with Lie groups
techniques, see [6]. The novelty of Proposition 3 is that
the approaching sequence (un)n is uniformly bounded in
L1(R,R). This point is crucial for the derivation of the
infinite dimensional results of the next Section.

Proof: Define v∗ as the cumulative function of P|u∗|
vanishing at 0, that is v∗(t) =

∫ t
0
P|u∗|(s)ds. The solution

of

ẏ = sign(u∗ ◦ v∗)e−v
∗(t)A(N)

B(N)ev
∗(t)A(N)

y,



with initial condition y(0) = ψ0 satisfies

ev
∗(t)A(N)

y(t) = X̂
sign(u∗◦v∗)P|u∗|
(N) (v∗(t), 0)ψ0

for every t ≥ 0.
For every u in PC, define the time-varying N×N matrix

t 7→Mu(t) whose entry (j, k) is given by

mjk : t 7→ sign(u ◦ v)(t)bkje
i(λj−λk)v(t),

where v is the inverse of the non-decreasing function t 7→∫ t
0
|u(τ)|dτ .
Consider, for every η > 0 and r ∈ R,

Eη(r) = {v ∈ R | |ei(λj−λk)r − ei(λj−λk)v| < η

for every 1 ≤ j, k ≤ N}.

For every r ∈ R, Eη(r) is open and nonempty. The mapping

P : TN2 → TN2

(eiθj,k)1≤j,k≤N 7→ (ei((λj−λk)v+θj,k))1≤j,k≤N

is a volume preserving flow on the N2 dimensional torus.
By Poincaré recurrence theorem, for almost every point
ei(λj−λk)v in the ball centered in ei(λj−λk)r with radius
η, there exists an increasing sequence of integers (τn)n∈N
such that ei(λj−λk)τnv also belongs to the ball centered in
ei(λj−λk)r with radius η for every n in N. In other words,
for every η > 0 and every r ∈ R, the set Eη(r) is not
bounded from above. The same argument shows that Eη(r)
is not bounded from below.

For every l > 0, there exists v∗l =
∑pl
j=1 vljχ[tl,j ,tl,j+1) a

piecewise constant function at distance less than l of v∗ for
the L∞-norm on [0, ‖u∗‖L1 ] such that the sign of u∗ ◦ v∗l is
constant on every interval [tl,j , tl,j+1). For every η > 0, there
exists a (possibly discontinuous) piecewise affine function vηl
defined on every interval [tl,j , tl,j+1) by

v̇ηl = 1/b if u∗(vlj) > 0,
v̇ηl = 1/a if u∗(vlj) < 0,
vηl (t) ∈ Eη(vl,j) for t ∈ [tl,j , tl,j+1),

such that vηl is increasing (respectively decreasing) on
(tl,j , tl,j+1) if u∗(vlj) > 0 (respectively u∗(vlj) < 0), see
Figure 1.

By construction, the function vηl is injective on
(tl,j , tl,j+1). Its reciprocal on (tl,j , tl,j+1) is a (possibly
discontinuous) piecewise affine function, whose derivative
uηl is a piecewise constant function taking value in {a, 0, b}
and is such that ‖ul,η‖L1 = ‖u∗‖L1 .

For every t,
∫ t
0
Muηη (τ)dτ tends to

∫ t
0
Mu∗(τ)dτ as η

tends to zero, uniformly on every compact of [0,+∞).
By [7, Lemma 8.2], the solution yη of ẏ = Muηη (t)y
with initial condition y(0) = ψ0 tends uniformly on every
compact of [0,+∞) to the solutions of ẏ = Mu∗(t)y with
initial condition y(0) = ψ0. Hence, yη converge toward
yu∗ as η tends to zero. For the conclusion, we still need
to show that ev

∗(
∫ T
0
|u∗(τ)|dτ)A(N)

can be approached by
ev
η
η(

∫ T
0
|u∗(τ)|dτ)A(N)

. It follows as above from the Poincaré
recurrence theorem. The control term is taken to be zero in

Fig. 1. Construction of the function vηl , when u∗(vl,j) < 0 (left) and
u∗(vl,j) > 0 (right). The set Eη(vl,j) is coloured. The piecewise affine
function vηl is discontinuous, with derivative equal to 1/a < 0 (left) or
1/b > 0 (right). Notice that vηl is injective in both cases. The derivative
uηl of the reciprocal function of vηl is piecewise affine and takes value in
{a, 0, b}.

the meantime, what does not affect y nor the L1 norm of
uηη .

Finally, notice that if u∗ ≥ 0, then u∗(vl,j) is always non
negative. Then vηη is increasing and uηη takes value in {0, b}.

III. INFINITE DIMENSIONAL SYSTEMS

A. Weakly-coupled quantum systems

If (A,B,C, k) satisfies Assumption 1, (A,B,C) is k-
weakly-coupled. We present here some properties of theses
systems and refer to [8] for further details.

The notion of weakly-coupled systems is closely related
to the growth of the k/2-norm 〈|A|kψ,ψ〉. For k = 1, this
quantity is the expected value of the energy of the system.
Next result can be found in [8, Proposition 2].

Proposition 4: Let (A,B,C, k) satisfy Assumption 1.
Then, for every ψ0 ∈ D(|A|k/2), K > 0, T ≥ 0, and u
piecewise constant such that ‖u‖L1 + ‖u‖2L2 < K, one has
‖Υu

T (ψ0)‖k/2 ≤ e
c(A,B,C,k)K‖ψ0‖k/2.

Next Proposition is in [8, Proposition 4].
Proposition 5: Let k in N and (A,B,C, k) satisfy As-

sumption 1. Then for every ε > 0, s < k, K ≥ 0, n ∈ N,
and (ψj)1≤j≤n in D(|A|k/2)n there exists N ∈ N such that
for every piecewise constant function u

‖u‖L1 +‖u2‖L1<K ⇒ ‖Υu
t (ψj)−Xu

(N)(t, 0)πNψj‖s/2<ε,

for every t ≥ 0 and j = 1, . . . , n.
Remark 2: Notice that, in Propositions 4 and 5, the upper

bound of the |A|k/2 norm of the solution of (1) or the bound
on the error between the infinite dimensional system and
its finite dimensional approximation only depend on the L1

norm of the control, not on the time.

B. An infinite dimensional tracking result

Next result can be seen as a Bang-Bang Theorem for
infinite dimensional systems.

Lemma 6: Let (A,B, 0, k) satisfy Assumption 1 with k in
N, T be a positive number, a, b be two real numbers such that
a < 0 < b, u∗ be a piecewise constant function with support
in [0, T ], and ψ0 be in H . Then, for every ε > 0, there exists



a piecewise constant control uε : [0, Tε] → {a, 0, b} such
that ‖Υuε

Tε,0
(ψ0)−Υu∗

T,0(ψ0)‖ < ε, and ‖uε‖L1 ≤ ‖u∗‖L1 .
Moreover, if u∗ is positive, then uε may be chosen with
value in {0, b}.

Proof: Let ε > 0. By Proposition 5, there exists N in
N such that, for every piecewise constant function u,

‖u‖L1 < ‖u∗‖L1 ⇒ ‖Υu
t (ψ0)−Xu

(N)(t, 0)πNψ0‖ < ε.

From Proposition 3, there exists uε : [0, T ε] → {a, 0, b}
piecewise constant such that ‖uε‖L1 ≤ ‖u∗‖L1 and

‖Xu∗

(N)(T, 0)−Xuε
(N)(T, 0)‖ < ε.

Then

‖Υuε
Tε,0

(ψ0)−Υu∗

T,0(ψ0)‖
≤ ‖Υuε

Tε,0
(ψ0)−Xuε

(N)(t, 0)πNψ0‖

+‖Xuε
(N)(Tε, 0)πNψ0 −Xu∗

(N)(T, 0)πNψ0‖

+‖Υu∗

T,0(ψ0)−Xu∗

(N)(T, 0)πNψ0‖
≤ 3ε.

The same proof shows that, if u∗ is positive, uε can be chosen
with values in {0, b}.

C. Proof of the main results

We recall results dealing with approximate controllability
for bilinear systems, i.e. when C = 0. Their proofs are given
in [9, Theorem 2.6] and [9, Proposition 2.8] respectively.

Theorem 7: Let (A,B, 0, 0) satisfy Assumption 1. If there
exists a non-degenerate chain of connectedness of (A,B, 0)
then, for every ψ0, ψ1 in the Hilbert unit sphere of H , for
every ε > 0, for every δ > 0, there exists T > 0 and a
piecewise constant function u : [0, T ] → [0, δ] such that
‖Υu(T, 0)ψ0 − ψ1‖ < ε.

Theorem 8: Let (A,B, 0, 0) satisfy Assumption 1. If
ψ0 = φ1, ψ1 = φ2 and (1, 2) is a non-degenerate
transition of (A,B, 0), then for every ε > 0 and for
every δ > 0, there exists T > 0 and a piece-
wise constant function u : [0, T ] → [0, δ] such that

‖Υu(T, 0)ψ0 − ψ1‖ < ε and ‖u‖L1 ≤ 5π

4|b1,2|
.

We now proceed to the proof of the Theorem 1. Assume
that (A,B,C, k) satisfies Assumption 1 for some k in N and
admits a non-degenerate chain of connectedness. Then, there
exists α > 0 such that (A,B + αC, 0) satisfies Assumption
1 and admits a non-degenerate chain of connectedness. By
analyticity, this property is true for almost every α in R.
From Theorem 7, for every ψ0, ψ1 in the Hilbert unit sphere
of H , for every ε > 0, and for every δ > 0, there exist T > 0
and a piecewise constant function u : [0, T ] → [0, δ] such
that the solution of Y : t 7→ Y (t) ∈ H of

d

dt
ψ = Aψ + u(t)(B + αC)ψ

with initial condition Y (0) = ψ0 satisfies ‖Y (T )−ψ1‖ < ε.
By Lemma 6, there exists ũ : [0, Tũ] → {0, α} such that
‖Υũ

Tũ,0
ψ0 − Y (T )‖ < ε. Thus ‖Υũ

Tũ,0
ψ0 − ψ1‖ < 2ε. To

conclude the proof of Theorem 1, it is enough to notice that,

for every t, ũ(t)B + ũ2(t)C = ũ(t)(B + αC) as ũ takes
only the values 0 and α.

Similarly we can prove Theorem 2 using the result of
Theorem 8 instead of Theorem 7.

D. Controllability between eigenstates when C is bounded

In this Section, we use averaging techniques to provide
explicit expressions of control laws steering one eigenstate
of the system to another.

In quantum mechanics, averaging theory has been exten-
sively used (under the name of “Rotating Wave Approxima-
tion”) since the 60’s, for finite dimensional systems. It has
recently been extended to the case of infinite dimensional
systems [10, Theorem 1]. We recall this result in the follow-
ing proposition. Let Yn : t 7→ Yn(t) ∈ H be the propagator
of

d

dt
ψ =

(
A+

u

n
B
)
ψ.

Proposition 9: Let (A,B, 0, 0) satisfy Assumption 1. As-
sume that (1, 2) is a non-degenerate transition of (A,B, 0).
Define N = {n ∈ N | there exists (l1, l2) with bl1,l2 6=
0 and |l1 − l2| = n|λ1 − λ2|}. If u is 2π/|λ2 − λ1|-periodic
and satisfies, for every n in N ,∫ 2π/|λ2−λ1|

0

ein|λ2−λ1|tu(t)dt 6= 0 if n = 1

and ∫ 2π/|λ2−λ1|

0

ein|λ2−λ1|tu(t)dt = 0 if n > 1

then there exists T ∗ > 0 such that |〈φ2, Yn(nT ∗, 0)φ1〉| tends
to 1 as n tends to infinity.

Our aim is to extend the result of Proposition 9 to the case
where C 6= 0 is bounded.

Proposition 10: Let (A,B,C, 0) satisfy Assumption 1.
Assume that C is bounded and that (1, 2) is a non-degenerate
transition of (A,B, 0). Define N = {n ∈ N | there exists
(l1, l2) with bl1,l2 6= 0 and |l1 − l2| = n|λ1 − λ2|}. If u is
2π/|λ2 − λ1| periodic and satisfies, for every n in N ,∫ 2π/|λ2−λ1|

0

ein|λ2−λ1|tu(t)dt 6= 0 if n = 1

and ∫ 2π/|λ2−λ1|

0

ein|λ2−λ1|tu(t)dt = 0 if n > 1

then there exists T ∗ > 0 such that |〈φ2,Υu/n
nT∗,0φ1〉| tends to

1 as n tends to infinity.
Proof: The proof relies on the Duhamel formula. For

every t > 0 and n ∈ N,

Υ
u/n
nt,0φ1 − Yn(nt, 0)φ1 =

1

n2

∫ nt

0

u2(s)Yn(nt, s)CΥ
u/n
s,0 φ1ds.



Since Yn and Υ are unitary propagators and that u is
2π/|λ2 − λ1| periodic, one gets∣∣∣Υu/n

nt,0φ1 − Yn(nt, 0)φ1

∣∣∣ ≤
‖C‖
n

(
t|λ2 − λ1|

2π
+ 1

)∫ 2π
|λ1−λ2|

0

|u(s)|2ds, (4)

which, for every fixed t, tends to zero as n tends to infinity.
Proposition 10 follows from Proposition 9 by taking t = T ∗

in (4).

E. Controllability in higher norms

Up to now, we have considered approximate controllability
of (1) in the norm of H . When H = L2(Ω,C), for
instance, we have convergence in L2 norm. In this Section,
we consider approximate controllability of (1) in k-norm.

Theorem 11: Let (A,B,C, k) satisfy Assumption 1 and
δ 6= 0 such that (1, 2) is a non-degenrate transition
of (A,B + δC, 0). Then, for every ε > 0, for every
s < k/2, there exists uε : [0, Tε] → {0, δ} such that

‖uε‖L1 ≤ 5π

4|b1,2 + δc1,2|
and ‖Υuε

Tε,0
φ1 − φ2‖s < ε.

Proof: If s = 0, the result is just a rewriting of Theorem
2. To conclude for general s, we use a classical interpolation
argument: if a sequence (xn)n in H tends to zero for the
r1-norm and is bounded for the r2-norm, then (xn)n tends
to zero for the r1+r2

2 -norm. Proposition 4 and the uniform
bound on the L1 norm of the control ensures that Υu(t, 0)ψ0

is bounded in s-norm for every s < k.

IV. EXAMPLE:ALIGNMENT DYNAMICS OF HCN

A. Modeling

We consider a linear molecule with fixed length and center
of mass. This is the case for instance of the HCN molecule
considered in [2]. We assume that the molecule is constrained
to stay in a fixed plane and that its only degree of freedom is
the rotation, in the plane, around its center of mass. The state
of the system at time t is described by a point θ 7→ ψ(t, θ) of
L2(Ω,C) where Ω = R/2πZ is the one dimensional torus.
The Schrödinger equation reads

i
∂ψ

∂t
= −∆ψ + u(t) cos(θ)ψ + u2(t) cos(2θ)ψ (5)

where ∆ is the Laplace-Beltrami operator on Ω. The self-
adjoint operator −∆ has purely discrete spectrum {k2, k ∈
N}. All its eigenvalues are double but zero which is simple.
The eigenvalue zero is associated with the constant functions.
The eigenspace associated with the double eigenvalue k2 for
k > 0 is spanned by the two eigenfunctions θ 7→ 1√

π
cos(kθ)

and θ 7→ 1√
π

sin(kθ). The Hilbert space H = L2(Ω,C)
splits in two subspaces He and Ho, the spaces of even and
odd functions of H respectively. The spaces He and Ho

are invariant under the dynamics of (5), hence no global
controllability is to be expected in H .

B. Theoretical analysis

We consider the restriction of (5) to the space Ho. The
function φk : θ 7→ sin(kθ)/

√
π is an eigenvector of the

skew-adjoint operator A = i∆�Ho . The family (φk)k∈N is
an Hilbert basis of Ho. Here, B and C are the restriction
to Ho of the multiplication by −i cos(θ) and −i cos(2θ) re-
spectively. The skew-adjoint operators B and C are bounded,
we can then consider controls that are in the intersection
L1([0,+∞),R)∩L2([0,+∞),R) and not necessarily piece-
wise constant.

The N × N matrices in the basis (φj)1≤j≤N of the
compressions of A, B and C of order N restricted to Ho

are

A(N) = −


i 0 · · · 0

0 4i
. . .

...
...

. . . . . . 0
0 · · · 0 N2i

 ,

B(N) = −i



0 1/2 0 · · · 0

1/2 0 1/2
. . .

...

0
. . . 0

. . . 0
...

. . . 1/2 0 1/2
0 · · · 0 1/2 0


,

and C(N) = −i



−1/2 0 1/2 0 · · ·

0 0 0 1/2
. . .

1/2 0 0
. . . . . .

0 1/2 0 0
. . .

...
. . . . . . . . . . . .


.

The system (A,B,C, k) satisfies Assumption 1 for every k
in N ([8, Section III-C]).

Let us illustrate Theorem 2 with the transition between
the first and the second eigenlevel. The transition (1, 2) is
non-degenerate for the system (A,B + αC, 0) for every
α in R. Hence, it is possible to induce, with arbitrary
precision, a transition from the first to the second eigenlevel
while using controls taking value in {0, α} for any α > 0.
Following Proposition 10, we consider control laws of the
form uk : t 7→ cosk(3t)/10 for k in N. When k is even,∫ 2π/3

0
cosk(t)ei3tdt = 0. Hence, we will consider odd k only.

C. Numerical simulations

Proposition 5 claims that the error done when replacing
the original infinite dimensional system by the Galerkin
approximation of order N tends to zero as N tends to infinity.
To estimate this error, one can use a method similar the
one used in [8, Section IV-C]. If

∫ T
0
|u(τ)|dτ < K1 and∫ T

0
|u(τ)|2dτ < K2, then, with a computation similar to [8,

Lemma 11 ], one has

|〈φj ,Υu
T,0φ1〉| ≤

(K1 +K2)N

N !
for j = 2N + 1, 2N + 2.



TABLE I
NUMERICAL RESULTS

Control law u n Time T Error 1−
∣∣∣〈φ2, Xu/n

(62)
(T, 0)φ1〉

∣∣∣
t 7→ cos(3t)

1 6.80 < 2.76 10−1

10 62.30 < 3.13 10−3

30 187.95 < 3.48 10−4

t 7→ cos3(3t)
1 7.85 < 2.30 10−1

10 83.25 < 2.77 10−3

30 250.80 < 3.09 10−4

t 7→ cos5(3t)
1 9.95 < 2.57 10−1

10 100.00 < 3.16 10−3

30 301.05 < 3.52 10−4

Hence, by [8, Equation (5)],

‖πNΥu
T,0φ1 −Xu

(2N)(T, 0)φ1‖ ≤
(K1 +K2)N+1

N !
.

All the controls we consider are such that K1 < 4 and K2 <
4. This is enough to guarantee that the error made when
considering the Galerkin approximation of order 62 instead
of the original infinite dimensional system is less than ε =
10−5 for initial data the first eigenstate.

Simulations are straightforward with a standard desktop
computer. We sum up some results in Table I.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we present a general approximate controlla-
bility result for infinite dimensional quantum systems when
some polarizability term has to be considered in addition to
the standard dipolar one. For the important case of transfer
between two eigenstates of the free Hamiltonian, simple
periodic control laws may be used. All our results are
constructive. Numerical simulations on an physical example
support our theoretical results.

B. Future Works

Many questions concerning the controllability of infinite
dimensional quantum systems are still open. Among many
other topics, one can cite the extension of the controllability
results to systems involving higher power of the control, or

the existence (and the estimation) of a minimal time needed
to steer a quantum system from a given source to a given
neighborhood of a given target.
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