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Abstract

In this paper we are interested in the distribution of the maximum, or the max-
imum of the absolute value, of certain Gaussian processes for which the result is
exactly known.
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1 Introduction

This paper is devoted to a unified presentation of some classical results on the distribution
of the maximum of stochastic processes. These results have a rather simple form and
can be put in a toolbox.
Apart from some general methods that give bound or asymptotic expansions for some
classes of stochastic process like, for example, the Rice method [AW09]. There exist a
short list of cases where the distribution is known exactly. The simplest and the most
famous case is the Brownian motion (see below). A full list is given in [AW09]
p. 3–4. Among it, some results are very complicated and are not included in the present
presentation, some are very simple and some other need clarification see, for example,
Section 2.4.
After recalling these classical results, adding some new ones, we give in Section 4 a
description of the toolbox. Our intention is to put a set of dispersed results at the
disposal of the community.
Throughout the paper, X((t) (or U(t) ,W (t)) is a random process with real values and
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parameters (except for the Brownian motion in dimension n, see Section 2.4). Set

Mt = sup
0<s<t

X(s),

M∗t = sup
0<s<t

|X(s)|.

The aim of the paper is to compute P{Mt ≤ u} and P{M∗t ≤ u} or similar expression.

2 Some results on Gaussian processes

2.1 The Brownian motion

Most of the result of this section and the next one are an application of the reflection
principle and a good reference among many others is [Dud04] for all the results cited,
see also [BS96].
Let W (t) be a standard Brownian motion, we mean the 1-dimensional Brownian motion
starting from zero (also called Wiener process).

Unilateral case: It is well-known that for u > 0,

P {Mt ≤ u} = 2Φ

(
u√
t

)
− 1,

where Φ stands for the standard normal cumulative distribution function [Dud04, p.459].

We turn now to the bilateral case. The distribution of maximum absolute value of the
Brownian motion is given by

P {M∗t ≤ u} =
∞∑

k=−∞
(−1)k

[
Φ

(
u(2k + 1)√

t

)
− Φ

(
u(2k − 1)√

t

)]

=
4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−(2k + 1)2π2t

8u2

)
.

The second expression is less known, we refer the reader to [Fel70, p. 342]. A detailed
proof can be found in [Chu74, p. 223]. This infinite sum has two advantages respect to
the first one. Firstly, it involves only the exponential function. It avoids the computation
of the cumulative distribution function of the normal distribution. Secondly, it converges
very quickly for large values of t.

Extensions : The most simple is the case of a Brownian motion with a drift µ. In such
a case

P{ sup
0<s<t

W (s) + µs ≥ u} = Φ
(u− µt√

t

)
+ exp(2µu)Φ

(u− µt√
t

)
where Φ = 1−Φ. A proof can be found in [BS96]. A generalization of this result to the
case of two different drifts is given in [Bou90].
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Extensions are possible considering the case of the maximum of a Brownian motionW (s)
on an interval [0, t], subject to the condition W (T ) = η where t and T are distinct and
η is non-zero. We consider here the case t < T and refer to [BO99] for the other case.
Regression formulas imply that the conditional process can be represented as

X(s) = W (s)− s

T
(W (T )− η).

This formula implies, in particular, that a linear drift µt can be added to the Brownian
motion without modifying the expression of X(s). The main results of [BO99] are

P
{

sup
0≤s≤t

X(s) ≤ u
}

= exp

(
−2

u(u− η)

T

)
Φ

(
u(2t− T )− ηt√

Tt(T − t)

)
+ Φ

(
uT − ηt√
Tt(T − t)

)
,

and for the bilateral case

P
{

sup
0≤s≤t

|X(s)| ≤ u
}

=

+∞∑
k=−∞

(−1)k exp
(
− 2

ku(ku− η)

T

)
×

[
Φ

(
uT − 2ku(T − t)− ηt√

Tt(T − t)

)
− Φ

(
−uT − 2ku(T − t)− ηt√

Tt(T − t)

)]
.

2.2 The Brownian Bridge

The simplest way of defining of the Brownian bridge is considering the distribution of
W (s), 0 ≤ s ≤ 1 conditional toW (1) = 0. It can be written asX(s) = W (s)−sW (1), 0 ≤
s ≤ 1.

For the unilateral case it holds:

P {M1 ≤ u} = 1− exp(−2u2),

which corresponds to the Rayleigh distribution. By a direct scaling argument we can
extend the result to an interval [0, t],

P
{

sup
0≤s≤t

W (s)− s

t
W (t) ≤ u

}
= 1− exp

(
−2

u2

t

)
.

Bilateral case: the distribution of the maximum of the absolute value is given by the
infinite sum

P
{

sup
0≤s≤t

∣∣∣W (s)− s

t
W (t)

∣∣∣ ≤ u} =
∞∑

k=−∞
(−1)k exp

(
−2

k2u2

t

)
.
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2.3 The Sine-Cosine process

Let X(t) be the process defined by

X(t) = ξ1 cos(ωt) + ξ2 sin(ωt), (2.1)

where ω is a positive parameter and ξ1, ξ2 are two standard normal variables. This
process can be written equivalently as

X(t) = Z cos(ωt+ θ),

where Z and θ are independent random variables with Rayleigh and uniform (on [0, 2π])
distribution respectively.
First it is clear that for t > 2π/ω, Mt = M∗t = Z. For u > 0 and 0 < t ≤ π/ω, the
distribution of Mt was given by Berman [Ber71]. Delmas [Del03] gives it for π/ω < t <
2π/ω. Putting these results together, we obtain the following general statement. For
u > 0,

P{Mt ≤ u} =


Φ(u)− tω

2πe
−u2/2, 0 < t ≤ π/ω,

Φ(u)− tω

2π
e−

u2

2 +
1

2π

∫ tω

π
exp

[
−
u2
(
1− cos(s)

)
sin2(s)

]
ds, π/ω < t < 2π/ω,

1− e−
u2

2 , t ≥ 2π/ω.

Observe that in fact the second case is the most general and it can be extended, with
some precautions, to the case u < 0 which is anyway not very relevant.
ForM∗t we can establish a similar result using the method of Delmas. As far as we know,
this result is new. See detailed proof in Section 3.

Proposition 2.1. For u > 0

P{M∗t ≤ u} =

2Φ(u)− 1− tω

π
e−

u2

2 +
1

π

∫ tω

0
exp

[
−
u2
(
1 + cos(s)

)
sin2(s)

]
ds, 0 ≤ t ≤ π/ω

1− e−
u2

2 , t > π/ω.

2.4 The normalized Bessel process

Let Wn(t) be a n-dimensional Brownian motion. The normalized Bessel Un(t) process
of order n is defined as

Un(t) =
‖Wn(t)‖√

t
,

where ‖ · ‖ stands for the corresponding Euclidean norm. Set

Gnt (u) = P
{

sup
1<s<t

Un(s) ≤ u
}
.
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DeLong [DeL81] gives a formula for Gnt (u). The explicit expression, where we have
corrected a little sign error in (2.4) as pointed out also by Estrella [Est03], is

Gnt (u) =

∞∑
i=1

αi(u)t−βi(u) (2.2)

where βi(u) is the ith root as a function of x of

M

(
x+

n

2
,
n

2
,−u

2

2

)
= 0, (2.3)

M represents the confluent hypergeometric function (see [AS72, §13]) and

αi(u) = − e−u
2/2(u2/2)n/2M(βi + n/2, n/2 + 1,−u2/2)

Γ(n/2 + 1)βi(u) ∂
∂EM(E + n/2, n/2,−u2/2)

∣∣
E=βi(u)

. (2.4)

For n = 1 it is possible to consider the one-sided problem. More precisely, now we focus
on calculating

P
{

max
1<t<t

W (s)

s1/2
≤ u

}
(2.5)

where W (t) is the 1-dimensional standard Brownian motion.
Tables of values computed from (2.5) were presented by Delong [DeL81] but without
giving the explicit formula he used. Following the DeLong’s procedure, Estrella and
Rodrigues [ER05, formula (19)] obtain

P
{

max
1<s<t

W (s)

s1/2
≤ u

}
=
∞∑
k=1

−t−vk/2 φ(u)Dvk−1(−u)

vk
∂
∂vDv(−u)

∣∣
v=vk

(2.6)

where D is the parabolic cylinder function (see [AS72, §19]), vi is i-th root of Dv(−u) = 0
as a function of v and φ stands for the standard normal density.

2.5 The Ornstein-Uhlenbeck process

In this paper the Ornstein-Uhlenbeck(OU) process X(t) will be defined as the centered
Gaussian stationary process with covariance r(t) = exp(−|t|). This process and the
Bessel process are related by the following. When n = 1, the following representation
holds

|X(t)| D= U1(e
2t).

Moreover if X1(t), ..., Xn(t) are n independent copies of the OU process,

X2
1 (t) + · · ·+X2

n(t)
D
= U2

n(e2t).
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Let define

Ft(u) = P

{
sup
s∈[0,t]

X(t) ≤ u

}
,

F ∗t (u) = P

{
sup
s∈[0,t]

|X(t)| ≤ u

}
.

We have in particular

F ∗t (u) = G1
exp(2t)(u) =

∞∑
i=1

αi(u) exp
(
− βi(u)t

)
(2.7)

where G is defined in (2.2). The first results in the literature concern the unilateral case
and dates back to Slepian [Sle62]. A direct application of the reflection principle for the
level u = 0 shows that

Ft(0) =
1

2
− 2P

{
X(0) < 0, X(t) > 0

}
=

2

π
arcsin

(
e−t
)
.

Another interesting and rather unknown result is due to Newell and Rosenblatt [NR62].
They give an expression of Ft(u) under the form of a series with non very explicit terms.
In fact Formula (2.6) implies that

Ft(u) = −
∞∑
k=1

φ(u)Dvk−1(−u)

vk
∂
∂vDv(−u)

∣∣
v=vk

exp(−tvk).

3 Proof of proposition 2.1

Without loss of generality we can assume that ω = 1. We have, since we are considering
at most a half period

P{M∗t > u} = P{|X(0)| > u}+ P{|X(0)| < u,uu > 0}+ P{|X(0)| < u,d−u > 0}
= P{|X(0)| > u}+ 2P{|X(0)| < u,uu > 0}

where d−u and uu are the numbers of up-crossings of u. The variable uu 1I{|X(0)|≤u}
takes the value 0 or 1. Thus by the Rice formula

P{|X(0)| < u,uu > 0} = E
(
uu 1I|X(0)|≤u

)
=

∫ t

0
ds

∫ u

−u
E
(
(X ′(s))+

∣∣X(0) = x,X(s) = u
)
pX(0),X(s)(x, u)dx (3.1)

Using Formula (2.1), it is easy to check that under the condition X(0) = x, X(s) = u,

X ′(s) =
1

sin(s)
[u cos(s)− x].
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On the other hand

pX(0),X(s)(x, u) =
1

2π sin(s)
exp

(
−x

2 + u2 − 2 cos(s)xu

2 sin2(s)

)
.

The right hand side of (3.1) is equal to∫ t

0
ds

∫ u cos(s)

−u

1

2π
e−u

2/2 [u cos(s)− x]2

sin2(s)
exp

(
− 1

2

u cos(s)− x
sin2(s)

)
dx

=
1

2π
e−u

2/2

∫ t

0
1− exp

(
− u2(1 + cos(s))2

2 sin2(s)

)
ds

=
t

2π
e−u

2/2 − 1

2π

∫ t

0
exp

(
−u

2(1 + cos(s))

sin2(s)

)
ds.

4 Writing a toolbox

Since most of the special functions are available in Matlab, the second author made a
toolbox MAXGPBOX that is available at
http://www.math.univ-toulouse.fr/˜azais/softwares.php
and that permits to make all these computations. The more complex formulae we work
with in this paper are those concerning the Bessel and OU process. Therefore, before
describe the toolbox, it is worth discussing some few aspects about the numerical com-
putations involved.

4.1 Computing (2.2) and (2.6)

In the computation of (2.2) there is involved the finding of the roots of equation (2.3).
This part is the more complex and computational time demanding. Following Estrella
(see [Est03] for details) we compute the roots using the Matlab standard function. The
initial zero approximation is giving by steps of length 1. Propositions of [Est03] prove
that this choice is optimal to capture all the roots. On the other hand, the partial sums
in the RHS of (2.2) converge very quickly. Thus only a few roots are necessary to obtain
a accurate approximation of the infinite sum, and consequently of the computation of
Gnt . Typical with 5 roots an approximation of order 10−5 is obtained.

To compute (2.6), once again, the challenging part is the calculation of the roots. Al-
though, there is not similar Propositions to those of [Est03] to localize the roots, in
[ER05] the authors use a similar grid strategy to find the zeros with good results. In
our experience, we need to use a grid of large 0.5 to getting all the roots. As pointed by
Estrella and Rodrigues we notice that the computation of (2.6) is more complex than
(2.2). See [ER05] for the reasons of this.
To evaluate our implementation of algorithms we compute the values of Gnt to compare
with the ones in [And93], [DeL81], [Est03] and [ER05]. We also ran simulations to cal-
culated the values. In general, for the two-sided problem our results matched Estrella’s.
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In the case of DeLong’s the differences correspond to those found and explained by Es-
trella, i.e. n = 1, u = 1. In the case of the one-sided problem, our computations permit
to recover the critical values in Table 1 of [ER05] and the values in DeLong’s Table 1
[DeL81, p. 2210].

4.2 Toolbox description

Throughout the section the suffix xx in the name of routines represents any of the suffixes
in the previous table.

suffix stands for
bb Brownian Bridge
bm Brownian Motion
bp normalized Bessel Process
ou Ornstein-Uhlenbeck process
sc Sine-Cosine process

Routines:

pxx: Gives the value of the distribution function at u of the maximum the process.

qxx: Gives the inverse of the distribution function at p of the maximum the process.

pnxx: Gives the value of the distribution function at u of the maximum norm of the
process.

qnxx: Gives the inverse of the distribution function at u of the maximum norm of the
process.

For details, about the routine call, and parameters see the comments inside each program.
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