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Abstract. This paper deals with the problem of forbidden states in safe Petri nets to obtain a maximally 
permissive controller. To prevent the system from entering these states, assigning some constraints to 
them is possible. The constraints can be enforced on the system using control places. When the number 
of forbidden states is large, a large number of constraints should be assigned to them. So, a large 
number of control places must be added to the model of the system which in turn causes a complicated 
model. Some methods have been proposed to reduce the number of constraints. But they don’t always 
give the best results. In this paper two ideas are offered to reduce the number of these constraints 
giving a more simplified controller. 

Key words: Discrete Event System (DES), Petri Net, Supervisory control, Controller synthesis, 
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1. Introduction 

Supervisory control theory which was proposed by Ramadge and Wonham, is a systematic method 
for controlling Discrete Event Systems (DES) [1, 2]. The basic idea behind this theory is to restrict the 
behavior of system according to a desired behavior. This restriction is obtained by disabling the 
controllable transitions under some special conditions [3]. There are a lot of methods for designing 
controller based on automata models. But when the number of states and transitions causing events are 
large, modeling based on this tool is impractical [4]. So, Petri net (PN) has been proposed for modeling 
DES [5]. PN is a very suitable and useful tool for the study of DES thanks to its modeling power and 
mathematical properties. 

In a closed loop behavior, some states are called forbidden states and the controller must prevent the 
system from entering them. These states can be the ones that violate the specification or are deadlock 
states. In recent years some methods have been introduced for avoiding the forbidden states and 
controller synthesis [6-15]. 

The methods in [6, 13, 15] use conditions associated with the controllable transitions to solve the 
problem of forbidden states. The conditions prevent firings of the controllable transitions when the 



 

 

 

 

firings lead to a forbidden state. But this method has a disadvantage since the dynamic of controller is 
not clear on the PN model. Theory of regions which was used in [9] is another method for solving the 
problem of forbidden states. This method generates some constraints where some of them verify the 
authorized states and the others are for preventing the system from entering the forbidden states. 
Solving these constraints generates some control places when adding them to the system leads to 
obtaining a maximally permissive behavior. The main drawbacks of the method based on regions 
theory are the large number of equations which must be solved to obtain the control places and the 
computations that take long time. Moreover, the number of control places may be large. Deadlock 
states in flexible manufacturing systems (FMSs) are major problems and the system must be avoided 
from entering them [16]. Using Siphon theory, the control places can be calculated to prevent the 
system from entering these states [17-21]. However, in general, some of the control places may be 
redundant and should be eliminated. In [22] and [23], methods are presented for eliminating the 
redundant control places with a major drawback, their computational complexity. 

In [24], a method has been proposed for safe and conservative PN where it is possible to assign a 
linear constraint (called simply constraint) to each forbidden state. By using the idea in [25], these 
constraints can be enforced on the system using control places. But, when the number of forbidden 
states and consequently the number of constraints is large, a large number of control places must be 
added to the PN model of the system. This problem leads to a complicated model. However this 
number can be reduced [24]. To do that, it is possible to convert some constraints into one constraint. 
This simplification can be intuitively performed using the PN structural properties. In recent years, 
some efforts have been accomplished for reducing the number of constraints in safe PNs [26, 27]. 
Reducing the number of constraints in safe PN is important since these models can be easily converted 
in Sequential Function Chart (SFC) languages and can be used in Programmable Logic Controllers 
(PLCs) [28, 29]. 

The method in [26] uses the place invariant and partial place invariant properties to reduce the size 
and the number of constraints in safe and conservative nets. Another method for this purpose which 
eliminates the conservative limitation is proposed in [27] that uses the over-state concept. Over-states 
are the ones obtained from the main state (the main states are the ones that the over-states are deduced 
from them).Forbidding each over-state leads to forbidding the main states. Often an over-state of a 
specific forbidden state may be one of the over-states of some other forbidden states. So, by forbidding 
this over-state, avoiding two or more forbidden states is possible. Therefore it is sufficient to assign one 
constraint to this over-state. The over-states which are selected must be the ones such that preventing 
them leads to obtaining a maximally permissive behavior. However, the simplification results after 
using the last methods do not always correspond to the best results giving a large number of final 
constraints. 

In [30] a method has been proposed for assigning constraints to forbidden states in non safe PNs. 
This method can generate a small number of constraints in the systems with shared resources by 
eliminating the redundant forbidden states using over-state concept. However, in the systems without 
shared resources and with no redundant forbidden states, the problem of large number of constraints 
remains. Moreover, for obtaining each constraint, an Integer Linear Programming (ILP) problem must 
be solved. The problem of large number of constraints may be solved by the method presented in [31] 
which eliminates the redundant constraints. Unfortunately, the computational complexity in this 
method may be high and it may not generate the least number of constraints. In [32], the authors have 
developed the method in [30] where a small number of constraints can be obtained by solving an ILP 
Problem. The drawback of this method is its computational complexity that makes it inapplicable to 
large scale PN models. This complexity is due to the number of variables and also to the number of 
constraints in ILP problem which are very large. 



 

 

 

 

In this paper, two powerful ideas in safe PNs are proposed that allow performing more 
simplifications comparing to the previous techniques, without solving any ILP problems. The first idea 
presents a technique for constructing quasi partial invariant which can be used for reducing the number 
of constraints. Quasi Partial invariants are the inequalities verified by all the reachable markings and 
can be obtained from the invariant inequalities or directly from the PN structure.  The second idea 
proposes a very efficient method for simplification of constraints. Using this idea, the reduction 
capacity is greater than before in safe PN. In the idea, instead of using the invariant relation or quasi 
partial invariant inequality, some states are checked which their unlikelihood of happening, leads to 
simplifying the constraints. These two new ideas are used after applying the presented method in [27] 
and are very efficient for simplifying the constraints. They convert a great number of constraints into a 
small number fulfilling the control objective. In this paper, after introducing the new method, some 
conditions are presented to show how the final controller is maximally permissive. 

The rest of this paper is organized as follows. In Section 2, the important definitions are presented 
and the methods for constructing constraints from forbidden states and enforcing them on the system 
are explained. The methods for reducing the number of constraints which have been presented in recent 
years are introduced in Section 3 and an example is presented to show that these methods do not always 
give the least number of constraints. In Section 4, the new method for reducing the number of 
constraints is presented; this method is based on quasi partial invariants and semi quasi partial 
invariants. The conditions for having maximally permissive controller are explained in Section 5. In 
section 6, the new method in this paper is compared with the previous ones. Finally, the conclusion is 
presented in Section 7.  

2. Preliminary presentation 

In this section, some important definitions and basic concepts which are required for introducing the 
new ideas are presented. 

2.1.  Basics of Petri net and important definitions 

A PN is represented by a quadruplet R=(P, T, W, M0) where P is the set of places, T = Tc Tu is the 
set of controllable and uncontrollable transitions, W is the incidence matrix and M0 is the initial 
marking. 

In this paper the PN is supposed to be safe. Safe PNs are the ones that the number of tokens in each 
place is one or zero. So, the marking is Boolean. Here, the number of tokens in a place Pi is shown with 
mi.  

In a PN, the set of all reachable markings is stated with MR. MR is divided into two subsets. The first 
subset is the set of authorized states MA and the other one is the set of forbidden states MF. MF is also 
separated into two groups as follows: 

1) The states which violate the specification or are deadlock states or the states from which the 
system reach the deadlock states inevitably. These states are shown with MF

′. 
2) The states such that occurrence of uncontrollable events leads to the states in MF

′. 
After eliminating the set of forbidden states from the set of reachable states, the residual set is the set 

of authorized states. 
In the set of forbidden states, there is a very important subset which is called the set of border 

forbidden states and is denoted as MB [33]. This subset is defined below. 
 
Definition 1: MB is the set of border forbidden states and is defined as follows: 
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where Tc is the set of controllable transitions.  

   

Preventing the reachability of the forbidden states is possible by disabling the controllable transitions 
when their firings lead to a border forbidden state,. Moreover, for avoiding all the forbidden states, it is 
sufficient to avoid the border forbidden states. So, in this paper for preventing all the forbidden states, 
we only forbid the border forbidden states. 

Now, in Definitions 2, 3 and 4, the concepts of place invariant, partial place invariant and quasi 
partial place invariant are respectively introduced. These definitions are important for introducing the 
new ideas. 

 
Definition 2 [34]: Let R be a PN, P the set of its places, M(M0) the set of reachable markings from 

M0 and k a constant. A subset of places P′={P1,P2,…,Pr} included in P with the following relation 
constitutes a Place invariant: 

  
)(,... 02211 MMkmqmqmq rr M  

 
where the weights qi for i= 1, …, r are positive integers and mi is the number of tokens in place Pi. The 
set of places P′ is a conservative component. Net R with the conservative component P is said to be 
conservative.  

 
                                                              
If we remove some places from the set P′, a partial invariant is obtained, itis defined as follows: 
Definition 3: Let P′ ={P1,P2,…,Pr} be a place invariant in a PN R, Pi1={P1,P2,…,PL} for which 

{1,2,..L}{1,2,..r}, is a partial place invariant (also called partial invariant) and it satisfies the 
following inequality: 

 
q1m1+q2m2+…+qLmL ≤ k , M M(M0), 
                                                                                                                                                                   
where q1, q2, …, qn are positive integers.  

 
Sometimes this inequality cannot be deduced from the invariant relation but can be directly constructed 
from the PN structure. This concept is presented in Definition 4.  
 
Definition 4: Let P"={P1,P2,…,Pt} be a set of some places in a PN R. P"  is a quasi partial place 
invariant (also called quasi partial invariant) if: 
 
q1 m1+q2 m2+…+qt mt ≤ K, M M(M0), 
 
where K and q1, q2, …, qt are positive integers.  

 
                                                                    
Remark 1: The partial invariant inequality is obtained from an invariant relation while the quasi partial 
invariant inequality is not necessarily obtained from the invariant relation. For the quasi partial 



 

 

 

 

invariant, verifying by the authorized states is sufficient. The partial invariant is a special case of quasi 
partial invariant.  

                

2.2.  Constructing constraints from forbidden states 

The control objective addressed here is to prevent the system from entering the forbidden states. One 
way to achieve this goal is to build constraints. In [24], the authors have shown that in safe and 
conservative PNs, assigning some inequalities to forbidden states is possible (the inequalities restrict 
the weight sum of tokens in some places). These inequalities are called linear constraints (also called 
constraint) and are constructed as follows: 
     Suppose that in a safe and conservative PN, there is a forbidden state when the places Pi1, Pi2, …, Pin 
are marked. A constraint related to this forbidden state can be constructed as follows [24]: 
 

1

1
n

ik
k

m n


                                             (1) 

 
where n is the number of marked places in this forbidden state, and mik is the number of tokens in place 
Pik. Enforcing the constraint (1) on the system prevents it from entering the forbidden state.  

For example, suppose that the state [01 1 0 0 1]T
iM   is a forbidden state. This state can be rewritten 

in the form P2P3P6. For this state n=3 and according to the relation (1), the constraint related to this 
state is as follows: 

 
m2+m3+m6 ≤ 2. 

 
For preventing the system from entering the forbidden states, some covering states of them can be 
prevented. So, it is possible to use the constraints related to the covering states to simplify the 
controller synthesis [27]. This is based on the concept of over-state which is introduced as follows: 
 

Definition 5 [27]: let M2=P21P22…P2m be an accessible state. M1=P11P12…P1n is an over-state of M2 
if: 

 

21 MM   
                                                                                                                                                                   

For example, the state M1= P1P5 is an over-state of the state M2 =P1P3P5P7. The concept of over-state 
is important since when the constraint related to an over-state is verified, the constraint related to the 
main state is verified too. For example the constraint related to the over-state M1=P1P5 is m1+m5 ≤ 1. 
This constraint verifies the constraint m1+m3+m5+m7 ≤ 3 which is related to the state M2=P1P3P5P7. 

The concept of over-state must be carefully used since by forbidding the over-states, some 
authorized states may be suppressed. In Section 3, the idea in [27] is recalled to show how it is possible 
to choose the best over-states which forbidding them leads to reducing the number of constraints. 

 
Remark 2: A constraint m1 + m2 +…+ mn  ≤ k can be presented as follows: 
 

{(bi, k), bi=P1…Pn}  or  (P1…Pn, k)                                                                 
                                                                                                                                                                   



 

 

 

 

In this paper for enforcing the constraints on the system, the idea in [25] is applied. With each 
constraint, a control place is added to the PN model of the system. This method is explained in Section 
2.3. 

2.3.  Control places 

To calculate a control place corresponding to each linear constraint, the method in [25] is used. This 
method is based on the concept of invariant, and now it is briefly introduced. Consider the set of 
constraints as L.MP ≤ b where MP is the marking vector, L is a nc×n matrix, b is a nc×1 vector, nc is the 
number of constraints and n is the number of places. In this method, with each constraint, a place is 
added to the model. Let Wp be the PN incidence matrix. For each constraint a row is added to Wp and 
these rows are denoted as Wc which are calculated as follows: 

 
Wc = -L.Wp 

 
Wc is added to Wp as the following form: 
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If the initial marking of the model is MP0, the initial marking for the added places can be calculated as 
follows: 

 
Ms0=b-L.MP0 

 
Therefore, the initial marking of the controlled model is: 
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However, when the number of control places is large, the controller is complicated. This leads to the 

necessity for reducing the number of constraints [24]. In the next section the previous methods for 
reducing the number of constraints are explained. 

3. Reducing the number of constraints by using the previous approaches 

In this section the goal is to recall the ideas in [26, 27] for reducing the number of constraints, and an 
example is introduced to show that these methods don’t always give the least number of constraints. 

 In [26] a method has been proposed where using the invariant and partial invariant properties 
simplifies the constraints. Using the invariant relation, the number of constraints can be reduced. For 
example suppose that there are three constraints as follows: 

m1+m4+m7  ≤ 2, m1+m4+m8  ≤ 2 m1+m4+m9 ≤ 2 
If there is an invariant relation as (m7m8m91), three constraints can be reduced to one constraint as 
follows: 
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Now suppose that the above invariant relation has been verified, but there are only two constraints as 

follows: 
m1+m4+m7  ≤ 2, m1+m4+m8  ≤ 2 

 
Then, for simplifying these constraints, the invariant relation should be changed into a partial invariant 
inequality as the following form: 

m7 m8 ≤ 1 
 

By having this partial invariant inequality, the two constraints can be reduced to one constraint as 
follows: 

 
m1+m4+m7+m8 ≤ 2 

 
Now, we recall the idea for simplifying the constraints by using the partial invariant concept. 
Proposition 1 [26]: In a safe and conservative PN, suppose that C={(P1Pi1…Pi(n-1), k),      

(P2Pi1…Pi(n-1), k), …, (PrPi1…Pi(n-1), k)} is the set of constraints equivalent to forbidden states. If there 
is a partial invariant as follows: 

m1+m2+…+mr≤1 
 

the r constraints can be reduced to one constraint as the following form: 
  

(m1+m2+…+mr)+mi1+…+mi(n-1)≤k 
                                                                                                                                                               
The partial invariant inequality must be constructed from the invariant relation and it is the reason for 

the conservative limitation in Proposition 1.  
In [27], there is an efficient method for simplification of the constraints. The method uses the      

over-state concept to perform simplification and the result is similar to using the invariant relations but 
without having these relations. This method is recalled in Algorithm 1. 

 
Algorithm 1 [27]: Obtaining the small number of constraints using the over-state concept. 
Input: The set of authorized states MA and the set of border forbidden states MB. 
Output: The small number of constraints for preventing the system from entering the forbidden 

states. 
Step 1: Compute the set of all over-states of the border forbidden states (MB) which is called B1. 
Step 2: Compute the set of all over-states of the authorized states (MA). This set is called A1. 
Step 3: Remove the common over-states between B1 and A1 from the set B1. The new set is called 

B2. 
Step 4: From B2, remove the states that their over-states exist in this set. The new set is called B3. 

  Step 5: Using the method in [24], assign a constraint to each over-state in the set B3. The set of these 
constraints is called C3. 

Step 6: In the set C3, select the smallest number of constraints that avoiding them leads to avoiding 
all the forbidden states. The new set is called C4, and is the set of final constraints (selecting 



 

 

 

 

the final constraints is similar to final selection in Quine-McCluskey method for simplifying 
the logical expressions [35] and is expressed in Algorithm 2 in Appendix I. In Algorithm 2, 
C1 is the set of constraints related to border forbidden states). 

                                                                                                                                                                               
Now, an example is introduced to explain the simplification method.  
 
Example 1: Consider a system composed of two machines (or two process parts) and a robot. The 

role of the robot is discharging of the machines. The start commands are accomplished by firing the 
controllable transitions t1, t3 and the end of processes is accomplished by firing the uncontrollable 
transitions t2, t4, and t5. Both machines can be turned on or off independently. In this example, one of 
the machines completes its work once while the operation of the other machine is cyclic. 

 The process parts of this system are illustrated in Fig. 1 where <P1t1P2t2> indicates process 1 and 
<P3t3P4t4P3> indicates process 2. The specification model of the system is depicted in Fig. 2 and the 
closed loop model is illustrated in Fig. 3. Table 1 describes the places and transitions. The reachability 
graph of the system in Fig. 3 is presented in Fig. 4. 

In the system with uncontrollable transitions, there may be a problem when the model of process and 
the model of specification are synchronized via an uncontrollable transition. The problem exists when 
the input places of the uncontrollable transition related to process are marked while the input places of 
this uncontrollable transition related to specification are unmarked. Due to the uncontrollability of the 
transition, the closed loop model cannot respect the firing rules of the PN model. For instance, in this 
example consider the uncontrollable transition t4 in the closed loop model. The input places of this 
transition are P4 and P5 at which P4 is related to process and P5 is related to specification. Suppose that 
the system is in the state P4P6 (look at Fig. 4). In this state, according to the closed loop model, 
transition t4 cannot fire but since in the process model, this transition is uncontrollable, the controller 
(or also the place related to specification (P5)) cannot disable the transition to verify the specification. 
Therefore this state is a forbidden state [33]. So, the controller must disable the controllable transitions 
in special conditions (before entering the forbidden state) to prevent the system from entering the 
forbidden state. This concept is the same for the states P2P3P6, P1P4P6 and P2P4P6. Therefore, these 
states are forbidden states. Moreover, state P2P4P5 is a forbidden state since when the system is in this 
state, by firing the uncontrollable transition t4, the forbidden state P2P3P6 is obtained. In the closed loop 
model when the system is in these states, the states after firing the uncontrollable transitions are 
unknown and are indicated by . 

 
Remark 3: It must be mentioned that the exact reachability graph of the closed loop model in Fig. 3 

is similar to Fig. 4 by eliminating the sign  and the related arcs. We have shown the reachability 
graph in the form of Fig. 4 to express the problem of uncontrollable transitions and to say why some 
states are forbidden. If all the transitions are controllable, the closed loop model corresponds to the 
optimal controller, but when there are some uncontrollable transitions, it may not respect the 
specification. The whole explanation about finding the forbidden states and the problem of 
uncontrollable transitions are expressed in [33]. 
It is possible to calculate the set of border forbidden states from the reachability graph. For instance 
according to the border forbidden state definition, the forbidden state P4P6 is a border forbidden state 
since it is obtained by firing the controllable transition t3 from the authorized state P3P6. The other 
border forbidden states are obtained in the same way. 

In this example, the set of authorized states is: 
 



 

 

 

 

MA = {P3P5, P3P6, P4P5, P1P3P5, P2P3P5, P1P3P6, P1P4P5}. 

 
And the set of border forbidden states is: 

 

MB={P4P6, P2P4P5, P2P3P6, P1P4P6}. 

 
It is obvious that the model in Fig. 3 is not conservative and it is not possible to apply Proposition 1 

on the example. But, Algorithm 1 can be applied on it. Now, according to this method, the sets of over-
states of MB and MA are constructed and denoted as B1 and A1, respectively, as follows: 
B1 = {P1, P2, P3, P4, P5, P6, P2P4, P2P5, P4P5, P2P3, P2P6, P3P6, P1P4, P1P6, P4P6, P2P4P5, P2P3P6, 
P1P4P6} 

A1 = {P1, P3, P4, P5, P1P3, P1P5, P3P5, P1P3P5, P2, P2P3, P2P5, P3P5, P2P3P5, P6, P1P6, P3P6, P1P3P6, 
P1P4, P4P5, P1P4P5}. 

 
After this step, the states which are common between B1 and A1, are removed from B1 and the residual 
set is called B2: 

                   
B2 = {P2P4, P2P6, P4P6, P2P4P5, P2P3P6, P1P4P6}. 

Now, from B2, the states that their over-states are in B2 must be removed and the new set is called B3: 
B3={P2P4, P2P6, P4P6}. 

This set contains the final over-states which preventing them leads to preventing all the forbidden 
states. The constraints related to the final over-states are deduced as follows: 

 
m2+m4≤1, m2+m6≤1, m4+m6≤1. 
 

In this example, the method in Algorithm 1 has reduced the number of constraints; however the 
reduction from 4 constraints to 3 constraints is not significant. Now, suppose that there is a relation like 
(m2+m4+m6 ≤ 1). This constraint doesn’t forbid any of the authorized states and forbids all the border 
forbidden states. Then, it is a simpler solution, i.e., 1 instead of 3 constraints. In the next section, a new 
method is proposed to perform this simplification. 

4.  The new ideas for reducing the number of constraints 

In the simplification method in [26] which was applicable for safe and conservative PN, it was 
possible to construct partial invariant inequalities from the invariant relations. For example: 
    m1+m2+…+mn= k           m1+m2+…+mn-1 k.   

In a non conservative PN, we cannot construct these inequalities from the invariant property. But in this 
paper, we will show that using the structural properties of PN, constructing such inequalities in safe but 
not necessarily conservative PN is possible. These inequalities are called quasi partial invariant as it 
was defined in Section 2.1and may lead to reducing the number of constraints. In addition, we propose 
another idea for simplification of constraints which in some cases can perform more simplifications 
than the first idea in this paper and the previous methods. The second idea is very powerful for 
reducing the number of constraints. 



 

 

 

 

4.1. Reducing the number of constraints by constructing quasi partial invariant 

 In this subsection, the objective is to present a simplification method by suppressing the 
conservative limitation. In Theorems 1 and 2, a new idea is proposed ensuring to construct quasi partial 
invariants in safe but not necessarily conservative PN.  

 
Theorem 1: In a safe PN, suppose that mi1, mi2 are the number of tokens in places Pi1, Pi2 

respectively. If Pi1Pi2 is not in the set of over-states of authorized states, a quasi partial invariant 
inequality can be constructed as follows: 

 
mi1+mi2 ≤1. 

                                                                                                       

Proof. Suppose that the above constraint is not true. Then, we have: 
 

mi1 + m i2 > 1. 
 
So, for safe PN we have: 

 
mi1+mi2 = 2 → mi1= mi2 = 1. 
 
This means that Pi1Pi2 is in the set of over-states of authorized states. But, this is not true. Then:   

   
mi1+mi2≤1. 

                                                                                                  

Now, in Theorem 2, Theorem 1 is developed to construct another quasi partial invariant inequality 
with more places. 

 
Theorem 2: In a safe PN, suppose that there is a quasi partial invariant inequality like 

mi1+mi2+…+min ≤ 1. If all the over-states {Pi1Pi(n+1), Pi2Pi(n+1),…, PinPi(n+1)} are not in the set of      
over-states of the authorized states, we can obtain another quasi partial invariant as follows:  

 
mi1+mi2+…+min+mi(n+1) ≤1. 

                                                                                             

Proof. The proof of this Theorem is similar to Proposition 1. Suppose that this relation is not true, so, 
we can write: 
mi1+…+min+mi(n+1) >1. 
 
Hence, we have: 

 
mi1+…+min+mi(n+1) = 2                      mi(n+1) = 1 
mi(n+1) ≤ 1 (for safe PN)                      mi1 +…+ min = 1   
mi1 +…+ min ≤ 1                       
mi1 +…+ min = 1       mik = 1( k [1,n]). 
 
Then PikPi(n+1) is an over-state of  authorized states that is not true, then:   

 



 

 

 

 

mi1 + …+ min + mi(n+1) ≤1. 
                                                                                             

By using the new method (Theorems 1 and 2), conservative limitation is not necessary for 
constructing quasi partial invariant and this inequality is not obtained from invariant relation. So, we 
can reform Proposition 1 and eliminate the conservative limitation. This is performed in Theorem 3.   
            

Theorem 3: In a safe PN, Let M ={(P1Pi1…Pi(n-1), k), (P2Pi1…Pi(n-1), k), …, (PrPi1…Pi(n-1), k)} be a 
subset of constraints. If the authorized states verify the quasi partial invariant m1 + m2 +... + mr ≤ 1, the 
r constraints are equivalent to one constraint as follows: 

          
(m1 + m2 +…+ mr) + mi1 +mi2…+ mi(n-1) ≤ k 

                                                                                                                                                                   

By using this method, the r constraints may be reduced to one constraint. The advantage of this 
method over the presented method in [26] is that the time and memory space for simplification are both 
small and the conservative limitation is eliminated. Moreover, the chance for having a quasi partial 
invariant is greater than obtaining a partial invariant deduced from invariant property (the quasi partial 
invariant can be constructed according to the authorized states). So, the results are often simpler than 
for the last method in general.  

Now, to see the impact of constructing quasi partial invariant for reducing the number of constraints, 
we apply it on Example 1. In this example the final over-states which must be prevented are: 

 
B3 = {P2P4, P2P6, P4P6}. 

At first step, the new method is applied on the over-states P2P4 and P2P6 in the set B3. The state P4P6 is 
not in A1. So, according to Theorem 1, there is a quasi partial invariant inequality as: 

 
m4+m6≤1. 

Looking at Theorem 3, it is possible to simplify the constraints related to these two over-states 
(m2+m4≤1 & m2+m6≤1) into one constraint as follows: 
 
m2+m4+m6≤1. 

This constraint forbids the third over-state in B3 (P4P6). Therefore, in this example, by using the new 
idea, the constraints related to final over-states are reduced to one constraint as follows: 

 
m2+m4+m6 ≤ 1. 

The above constraint forbids all the border forbidden states (MB) and verifies all the authorized states 
(MA). So, after enforcing it on the system, the obtained controller is maximally permissive. 

Now, the control place for this constraint should be calculated. According to the constraint (P2P4P6, 
1), we have: 

 
L = [0 1 0 1 0 1]. 

So 
 
Wc = [-1 0 -1 0 1]. 



 

 

 

 

The initial marking of the control place is: 
 

Ms0 = mpc= 1. 

The controlled PN model of the system in this example is depicted in Fig. 5. 
It is obvious that the new idea (Theorems 1 and 2) helps the simplification of constraints while this 

was impossible using the method in [26].  
The proposed method in this section and also the previous methods may not give the least number of 

constraints. To show this problem, we consider another system in Example 2. We will see that the 
number of simplified constraints by the last methods remains large. In this case, it will be shown that 
the constraints can be more simplified. Then a very efficient idea for simplifying the constraints will be 
proposed in Section 5. 

 
Example 2: A similar example as the first one is considered. We suppose that there are three 

machines and two robots. The operation of each machine is cyclic. The closed loop PN model is 
presented in Fig. 6. 

The method for calculating the border forbidden states and the authorized states is similar to 
Example 1. So, for this example, the result of the calculation is written. The set of authorized states is: 

MA={P1P3P5P7P9, P1P3P5P8P9, P1P3P5P7P10, P1P3P5P8P10, P2P3P5P7P9, P2P3P5P8P9, P2P3P5P7P10, 
P1P4P5P7P9, P1P4P5P8P9, P1P4P5P7P10, P1P3P6P7P9, P1P3P6P8P9, P1P3P6P7P10, P2P4P5P7P9, 
P2P3P6P7P9, P1P4P6P7P9}. 

And the set of border forbidden states is: 

MB={P2P4P6P7P9, P2P4P6P8P9, P2P4P6P7P10, P2P4P6P8P10, P2P4P5P8P9, P2P4P5P7P10, P2P3P6P8P9, 
P2P3P6P7P10, P1P4P6P8P9, P1P4P6P7P10, P2P3P5P8P10, P1P4P5P8P10, P1P3P6P8P10}. 

By applying Algorithm 1 on this example, the simplified over-states are as follows: 

B4={P2P4P6, P2P4P8, P2P4P10, P4P6P8, P2P6P10, P4P6P10, P2P8P10, P6P8P10, P4P8P10, P2P6P8}. 

The constraints related to the over-states in the set B4 are: 

C4={(P2P4P6,2), (P2P4P8,2), (P2P4P10,2), (P4P6P8,2), (P2P6P10,2), (P4P6P10,2), (P2P8P10,2), (P6P8P10,2), 
(P4P8P10,2), (P2P6P8,2)}. 

As it is obvious, by applying Algorithm 1, the number of over-states which must be forbidden is reduced 
to 10. These over-states are the ones that forbidding them leads to avoiding all the forbidden states and 
verifying all the authorized states (the states in B4 cover all the border forbidden states). So, the 
constraints related to them (C4) can be enforced on the system. But, it is clear that the number of 
simplified constraints and consequently the number of control places is large. In addition, by applying the 
new method in this section, more simplification is not possible because there is no quasi partial invariant 
to simplify the constraints. In the next section, a powerful method is proposed to reduce the number of 
constraints more than before. 



 

 

 

 

4.2.  Simplification by semi quasi partial invariant 

In this section the goal is to propose another new method such that reducing the number of constraints 
is possible more than before. Now, to show the base of this new method, we consider a simple example. 
Suppose that there are two constraints as F1= (P1P3P4P5, 3) and F2= (P2P3P4P5, 3). We want to see in 
which conditions these two constraints can be reduced to one constraint as F3= (P1P2P3P4P5, 3). For 
obtaining the constraint F3 using the proposed method in Section 4, there must be a quasi partial invariant 
like m1+m2 ≤ 1. But when there is not such a quasi partial invariant, obtaining the constraint F3 by the last 
method is not possible (for example for the system in example 2, we cannot find a quasi partial invariant 
to perform more simplification). In the following, we show that it is not necessary to find a quasi partial 
invariant. This simplification method is called semi quasi partial invariant. As it is obvious, all the states 
which are forbidden by F1 and F2 are forbidden by F3 too. So, our objective is that all the states which are 
authorized by F1 and F2 should be authorized by F3. Now it is necessary to check the states which are 
authorized by F1 and F2, but not by F3. These states can be achieved when the places P1 and P2 are 
marked. The states which are forbidden by F3 but authorized by F1 and F2 are as follows: 

 
S = {P1P2P3P4, P1P2P3P5, P1P2P4P5}. 

 
It means that by enforcing the constraint F3, the places P1, P2, P3, P4 cannot be marked at the same time 
and it is the same for the places P1, P2, P3, P5 and also for the places P1, P2, P4, P5. But by enforcing the 
constraints F1 and F2, these places can be marked at the same time. If we show that these states cannot be 
accessible in the model, we can use the constraint F3 instead of the two constraints F1 and F2. This 
concept can be achieved when these states are not in the set of over-states of authorized states. It means 
that according to the model, when places P1 and P2 are marked at the same time (m1+m2 1 and 
m1+m2=2), only one of the places P3, P4, P5 can be marked (m3+m4+m5=1). So, in this case, it is necessary 
that the authorized states verify the constraints m1+m2+m3+m4 ≤ 3, m1+m2+m3+m5 ≤ 3 and    
m1+m2+m4+m5 ≤ 3. Therefore, when these constraints are verified by the authorized states, we can use the 
constraint F3 instead of the two constraints F1 and F2 as follows: 
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After this simple example, we generalize and formalize this concept and propose a new idea to perform 

more simplification. This new method is presented in Theorem 4 and Corollary 1. 
 
Theorem 4: In a safe PN, let C = {(Pi1P1P2…Pn, n), (Pi2P1P2…Pn, n)} be a set of two constraints. 
Consider n over-states as follows: 

 
Pi1Pi2P1P2...Pj-1Pj+1…Pn          for  2 ≤ j ≤ n-1 
Pi1Pi2P2…Pn ,      

Pi1Pi2P1P2…Pn-1 
 



 

 

 

 

(These over-states are the ones which contain n+1 marked places from the set {Pi1Pi2P1P2…Pn} except 
the over-states Pi1P1P2…Pn and Pi2P1P2…Pn). 
If all of these over-states are not in the set of over-states of authorized states, then the two constraints can 
be reduced to one constraint as the following form: 

 
Pi1Pi2P1P2…Pn, n. 

mi1+mi2+m1+m2+…+mn≤ n.   
 
In this case, we have a semi quasi partial invariant for places Pi1 and Pi2. 

  
                                                                                                   

Proof. The proof of this Theorem is clear. Suppose that the inequality mi1+mi2+m1+m2+…+mn≤ n is not 
true, then mi1+mi2+m1+m2+…+mn= n+1, that means n+1 places from the set P = (Pi1, Pi2, P1, P2, …, Pn) 
are marked. Therefore, at least one of the conditions in the Theorem is violated. So our supposition is not 
true.  

               
In Corollary 1, we extend Theorem 4 to propose a more comprehensive method for the simplification 

of constraints. 
    Corollary 1: In a safe PN, Suppose that there are the constraints C1= (Pi1Pi2…PimP1P2…Pn, n) and         
C2 = (Pi(m+1)P1P2 …Pn, n), that verify the authorized states. If all the over-states which contain n+1 
marked places from the set P = (Pi(m+1), Pi1, Pi2, …, Pim, P1, P2, …, Pn) don’t exist in the set of over-states 
of authorized states, the two constraints C1 and C2 can be replaced by one constraint as follows: 

 
Pi1Pi2…Pim Pi(m+1)P1P2…Pn, n. 

                                                                                                 

Proof: The proof of this Corollary is similar to the proof of Theorem 2. Suppose that the inequality 
mi1+mi2+…+mim+mi(m+1) + m1 + m2 + … +mn ≤ n is not true, then mi1+mi2+…+mim +mi(m+1) +m1+m2 +…+mn 

= n+1, that means n+1 places is marked in the set P = (Pi1, Pi2, …, Pim ,Pi(m+1), P1, P2, …, Pn). So, at least 
one of the conditions in the Corollary is violated.  
                                                                                                                                                                       

In the semi quasi partial invariant approach, a very small state space should be checked, so the chance 
for having an acceptable answer is high. 

The obtained constraint using Theorem 4 and Corollary 1 may cover the other constraints before 
simplification. This concept is formalized in Theorem 5. 

 
 Theorem 5. Suppose that there are two constraints C1 and C2 as C1={(b1,k1), b1 =Pi1…Pin} and            

C2 ={(b2,k2), b2 = Pj1…Pjm}. If the two conditions b1  b2 and k2 ≤ k1 are true, then the constraint C2 
covers the constraint C1 (It means that if C2 is verified, C1 is verified too).                                           
                                                                                             

Proof: Suppose that b1  b2, k2 ≤ k1, but C1 isn’t covered by C2. It means that there is at least one state 
M1 that is forbidden by C1 but is not forbidden by C2. Violation of M1 by C1 means that               
mi1+ mi2+… + min > k1.  By attention to b1  b2 and k2 ≤ k1, it is clear that mj1+ mj2+… + mjn > k2 which 
means this state is forbidden by C2 and it is a contradiction. 

  
     



 

 

 

 

The method in this section is formalized in Algorithm 3 in appendix I. Now, we apply this new method 
on Example 2 to show its effectiveness. The final constraints in section 4.1 were: 

C4={(P2P4P6,2), (P2P4P8,2), (P2P4P10,2), (P4P6P8,2), (P2P6P10,2), (P4P6P10,2), (P2P8P10,2), (P6P8P10,2), 
(P4P8P10,2), (P2P6P8,2)}. 

As it is obvious from this set, by using the proposed method in Section 4.1, and the previous methods [26, 
27], these constraints cannot be simplified any more. Now we want to apply Theorem 4 and Corollary 1 
on the set C4 to perform more simplification. For applying Theorem 4 on this set, we select the constraints 
(P2P4P6, 2) and (P2P4P8, 2) as follows: 

            
  C41= {(P2P4P6, 2), (P2P4P8, 2)}. 

 
The over-states P2P6P8 and P4P6P8 are not in the set of over-states of authorized states, so, it is possible to 
use Theorem 4 in the following form:  

 
C41= {(P2P4P6, 2), (P2P4P8, 2)  C '

41= {(P2P4P6P8, 2). 

Consider the third constraint in the set C4 as follows: 

C42 = {(P2P4P10, 2)}. 

By applying Corollary 1 on the sets C '
41 and C42, it is clear that the over-states P2P4P6, P2P4P8, P2P4P10, 

P2P6P8, P2P6P10, P2P8P10, P4P6P8, P4P6P10, P4P8P10, P6P8P10 are not in the set of over-states of 
authorized states. Then these two constraints are simplified to one constraint: C '

42={(P2P4P6P8P10, 2)}. 
 

C '42 covers all the residual constraints in the set C4 (Theorem 5). So, the final set of simplified constraints 
is: 
C5 ={(P2P4P6P8P10, 2)}. 

 
In this example, we have only one final constraint and there is no need for final selection (Algorithm 2 in 
Appendix I). Therefore, the final constraint that prevents the system from entering all the forbidden states 
is as follows: 
C6 ={(P2P4P6P8P10, 2)}. 

 
By applying the proposed method in this section on Example 2, 10 constraints have reduced to 1 

constraint. So, instead of 10 control places, only one control place needs to be added to the PN model. 
The first idea in this paper needs the determination of the quasi partial invariant and allows easy 

constraints simplification. However the advantage of the second idea is performing simplification by 
checking a low state space and without having the quasi partial invariant. Moreover, in Theorem 4 and 
corollary 1, a small number of states should be deduced for comparing with the over-states of authorized 
states to reduce the number of constraints.  

5. Maximally permissive controller 

In this section the goal is to show that the controller is maximally permissive after enforcing the 
simplified constraints on the system. For this reason, it is necessary to verify two conditions: 

- The final constraints must forbid all the border forbidden states. 
- The authorized states should not be forbidden.  



 

 

 

 

For checking the first condition, Theorem 5 could be used to show the covering property for the final 
constraints. Definition 6 is introduced to show how a simplified constraint (C6) covers the constraints 
before this simplification (C4). 

 
Definition 6: Suppose that the set of constraints before simplification is: 
 

C4 ={C11=(b1, k1), C12=(b2, k2), …, C1n=(bn, kn)}, 
11 11 12 1... tb P P P , …, 1 2...

nn n n ntb P P P  

and the set of simplified constraints is: 
 

C6 ={C21=(bi1, ki1), C22=(bi2, ki2), …, C2m=(bim, kim)}, 
11 11 12 1...i i i i qb P P P , …, 1 2... mim im im imqb P P P  

The relation 4 6: {0,1}F  C C  is as: 
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The term F(C1j, C2l) = 1 means that the constraint C1j is covered by the constraint C2l. The covering of a 
marking is an integer number: 
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
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Dv(C1j) ≥ 1 means that, at least one of the constraints in C6 covers the constraint corresponds to bj.  
 

 
Now, to illustrate this part, we consider Example 2. We want to answer the question: Are all the 

constraints in C4 covered by the constraints in C6? To answer this question, Table 2 is constructed. The 
first row of this table represents the constraints in C4 and the first column is the constraint in C6. 
Looking at Table 2, it is obvious that for each 1 4jC C , we have Dv(C1j) ≥ 1. So, all the constraints in C4 

are covered by the set C6. 

In this example, after applying the idea in [27] on the border forbidden states, 10 constraints were 
obtained. Enforcing these constraints (the set C4) on the system leads to avoiding all the forbidden states 
and obtaining a maximally permissive controller [27]. Therefore, the constraints in the set C4 forbid all 
the border forbidden states and according to Table 2, C6 covers all the constraints in the set C4. So, C6 

avoids all the border forbidden states. 
Now in the following a theorem is introduced to show how the obtained controller can be maximally 

permissive. 
     
     Theorem 6: If for each

 1 4jC C , Dv(C1j) ≥ 1, the obtained controller is maximally permissive (C4 is 

the obtained constraints using the idea in [27]).  
              

Proof. The term “for each
 1 4jC C , Dv(C1j) ≥ 1” means that all the constraints in C4 are covered by at 

least one of the constraints in C6, and all the constraints in C6 forbid all the border forbidden states since 
C4 forbids all the border forbidden states. Also, according to Theorem 4 and Corollary 1, the constraints 



 

 

 

 

in C6 don’t forbid any of the authorized states. So, the states which are generated after enforcing C6 on the 
system are equivalent to the set of authorized states. Therefore, the obtained controller is maximally 
permissive.  

 
In the case of Example 2, for each 1 4jC C , we have Dv(C1j) ≥ 1. So the controller is maximally 

permissive (Theorem 6).  
Now, the control places for this example must be calculated. According to the simplified constraint 

(P2P4P6P8P10, 2), we have: 
 
L= [0 1 0 1 0 1 0 1 0 1]    Wc= [-1 0 0 -1 0 0 -1 0 0 1 1], 

 
and the initial marking of the control place is equal to: 

 
Ms0 = mc=2. 
 

The controlled model is illustrated in Fig. 7. The control place and corresponding arcs are indicated in 
gray color and dashed lines. 

For more coma deep comparison with the previous works, another example is considered below.  

     Example 3. Consider a system composed of two machines and a robot. The process part model related 
to the machines and the specification model are illustrated in Fig. 8 and Fig. 9 respectively. The closed 
loop model is depicted in Fig. 10. This model is similar to the model presented in [12, 36] imposing some 
changes (It is supposed that the model is safe and we have synchronized the specification model with the 
process model). In this model transitions t5 and t6 are controllable and transitions t1, t2, t3, t4 and t7 are 
uncontrollable. Each one of the two machines constructs a product which has a redundant part and the 
robot must remove the redundant parts from the pieces. Then, the two products without redundant parts 
are assembled to construct a new product. Descriptions of places and transitions are presented in Table 3. 
In this example, the authorized states and the forbidden states are selected in a similar way than in 
Example 1. 

In this system, the set of authorized states is as follows: 

MA={P1P8, P1P9, P2P3P8, P2P3P9, P2P5P8, P2P7P8, P2P7P9, P3P4P8, P3P6P8, P3P6P9, P4P7P8, P5P6P8, 
P6P7P8, P6P7P9}. 

And the set of border forbidden states is: 

 

MB={P2P5P9, P3P4P9, P4P5P8, P4P5P9, P4P7P9, P5P6P9}. 

 

By applying the method in [27], the final over-states which must be forbidden are as follows: 

 

B = {P4P5, P4P9, P5P9}.  

 

So, the corresponding constraints are: 

 

C={m4+m5 ≤ 1, m4+m9 ≤ 1, m5+m9 ≤ 1}. 



 

 

 

 

 

But, by using the new method in this paper, these constraints can be reduced to a constraint as follows: 

 

m4+m5+m9 ≤ 1. 

 

According to this constraint, the control place can be calculated as the following form: 

 

L=[0 0 0 1 1 0 0 0 1] & b=1  Wc=[0 0 0 0 -1 -1 1] & Ms0 = mc=1. 

 

The controlled model of the system in this example is illustrated in Fig. 11. The control place and the 
corresponding arcs are depicted in grey color. 

The complete Algorithm of controller synthesis for obtaining the simplified controller is presented in 
Algorithm 4 in Appendix I. 



 

 

 

 

6. Comparing the new methods in this paper with the previous methods 

The new ideas in this paper have beeb also applied on two other examples: 1) the manufacturing 
system presented in [26, 37], 2) the cat and mouse example presented in [25, 38]. 

In [26, 37] the considered example is a manufacturing system composed of two independent machines, 
two transfer robots of the parts and one test bench where the final products are tested. This system has 
6 border forbidden states. By using the new method in this paper, the 6 constraints related to the border 
forbidden states are reduced into two constraints. 

In cat and mouse example presented in [25, 38], there are 5 rooms at which the rooms are connected 
with doors. A cat and a mouse can circulate in the rooms. The problem is to control the doors so that 
the cat and the mouse can never be in the same room at the same time. In this model there are 5 
constraints. But, by using the new ideas in this paper or using the previous methods [26, 27, 30, 32], it 
is not possible to reduce the number of these 5 constraints. 

In Table 4, the number of final constraints after applying the new ideas in this paper is compared with 
the previous methods [26, 27]. As it is obvious from this table, the number of constraints after applying 
the new methods is smaller than or equal to the number after applying the previous methods [26, 27] 
which expresses the capability of the new method. However the method in [32] can generate a solution 
similar to our method but in this method an ILP problem with a large number of constraints and 
variables must be solved. For instance in Example 1, an ILP problem with 36 constraints and 27 
variables, in Example 2 an ILP problem with 350 constraints and 200 variables, and in Example 3 an 
ILP problem with 57 constraints and 36 variables must be solved. Our method is simple and the time 
and memory space for reducing the number of constraints are very small. Of course it is not necessary 
to solve the ILP problems. The drawback of our method is its limitation which is applicable on safe 
PNs. In addition, generation of the reacability graph and also over-states is an exponential problem.  

7. Conclusion 

In this paper, we have proposed two ideas in safe PNs to reduce the number of constraints more than 
before. The first idea uses the concept of quasi partial invariant to reduce the number of constraints. Quasi 
partial invariants are the inequalities obtained from the invariants or directly deduced from the structure 
of PN model. Application of this idea is very simple but it does not always give the best solution. So, a 
second idea is proposed which does not use the quasi partial invariant concept for reducing the number of 
constraints, but checks the accessibility of some special states. The number of constraints can be reduced 
when the system cannot enter the special states. This idea uses the set of over-states of authorized states to 
check this condition. Finally, the conditions for obtaining the maximally permissive controller have been 
presented. 
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APPENDIX I:  ALGORITHMS  
 

Algorithm 2. Selecting the final constraints  

Input: C1 and C2 where C2=(Cj1, Cj2, …, Cjn) is the set of calculated constraints (the final constraints 
must be selected from this set) and C1=(Ci1, Ci2, …, Cik) is the set of constraints that must be covered by 
the constraints in C2. 

Output: The set CF which is the set of final constraints selected from the set C2. 

m is the number of constraints in C1, CF=; 

Step 1:  

In the set C2, select all the constraints in the following form:  

If in the set C1 there is a constraint Cil (for l=1, …, k) which is only covered by one of the constraints in 
C2 (Cjh : h=1, …, n), then select the constraint Cjh and put it in the set CF. 

End if 

 

 

Step 2: 

if the number of constraints in CF is greater than zero then in the set C1, eliminate all the constraints 
which are covered by the selected constraints in CF; and also in the set C2, eliminate the selected 
constraints 

End if 

Step 3: 



 

 

 

 

If m > 0 

If in the set C1 there is a constraint Cil (for l=1, …, k) which is covered by more than one of the 
constraints in C2 (Cjh: h=1, …, n), then select the constraint from the set C2 which covers the most 
number of constrains in the set C1 (in the case of equality, the simplest constraint should be selected).  

      Put the selected constraints in the set CF. 

In the set C1, eliminate all the constraints which are covered by the selected constraint. 

In the set C2, eliminate the selected constraint. 

End if 

Else  

go to step 5 

End if 

Step 4:  

go to step 3 

Step 5:  

CF is the set of final constraint 

Step6:  

End; 

 

Algorithm 3. More simplification by the second new idea 

Input: The set of forbidden states MB and the set of authorized states MA. 

Output: Cf which is the set of final constraints (the small number of constraints). 

Step 1:  

Apply the method in [27] on the set MB and obtain the set of simplified constraints as               

Cf = {(
111 12 1... tP P P , k), …, ( 1 2... mm m mtP P P , k)}. 

i=1, j=2, cr=rth component of Cf, n= the number of components of Cf. 

Step 2:  



 

 

 

 

if i ≥ n 

go to step 4 

End if 

Step 3: 

Consider the two constraints ci and cj from the set Cf. 

If all the over-states which contain k+1 places from the set               

( 1 2 1 2... ...
i ji i it j j jtP P P P P P       ) are not in the set of over-states of authorized states, we can 

replace these two constraints by a constraint as ( 1 2 1 2... ... ,
i ji i it j j jtP P P P P P k ), then, in the set Cf, replace ci by 

this new constraint and remove cj and go to step 2. 

Else 

 if j < n, then j=j+1 and go to step 3. 

Else i=i+1 and j=i+2 and go to step 2. 

End if 

End if 

Step 4:  

Cf is the set of final constraints. 

Step 5:  

End; 

 

 

 

Algorithm 4: Complete algorithm for controller synthesis  

Input: The set of forbidden states MB and the set of authorized states MA.. 

Output: final controller. 

Step 1:  

Compute the set of over-states B1 for the set of border forbidden state MB and the set of over-states A1 for 

the set of authorized states MA. 

Step 2:  



 

 

 

 

Compute the set of over-states B2 by deleting the common over states between A1 and B1 from B1. 

Step 3:  

Compute B3 by deleting redundant over-states from B2 (deleting the over-states that there over-states are 

exist). 

Step 4: 

 if Corollary 1 in [27] is verified, then go to step 5  

Else there is no maximally permissive controller and go to Step 10. 

End if. 

Step 5:  

Apply Algorithm 2 for the first necessary selection in order to computing C4. 

Step 6:  

Apply Algorithm 3 for more simplification (computing C5). 

Step 7:  

Apply Algorithm2 for final selection for computing C6. 

Step 8:  

Compute the control places from the set of constraints C6 by the method in [25]. 

Step 9:  

Transform PN model into a SFC language. 

Step 10:  

End; 

 

 
 
 

 

 

 

 

 

 

 
 



 

 

 

 

Tables 

 

Table 1. The role of places and transitions 

  

Transition descriptionTransitionPlace descriptionPlace 

the start command of 
machine 1 

t1 machine 1 is in 
stand by state 

P1 

the end of process of 
machine 1 

t2 
machine 1 is 

working 
P2 

the start command of 
machine 2 

t3 
machine 2 is in 
stand by state 

P3 

the end of process of 
machine 2 

t4 
machine 2 is 

working 
P4 

the end of process of 
robot 

t5 the robot is idle P5 

  the robot is busy P6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 2. The relation between the sets C6 and C4 in example 2

 
C4 → P2P4P6, 2 P2P4P8, 2 P2P4P10, 2 P4P6P10, 2 P2P6P10, 2 P4P6P8, 2 P2P8P10, 2 P4P8P10, 2 P6P8P10, 2 

C6 ↓ 

 
P2P4P6P8P10,2 

 
1 

 
1 

  
 1 

 
1 

 
1 

 
1 

 
1 

 
1 

 
1 

 
Dv(C1j) 

 
1 

 
1 

 
1 

 
1 

 
1 

 
1 

 
1 

 
1 

 
1 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

Table 3. Description of places and transitions 

 

Place 
 

Place description Transition Transition description 

P9 The robot is busy t7 The command for releasing the robot 

P8 The robot is free t6 
The start command of machine 2 for 

constructing a piece 

P7 Machine 2 is ready to start its task t5 
The start command of machine 1 for 

constructing a piece 

P6 Machine 1 is ready to start its task t4 
The command for removing the 

redundant part from piece 2 

P5 machine 2 is working t3 
The command for removing the 

redundant part from piece 1 

P4 machine 1 is working t2 

The command for assembling the two 
parts constructed by the two machines 

(without redundant parts) 

P3 
The redundant part is removed by the robot 

from the constructed piece by machine 2 t1 The end of process 

P2 
The redundant part is removed by the robot 

from the constructed piece by machine 1   

P1 

the two pieces (without redundant parts) 
constructed by the machines are assembled 

to compose a new piece 
  



 

 

 

 

Table 4. Comparison of the method in this paper with the previous methods 

 

The method The number of 
border forbidden 

states 

The number of final 
constraints by using 
the method in [26] 

The number of final 
constraints by using 
the method in [27] 

The number of 
final constraints 
by using the new 

method in this 
paper 

Example 1 presented in 
this paper 

4 4 3 1 

Example 2 presented in 
this paper 

13 9 10 1 

Example 3 presented in 
this paper 

6 3 3 1 

The manufacturing 
system presented in [26, 

37] 

6 2 2 2 

The cat and mouse 
example presented in [25, 

38] 

5 5 5 5 

Sum 34 23 23 10 

 


