
HAL Id: hal-00784363
https://hal.science/hal-00784363

Submitted on 4 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Propagation mechanism for a non-preemptive strictly
periodic scheduling problem

Clément Pira, Christian Artigues

To cite this version:
Clément Pira, Christian Artigues. Propagation mechanism for a non-preemptive strictly periodic
scheduling problem. 2013. �hal-00784363�

https://hal.science/hal-00784363
https://hal.archives-ouvertes.fr


Propagation mechanism for a non-preemptive

strictly periodic scheduling problem

Clément Pira, Christian Artigues

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, LAAS, F-31400 Toulouse, France

{pira,artigues}@laas.fr

Keywords: Periodic scheduling, equilibrium, propagation mechanism

Abstract. We study a non-preemptive strictly periodic scheduling prob-
lem. This problem, introduced in [6, 4], arises for example in the avionic
field where a set of N periodic tasks (measure of a sensor, etc.) has to
be scheduled on P processors distributed on the plane. In the related
field of cyclic scheduling [5], some notable success [3] has been recently
achieved through the use of specific constraint propagation. In this ar-
ticle, we consider a heuristic, first proposed in [1, 2], which is based on
the notion of equilibrium. Following a game theory analogy, each task
tries successively to optimize its own schedule and therefore to produce
the best response, given the other schedules. We present a propagation
mechanism for non-overlapping constraints which significantly improves
this heuristic.

1 Periodic scheduling problem and its MILP formulation

We consider a non-preemptive strictly periodic scheduling problem introduced
in [6, 4, 1, 2]. Such a problem arises in the avionic field, where a set of N periodic
tasks (measure of a sensor, etc.) has to be scheduled on P processors distributed
on the plane. In this problem, each task i has a fixed period Ti and a processing
time pi. They are subject to non-overlapping constraints : no two tasks assigned
to the same processor can overlap during any time period (see Figure 1). A
solution is given by an assignment of the tasks to the processors and, for each
task by the start time ti (offset) of one of its occurrences. In the following,
unlike the papers mentioned above, we adopt a more general model in which
processing times pi are generalized by positive latency delays li,j ≥ 0 (or time
lags). The former case is the particular case where li,j = pi for all other tasks j.
The proposed heuristic adapts easily to this generalization.

In this paper, we only consider the case where the offsets ti are integers. This
hypothesis is important to prove convergence of the method described in section
2.1. Since the problem is periodic, all the periods Ti also need to be integers1.

• This work was funded by the French Midi-Pyrenee region (allocation de recherche
post-doctorant n◦11050523) and the LAAS-CNRS OSEC project (Scheduling in
Critical Embedded Systems).

1 Indeed, if ti is an integer solution then ti + Ti should also be an integer solution,
hence their difference too, i.e. Ti.



However the latency delays need not be integer a priori, especially in the case
of the optimization problem presented in section 1.1.

Fig. 1. N = 4 non-overlapping periodic tasks on P = 1 processor

1.1 Definition of the uniprocessor problem

Non-overlapping constraints In the formulation of a monoprocessor periodic
scheduling problem, a latency delay li,j ≥ 0 has to be respected whenever an
occurrence of a task j starts after an occurrence of a task i. Said differently, the
smallest positive difference between two such occurrences has to be greater than
li,j . Using Bézout identity, the set (tj +TjZ)−(ti +TiZ) of all the possible differ-
ences is equal to (tj − ti) + gi,jZ where gi,j = gcd(Ti, Tj). The smallest positive
representative of this set is (tj − ti) mod gi,j . This is the only representative of
(tj − ti) + gi,jZ which belongs to [0, gi,j − 1] (in particular, we consider a classic
positive modulo, and not a signed modulo). Therefore, we simply consider the
following constraint :

(tj − ti) mod gi,j ≥ li,j , ∀(i, j), i 6= j (1)

Classically, processing times are strictly positive, however our model allows
zero delays. Since equation (1) is trivially satisfied when li,j = 0, we introduce an
additional graph G containing the arcs (i, j) for which li,j > 0, and we consider
equation (1) only for those couples. As we will see, the constraints associated with
(i, j) and (j, i) work naturally together and some complications are introduced
when only one of the couples has a strictly positive delay. To avoid special cases,
we will suppose in the following that the graph G is symetric2 : two delays li,j
and lj,i are either both zero, or both strictly positive. With this hypothesis, a
consequence of proposition 1 (see Appendix) is that equation (1) can be replaced
by the following interval constraint for each couple (i, j) ∈ G with i < j :

li,j ≤ (tj − ti) mod gi,j ≤ gi,j − lj,i, ∀(i, j) ∈ G, i < j (2)

Note that except for the modulo, these constraints have a clear analogy with
classical precedence constraints of the form tj−ti ≥ li,j . However, they are much
harder to handle since they induce an exclusion between tasks3.

2 Note that this hypothesis can always be enforced. If li,j > 0, then the tasks i and j

are constrained not to start at the same time. Hence the same is true for the tasks
j and i. Therefore, lj,i can also be supposed strictly positive.

3 In particular, a classic disjunctive constraint tj − ti ≥ li,j ∨ ti − tj ≥ li,j can be
represented by the two constraints (tj − ti) mod T ≥ li,j and (ti − tj) mod T ≥ lj,i

for a large enough period T .



Objective to maximize In an uncertain context, a task may last longer than
expected, due to failure of the processor. This increase in the duration is naturally
proportional to the original processing time. To withstand the worst possible
slowdown, it is natural to make all the delays li,j proportional to a common
factor α ≥ 0 that we try to optimize (see [1, 2]).

max α (3)

s.t. li,jα ≤ (tj − ti) mod gi,j ≤ gi,j − lj,iα ∀(i, j) ∈ G, i < j (4)

ti ∈ Z ∀i (5)

α ≥ 0 (6)

The addition of this objective is also a good way to obtain feasible solutions.
In the context of precedence constraints, a way to implement the Bellman-Ford
algorithm is to cyclically choose a task and to push it forward, up to the first
feasible offset. In section 2.2 we present a method to find the next feasible offset
in the case of non-overlapping constraints. However there isn’t necessarily a
solution and a similar propagation mechanism which would cyclically move one
task at a time to the first feasible location would have only a small chance to
converge towards a feasible solution. However, with the optimization problem,
there is always at least a solution having a zero α-value. We can then try to
inflate α, while moving a task, what we call the best-response method : instead
of choosing the first feasible location, we search for the best location with respect
to this additional objective α. Whenever a solution with α ≥ 1 is found, we have
a solution for the feasibility problem. This is essentially the principle of the
heuristic presented in section 2.

Structure of the solution set An optimal solution is completely defined by
the offsets, since given the offsets (ti) we can always compute the best compatible
α-value :

α = min
(i,j)∈G

(tj − ti) mod gi,j

li,j
(7)

If we try to draw the function α = (ti − tj) mod gi,j/lj,i representing the
optimal value of α respecting one constraint (ti − tj) mod gi,j ≥ lj,iα when
ti takes rational values, we obtain a curve which is piecewise increasing and
discontinuous since it becomes zero on tj + gi,jZ. In the same way, if we draw
α = (tj − ti) mod gi,j/li,j , we obtain a curve which is piecewise decreasing and
becomes zero at the same points. It is therefore more natural to consider the
two constraints jointly, i.e. (4), which gives a continuous curve (see Figure 2) 4.

Since G is symetric, it can be seen as an undirected graph. We will write
G(i) for the set of neighbors of i, i.e. the set of tasks with which i is linked
through non-overlapping constraints. With this notation, and given some fixed

4 Note that if G was not symetric, we would need to consider some degenerate cases
were one of the slope (increasing or decreasing) would be infinite (since li,j = 0 or
lj,i = 0).



Fig. 2. Possible values for (ti, α) when constrained by a single task j

offsets (tj)j∈G(i), the set of solutions (ti, α) is the intersection of the curves
decribed above for each j ∈ G(i) (see Figure 3). It is composed of several adjacent
polyhedra. We can give an upper bound on the number npoly of such polyhedra.
A polyhedron starts and ends at zero points. For a given constraint j, there
is Ti/gi,j zero points in [0, Ti − 1], hence npoly is bounded by Ti

∑

j 6=i
1

gi,j
. This

upper bound can be reached when the offsets are fractional, since in this case, we
can always choose the offsets tj such that the sets of zero points (tj +gi,jZ)j∈G(i)

are all disjoint. In the case of integer offsets, there is obvioulsy at most Ti zero
points in the interval [0, Ti − 1] and therefore, at most Ti polyhedra.

Fig. 3. Possible values for (ti, α) constrained by all tasks j ∈ G(i)

We obtain the shape of a two dimensional slice of the solution set, for a given
task i, and some fixed (tj)j∈G(i). We will see how these two-dimensional slices
help to understand the concept of equilibrium and the heuristic : when solving
the best-response method, we try to find the new location ti which maximize
the α-value. Following the same idea, the complete full dimensional solution set
is composed of several adjacent N + 1-dimensional polyhedra.

1.2 MILP formulation of the multiprocessor problem

MILP formulation In this section, we present a MILP formulation of the
problem which will be used to compare the performance of our heuristic. As
explained above, the modulo (tj −ti) mod gi,j is the only element tj −ti +gi,jqi,j

in the interval [0, gi,j). Here, qi,j is an additional ‘quotient variable’ which can
always be computed by :

qi,j = ⌈(ti − tj)/gi,j⌉ (8)

Hence for a given couple (i, j) ∈ G, with i < j, the non-overlapping constraint
(4) can be rewritten as li,jα ≤ tj−ti+gi,jqi,j ≤ gi,j−lj,iα. In the multiprocessor
case, the scheduling problem is coupled with an assignment problem. Thus, we
introduce binary variables ai,k which indicate if a task i is assigned to a processor



k, and variables xi,j which indicate if i and j are on different processors. These
variables must satisfy (10) and (11). Since the non-overlapping constraints have
to be satisfied whenever two tasks are on the same processor, we replace the term
li,jα by li,jα − li,jαmaxxi,j . When i and j are on the same processor (xi,j = 0),
we find back the original term li,jα, otherwise we obtain a negative term li,jα−
li,jαmax which makes the constraint trivially satisfiable. This yields constraints
(12) and (13).

max α (9)
∑

k

ai,k = 1 ∀i (10)

xi,j ≤ 2 − ai,k − aj,k ∀k, ∀(i, j) ∈ G, i < j (11)

tj − ti + gi,jqi,j ≥ li,jα − αmaxli,jxi,j ∀(i, j) ∈ G, i < j (12)

tj − ti + gi,jqi,j ≤ gi,j − lj,iα + αmaxlj,ixi,j ∀(i, j) ∈ G, i < j (13)

ti ∈ Z ∀i (14)

qi,j ∈ Z ∀(i, j) ∈ G, i < j (15)

xi,j ∈ [0, 1] ∀(i, j) ∈ G, i < j (16)

ai,k ∈ {0, 1} ∀k,∀i (17)

Bounds on the offsets and quotients We can see that the previous system
is invariant under translation ti 7→ ti + niTi : if (ti) is feasible and if (ni) is a
vector of integers, then the solution (t′i) defined by t′i = ti +niTi is also feasible.
Since ti mod Ti = ti + niTi for some ni ∈ Z, we deduce that (ti mod Ti) is also
a solution. We can therefore impose additionnal bounds ti ∈ [0, Ti − 1]. More
generally, this remains true if we replace Ti with an updated period :

T ∗
i = lcm((gi,j)j∈G(i)) = gcd(Ti, lcm((Tj)j∈G(i))) (18)

The updated period T ∗
i always divide Ti (which we denote T ∗

i |Ti) and we
can have a strictly smaller value for example if a prime factor p only occurs in
one period Ti (or more generally if a factor p occurs with multiplicity m in Ti

but with strictly smaller multiplicities in any other periods of a task connected
to i). Indeed, even if the (Ti) are the initial parameters, only their GCD appears
in the constraints. Therefore, if a prime factor occurs in only one period, then
it completely disappear in the gi,j . By replacing the initial periods (Ti) by the
updated ones (T ∗

i ), we simply remove some irrelevant factors. In the following,
we will suppose that the periods have been updated to have no proper factors,
i.e. Ti = T ∗

i . Computing the image of the interval [0, Ti − 1] by expression (8)
immediately gives associated bounds on the quotients :

1 −
Tj

gi,j

≤ qi,j ≤
Ti

gi,j

(19)



In particular, if Tj |Ti then qi,j ≥ 0 (in fact qi,j ∈ [0, Ti/Tj ]), which shows that
in the harmonic case, we can impose positive variables. Conversely if Ti|Tj then
qi,j ≤ 1. Finally, if Ti = Tj , then qi,j ∈ {0, 1} which shows that the monoperiodic
case correspond to the case of binary variables.

Upper bound on the α-value Let i and j be two tasks on the same processor.
Then, constraint (4) gives the following upper bound : α ≤ gi,j/(li,j+lj,i). Taking
the integrality assumption into account, we get an even tighter upper bound :

α ≤ αi,j
max = max

(

1

li,j

⌊

gi,j

li,j + lj,i
li,j

⌋

,
1

lj,i

⌊

gi,j

li,j + lj,i
lj,i

⌋)

(20)

These bounds are illustrated on Figure 2. In the monoprocessor case, we de-
duce that αmax = mini,j αi,j

max is an upper bound on the value of α. In the mul-
tiprocessor case, we have at least the trivial upper bound αmax = maxi,j αi,j

max.
However, since αmax is used as a ‘big-M’ in the MILP formulation, we would
like the lowest possible value in order to improve the efficiency of the model.
For this, we solve a preliminary model, dealing only with the assignment (hence
without variables (ti) and (qi,j)), in which non-overlapping constraints (12-13)
are replaced by the following weaker constraint :

α ≤ αi,j
max + (αmax − αi,j

max)xi,j , ∀(i, j) ∈ G, i < j (21)

Intuitively, this constraint indicates that α should be less than αi,j
max if i and

j are assigned to the same processor (xi,j = 0), otherwise it is bounded by αmax

which is the trivial upper bound. Solving this model is much faster than for the
original one (less that 1s for instances with 4 processors and 20 tasks). It gives
us a new value αmax which can be used in the original model.

2 An equilibrium-based heuristic

2.1 Heuristic and the mutiprocessor best response method

The multiprocessor best response method The main component of the
algorithm is called the best response procedure. It takes its name from a game
theory analogy. Each task is seen as an agent which tries to optimize its own
assignment and offset, while the other assignments and offsets are fixed. Instead
of using a binary vector (ai,k) as in the MILP formulation, we represent an
assignment more compactly by a variable ai ∈ [1, P ]. For each agent i, we want to
define a method MultiProcBestResponsei which returns the best assignment
and offset for the task i, given the current assignment and offsets (tj , aj) of all the
tasks. In order to choose the assignment, an agent simply tries every possible
processor. On a given processor p, it tries to find the best offset, taking into
account the non-overlapping contraints with tasks currently one this processor.



More formally, the BestOffset
p
i procedure consists in solving the following

program :

(BOp
i ) max α (22)

s.t. lj,iα ≤ (ti − tj) mod gi,j ≤ gi,j − li,jα
∀j∈G(i)
aj=p (23)

ti ∈ Z (24)

α ≥ 0 (25)

Note that there are only two variables, ti and α, since the other offsets and
assignments (tj , aj)j∈G(i) are parameters. A method to solve this program will
be presented in section 2.2. Following the discussion in section 1.2, the previous
system is invariant under tranlation by Ti, and even by the possibly smaller value
T p

i = lcm((gi,j)j∈G(i)|aj=p). Hence, we can impose ti to belong to [0, T p
i − 1]. In

the same way, we can compute an upper bound on this program : αp
max =

minj∈G(i)|aj=p αi,j
max. If the current best solution found on previous processors is

already better than this upper bound, there is no way to improve the current
solution with this processor, hence we can skip it. The multiprocessor best-
response procedure is summarized in Algorithm 1.

Algorithm 1 The multiprocessor best-response

1: procedure MultiProcBestResponsei((tj)j∈I , (aj)j∈I)
2: ⊲ We start with the current processor ai, which has priority in case of equality
3: newai ← ai

4: (newti, α)← BestOffset
ai
i ((tj)j∈I , (aj)j∈I)

5: for all p 6= ai do ⊲ We test the other processors
6: αp

max ← minj∈G(i)
aj=p

αi,j
max ⊲ We compute an upper bound on α when i is on p

7: if αp
max > α then ⊲ An improvement can possibly be found on p

8: (x, β)← BestOffset
p

i ((tj)j∈I , (aj)j∈I)
9: if β > α then ⊲ An improvement has been found on p

10: newai ← p; newti ← x; α← β;
11: end if

12: end if

13: end for

14: return (newti, newai, α)
15: end procedure

The concept of equilibrium and principle of the method to find one

Definition 1. A solution (ti, ai) is an equilibrium iff no task i can improve its
assignment or offset using procedure MultiProcBestResponsei.

The heuristic uses a counter Nstab to count the number of tasks known to
be stable, i.e. which cannot be improved. It starts with an initial solution (for
example randomly generated) and tries to improves this solution by a succession



of unilateral optimizations. On each round, we choose cyclically a task i and
try to optimize its schedule, i.e. we apply MultiProcBestReponsei. If no
improvement was found, then one more task is stable, otherwise we update the
assignment and offset of task i and reinitialize the counter of stable tasks. We
continue until N tasks are stable. This is summarized in Algorithm 2.

Remark 1. The main reason for the use of integers is that it allows to guarantee
the convergence of the heuristic. The termination proof relies on the fact that
there is only a finite number of possible values for α (we refer to [1] for the proof
of termination and correction). This is not the case with fractional offsets, for
which the heuristic is unlikely to converge in a finite number of steps.

Algorithm 2 The heuristic

1: procedure ImproveSolution((tj)j∈I , (aj)j∈I)
2: Nstab ← 0 ⊲ The number of stabilized tasks
3: i← 0 ⊲ The task currently optimized
4: while Nstab < N do ⊲ We run until all the tasks are stable
5: (newti, newai, αi)← MultiProcBestResponse(i, (tj)j∈I)
6: if newti 6= ti or newai 6= ai then

7: ti ← newti; ai ← newai ⊲ We have a strict improvement for task i

8: Nstab ← 1 ⊲ We restart counting the stabilized tasks
9: α← αi

10: else ⊲ We do not have a strict improvement
11: Nstab ← Nstab + 1 ⊲ One more task is stable
12: α← min(αi, α)
13: end if

14: i← (i + 1) mod N ⊲ We consider the next task
15: end while

16: return (α, (tj)j∈I , (ai)j∈I)
17: end procedure

An equilibrium is only an approximate notion of optimum. Hence, in order to
find a real optimum, the idea is now to run the previous heuristic several times
with different randomly generated initial solutions, and to keep the best result,
following a standard multistart scheme.

2.2 The best-offset procedure on a given processor

We now need to implement the BestOffset
p
i method, i.e. solve (BOp

i ). Since
ti is integer and can be supposed to belong to [0, T p

i − 1], we can trivially solve
this program by computing the α-value for each of these offsets, using expression
(7), and select the best one. This procedure runs in O(TiN), hence any method
should at least be faster. In [1], the authors propose a method consisting in
computing the α-value only for a set of precomputed intersection points (in the
next section we will see that a fractional optimum is at the intersection of an
increasing and a decreasing line). This already improves the trivial procedure.
In the following, we present an even more efficient method.



Local (two dimensional) polyhedron We want to compute the local poly-
hedron which contains a reference offset t∗i . Locally, the constraint (ti − tj) mod
gi,j ≥ lj,iα is linear, of the form ti − oj ≥ lj,iα. Here, oj is the largest x ≤ t∗i
such that (x − tj) mod gi,j = 0. In the same way, we can compute the decreas-
ing constraint o′j − ti ≥ li,jα. In this case o′j is the smallest x ≥ t∗i such that
(o′j − x) mod gi,j = 0. By proposition 2 (see Appendix), we have :

oj = t∗i − (t∗i − tj) mod gi,j and o′j = t∗i + (tj − t∗i ) mod gi,j (26)

Therefore, we obtain a local polyhedron (see figure 4). Note that when (t∗i −
tj) mod gi,j > 0, we simply have o′j = oj + gi,j by proposition 1 (see Appendix).
However, when (t∗i − tj) mod gi,j = 0, we have oj = o′j = t∗i . In this case, the
polyhedron is degenerated since it contains only {t∗i }, and the α-value at t∗i
is zero. Instead of computing this polyhedron, we prefer to choose either the
polyhedron on the right, or on the left (see figure 5). If we choose the one on
the right, this amounts to defining o′j to be the smallest x > t∗i which sets the
constraint to zero. By proposition 2, we have o′j = t∗i + gi,j − (t∗i − tj) mod
gi,j . Therefore, this simply amounts to enforcing o′j = oj + gi,j . Choosing the
polyhedron on the left amounts to defining o′j using (26) and to enforcing oj =
o′j − gi,j .

Fig. 4. Selection of the polyhedron
containing a reference offset t∗i

Fig. 5. Two possibilities in the degen-
erate case α = 0

Solving the local best offset problem Once the local polyhedron has been
defined, the problem is now to solve the following MILP :

(Loc−BOp
i ) max α (27)

s.t. ti − lj,iα ≥ oj ∀j ∈ G(i), aj = p (28)

ti + li,jα ≤ o′j ∀j ∈ G(i), aj = p (29)

ti ∈ Z (30)

We can first search for a fractional solution, and for this we can use any
available method of linear programming. However, since the problem is a par-
ticular two dimensional program, we can give special implementations of these
methods. In the following, we present a simple primal simplex approach, which
runs in O(N2) in the worst case but has a good behaviour in practice. A local
polyhedron is delimited by increasing and decreasing lines, and the fractional
optimum is at the intersection of two such lines. Hence a natural way to find
the optimum is to try all the possible intersections between an increasing line,
of the form x− lj,iα = oj , and a decreasing line, of the form x + li,kα = o′k, and



to select the one with the smallest α-value. The coordinates of these intersection
points are given by5 :

x =
lj,io

′
k + li,koj

lj,i + li,k
and α =

o′k − oj

lj,i + li,k
(31)

Since there is at most N −1 lines of each kinds, the algorithm runs in O(N2).
In practice, a better approach (with the same worst case complexity) is to start
with a couple of increasing and decreasing lines, and alternatively to try to
improve the decreasing line (see Figure 6), then the increasing one (see Figure
7), and so on, until no improvement is made. The overall solving process is
illustrated on Figure 8.

Fig. 6. The lowest intersection point of a
fixed increasing line with decreasing lines

Fig. 7. The lowest intersection point of a
fixed decreasing line with increasing lines

Remark 2. Suppose we just improved the decreasing line (Figure 6) and we get
a new intersection point. We know that the whole local polyhedron lies inside
the cone oriented below and defined by the increasing and the decreasing line.
Then all the decreasing lines with a smaller slope than the new decreasing line,
i.e. with a larger delay lj,i, lie completely outside this cone, and therefore cannot
be active at the optimum. We can therefore drop these lines in the subsequent
rounds. The same is true for the increasing lines.

This gives us a method to compute an integral solution in O(N2) since once
a fractional solution has been found, we can deduce an integral solution with
an additional computation in O(N). Indeed, if x is integer, then (x, α) is the
desired solution. Otherwise we can compute the α-values α− and α+ associated
with ⌊x⌋ and ⌈x⌉ and take the largest one. Note that since ⌊x⌋ (resp. ⌈x⌉) is on
the increasing phase (resp. decreasing phase), only the corresponding constraints
are needed to compute α− (resp. α+) :

α− = min
j∈G(i)
aj=p

(⌊x⌋ − oj)/lj,i and α+ = min
k∈G(i)
ak=p

(o′k − ⌈x⌉)/li,k (32)

We call this a primal approach since this is essentially the application of
the primal simplex algorithm. However the primal simplex is not applied on
(Loc−BOp

i ) but on its dual. A dual approach is illustrated on Figure 9. From

5 Note that in the computation only the α-coordinate is needed since the x-coordinate
of the selected intersection point can be computed afterward by x = oj + lj,iα



a theoretical perspective, this approach is outperformed by Megiddo algorithm
[7] which allows to find a solution in O(N). However Megiddo algorithm is more
complex and generally slower in practice.

Fig. 8. Finding the fractional optimum
with a primal simplex approach

Fig. 9. Finding the fractional optimum
with a dual simplex approach

The case of processing times In the case of processing times, no such refine-
ment as Megiddo algorithm is needed in order to obtain a complexity in O(N).
In fact, in this case the primal simplex method already runs in O(N). The rea-
son is that in this case, the algorithm stop after three phases. Indeed, we first
search for a better decreasing line. However, in the case of processing times, we
have li,j = pi. Since the delays li,j gives the slope of the decreasing lines, this
implies that all of them have the same slope −1/pi (see Figure 10). Thus, even
if initially there are N − 1 decreasing lines with equations o′j − x = αpi, the one
with the smallest o′j will be selected after this first phase. In a second phase, we
search for a better increasing line. In the third phase, we will not find a better
decreasing line, therefore we have the optimal value.

Fig. 10. All the decreasing lines are parallel in the case of processing times

Finding the next improving offset In section 1.1, we explained how the
equilibrium-based heuristic replaces a mechanism to push a task to the next
feasible location, by one which search for the best location with respect to an
additional objective α. The former has the drawback that it does not always pro-
duce a solution. However, such a procedure is interesting anyway to implement
the best-response method. Indeed, after a first local optimization, we obtain a
current solution xref with a value αmin. In the rest of the procedure, we are only
interested by polyhedra which could improve this value. As αmin is improved,
more and more polyhedra will lie completely below this level and will be skipped
(see darker polyhedra in Figure 11).

Fig. 11. Propagating up to the next strictly improving offset



Starting from a current solution xref with value αmin, we want to find a new
integer solution x greater than the current solution which strictly improves its
value. Hence, this solution should satisfy :

αminlj,i < (x − tj) mod gi,j < gi,j − αminli,j
∀j∈G(i)
aj=p (33)

However, since the middle expression gives an integer value, we can round
the bounds and obtain the equivalent interval constraint (35). Moreover, among
all the possible solutions, we would like to find the smallest one :

min x (34)

s.t. ⌊αminlj,i⌋ + 1 ≤ (x − tj) mod gi,j ≤ gi,j − ⌊αminli,j⌋ − 1 ∀j∈G(i)
aj=p (35)

x ∈ [xref, xend) (36)

Here, xend (which will be defined in the next section) indicates when to stop
the search (since there is possibly no strictly improving solution). In order to
solve this program, we will start with x = xref and propagate until we find a
feasible solution. Since we are only interested by contraints associated with tasks
j ∈ G(i) currently on processor p, i.e. satisfying aj = p, we define Np

i to be the
number of such contraints, and we suppose that these contraints are numbered
from 0 to Np

i − 1. On a given round, we choose a constraint j and check if it
is satisfied. We could check the two inequalities of the interval constraint (35),
however we can also remark that this is equivalent to :

(x − tj − ⌊αminlj,i⌋ − 1) mod gi,j ≤ gi,j − ⌊αminli,j⌋ − ⌊αminlj,i⌋ − 2 (37)

Therefore we can compute r = gi,j − (x − tj − ⌊αminlj,i⌋ − 1) mod gi,j . If r <
⌊αminli,j⌋+⌊αminlj,i⌋+2, the constraint is violated. In this case, we compute the
smallest offset x′ strictly greater than the current one, and which satisfies the
current constraint, i.e. we compute x′ > x such that (x′−tj−⌊αminlj,i⌋−1) mod
gi,j = 0. By proposition 2, we have x′ = x + r. For this offset x′, the current
constraint is now verified. We set x = x′ and continue the process with the
next constraint. We cycle along the constraints, until no update is made during
Np

i successive rounds or the offset x becomes greater or equal than xend. In the
former case, all the constraints are satisfied by the current offset, otherwise there
is no solution and we return the special value ∅. This procedure is summarized
in algorithm 3. It runs in O(Np

i n′
poly) where n′

poly is the number of polyhedra

on the interval [xstart, xend) 6. In the worst case, all the tasks are on the same

6 Let us define a phase to be N
p

i consecutive iterations and let us show that after 2
phases, the current offset x doesn’t lie in the same local polyhedron. Note that after a
phase, the algorithm either stops or an update has been made. Consider a constraint
j updated during the second phase. If j was not updated during the first phase, then
this contraint was satisfied during the first phase (hence the current offset was in a
given polyhedron of Figure 2), but violated during the second. Therefore, at the end
of second phase, the offset has been pushed to the next polyhedron of Figure 2. If j

was already updated during the first phase, then the current offset has been pushed
forward to the next feasible solution two times for this constraint. Therefore, the
local polyhedron has also changed.



processor and we traverse the whole period, hence a complexity in O(Nnpoly)
which is bounded by O(NTi).

Algorithm 3 A propagation procedure to find a feasible integral solution

1: procedure FindImprovingIntegralSolution(αmin, xref, xend)
2: x← xref ⊲ The current offset
3: Nsat ← 0 ⊲ The number of satisfied constraints
4: j ← 0 ⊲ The current constraint evaluated
5: while Nsat < N

p

i do

6: r ← gi,j − (x− tj − ⌊αminlj,i⌋ − 1) mod gi,j

7: if r ≥ ⌊li,jαmin⌋+ ⌊lj,iαmin⌋+ 2 then

8: Nsat ← Nsat + 1 ⊲ One more constraint is satisfied
9: else

10: x← x + r ⊲ Otherwise, we go to the first feasible offset
11: if x ≥ xend then return ∅ ⊲ We reach the end without solution
12: Nsat ← 1 ⊲ We restart counting the satisfied constraint
13: end if

14: j ← (j + 1) mod N
p

i ⊲ We consider the next constraint
15: end while

16: return x

17: end procedure

Solving the best response problem We are now able to describe a procedure
which solves (BOp

i ). We saw that ti can be supposed to belong to [0, T p
i −1]. More

generally we can start at any initial offset xstart, for example the current value
of ti, and we run on the right until we reach the offset xend = xstart +T p

i . We can
compute the local polyhedron (on the right) which contains the current offset.
Using the primal simplex method, we solve the associated problem (Loc−BOp

i ).
We obtain a new local optimum (xref, αmin). We then use the propagation pro-
cedure to reach the next improving solution. We are in a new polyhedron and
we restart the local optimization at this point, which gives us a better value.
We continue until the propagation mechanism reaches xend (see Figure 11). In
the end, we obtain a best offset ti ∈ [xstart, xend). If needed, we can consider
ti mod T p

i which is an equivalent solution in [0, T p
i − 1].

If we use Megiddo algorithm to solve the local problems, or if we use the
primal simplex approach in the case of processing times, this procedure runs
in O(Nnpoly). If we use the primal simplex approach, the local optimizations
run in O(N2), however most of the polyhedra are skipped by the propagation
mechanism which runs in O(Nnpoly).

3 Results

We test the method on non-harmonic instances generated using the procedure
described in [4] : the periods are choosen in the set {2x3y50 | x ∈ [0, 4], y ∈ [0, 3]}
and the processing times are generated following an exponential distribution and
averaging at about 20% of the period of the task.



Table 1 presents the results on 15 instances with N = 20 tasks and P = 4
processors. Columns 8-10 contain the results of our new version of the heuris-
tic. The value start10s represents the number of time the heuristic was launched
with different initial solutions during 10s. The value startsol represents the num-
ber of starts needed to obtain the best result. Hence, the quantity timesol =
10startsol/start10s gives approximately the time needed to obtain this best re-
sult. Column timesol of the MILP formulation (columns 2-3) represents the time
needed by the Gurobi solver to obtain the best solution during a period of 200s7.
In addition to being much faster, the heuristic sometimes obtains better results
(see instances 1 and 3). This table also includes the results of the original heuris-
tic presented in [1, 2] (columns 4-7). In fact, we test the same instances that were
used by these authors. However, the way they measure performances differs from
ours. For their results, the heuristic was started several times with different ini-
tial solutions until a bayesian test was satisfied, which gives a value timestop.
We abandoned this bayesian test because the results on column 4 show that on
a lot of instances, the process stops with a solution which is far from the best
solution found by the MILP. However, since the value timesingle represents the
time needed for a single run of their version of the heuristic, we can compute
a value starts10s = 10/timesingle which measures the average number of starts
performed by the original heuristic in 10s. Compared with the equivalent value
start10s (column 10), we see that our version of the heuristic is incomparably
faster (about 3200 times on these instances).

MILP (200s) Original heuristic [2] (bayesian test) New heuristic (10s)

id αM
IL

P

ti
m

eso
l

αhe
ur

is
ti
c

ti
m

est
op

ti
m

esi
ng

le

st
a
rt
s1

0s

αhe
ur

is
ti
c

st
a
rt
ss

ol

st
a
rt
s1

0s

ti
m

eso
l

0 2.5 159 2.3 101.33 1.43 7 2.5 30 15062 0.01992
1 2 18 2.01091 5064.67 3.27 3.06 2.01091 15 15262 0.00983
2 1.6 6 1.40455 869.45 1.52 6.58 1.6 2 11018 0.00182
3 1.6 4 1.6 8704.45 4.34 2.3 1.64324 45 11970 0.03759
4 2 5 1.92 1115.51 3.48 2.87 2 1 10748 0.00093
5∗ 3 7 1.43413 1498.21 1.63 6.13 3 1 20428 0.00049
6 2.5 54 2.3 101.25 1.44 6.94 2.5 30 20664 0.01452
7 2 19 2 302.27 0.23 43.48 2 1 14040 0.00071
8 2.12222 8 1.75794 871.8 1.03 9.71 2.12222 3 17365 0.00173
9∗ 2 11 2 3541.79 2.42 4.13 2 3 26304 0.00114
10 1.12 6 0.87 368.44 0.72 13.89 1.12 69 28778 0.02398
11 2.81098 20 0.847368 478.63 3.78 2.65 2.81098 7 13355 0.00524
12 1.5 7 1.5 313.74 0.27 37.04 1.5 4 11444 0.00350
13 1.56833 49 1.5 3293.33 1.77 5.65 1.56833 1 25997 0.00038
14 2 8 2 3873 1.85 5.41 2 2 21606 0.00093

Table 1. Results of the MILP, the heuristic of [1], and the new version of the heuristic
on instances with P = 4 processors and N = 20 tasks

These good results have encouraged us to perform additional tests on big in-
stances (50 processors, 1000 tasks). Table 2 presents the results for 10 instances,
where starts1000s is the number of runs performed during 1000s, startssol is the

7 We fix a timeout of 200s because the solver almost never stop even after 1h of CPU
time (except for instances 5 and 9 for which optimality has been proved in 7s and
20s respectively).



round during which the best solution was found, timesol is the corresponding
time, and timesingle is the average time for one run. This shows that our heuristic
can give feasible solutions (α ≥ 1) in about 1min, while these instances cannot
even be loaded by the MILP solver. In order to evaluate the contribution of
the propagation mechanism to the solving process, we also present results where
the propagation has been replaced by a simpler mechanism : once we are at a
local optimum, we follow the decreasing line active at this point, until we reach
the x-axis; this gives us a next reference offset and therefore a next polyhedron.
While the impact of the propagation is quite small in the case of small instances,
we see on these big instances that the propagation mechanism accelerates the
process by a factor of 37 (average ratio of the two timesingle values).

With propagation Without propagation

id αhe
ur

is
ti
c

st
a
rt
ss

ol

st
a
rt
s1

00
0s

ti
m

eso
l

ti
m

esi
ng

le

αhe
ur

is
ti
c

st
a
rt
ss

ol

st
a
rt
s1

00
0s

ti
m

eso
l

ti
m

esi
ng

le

0 1 6 386 13.2 2.59 1 6 16 405.45 66.07
1 1.16452 35 200 197.6 5.01 1.05 5 6 885.06 177.9
2 1.1 78 111 694.17 9.04 1.04 1 4 405.32 261.19
3 1.21795 8 86 62.57 11.69 1.176 1 4 157.18 300.03
4 1 1 105 7.24 9.57 1 1 4 306.34 309.70
5 1.66555 114 121 952.62 8.30 1.58795 1 2 800.95 798.01
6 1 6 240 26.49 4.17 1 6 15 403.05 72.29
7 1.2 37 88 484.91 11.54 1 1 4 278.17 235.44
8 1.39733 47 83 468.93 12.09 1.21127 2 2 1237.5 618.75
9 1.2 1 77 20.58 13.29 1.2 1 2 420.58 487.03

Table 2. Results of the new version of the heuristic on instances with P = 50 processors
and N = 1000 tasks, with timeout = 1000s

4 Conclusion

In this paper, we have proposed an enhanced version of a heuristic, first presented
in [1, 2], and allowing to solve a NP-hard strictly periodic scheduling problem.
More specifically, we present an efficient way to solve the best-response problem.
This solution procedure alternates between local optimizations and an efficient
propagation mechanism which allows to skip most of the polyhedra. The results
show that the new heuristic greatly improves the original one and compares
favorably with MILP solutions. In particular, it can handle instances out of
reach of the MILP formulation.

A Appendix

Proposition 1. If x mod a = 0, then (−x) mod a = 0, otherwise (−x) mod a =
a − x mod a. In particular x mod a > 0 ⇔ (−x) mod a > 0.

Proposition 2. (1) The smallest y ≥ a such that (y − b) mod c = 0 is given by
y = a+(b−a) mod c. (2) The smallest y > a such that (y−b) mod c = 0 is given
by y = a+ c− (a− b) mod c. (3) The largest y ≤ a such that (y− b) mod c = 0 is
given by y = a− (a−b) mod c. (4) The largest y < a such that (y−b) mod c = 0
is given by y = a − c + (b − a) mod c.



References

1. A. Al Sheikh. Resource allocation in hard real-time avionic systems - Scheduling
and routing problems. PhD thesis, LAAS, Toulouse, France, 2011.

2. A. Al Sheikh, O. Brun, P.E. Hladik, B. Prabhu. Strictly periodic scheduling in
IMA-based architectures. Real Time Systems, Vol 48, N◦4, pp.359-386, 2012.

3. A. Bonfietti, M. Lombardi, L. Benini, M. Milano, Global Cyclic Cumulative Con-
straint, Proceedings of CPAIOR, pp.81-96, 2012

4. F. Eisenbrand, K. Kesavan, R.S. Mattikalli, M. Niemeier, A.W. Nordsieck, M.
Skutella, J. Verschae, A. Wiese. Solving an Avionics Real-Time Scheduling Problem
by Advanced IP-Methods. ESA 2010, pp.11-22, 2010.

5. C. Hanen, A. Munier. Cyclic Scheduling on Parallel Processors: An Overview. Uni-
versité P. et M. Curie, 1994.

6. J. Korst. Periodic multiprocessors scheduling. PhD thesis, Eindhoven university of
technology, Eindhoven, the Netherlands, 1992.

7. N. Megiddo. Linear-Time Algorithms for Linear Programming in R3 and Related
Problems. SIAM J. Comput., Vol 12, N◦4, pp.759-776, 1983.


