
HAL Id: hal-00784338
https://hal.science/hal-00784338

Submitted on 4 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance evaluation of In-Deep Class Storage for
Flow-Rack AS/RS

Olivier Cardin, Pierre Castagna, Zaki Sari, Nihad Meghelli

To cite this version:
Olivier Cardin, Pierre Castagna, Zaki Sari, Nihad Meghelli. Performance evaluation of In-Deep
Class Storage for Flow-Rack AS/RS. International Journal of Production Research, 2012, 50 (22-24),
pp.6775-6791. �10.1080/00207543.2011.624561�. �hal-00784338�

https://hal.science/hal-00784338
https://hal.archives-ouvertes.fr

Performance evaluation of In-Deep Class Storage for Flow-Rack
AS/RS

Olivier Cardin a, Pierre Castagna a, Zaki Sari b, Nihad Meghelli b

a LUNAM Université, IUT de Nantes – Université de Nantes, IRCCyN UMR CNRS
6597 (Institut de Recherche en Communications et Cybernétique de Nantes), 2 avenue
du Pr Jean Rouxel – 44475 Carquefou
b Manufacturing Engineering Laboratory of Tlemcen (MELT), B.P 230, 13000
Tlemcen, Algeria

Corresponding Author : Olivier Cardin : olivier.cardin@irccyn.ec-nantes.fr;
Tel : +33 (0) 228092020 ; Fax : +33 (0) 228092021

Provide short biographical notes on all contributors here if the journal requires them.

Performance evaluation of In-Deep Class Storage for Flow-Rack
AS/RS

This article presents a new storage-retrieval method, called In-Deep Class
Storage, designed for Flow-Rack AS/RS. If class-based storage is a well
known method a lot studied in literature, this method is based on the statement
that it is more efficient to dedicate the front layers of each bin to the class of
the most popular items, rather than dedicating whole bins close to the drop-off
station, as already studied in the literature. Obviously, this idea is not trivial to
implement, due to the dynamic behavior of such racks. Thus, two separate
algorithms were defined, one for storage, one for retrieval, enabling a dynamic
use of our approach, with the only hypothesis of a Pareto distribution of the
items demand. This article finally presents a simulation study, designed to
compare the performance of random storage and retrieval to the use of the
algorithms. This study shows significant improvement of the expected retrieval
delay, which was chosen as the main performance indicator.

Keywords: flow-rack automated storage and retrieval systems (flow-rack
AS/RS); storage and retrieval heuristic; class-based storage; simulation with
discrete events; performance assessment; in-deep class storage

1 Introduction
Automated storage and retrieval systems (AS/RS) have been widely used not only as

alternatives to traditional warehouses, but also as a part of advanced manufacturing

systems (Lee, 1997). Today, because of the drastic development of B2C (business to

consumer), the AS/RS has become an important link in the supply chain. They make

it possible to improve the productivity in organizations of manufacture and

distribution, in order to reduce the storage cost, to improve the progress of items and

storage management. They have a great flexibility of interfacing with other

components of FMS (Materiel handling, control) and can manage items of any kind

(tools, raw materials, pallets, products, support) with quick responses to maintain the

demands of manufacturing, warehousing, and distribution applications. Moreover,

they have a minimal use of space (Allen, 1992).

Between 1994 and 2004, there was a significant increase in the number of

AS/RSs used in the industrial environments in the United States (Roodbergen and

Vis, 2009). During the last decades several types of AS/RS were developed to treat

the growing number of different references of products to store. There exist various

types of AS/RS. They are differentiated by their weight, their size and the storable

volume of loads. Examples of these are: unit-load, mini-load, deep rack, slipping rack,

deep-lane and flow-rack system (Bozer and White, 1984, and Sari et al., 2005).

The flow rack AS/RS is a deep rack made up of a whole of bins whose

supports are gravitational conveyors. Two S/R machines are at the two ends, one on a

face ensuring storage and the other on the opposite face ensuring retrieval. Both

machines are connected by a restoring conveyor inclined in opposite direction making

it possible to items to travel from retrieval face to storage face. Consequently storage

machine can reach items to restore them. Other storage rack designs are examined

nowadays, such as turnover-based storage racks (Yu and De Koster, 2009). This kind

of rack enables the use of only one machine for storage and retrieval. These racks are

not considered in this study.

This article defines a new storage-retrieval method, called In-Deep Class

Storage, designed for Flow-Rack AS/RS. If class-based storage is a very well known

method a lot studied in literature, this method is based on the statement that it is more

efficient to dedicate the front layers of each bin to the class of the most popular items,

rather than dedicating whole bins close to the drop-off station, as already studied in

the literature. Obviously, this idea is not trivial to implement, due to the dynamic

behavior of such racks. Thus, two separate algorithms were defined, one for storage,

one for retrieval, enabling a dynamic use of the method, with the only hypothesis of a

Pareto distribution of the demand of items.

After a literature survey of the various approaches of storage in a standard

AS/RS, in particular the works on class-based storage, the principle of In-Deep Class

Storage is defined, and a validation study is presented. Then, both the algorithms are

presented in detail. This article finally presents a simulation study, designed to

compare the performance of random storage and retrieval to the use of the algorithms.

2 Class-based storage in literature

2.1 Performance evaluation of dynamic storage/retrieval algorithms
Numerous algorithms were developed in literature, concerning many different types

of AS/RS. For example, Park et al. (2003) and Park et al. (2006) studied and analyzed

the performances of a mini-load AS/RS with 2-classes. Caron et al. (1998) and Caron

et al. (2000) proposed a model of cycle time for a 2-block warehouses (i.e., one

middle cross aisle) with a cube-order-index (COI)-based storage.

Ashayeri et al. (2002) used a geometric approach to calculate the cycle time

for a random storage. Le-Duc and De Koster (Le-Duc and De Koster, 2004), (Le-Duc

and De Koster, 2005), (Le-Duc and De Koster, 2007), as well as Roodbergen (2001)

estimated the cycle time of a retrieving by batches, i.e. gathering several requests for

retrieval in a delivery, in order to reduce the expected retrieval delay. As this paper

states that the delivery request of items are treated with FCFS rule, i.e. without trying

to batch these requests, these works are not detailed anymore.

Mansouri (1997) and Eldemir et al. (2004) developed analytic expressions of

cycle time in the case of dedicated storage. In the case of the flow rack AS/RS, the

expected retrieval delay for a random storage, i.e. without studied rule of storage of

the references, is rather not very powerful (Sari et al., 2005).

Gaouar et al. (Gaouar et al., 2005), (Gaouar et al., 2006) developed

storage/retrieval heuristic to reduce this expected retrieval delay. The heuristic is

developed so as to store the products of same references in the same bin with more

close to the drop-off station. This heuristic has allowed a great improvement of the

expected retrieval delay. Thus, considering the example of a system with 1000 storage

segments (10x10x10) using random storage, and this same system using the

storage/retrieval heuristic for 200 different references, the saving of retrieval delay is

on average 40% .

Yu and De Koster (2011) developed a heuristic to optimize the performance in

sequencing the retrievals in a multi-deep rack. This heuristic allowed a great

improvement compared to the simple First Come First Served rule. In a first

approach, this paper only focuses on the problem of single command, a next step

being the evaluation of this heuristic on racks using In-Deep Class storage.

2.2 Performance evaluation of class based storage
Eldemi et al. (2004) proposed a new analytical model for the AS/RS to determine the

cycle time and space required for storage using different storage methods: dedicated,

random and class-based. From this model, they deduced that the use of class-based

storage requires less storage space than the use of random storage or dedicated

storage, and moreover, the storage and retrieval delay are lower.

Muppani and Adil (2008) developed a nonlinear integer programming model

combined with a Branch & Bound algorithm to compare class-based storage to

dedicated storage, considering the storage space and its cost, handling cost and order

picking for class-based storage. The approach presented has demonstrated that there

are significant savings in using class-based storage policy, although the dedicated and

random policies are commonly used in warehouse storage planning.

Although these results were determined on unit-load racks, they tend to prove

the efficiency of class-based storage in any configuration, including deep racks. Next

section presents the works related to the geographical location of classes in the racks.

2.3 Geographical layout of classes
Hausman et al. (1976) were among the first to consider the problem of class-based

storage in an AS/RS with simple cycle, by using the ABC curve.

According to the policy of class-based storage, the products in the store are

divided into groups based on their frequency of input/output. These groups of

products are assigned to a region (class) where the number of regions is equal to the

number of groups. The allocation of group of items to the regions is made according

to the frequency of input/output. Thus, the region that gives rise to the lowest

expected retrieval delay (including restoring) is assigned to the group of articles with

the highest frequency. This process continues until the area giving the highest

expected retrieval delay is assigned to the group of items with the lowest frequency.

The main contribution of (Hausman et al., 1976), studied deeper in Rosenblatt

and Eynan (1989) and Eyan and Rosenblatt (1994), was to determine optimal shape of

the bins assignation to classes in order to lower the average retrieval delay by

assigning regions of bins to specific classes (Figure 1) in an unit-load rack. This

choice explains the position of classes (Figure 1), drawing arcs around the delivery

station. In a deep rack, optimality is not valid anymore, as the restoring station is not

taken into account. Yu et al. (2009b) lead the same type of study on a specific deep

rack. Obviously, these results cannot be directly applied in this work, as the class

limits cannot be drawn on the faces, but are located in the depth of the rack.

<Please insert Figure 1 here>

Furthermore, Graves et al. (1977) showed by simulation that the L-shaped of

different regions, for class-based storage, are not necessarily optimal for square racks.

Guenov and Raeside (1992) compared three configurations of the shape of zones in an

AS/RS. They conclude that the zone configuration for class-based storage depends on

the position of the pickup/drop-off stations from the rack for a unit-load AS/RS,

which is also applicable in the case of deep racks.

2.4 Optimal number of classes
Speaking about class storage, several authors dealt with the problem of optimal

number of classes to be used in a context of AS/RS storage.

Rosenblatt and Eynan (1989) and Eynan and Rosenblatt (1994) sought to

determine the optimal number of classes for an AS/RS using the method of Hausman

et al. (1976) presented before. They concluded that it is preferable to use unit-load

racks with a Shape factor b ≥ 0.6 and less than 7 classes. Ashayeri et al. (2002) have

developed a heuristic approach to determine the number of classes and the location of

the storage areas for class-based storage in an AS/RS. The algorithm determines the

size and number of zones, and their arrangement on the rack of AS/RS.

Ha and Hwang (1994) have shown that 2-class-based storage assignment

policy reduces significantly the storage time and the retrieval delay of both single and

double commands over randomized storage assignment policy in a carousel system.

As a conclusion, all these studies show the importance of studying the

performance of the methods of storage in the storage rack, especially through the

performance criterion of the expected retrieval delay.

3 In-deep class storage

3.1 Studied Flow-Rack
In this study, the pickup station is located at the corner down the front of storage and

drop-off station at the corner down the other side. The optimal dwell points, as

determined by Peters et al. (1996), are the pickup station for the storage machine and

mid-point of the rack for retrieval machine.

As shown in Figure 2, a rack has a height H, a length L and depth D. It is

composed of bins containing M storage segments arranged in a multi-layer matrix

composed of Nl horizontal bins, Nh vertical bins and M layers numbered from 0

(retrieval face) to M-1 (storage face). In each storage segment, a single item can be

stored.

<Please insert Figure 2 here>

The storage machine and retrieval machine may move simultaneously on two

axes (Chebyshev Travel – (Bozer et al., 1987)). These two axes form a plane parallel

to both sides of the rack. Storage/ retrieval machines have the same horizontal

velocity Vh and the same vertical velocity Vv.

In addition to Figure 2, the following definitions are used in this paper:

• Item: piece of goods to be stored in a storage segment;

• Bin: set of storage segments having the same coordinate (height and length) in

the retrieval face;

• Layer: set of storage segments located at the same depth. Each bin crosses the

same number of layers;

• Row: number of bins in the height dimension;

• Column: number of bins in the length dimension.

3.2 In-deep class storage principle and objective validation
The main idea is to work on the content of the layers. A previous work on the

classical class storage (Meghelli et al.,2010) showed that retrieving an item in the

second layer of a very well situated bin costs more time than retrieving an item in the

first layer of a poorly situated bin. As a matter of fact, the first objective is to store the

items in order to have the most popular items in the front layer. If this population of

items is called class A, then this defines a new class-based storage method, called in-

deep class storage in this paper. This section intends to show the relationship between

the tidiness of the rack and the performance of the retrieval of items in order to

validate the objective of this paper.

Due to the complexity of the definition of the algorithms, this paper only

presents the case of two classes. If this analysis is conclusive, a future work will

evaluate the pertinence of increasing the number of considered classes.

3.2.1 Storage Indicator
To be able to quantify the tidiness of the racks, an indicator called Storage Indicator

(SI) is defined. This indicator represents the number of times a class B item is stored

before a class A item. Considering this definition, a perfectly tidied-up rack has SI=0.

On the other hand, Table 1 gives the maximum SI that can be encountered for several

classical rack configurations. This maximum is calculated for 1 bin, and then

multiplied by the number of bins of the rack. Hence, for example, a rack of 10 rows,

10 columns and 10 layers full of items might have a SI=500 in the worst case. This is

calculated considering there are 100 bins, each of them having 10 items stored in this

exact order: Class B-A-B-A-B-A-B-A-B-A considering the first item in the front

layer. Each bin has thus RI=5, and the whole rack SI=500.

<Please insert Table 1 here>

3.2.2 Objective validation experiments
The experiments deal with the evaluation by simulation of the average retrieval delay

(ARD), considering the hypotheses described in section 4.1. Two separate

configurations were created, one with a perfectly tidied-up rack (configuration A),

and the other with totally randomly stored items (configuration B), both in the same

rack type.

Each simulation runs the same way. First, a random Pareto distribution

(k=0.15=constant) is generated to simulate the demand, different for each reference.

According to this distribution, the rack is filled up with items. In configuration A,

they are stored according to the number of items of each reference to be stored (the

most represented first). As a matter fact, class A is stored first, and thus SI cannot be

else than equal to zero. In configuration B, items are stored in a random order, in the

next randomly chosen bins with space available to store.

Then, a list of items to retrieve is determined according to the Pareto

distribution. For each item, the one which will be retrieved the quickest is

automatically chosen (according to next neighbor heuristic). The retrieval delay is

recorded, and a average retrieval delay is calculated. 30 replications of each

configuration were run in order to determine a confidence interval. Table 2 shows the

mean of every ARD and SI recorded for each replications, and the half-width of the

distribution (this value may be interpreted by saying "in 95% of repeated trials, the

sample mean would be reported as within the interval sample mean ± half width").

<Please insert Table 2 here>

As expected, the results show a larger retrieval delay for the randomly stored

racks, which confirm the hypothesis of dominance of configuration A versus

configuration B. The difference between the configurations is growing with the size

of the rack, which can be explained by the growing number of references available at

the same time in the rack, but is not so huge in percentage (5 to 15% in Table 2). This

can be explained by the high probability to have a popular product in a low layer even

though the storage is made randomly.

A second observation deals with SI for configuration B. In average, SI is about

one third of its maximum theoretical value (Table 1) with a low half-width. This

shows that random storage almost never gives the worst possible storage of the whole

rack.

This short experiment shows the relationship between the tidiness of the racks

and the performance of the retrieval of items, measured through the average retrieval

delay. Next section presents the algorithms which were created to implement these

principles.

3.3 In-deep class storage algorithms
Two separate algorithms were developed, one dedicated to storage, the other one

dedicated to retrieval. Both are triggered by:

• For the storage algorithm, detection of an item at the entrance station or

restore station;

• For the retrieval algorithm, reception of a delivery request.

As a matter of fact, storage algorithm has to start with a priority rule (Figure

3), giving priority to class A product, then to the entrance station. A discrimination

method between bins with the same potential was also defined. This method is based

on the geographic localization of the bin in the rack, considering the restore and the

entrance stations for storage algorithm, and the delivery station for the retrieval

algorithm.

<Please insert Figure 3 here>

3.3.1 Storage algorithm
The objective of this algorithm is to make consecutive sequel of items with the same

reference of class A (with the objective of dedicated bins), or sequel of class B items

so that the SI of the rack would not be increased.

Thus, the algorithm (Figure 4) starts by seeking bins which have the

corresponding reference located in the last layer. If none are found, then separate

algorithms are built, according to the class of the item (Figures 5 and 6).

<Please insert Figure 4 here>

<Please insert Figure 5 here>

<Please insert Figure 6 here>

For class A items (Figure 5), empty bins are preferred, in order to create new

dedicated bins. This preference is particularly useful for the initial storage of an empty

rack. In steady state, empty bins are not so rare, because of the retrieval algorithm

presented below. Then, the bins with the fewest class A items are promoted. This is

meant to avoid to store a class A item in a too high number layer, and thus restore

many class A items when retrieving this item. In case of several bins with the same

properties, the bins with the lowest total of items (i.e. the lowest total of class B

items) are promoted.

For class B items (Figure 6), the objective is to avoid storing them at an

annoying place (i.e. in a bin where class A items could potentially be stored later by

the algorithm). First, bins containing the maximum of the item’s reference are

promoted. It is very likely that this rule gives either a single solution or the whole rack

(minus the full bins) as possibilities, as class B items are relatively poorly represented

in the rack (rarely more than one or two items in the whole rack). In this group of

possibilities, the second rule aims to forbid storing this item in a bin with a class A

item in the last layer. Bins with the lowest SI and a class B item in the last layer are

first chosen, then the bins with the fewest items and at least a class B, in order to

avoid filling bins with only class A items.

3.3.2 Retrieval algorithmx
The objective of this algorithm is to retrieve an item with the satisfying reference in

the lowest layer. There again, the algorithm is different according to the class of the

desired item.

If it is a class A item which should be retrieved (Figure 7), the first action is to

determine the lowest layer where the item is located. If several bins have this item in

the first layer (numbered 0), the objective is to find those which also have an identical

item in the second layer. Indeed, as it is a class A item, the aim is to ensure a good

availability of the item in the low layers.

<Please insert Figure 7 here>

If it is not located in the first layer, then the bin which has the most class B

products in the lower layers is chosen. Hence, these class B items will be restored at

the back of the rack.

If it is a class B item (Figure 8), the first action is also to determine the lowest

layer where the item is located. If several bins have this item in the first layer, the

objective is to choose the item which will decrease the most the average layer of the

class A items located in its bin.

<Please insert Figure 8 here>

On the other hand, as several items have to be restored at the back of the rack

to be able to retrieve this item, the aim is to choose the bin with the least class A items

before the desired item to be retrieved.

4 Simulation study
A simulation study was performed in order to evaluate the performance of the

algorithms. To do so, a model was built on Rockwell Arena. Each algorithm is

programmed in a stand-alone VBA function. The main objective of using Visual

Basic was to be able to adapt these functions very easily in a real AS/RS command in

a later study. This section presents the assumptions made in the model, the validation

process and the experiments that were run.

4.1 Model and assumptions
The model is built so that each parameter of the rack can be modified with a single

variable: width, height, depth, load, Pareto distribution through its coefficient, speed

of the machines, etc. It is also easily possible to switch between the use of the

algorithms or a random rule, or to switch between different initial configurations of

the items in the rack.

On the other hand, it was decided not to take into account several physical

constraints. First, the load time, i.e. the time needed for the machines to load (or

unload) an item from (to) a bin. Indeed, on real AS/RS, taking this time into account

may or may not be crucial relatively to the speed of the machines. For example, in an

industrial AS/RS with potentially fragile and heavy items, the speed of the machines

is much less high than in a pharmaceutical AS/RS with generally very light items,

with a potentially identical load time. Obviously, a high load time requires the items

to be situated in a low layer, whatever bin the item is located in, whereas a low load

time gives less importance to the layer and more to the geographical location of the

bin. The algorithms that were presented try to optimize these two objectives, but the

layer position first. As a matter of fact, in average, these algorithms are supposed to

decrease the number of load times in the total retrieval delay. Thus, not taking into

account the load time is the worst situation for the comparison of our algorithms, and

this is why this hypothesis was considered.

Second constraint that is not taken into account is the availability of the

storage machine. Indeed, this machine generally has a single capacity, which impacts

the behavior of the restore queue in the restoring bin. Thus, between two separate

deliveries, there may be an important impact on the content of the rack because of the

presence of several items in the restore queue. The objective is to measure the average

retrieval delay, which requires being able to compare the values obtained for each

delivery. As a matter of fact, an infinite speed was assigned for the storing machine,

which is thus able to store all the items in no time.

The last assumption made in this paper deals with the distribution of item

references in the rack. As stated before, the Pareto distribution was chosen, as being

the classical probability distribution used to model the content of such stores. With

this distribution, a reference n°x among a maximum number of references xm has a

cumulated probability of 1− !
!!

!
 to enter the store (k is the Pareto distribution

coefficient). While filling up the rack, each time an item enters the entrance station, a

random number (between 0 and 1) is fired and determines its reference. Table 3

shows an example of the effect of the use of this distribution on the content of a rack.

<Please insert Table 3 here>

What can be noticed is that:

• Some references are not present in the rack, as they are considered

poorly popular. Of course, these references are not asked to be

delivered;

• The references are indexed in a not strict decreasing order of

popularity, i.e. the number of items of each reference is globally

decreasing with the index, but two consecutive references might not

follow this rule as it is randomly fired;

• The distribution of items references is stable along time, i.e. no new

evaluation of the classification of the items is necessary.

Another assumption that is made here is that the rack always contains the

same number of items, so that its load is constant. As a matter of fact, as soon as an

item is delivered, it is instantly entering the entrance station, and thus instantly stored,

due to the previous assumption. It is possible in the model to either fire a new

reference for this item, or to leave the item with the same reference.

4.2 Configuration of the experiments
This section presents the experiments that were run to evaluate the performance of

both algorithms presented before. As there are many parameters involved, having a

more or less important influence on the performance of each algorithm, the aim of this

section is to describe a classical configuration of the rack and of the behavior of the

demand.

First, about the configuration of the rack, among those described in section

3.a, was chosen:

• Width: 25 bins;

• Height: 25 bins;

• Depth: 10 places.

This was chosen in order to avoid having too much side effects due to a low

number of bins, a low number of references or a low number of items of each

references. To be able to store and retrieve items from a maximum of bins without

making a trivial problem, the average load of the system was set to:

• Average load: 75%.

• Then, about the Pareto distribution, several parameters have to be

fixed:

• Limit between class A and class B: 20% of items;

• Pareto coefficient: k=0.1, corresponding to 20% of references

representing 80% of the items ;

• Maximum number of references: Nref=3000.

This distribution was chosen as one of the most classical, as stated in De

Koster et al. (2007). Due to the objective of class storage, it is obvious that it is

necessary to have a clear difference between class A and class B, and this Pareto

coefficient is coherent with this objective.

Finally, it is necessary to define the initial state of the rack, as it is possible to

start with a randomly or perfectly (Si=0) tidied up rack. The choice here is to start

with randomly stored items, so that it is possible to see at which point the developed

algorithms enable a natural storage of the rack during its use.

4.3 Experimental design
Four separate experiment configurations were defined and are described on Table 4.

<Please insert Table 4 here>

For each of these configurations, a simulation study was run on Rockwell

Arena. For each experiment configuration, 30 replications were made, each of them

involving 100 000 retrievals, and the same 100 000 storages (same reference just after

the item was retrieved). Between each replication, the initial random configuration of

the rack was changed, as was the Pareto distribution. However, for a specific

configuration of the rack and of the distribution, each experiment was executed so that

the results could be more easily compared.

For each retrieval, the Retrieval delay (Rd) and the Storage indicator (Si) were

measured.

4.3.1 Rd measurement
The retrieval delay represents the time between the first move of the machine, always

starting from its dwell point located at the middle of the rack face, and the time the

item is delivered.

Obviously, there is no reason for two consecutive Rd measurements to be

correlated (Figure 9 shows the time of the first 100 retrievals of a replication in

configuration #1). This results in a very chaotic evolution of Rd along time. Thus, a

study was lead in order to determine whether a linear regression or a simple average

would be better to use to discriminate two storage/retrieval methods. Table 5 shows

the results of this study.

<Please insert Figure 9 here>

<Please insert Table 5 here>

First point to notice, the correlation coefficients are almost equal to zero. This

can be explained by the chaotic nature of the measurement. Then, the calculated

slopes are also almost equal to zero, with a low standard deviation. This tends to show

that the average of the average retrieval delay is enough to demonstrate the difference

between the configurations. This is what will be used in the rest of this study.

4.3.2 Si measurement
On the other hand, when storage algorithm is turned on (experiments #3 and #4), the

Si evolution cannot be approximated with a linear regression, as it clearly has a

decreasing evolution ending with a horizontal asymptote. As the measurements also

involve a relatively high level of noise, the comparisons will be made on the response

time (Rt).

In order to calculate Rt, a first step is to calculate the value of the horizontal

asymptote (Figure 10). This is made with an average on the last 10 000 retrievals: the

simulations were made on 100 000 retrievals to be sure these last 10 000 can be

considered as always being in the steady state. Then, response time at X% is defined

as the earliest date when the storage indicator is below the level of the horizontal

asymptote raised of X%.

<Please insert Figure 10 here>

5 Results and discussion

5.1 Average retrieval delay
Table 6 shows the average retrieval delay obtained from the simulations.

<Please insert Table 6 here>

The first conclusions that can be drawn from these results are:

(1) The retrieval algorithm makes the average retrieval delay decrease of

about 60 %.

(2) In addition with the storage algorithm, the decrease is 5 % more

important.

(3) The standard deviation is bigger when the storage algorithm is turned

on. This can be explained by the fact that, to try and optimize the

retrieval delay of class A items, class B items are located in high

number layers. As a matter of fact, class B products have a very high

average retrieval delay, which explains the higher standard deviation.

5.2 Storage indicator
Table 7 shows the difference of storage indicator between the experiments

<Please insert Table 7 here>

The additional conclusions that can be drawn from these results are:

(1) When the storage algorithm is turned off, the storage indicator does not

decrease.

(2) When the storage algorithm is turned on (experiments #3 and #4), the

storage indicator tends to a very low level. This rack having 625 bins,

Si=32 means that at least 593 bins are perfectly tied up, and only 32

class B items are in ahead of class A items. It has to be noted that a

level of Si=0 is very often achieved on smaller racks.

(3) The response time is a lot better in configuration #3, i.e. when the

retrieval algorithm is turned off (around –85% compared to

configuration #4). Once again, as this algorithm tries to optimize the

retrieval delay, it tends to retrieve items from low layers. As a matter

of fact, fewer items go back to the storing machine, and thus the

storage is less efficient.

5.3 Calculations
This simulation study was lead on a total of 12 000 000 retrieval orders. On a

common laptop (dual core at 2.3 GHz with 2 Gb of RAM), simulations lasted a total

of 1250 minutes. This means that 160 retrieval/storage orders were treated each

second by the Visual Basic algorithms. This is an important indicator for a future

industrial implementation, as it seems very likely to be implementable on classical

PLC controls.

6 Robustness of the algorithms
Many factors influence the performance of the algorithm: number and size of the bins,

shape of the rack, number of different references, load of the rack and statistic

distribution of the demand. A full study of these parameters’ influence will be carried

on in a next paper.

However, this section presents a robustness test aimed to validate the

algorithms with a variable set of data. The parameter which was chosen is the shape

of the distribution of items in the rack and of the demand. As shown in Table 8,

various Pareto distributions (differentiated with their Pareto coefficient) are compared

with a uniform distribution.

<Please insert Table 8 here>

First column of Table 8 shows the probability that item X1 is asked to be

retrieved P(X1). This reference is the most frequent in the whole rack. When in the

uniform case P(X1)= (Nref)-1, the probabilities for Pareto were calculated according to

the definition of section 4.2. This indicator is expressed to ease the understanding of

the evolution of parameter k.

With the same protocol as before, for each distribution, 30 replications of

100000 retrievals were simulated in order to mean the effects of the initial random

storage and the random order of retrieval.

First, the results show that the algorithms are a lot more efficient when the

most frequent items are very frequent (i.e. high k). This can be easily explained by the

fact that, as the parameter k is rising, it is more and more possible to fill complete bins

with items of the same reference. This tends to dedicated storage, which, when it is

possible, is the close to be the best way of storage.

Finally, the results of the uniform distribution are far less interesting than

Pareto. However, they are still better than those obtained in previous experiments with

configurations #1 and #3, i.e. with a random retrieval (Table 6). This is interesting as

it shows that, even if the distribution is not corresponding exactly to Pareto, the

algorithms are still efficient.

7 Conclusion
This article defines a new storage/retrieval method in Flow-Rack AS/RS, called In-

Deep Class Storage. The idea is to store the most popular items in the front layers of

each bin, so as to decrease the average retrieval delay of items in the rack. Two

algorithms were developed to prove the feasibility of the implementation of this

method.

A simulation study on a specific configuration of the rack was run, taking into

account the stochastic behavior of the demand. This study showed a reduction of more

than 60% of the average retrieval delay, compared to a random retrieval algorithm.

Two perspectives of this work will be developed shortly. First, a sensitivity

analysis will be run, in order to determine the influence of each of the many variables

on the performance of the algorithms. This analysis should explicit the optimal

configurations of application of the algorithms.

Then, a third algorithm, dedicated to decrease the Storage Indicator during the

machines free time, could be developed. This could be particularly relevant for

applications where there is no night shift.

8 Acknowledgement
This work was partially funded by the EGIDE organization, via the TASSILI

11 MDU831 program (reference 24323VD).

9 References
Allen, S. L. 1992. A selection guide to AS/R systems. Industrial Engineering, 24 (3),

p. 28-31.
Ashayeri, J., R. M. Heuts, M. W. T. Valkenburg, H. C. Veraarts, and M. R. Wilhelm,

2002. A geometrical approach to computing expected cycle times for zone-
based storage layouts in AS/RS. International Journal of Production
Research, 40(17), p. 4467-4483.

Bozer Y. A. and J. A.White, 1984. Travel time models for automated storage/retrieval
systems, IIE Transactions, 16(4), p. 329-338.

Bozer Y. A., E. C. Schorn, G. P. Sharp, 1987. Geometric approaches to solve the
Chebyshev travelling salesman problem, Technical Report, 87-29.

Caron, F., G. Marchet, and A. Perego, 1998. Routing policies and COI-based storage
policies in picker-to-part systems. International Journal of Production
Research, 36(3), p. 713-732.

Caron, F., G. Marchet, and A. Perego, 2000. Optimal layout in low-level picker-to-
part systems. International Journal of Production Research, 38(1), p. 101-117.

De Koster, R., T. Le-Duc, and K. J. Roodbergen, “Design and control of warehouse
order picking:A literature review”, European Journal of Operational Research
182 (2007) 481–501

De Koster, R., T. Le-Duc, and Y. Yugang, 2008.Optimal storage rack design for a 3-
dimensional compact AS/RS. International Journal of Production Research,
46(6), p. 1495-1514.

Eldemir F., R. J. Graves and C. J. Malmborg, 2004. New cycle time and space
estimation models for automated storage and retrieval system
conceptualization, International Journal of Production Research, 42 (22), pp.
4767-4783.

Eynan, A., M. J. Rosenblatt, 1994. Establishing zones in single-command class-based
rectangular AS/RS. IIE Transactions, 26(1), p. 38–46.

Gaouar N., Z. Sari, et N. Ghouali, 2005, Développement d’une Heuristique de
Stockage/Déstockage pour un Système AS/R à Convoyeur Gravitationnel. 6e
Congrès International de Génie Industriel, (GI’2005), 7-10 Juin 2005,
Besançon Micropolis, France.

Gaouar N., Z. Sari, et N. Ghouali, 2006, Modélisation et implémentation d’une
Heuristique de Stockage/Déstockage pour un Système AS/R à Convoyeur
Gravitationnel. 6ème Conférence Francophone de Modélisation et Simulation
(MOSIM’06), 3-5 avril 2006, Rabat, Maroc.

Graves, S. C., W. H. Hausman, and L. B. Schwarz, 1977. Storage-retrieval
interleaving in automatic warehousing systems. Management Science, 23 (9),
p. 935–945.

Guenov M. and Raeside R., 1992. Zone shapes in class based storage and
multicommand order picking when storage/retrieval machines are used.
European Journal of Operational Research, 58, p. 37-47.

Ha J-W and Hwang H., 1994. Class-based storage assignment policy in carrousel
system. Computers industries Engineering, 26 (3), p. 489-499.

Hausman, W. H., L. B. Schwarz, and S. C. Graves, 1976. Optimal storage assignment
in automatic warehousing systems, Management Science, 22 (6), p. 629–638.

Le-Duc, T. and R. De Koster, 2004. Travel distance estimation in a single-block ABC
storage strategy warehouse, In: Fleischmann and Klose (eds.) Distribution
Logistics: advanced solutions to Practical Problems, p. 185-202 (Berlin:
Springer Verlag).

Le-Duc, T. and R. De Koster, 2005. Travel distance estimation and storage zone
optimisation in a 2-block ABC-storage strategy warehouse. International
Journal of Production research, 43(17), p.3561-3581.

Le-Duc, T. and R. De Koster, 2007. Travel time estimation and order batching in a 2-
block warehouse. Report, European Journal of Operational Research, 176(1),
p. 374-388.

Lee, H. F., 1997. Performance analysis for automated storage and retrieval systems.
IIE Transactions, 29 (1), p.15-28.

Meghelli, N., Z. Sari, O. Cardin, and P. Castagna, Evaluation de la performance d’un
stockage par classes dans le contexte du stockage automatisé à accumulation
dynamique, In Actes de la 8e Conférence Francophone de Modélisation et
Simulation (MOSIM'10), Hammamet, Tunisie, 2010.

Muppani V. R. and G. K. Adil, 2008. A branch and bound algorithm for class based
storage location assignment. European Journal of Operational Research, 189
(2) p. 492-507

Park, B. C., R. D. Foley, J. A. White, and E. H. Frazelle, 2003. Dual command travel
times and miniload system throughput with turnover-based storage. IIE
Transactions, 35, p. 343–355.

Park, B. C., R. D. Foley, and E. H. Frazelle, 2006. Performance of miniload systems
with two-class storage. European Journal of Operational Research, 170, p.
144–155.

Peters B. A., J. S. Smith and T. S. Hale, 1996. Closed form models for determining
the optimal dwell point location in automated storage and retrieval systems,
International Journal of Production Research, 34(6), p. 1757-1771.

Roodbergen, K.J., 2001. Layout and routing methods for warehouses. Ph.D. Series,
Erasmus Research Institute of Management (ERIM).

Roodbergen K. J. and I. F. A. Vis, 2009. A survey of literature on automated storage
and retrieval systems. European Journal of Operational Research, 194, p.
343-362

Rosenblatt, M.J., and A. Eynan, 1989. Deriving the optimal boundaries for class-
based automatic storage/retrieval systems. Management Science, 35(12), p.
1519–1524.

Sari Z., C.Saygin, and N.Ghouali, 2005. Travel-Time Models for Flow-Rack
Automated Storage and Retrieval Systems, International Journal of Advanced
Manufacturing Technology, 25, p. 979-987.

Yu Y. and R. De Koster, 2009. Designing an optimal turnover-based storage rack for
a 3D compact automated storage and retrieval system, International Journal of
Production Research, 47(6), p. 1551 - 1571.

Yu Y. and R. De Koster, 2009b. Optimal zone boundaries for two-class-based
compact three-dimensional automated storage and retrieval systems, IIE
Transactions, 41(3), p. 194 – 208.

Yu Y. and R. De Koster, 2011. Sequencing Heuristics for Storing and Retrieving Unit
Loads in 3D Compact Automated Warehousing Systems, IIE Transactions,
doi: 10.1080/0740817X.2011.575441.

Rows	
 Columns	
 Layers	
 Total	
 Places	
 Max(SI)/bins	
 Max(SI)	

5	
 5	
 5	
 125	
 2	
 50	

10	
 10	
 10	
 1000	
 5	
 500	

25	
 25	
 10	
 6250	
 5	
 3125	

Table 1: Storage Indicator calculation examples for 100% full racks

Rows	
 Columns	
 Layers	
 Configuration	
 SI	
 SI	
 Half-­‐
width	

ARD	

mean	

ARD	

Half-­‐
width	

5	
 5	
 5	
 A	
 0	
 0	
 11.347	
 0.26678	

5	
 5	
 5	
 B	
 16.033	
 1.2575	
 11.906	
 0.33434	

10	
 10	
 10	
 A	
 0	
 0	
 31.896	
 0.26491	

10	
 10	
 10	
 B	
 145.06	
 2.9266	
 35.725	
 0.60016	

25	
 25	
 10	
 A	
 0	
 0	
 58.656	
 0.18138	

25	
 25	
 10	
 B	
 900.10	
 7.0537	
 67.796	
 0.70187	

Table 2: Objective validation experiments results

Re
fe
re
nc
e	

Q
ua

nt
ity

	

Re
fe
re
nc
e	

Q
ua

nt
ity

	

Re
fe
re
nc
e	

Q
ua

nt
ity

	

Re
fe
re
nc
e	

Q
ua

nt
ity

	

Re
fe
re
nc
e	

Q
ua

nt
ity

	

1	
 64	
 21	
 7	
 41	
 1	
 61	
 1	
 81	
 1	

2	
 50	
 22	
 4	
 42	
 2	
 62	
 1	
 82	
 2	

3	
 27	
 23	
 8	
 43	
 3	
 63	
 0	
 83	
 1	

4	
 12	
 24	
 4	
 44	
 3	
 64	
 2	
 84	
 1	

5	
 14	
 25	
 1	
 45	
 0	
 65	
 2	
 85	
 0	

6	
 11	
 26	
 3	
 46	
 4	
 66	
 0	
 86	
 1	

7	
 5	
 27	
 2	
 47	
 0	
 67	
 0	
 87	
 0	

8	
 6	
 28	
 1	
 48	
 5	
 68	
 2	
 88	
 0	

9	
 4	
 29	
 1	
 49	
 0	
 69	
 2	
 89	
 1	

10	
 10	
 30	
 3	
 50	
 2	
 70	
 1	
 90	
 0	

11	
 10	
 31	
 3	
 51	
 1	
 71	
 0	
 91	
 0	

12	
 1	
 32	
 1	
 52	
 2	
 72	
 1	
 92	
 0	

13	
 4	
 33	
 2	
 53	
 2	
 73	
 1	
 93	
 0	

14	
 9	
 34	
 2	
 54	
 1	
 74	
 1	
 94	
 1	

15	
 5	
 35	
 3	
 55	
 0	
 75	
 2	
 95	
 0	

16	
 11	
 36	
 1	
 56	
 0	
 76	
 2	
 96	
 1	

17	
 4	
 37	
 0	
 57	
 0	
 77	
 0	
 97	
 0	

18	
 1	
 38	
 2	
 58	
 1	
 78	
 0	
 98	
 1	

19	
 7	
 39	
 2	
 59	
 1	
 79	
 2	
 99	
 0	

20	
 6	
 40	
 2	
 60	
 0	
 80	
 3	
 100	
 1	

Table 3. Pareto distribution of 100 different references in a 10x10x5 rack with 75%
load

Experiment configuration Storage method Retrieval method

#1 Random Random

#2 Random Algorithm

#3 Algorithm Random

#4 Algorithm Algorithm

Table 4. Experiment configurations

Experiment Slope of linear
regression

Standard
deviation of the

slope

Correlation
coefficient

#1 8.0x10-­‐7	
 5.2x10-­‐5	
 7.5x10-­‐6	

#2 -5.2x10-­‐6	
 4.5x10-­‐5	
 1.2x10-­‐5	

#3 1.4x10-­‐5	
 5.0x10-­‐5	
 7.5x10-­‐6	

#4 -­‐3.4x10-­‐5	
 4.7x10-­‐5	
 3.6x10-­‐5	

Table 5. Linear regressions of retrieval delays

Experiment Average Retrieval
Delay

Standard
deviation

#1 768.4	
 1.4	

#2 300.4	
 2.2	

#3 762.8	
 5.5	

#4 259.5	
 5.1	

Table 6. Average retrieval delays

Experiment
Average Si

initial
value

Horizontal
asymptote

Rt(5%) Rt(20%)

Mean Standard
deviation Mean Standard

deviation
#1 650	
 651	
 #N/A	
 #N/A	
 #N/A	
 #N/A	

#2 650	
 667	
 #N/A	
 #N/A	
 #N/A	
 #N/A	

#3 633	
 31.75	
 6239	
 1623	
 4547	
 892	

#4 643	
 43.39	
 41059	
 8431	
 28092	
 6750	

Table 7. Storage indicator

Statistic distribution P(X1)
Retrieval delay

Average Standard
deviation

Uniform 0.03%	
 542.4	
 16.1	

Pa
re

to

k=0.01 8.98%	
 293.0	
 4.2	

k=0.05 10.33%	
 275.9	
 3.8	

k=0.1 12.15%	
 257.0	
 2.9	

k=0.2 16.21%	
 227.5	
 2.9	

k=0.5 29.83%	
 190.5	
 2.2	

k=1 50.02%	
 171.8	
 4.2	

Table 8. Item statistic distribution study results

Figure 1. Example of (Hausman et al., 1976) rack 3-class layout

Figure 2. Configuration of the studied flow rack AS/RS

Figure 3. Priority rule

Figure 4. Storage algorithm main framework

Figure 5. Storage algorithm for class A items

Figure 6. Storage algorithm for class B items

Figure 7. Retrieval algorithm for class A items

Figure 8. Retrieval algorithm for class B items

Figure 9. 100 first retrievals of a random replication in configuration (#1)

%$

#%%$

!%%%$

!#%%$

"%%%$

"#%%$

%$ "%$)%$ &%$ +%$!%%$

!E
%

K();./%"A%/.1/<.L,'$%

Figure 10. Definition of Rt on a random replication of configuration #4

0	

100	

200	

300	

400	

500	

600	

700	

800	

0	
 20000	
 40000	
 60000	
 80000	
 100000	

Si
	

Number	
 of	
 retrievals	

Si	
 evolu;on	
 Horizontal	
 asymptote	

