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Performance evaluation of In-Deep Class Storage for Flow-Rack 
AS/RS 
 

This article presents a new storage-retrieval method, called In-Deep Class 
Storage, designed for Flow-Rack AS/RS. If class-based storage is a well 
known method a lot studied in literature, this method is based on the statement 
that it is more efficient to dedicate the front layers of each bin to the class of 
the most popular items, rather than dedicating whole bins close to the drop-off 
station, as already studied in the literature. Obviously, this idea is not trivial to 
implement, due to the dynamic behavior of such racks. Thus, two separate 
algorithms were defined, one for storage, one for retrieval, enabling a dynamic 
use of our approach, with the only hypothesis of a Pareto distribution of the 
items demand. This article finally presents a simulation study, designed to 
compare the performance of random storage and retrieval to the use of the 
algorithms. This study shows significant improvement of the expected retrieval 
delay, which was chosen as the main performance indicator.  
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1 Introduction 
Automated storage and retrieval systems (AS/RS) have been widely used not only as 

alternatives to traditional warehouses, but also as a part of advanced manufacturing 

systems (Lee, 1997). Today, because of the drastic development of B2C (business to 

consumer), the AS/RS has become an important link in the supply chain. They make 

it possible to improve the productivity in organizations of manufacture and 

distribution, in order to reduce the storage cost, to improve the progress of items and 

storage management. They have a great flexibility of interfacing with other 

components of FMS (Materiel handling, control) and can manage items of any kind 

(tools, raw materials, pallets, products, support) with quick responses to maintain the 

demands of manufacturing, warehousing, and distribution applications. Moreover, 

they have a minimal use of space (Allen, 1992). 

Between 1994 and 2004, there was a significant increase in the number of 

AS/RSs used in the industrial environments in the United States (Roodbergen and 



Vis, 2009). During the last decades several types of AS/RS were developed to treat 

the growing number of different references of products to store. There exist various 

types of AS/RS. They are differentiated by their weight, their size and the storable 

volume of loads. Examples of these are: unit-load, mini-load, deep rack, slipping rack, 

deep-lane and flow-rack system (Bozer and White, 1984, and Sari et al., 2005). 

The flow rack AS/RS is a deep rack made up of a whole of bins whose 

supports are gravitational conveyors. Two S/R machines are at the two ends, one on a 

face ensuring storage and the other on the opposite face ensuring retrieval. Both 

machines are connected by a restoring conveyor inclined in opposite direction making 

it possible to items to travel from retrieval face to storage face. Consequently storage 

machine can reach items to restore them. Other storage rack designs are examined 

nowadays, such as turnover-based storage racks (Yu and De Koster, 2009). This kind 

of rack enables the use of only one machine for storage and retrieval. These racks are 

not considered in this study. 

This article defines a new storage-retrieval method, called In-Deep Class 

Storage, designed for Flow-Rack AS/RS. If class-based storage is a very well known 

method a lot studied in literature, this method is based on the statement that it is more 

efficient to dedicate the front layers of each bin to the class of the most popular items, 

rather than dedicating whole bins close to the drop-off station, as already studied in 

the literature. Obviously, this idea is not trivial to implement, due to the dynamic 

behavior of such racks. Thus, two separate algorithms were defined, one for storage, 

one for retrieval, enabling a dynamic use of the method, with the only hypothesis of a 

Pareto distribution of the demand of items.  

After a literature survey of the various approaches of storage in a standard 

AS/RS, in particular the works on class-based storage, the principle of In-Deep Class 



Storage is defined, and a validation study is presented. Then, both the algorithms are 

presented in detail. This article finally presents a simulation study, designed to 

compare the performance of random storage and retrieval to the use of the algorithms. 

2 Class-based storage in literature 

2.1 Performance evaluation of dynamic storage/retrieval algorithms 
Numerous algorithms were developed in literature, concerning many different types 

of AS/RS. For example, Park et al. (2003) and Park et al. (2006) studied and analyzed 

the performances of a mini-load AS/RS with 2-classes. Caron et al. (1998) and Caron 

et al. (2000) proposed a model of cycle time for a 2-block warehouses (i.e., one 

middle cross aisle) with a cube-order-index (COI)-based storage. 

Ashayeri et al. (2002) used a geometric approach to calculate the cycle time 

for a random storage. Le-Duc and De Koster (Le-Duc and De Koster, 2004), (Le-Duc 

and De Koster, 2005), (Le-Duc and De Koster, 2007), as well as Roodbergen (2001) 

estimated the cycle time of a retrieving by batches, i.e. gathering several requests for 

retrieval in a delivery, in order to reduce the expected retrieval delay. As this paper 

states that the delivery request of items are treated with FCFS rule, i.e. without trying 

to batch these requests, these works are not detailed anymore. 

Mansouri (1997) and Eldemir et al. (2004) developed analytic expressions of 

cycle time in the case of dedicated storage. In the case of the flow rack AS/RS, the 

expected retrieval delay for a random storage, i.e. without studied rule of storage of 

the references, is rather not very powerful (Sari et al., 2005). 

Gaouar et al. (Gaouar et al., 2005), (Gaouar et al., 2006) developed 

storage/retrieval heuristic to reduce this expected retrieval delay. The heuristic is 

developed so as to store the products of same references in the same bin with more 

close to the drop-off station. This heuristic has allowed a great improvement of the 



expected retrieval delay. Thus, considering the example of a system with 1000 storage 

segments (10x10x10) using random storage, and this same system using the 

storage/retrieval heuristic for 200 different references, the saving of retrieval delay is 

on average 40% . 

Yu and De Koster (2011) developed a heuristic to optimize the performance in 

sequencing the retrievals in a multi-deep rack. This heuristic allowed a great 

improvement compared to the simple First Come First Served rule. In a first 

approach, this paper only focuses on the problem of single command, a next step 

being the evaluation of this heuristic on racks using In-Deep Class storage. 

2.2 Performance evaluation of class based storage 
Eldemi et al. (2004) proposed a new analytical model for the AS/RS to determine the 

cycle time and space required for storage using different storage methods: dedicated, 

random and class-based. From this model, they deduced that the use of class-based 

storage requires less storage space than the use of random storage or dedicated 

storage, and moreover, the storage and retrieval delay are lower. 

Muppani and Adil (2008) developed a nonlinear integer programming model 

combined with a Branch & Bound algorithm to compare class-based storage to 

dedicated storage, considering the storage space and its cost, handling cost and order 

picking for class-based storage. The approach presented has demonstrated that there 

are significant savings in using class-based storage policy, although the dedicated and 

random policies are commonly used in warehouse storage planning. 

Although these results were determined on unit-load racks, they tend to prove 

the efficiency of class-based storage in any configuration, including deep racks. Next 

section presents the works related to the geographical location of classes in the racks. 



2.3 Geographical layout of classes 
Hausman et al. (1976) were among the first to consider the problem of class-based 

storage in an AS/RS with simple cycle, by using the ABC curve. 

According to the policy of class-based storage, the products in the store are 

divided into groups based on their frequency of input/output. These groups of 

products are assigned to a region (class) where the number of regions is equal to the 

number of groups. The allocation of group of items to the regions is made according 

to the frequency of input/output. Thus, the region that gives rise to the lowest 

expected retrieval delay (including restoring) is assigned to the group of articles with 

the highest frequency. This process continues until the area giving the highest 

expected retrieval delay is assigned to the group of items with the lowest frequency. 

The main contribution of (Hausman et al., 1976), studied deeper in Rosenblatt 

and Eynan (1989) and Eyan and Rosenblatt (1994), was to determine optimal shape of 

the bins assignation to classes in order to lower the average retrieval delay by 

assigning regions of bins to specific classes (Figure 1) in an unit-load rack. This 

choice explains the position of classes (Figure 1), drawing arcs around the delivery 

station. In a deep rack, optimality is not valid anymore, as the restoring station is not 

taken into account. Yu et al. (2009b) lead the same type of study on a specific deep 

rack. Obviously, these results cannot be directly applied in this work, as the class 

limits cannot be drawn on the faces, but are located in the depth of the rack. 

<Please insert Figure 1 here> 

Furthermore, Graves et al. (1977) showed by simulation that the L-shaped of 

different regions, for class-based storage, are not necessarily optimal for square racks. 

Guenov and Raeside (1992) compared three configurations of the shape of zones in an 

AS/RS. They conclude that the zone configuration for class-based storage depends on 



the position of the pickup/drop-off stations from the rack for a unit-load AS/RS, 

which is also applicable in the case of deep racks. 

2.4 Optimal number of classes 
Speaking about class storage, several authors dealt with the problem of optimal 

number of classes to be used in a context of AS/RS storage. 

Rosenblatt and Eynan (1989) and Eynan and Rosenblatt (1994) sought to 

determine the optimal number of classes for an AS/RS using the method of Hausman 

et al. (1976) presented before. They concluded that it is preferable to use unit-load 

racks with a Shape factor b ≥ 0.6 and less than 7 classes. Ashayeri et al. (2002) have 

developed a heuristic approach to determine the number of classes and the location of 

the storage areas for class-based storage in an AS/RS. The algorithm determines the 

size and number of zones, and their arrangement on the rack of AS/RS. 

Ha and Hwang (1994) have shown that 2-class-based storage assignment 

policy reduces significantly the storage time and the retrieval delay of both single and 

double commands over randomized storage assignment policy in a carousel system. 

As a conclusion, all these studies show the importance of studying the 

performance of the methods of storage in the storage rack, especially through the 

performance criterion of the expected retrieval delay. 

3 In-deep class storage 

3.1 Studied Flow-Rack 
In this study, the pickup station is located at the corner down the front of storage and 

drop-off station at the corner down the other side. The optimal dwell points, as 

determined by Peters et al. (1996), are the pickup station for the storage machine and 

mid-point of the rack for retrieval machine. 



As shown in Figure 2, a rack has a height H, a length L and depth D. It is 

composed of bins containing M storage segments arranged in a multi-layer matrix 

composed of Nl horizontal bins, Nh vertical bins and M layers numbered from 0 

(retrieval face) to M-1 (storage face). In each storage segment, a single item can be 

stored. 

<Please insert Figure 2 here> 

The storage machine and retrieval machine may move simultaneously on two 

axes (Chebyshev Travel – (Bozer et al., 1987)). These two axes form a plane parallel 

to both sides of the rack. Storage/ retrieval machines have the same horizontal 

velocity Vh and the same vertical velocity Vv. 

In addition to Figure 2, the following definitions are used in this paper: 

• Item: piece of goods to be stored in a storage segment; 

• Bin: set of storage segments having the same coordinate (height and length) in 

the retrieval face; 

• Layer: set of storage segments located at the same depth. Each bin crosses the 

same number of layers; 

• Row: number of bins in the height dimension; 

• Column: number of bins in the length dimension. 

3.2 In-deep class storage principle and objective validation 
The main idea is to work on the content of the layers. A previous work on the 

classical class storage (Meghelli et al.,2010) showed that retrieving an item in the 

second layer of a very well situated bin costs more time than retrieving an item in the 

first layer of a poorly situated bin. As a matter of fact, the first objective is to store the 

items in order to have the most popular items in the front layer. If this population of 

items is called class A, then this defines a new class-based storage method, called in-



deep class storage in this paper. This section intends to show the relationship between 

the tidiness of the rack and the performance of the retrieval of items in order to 

validate the objective of this paper. 

Due to the complexity of the definition of the algorithms, this paper only 

presents the case of two classes. If this analysis is conclusive, a future work will 

evaluate the pertinence of increasing the number of considered classes. 

3.2.1 Storage Indicator 
To be able to quantify the tidiness of the racks, an indicator called Storage Indicator 

(SI) is defined. This indicator represents the number of times a class B item is stored 

before a class A item. Considering this definition, a perfectly tidied-up rack has SI=0. 

On the other hand, Table 1 gives the maximum SI that can be encountered for several 

classical rack configurations. This maximum is calculated for 1 bin, and then 

multiplied by the number of bins of the rack. Hence, for example, a rack of 10 rows, 

10 columns and 10 layers full of items might have a SI=500 in the worst case. This is 

calculated considering there are 100 bins, each of them having 10 items stored in this 

exact order: Class B-A-B-A-B-A-B-A-B-A considering the first item in the front 

layer. Each bin has thus RI=5, and the whole rack SI=500. 

<Please insert Table 1 here> 

3.2.2 Objective validation experiments 
The experiments deal with the evaluation by simulation of the average retrieval delay 

(ARD), considering the hypotheses described in section 4.1. Two separate 

configurations were created, one with a perfectly tidied-up rack (configuration A), 

and the other with totally randomly stored items (configuration B), both in the same 

rack type. 



Each simulation runs the same way. First, a random Pareto distribution 

(k=0.15=constant) is generated to simulate the demand, different for each reference. 

According to this distribution, the rack is filled up with items. In configuration A, 

they are stored according to the number of items of each reference to be stored (the 

most represented first). As a matter fact, class A is stored first, and thus SI cannot be 

else than equal to zero. In configuration B, items are stored in a random order, in the 

next randomly chosen bins with space available to store. 

Then, a list of items to retrieve is determined according to the Pareto 

distribution. For each item, the one which will be retrieved the quickest is 

automatically chosen (according to next neighbor heuristic). The retrieval delay is 

recorded, and a average retrieval delay is calculated. 30 replications of each 

configuration were run in order to determine a confidence interval. Table 2 shows the 

mean of every ARD and SI recorded for each replications, and the half-width of the 

distribution (this value may be interpreted by saying "in 95% of repeated trials, the 

sample mean would be reported as within the interval sample mean ± half width"). 

<Please insert Table 2 here> 

As expected, the results show a larger retrieval delay for the randomly stored 

racks, which confirm the hypothesis of dominance of configuration A versus 

configuration B. The difference between the configurations is growing with the size 

of the rack, which can be explained by the growing number of references available at 

the same time in the rack, but is not so huge in percentage (5 to 15% in Table 2). This 

can be explained by the high probability to have a popular product in a low layer even 

though the storage is made randomly. 

A second observation deals with SI for configuration B. In average, SI is about 

one third of its maximum theoretical value (Table 1) with a low half-width. This 



shows that random storage almost never gives the worst possible storage of the whole 

rack. 

This short experiment shows the relationship between the tidiness of the racks 

and the performance of the retrieval of items, measured through the average retrieval 

delay. Next section presents the algorithms which were created to implement these 

principles. 

3.3 In-deep class storage algorithms 
Two separate algorithms were developed, one dedicated to storage, the other one 

dedicated to retrieval. Both are triggered by: 

• For the storage algorithm, detection of an item at the entrance station or 

restore station; 

• For the retrieval algorithm, reception of a delivery request. 

As a matter of fact, storage algorithm has to start with a priority rule (Figure 

3), giving priority to class A product, then to the entrance station. A discrimination 

method between bins with the same potential was also defined. This method is based 

on the geographic localization of the bin in the rack, considering the restore and the 

entrance stations for storage algorithm, and the delivery station for the retrieval 

algorithm. 

<Please insert Figure 3 here> 

3.3.1 Storage algorithm 
The objective of this algorithm is to make consecutive sequel of items with the same 

reference of class A (with the objective of dedicated bins), or sequel of class B items 

so that the SI of the rack would not be increased. 



Thus, the algorithm (Figure 4) starts by seeking bins which have the 

corresponding reference located in the last layer. If none are found, then separate 

algorithms are built, according to the class of the item (Figures 5 and 6). 

<Please insert Figure 4 here> 

<Please insert Figure 5 here> 

<Please insert Figure 6 here> 

For class A items (Figure 5), empty bins are preferred, in order to create new 

dedicated bins. This preference is particularly useful for the initial storage of an empty 

rack. In steady state, empty bins are not so rare, because of the retrieval algorithm 

presented below. Then, the bins with the fewest class A items are promoted. This is 

meant to avoid to store a class A item in a too high number layer, and thus restore 

many class A items when retrieving this item. In case of several bins with the same 

properties, the bins with the lowest total of items (i.e. the lowest total of class B 

items) are promoted. 

For class B items (Figure 6), the objective is to avoid storing them at an 

annoying place (i.e. in a bin where class A items could potentially be stored later by 

the algorithm). First, bins containing the maximum of the item’s reference are 

promoted. It is very likely that this rule gives either a single solution or the whole rack 

(minus the full bins) as possibilities, as class B items are relatively poorly represented 

in the rack (rarely more than one or two items in the whole rack). In this group of 

possibilities, the second rule aims to forbid storing this item in a bin with a class A 

item in the last layer. Bins with the lowest SI and a class B item in the last layer are 

first chosen, then the bins with the fewest items and at least a class B, in order to 

avoid filling bins with only class A items. 



3.3.2 Retrieval algorithmx 
The objective of this algorithm is to retrieve an item with the satisfying reference in 

the lowest layer. There again, the algorithm is different according to the class of the 

desired item. 

If it is a class A item which should be retrieved (Figure 7), the first action is to 

determine the lowest layer where the item is located. If several bins have this item in 

the first layer (numbered 0), the objective is to find those which also have an identical 

item in the second layer. Indeed, as it is a class A item, the aim is to ensure a good 

availability of the item in the low layers. 

<Please insert Figure 7 here> 

If it is not located in the first layer, then the bin which has the most class B 

products in the lower layers is chosen. Hence, these class B items will be restored at 

the back of the rack. 

If it is a class B item (Figure 8), the first action is also to determine the lowest 

layer where the item is located. If several bins have this item in the first layer, the 

objective is to choose the item which will decrease the most the average layer of the 

class A items located in its bin. 

<Please insert Figure 8 here> 

On the other hand, as several items have to be restored at the back of the rack 

to be able to retrieve this item, the aim is to choose the bin with the least class A items 

before the desired item to be retrieved. 

4 Simulation study 
A simulation study was performed in order to evaluate the performance of the 

algorithms. To do so, a model was built on Rockwell Arena. Each algorithm is 

programmed in a stand-alone VBA function. The main objective of using Visual 

Basic was to be able to adapt these functions very easily in a real AS/RS command in 



a later study. This section presents the assumptions made in the model, the validation 

process and the experiments that were run. 

4.1 Model and assumptions 
The model is built so that each parameter of the rack can be modified with a single 

variable: width, height, depth, load, Pareto distribution through its coefficient, speed 

of the machines, etc. It is also easily possible to switch between the use of the 

algorithms or a random rule, or to switch between different initial configurations of 

the items in the rack.  

On the other hand, it was decided not to take into account several physical 

constraints. First, the load time, i.e. the time needed for the machines to load (or 

unload) an item from (to) a bin. Indeed, on real AS/RS, taking this time into account 

may or may not be crucial relatively to the speed of the machines. For example, in an 

industrial AS/RS with potentially fragile and heavy items, the speed of the machines 

is much less high than in a pharmaceutical AS/RS with generally very light items, 

with a potentially identical load time. Obviously, a high load time requires the items 

to be situated in a low layer, whatever bin the item is located in, whereas a low load 

time gives less importance to the layer and more to the geographical location of the 

bin. The algorithms that were presented try to optimize these two objectives, but the 

layer position first. As a matter of fact, in average, these algorithms are supposed to 

decrease the number of load times in the total retrieval delay. Thus, not taking into 

account the load time is the worst situation for the comparison of our algorithms, and 

this is why this hypothesis was considered. 

Second constraint that is not taken into account is the availability of the 

storage machine. Indeed, this machine generally has a single capacity, which impacts 

the behavior of the restore queue in the restoring bin. Thus, between two separate 



deliveries, there may be an important impact on the content of the rack because of the 

presence of several items in the restore queue. The objective is to measure the average 

retrieval delay, which requires being able to compare the values obtained for each 

delivery. As a matter of fact, an infinite speed was assigned for the storing machine, 

which is thus able to store all the items in no time. 

The last assumption made in this paper deals with the distribution of item 

references in the rack. As stated before, the Pareto distribution was chosen, as being 

the classical probability distribution used to model the content of such stores. With 

this distribution, a reference n°x among a maximum number of references xm has a 

cumulated probability of 1− !
!!

!
 to enter the store (k is the Pareto distribution 

coefficient). While filling up the rack, each time an item enters the entrance station, a 

random number (between 0 and 1) is fired and determines its reference. Table 3 

shows an example of the effect of the use of this distribution on the content of a rack.  

<Please insert Table 3 here> 

What can be noticed is that: 

• Some references are not present in the rack, as they are considered 

poorly popular. Of course, these references are not asked to be 

delivered; 

• The references are indexed in a not strict decreasing order of 

popularity, i.e. the number of items of each reference is globally 

decreasing with the index, but two consecutive references might not 

follow this rule as it is randomly fired; 

• The distribution of items references is stable along time, i.e. no new 

evaluation of the classification of the items is necessary. 



Another assumption that is made here is that the rack always contains the 

same number of items, so that its load is constant. As a matter of fact, as soon as an 

item is delivered, it is instantly entering the entrance station, and thus instantly stored, 

due to the previous assumption. It is possible in the model to either fire a new 

reference for this item, or to leave the item with the same reference. 

4.2 Configuration of the experiments 
This section presents the experiments that were run to evaluate the performance of 

both algorithms presented before.  As there are many parameters involved, having a 

more or less important influence on the performance of each algorithm, the aim of this 

section is to describe a classical configuration of the rack and of the behavior of the 

demand. 

First, about the configuration of the rack, among those described in section 

3.a, was chosen: 

• Width: 25 bins; 

• Height: 25 bins; 

• Depth: 10 places. 

This was chosen in order to avoid having too much side effects due to a low 

number of bins, a low number of references or a low number of items of each 

references. To be able to store and retrieve items from a maximum of bins without 

making a trivial problem, the average load of the system was set to: 

• Average load: 75%. 

• Then, about the Pareto distribution, several parameters have to be 

fixed: 

• Limit between class A and class B: 20% of items; 



• Pareto coefficient: k=0.1, corresponding to 20% of references 

representing 80% of the items ; 

• Maximum number of references: Nref=3000. 

This distribution was chosen as one of the most classical, as stated in De 

Koster et al. (2007). Due to the objective of class storage, it is obvious that it is 

necessary to have a clear difference between class A and class B, and this Pareto 

coefficient is coherent with this objective. 

Finally, it is necessary to define the initial state of the rack, as it is possible to 

start with a randomly or perfectly (Si=0) tidied up rack. The choice here is to start 

with randomly stored items, so that it is possible to see at which point the developed 

algorithms enable a natural storage of the rack during its use. 

4.3 Experimental design 
Four separate experiment configurations were defined and are described on Table 4. 

<Please insert Table 4 here> 

For each of these configurations, a simulation study was run on Rockwell 

Arena. For each experiment configuration, 30 replications were made, each of them 

involving 100 000 retrievals, and the same 100 000 storages (same reference just after 

the item was retrieved). Between each replication, the initial random configuration of 

the rack was changed, as was the Pareto distribution. However, for a specific 

configuration of the rack and of the distribution, each experiment was executed so that 

the results could be more easily compared. 

For each retrieval, the Retrieval delay (Rd) and the Storage indicator (Si) were 

measured. 



4.3.1 Rd measurement 
The retrieval delay represents the time between the first move of the machine, always 

starting from its dwell point located at the middle of the rack face, and the time the 

item is delivered. 

Obviously, there is no reason for two consecutive Rd measurements to be 

correlated (Figure 9 shows the time of the first 100 retrievals of a replication in 

configuration #1). This results in a very chaotic evolution of Rd along time. Thus, a 

study was lead in order to determine whether a linear regression or a simple average 

would be better to use to discriminate two storage/retrieval methods. Table 5 shows 

the results of this study. 

<Please insert Figure 9 here> 

<Please insert Table 5 here> 

First point to notice, the correlation coefficients are almost equal to zero. This 

can be explained by the chaotic nature of the measurement. Then, the calculated 

slopes are also almost equal to zero, with a low standard deviation. This tends to show 

that the average of the average retrieval delay is enough to demonstrate the difference 

between the configurations. This is what will be used in the rest of this study. 

4.3.2 Si measurement 
On the other hand, when storage algorithm is turned on (experiments #3 and #4), the 

Si evolution cannot be approximated with a linear regression, as it clearly has a 

decreasing evolution ending with a horizontal asymptote. As the measurements also 

involve a relatively high level of noise, the comparisons will be made on the response 

time (Rt). 

In order to calculate Rt, a first step is to calculate the value of the horizontal 

asymptote (Figure 10). This is made with an average on the last 10 000 retrievals: the 

simulations were made on 100 000 retrievals to be sure these last 10 000 can be 



considered as always being in the steady state. Then, response time at X% is defined 

as the earliest date when the storage indicator is below the level of the horizontal 

asymptote raised of X%. 

<Please insert Figure 10 here> 

5 Results and discussion 

5.1 Average retrieval delay 
Table 6 shows the average retrieval delay obtained from the simulations. 

<Please insert Table 6 here> 

The first conclusions that can be drawn from these results are: 

(1) The retrieval algorithm makes the average retrieval delay decrease of 

about 60 %. 

(2) In addition with the storage algorithm, the decrease is 5 % more 

important. 

(3) The standard deviation is bigger when the storage algorithm is turned 

on. This can be explained by the fact that, to try and optimize the 

retrieval delay of class A items, class B items are located in high 

number layers. As a matter of fact, class B products have a very high 

average retrieval delay, which explains the higher standard deviation. 

5.2 Storage indicator 
Table 7 shows the difference of storage indicator between the experiments 

<Please insert Table 7 here> 

The additional conclusions that can be drawn from these results are: 

(1) When the storage algorithm is turned off, the storage indicator does not 

decrease. 



(2) When the storage algorithm is turned on (experiments #3 and #4), the 

storage indicator tends to a very low level. This rack having 625 bins, 

Si=32 means that at least 593 bins are perfectly tied up, and only 32 

class B items are in ahead of class A items. It has to be noted that a 

level of Si=0 is very often achieved on smaller racks. 

(3) The response time is a lot better in configuration #3, i.e. when the 

retrieval algorithm is turned off (around –85% compared to 

configuration #4). Once again, as this algorithm tries to optimize the 

retrieval delay, it tends to retrieve items from low layers. As a matter 

of fact, fewer items go back to the storing machine, and thus the 

storage is less efficient. 

5.3 Calculations 
This simulation study was lead on a total of 12 000 000 retrieval orders. On a 

common laptop (dual core at 2.3 GHz with 2 Gb of RAM), simulations lasted a total 

of 1250 minutes. This means that 160 retrieval/storage orders were treated each 

second by the Visual Basic algorithms. This is an important indicator for a future 

industrial implementation, as it seems very likely to be implementable on classical 

PLC controls. 

6 Robustness of the algorithms 
Many factors influence the performance of the algorithm: number and size of the bins, 

shape of the rack, number of different references, load of the rack and statistic 

distribution of the demand. A full study of these parameters’ influence will be carried 

on in a next paper. 

However, this section presents a robustness test aimed to validate the 

algorithms with a variable set of data. The parameter which was chosen is the shape 



of the distribution of items in the rack and of the demand. As shown in Table 8, 

various Pareto distributions (differentiated with their Pareto coefficient) are compared 

with a uniform distribution. 

<Please insert Table 8 here> 

First column of Table 8 shows the probability that item X1 is asked to be 

retrieved P(X1). This reference is the most frequent in the whole rack. When in the 

uniform case P(X1)= (Nref)-1, the probabilities for Pareto were calculated according to 

the definition of section 4.2. This indicator is expressed to ease the understanding of 

the evolution of parameter k. 

With the same protocol as before, for each distribution, 30 replications of 

100000 retrievals were simulated in order to mean the effects of the initial random 

storage and the random order of retrieval. 

First, the results show that the algorithms are a lot more efficient when the 

most frequent items are very frequent (i.e. high k). This can be easily explained by the 

fact that, as the parameter k is rising, it is more and more possible to fill complete bins 

with items of the same reference. This tends to dedicated storage, which, when it is 

possible, is the close to be the best way of storage. 

Finally, the results of the uniform distribution are far less interesting than 

Pareto. However, they are still better than those obtained in previous experiments with 

configurations #1 and #3, i.e. with a random retrieval (Table 6). This is interesting as 

it shows that, even if the distribution is not corresponding exactly to Pareto, the 

algorithms are still efficient. 

7 Conclusion 
This article defines a new storage/retrieval method in Flow-Rack AS/RS, called In-

Deep Class Storage. The idea is to store the most popular items in the front layers of 



each bin, so as to decrease the average retrieval delay of items in the rack. Two 

algorithms were developed to prove the feasibility of the implementation of this 

method. 

A simulation study on a specific configuration of the rack was run, taking into 

account the stochastic behavior of the demand. This study showed a reduction of more 

than 60% of the average retrieval delay, compared to a random retrieval algorithm. 

Two perspectives of this work will be developed shortly. First, a sensitivity 

analysis will be run, in order to determine the influence of each of the many variables 

on the performance of the algorithms. This analysis should explicit the optimal 

configurations of application of the algorithms. 

Then, a third algorithm, dedicated to decrease the Storage Indicator during the 

machines free time, could be developed. This could be particularly relevant for 

applications where there is no night shift. 

8 Acknowledgement 
This work was partially funded by the EGIDE organization, via the TASSILI 

11 MDU831 program (reference 24323VD). 

9 References 
Allen, S. L. 1992. A selection guide to AS/R systems. Industrial Engineering, 24 (3), 

p. 28-31. 
Ashayeri, J., R. M. Heuts, M. W. T. Valkenburg, H. C. Veraarts, and M. R. Wilhelm, 

2002. A geometrical approach to computing expected cycle times for zone-
based storage layouts in AS/RS. International Journal of Production 
Research, 40(17), p. 4467-4483. 

Bozer Y. A. and J. A.White, 1984. Travel time models for automated storage/retrieval 
systems, IIE Transactions, 16(4), p. 329-338. 

Bozer Y. A., E. C. Schorn, G. P. Sharp, 1987. Geometric approaches to solve the 
Chebyshev travelling salesman problem, Technical Report, 87-29. 

Caron, F., G. Marchet, and A. Perego, 1998. Routing policies and COI-based storage 
policies in picker-to-part systems. International Journal of Production 
Research, 36(3), p. 713-732. 

Caron, F., G. Marchet, and A. Perego, 2000. Optimal layout in low-level picker-to-
part systems. International Journal of Production Research, 38(1), p. 101-117. 



De Koster, R., T. Le-Duc, and K. J. Roodbergen, “Design and control of warehouse 
order picking:A literature review”, European Journal of Operational Research 
182 (2007) 481–501 

De Koster, R., T. Le-Duc, and Y. Yugang, 2008.Optimal storage rack design for a 3-
dimensional compact AS/RS. International Journal of Production Research, 
46(6), p. 1495-1514. 

Eldemir F., R. J. Graves and C. J. Malmborg, 2004. New cycle time and space 
estimation models for automated storage and retrieval system 
conceptualization, International Journal of Production Research, 42 (22), pp. 
4767-4783. 

Eynan, A., M. J. Rosenblatt, 1994. Establishing zones in single-command class-based 
rectangular AS/RS. IIE Transactions, 26(1), p. 38–46. 

Gaouar N., Z. Sari, et N. Ghouali, 2005, Développement d’une Heuristique de 
Stockage/Déstockage pour un Système AS/R à Convoyeur Gravitationnel. 6e 
Congrès International de Génie Industriel, (GI’2005), 7-10 Juin 2005, 
Besançon Micropolis, France. 

Gaouar N., Z. Sari, et N. Ghouali, 2006, Modélisation et implémentation d’une 
Heuristique de Stockage/Déstockage pour un Système AS/R à Convoyeur 
Gravitationnel. 6ème Conférence Francophone de Modélisation et Simulation 
(MOSIM’06), 3-5 avril 2006, Rabat, Maroc. 

Graves, S. C., W. H. Hausman, and L. B. Schwarz, 1977. Storage-retrieval 
interleaving in automatic warehousing systems. Management Science, 23 (9), 
p. 935–945. 

Guenov M. and Raeside R., 1992. Zone shapes in class based storage and 
multicommand order picking when storage/retrieval machines are used. 
European Journal of Operational Research, 58, p. 37-47. 

Ha J-W and Hwang H., 1994. Class-based storage assignment policy in carrousel 
system. Computers industries Engineering, 26 (3), p. 489-499. 

Hausman, W. H., L. B. Schwarz, and S. C. Graves, 1976. Optimal storage assignment 
in automatic warehousing systems, Management Science, 22 (6), p. 629–638. 

Le-Duc, T. and R. De Koster, 2004. Travel distance estimation in a single-block ABC 
storage strategy warehouse, In: Fleischmann and Klose (eds.) Distribution 
Logistics: advanced solutions to Practical Problems, p. 185-202 (Berlin: 
Springer Verlag). 

Le-Duc, T. and R. De Koster, 2005. Travel distance estimation and storage zone 
optimisation in a 2-block ABC-storage strategy warehouse. International 
Journal of Production research, 43(17), p.3561-3581. 

Le-Duc, T. and R. De Koster, 2007. Travel time estimation and order batching in a 2-
block warehouse. Report, European Journal of Operational Research, 176(1), 
p. 374-388. 

Lee, H. F., 1997. Performance analysis for automated storage and retrieval systems. 
IIE Transactions, 29 (1), p.15-28. 

Meghelli, N., Z. Sari, O. Cardin, and P. Castagna, Evaluation de la performance d’un 
stockage par classes dans le contexte du stockage automatisé à accumulation 
dynamique, In Actes de la 8e Conférence Francophone de Modélisation et 
Simulation (MOSIM'10), Hammamet, Tunisie, 2010. 

Muppani V. R. and G. K. Adil, 2008. A branch and bound algorithm for class based 
storage location assignment. European Journal of Operational Research, 189 
(2) p. 492-507 



Park, B. C., R. D. Foley, J. A. White, and E. H. Frazelle, 2003. Dual command travel 
times and miniload system throughput with turnover-based storage. IIE 
Transactions, 35, p. 343–355. 

Park, B. C., R. D. Foley, and E. H. Frazelle, 2006. Performance of miniload systems 
with two-class storage. European Journal of Operational Research, 170, p. 
144–155. 

Peters B. A., J. S. Smith and T. S. Hale, 1996. Closed form models for determining 
the optimal dwell point location in automated storage and retrieval systems, 
International Journal of Production Research, 34(6), p. 1757-1771. 

Roodbergen, K.J., 2001. Layout and routing methods for warehouses. Ph.D. Series, 
Erasmus Research Institute of Management (ERIM). 

Roodbergen K. J. and I. F. A. Vis, 2009. A survey of literature on automated storage 
and retrieval systems. European Journal of Operational Research, 194, p. 
343-362 

Rosenblatt, M.J., and A. Eynan, 1989. Deriving the optimal boundaries for class-
based automatic storage/retrieval systems. Management Science, 35(12), p. 
1519–1524. 

Sari Z., C.Saygin, and N.Ghouali, 2005. Travel-Time Models for Flow-Rack 
Automated Storage and Retrieval Systems, International Journal of Advanced 
Manufacturing Technology, 25, p. 979-987. 

Yu Y. and R. De Koster, 2009. Designing an optimal turnover-based storage rack for 
a 3D compact automated storage and retrieval system, International Journal of 
Production Research, 47(6), p. 1551 - 1571. 

Yu Y. and R. De Koster, 2009b. Optimal zone boundaries for two-class-based 
compact three-dimensional automated storage and retrieval systems, IIE 
Transactions, 41(3), p. 194 – 208. 

Yu Y. and R. De Koster, 2011. Sequencing Heuristics for Storing and Retrieving Unit 
Loads in 3D Compact Automated Warehousing Systems, IIE Transactions, 
doi: 10.1080/0740817X.2011.575441. 

 
 

 
Rows	
   Columns	
   Layers	
   Total	
  Places	
   Max(SI)/bins	
   Max(SI)	
  
5	
   5	
   5	
   125	
   2	
   50	
  
10	
   10	
   10	
   1000	
   5	
   500	
  
25	
   25	
   10	
   6250	
   5	
   3125	
  

Table 1: Storage Indicator calculation examples for 100% full racks 
 

Rows	
   Columns	
   Layers	
   Configuration	
   SI	
   SI	
  Half-­‐
width	
  

ARD	
  
mean	
  

ARD	
  
Half-­‐
width	
  

5	
   5	
   5	
   A	
   0	
   0	
   11.347	
   0.26678	
  
5	
   5	
   5	
   B	
   16.033	
   1.2575	
   11.906	
   0.33434	
  
10	
   10	
   10	
   A	
   0	
   0	
   31.896	
   0.26491	
  
10	
   10	
   10	
   B	
   145.06	
   2.9266	
   35.725	
   0.60016	
  
25	
   25	
   10	
   A	
   0	
   0	
   58.656	
   0.18138	
  
25	
   25	
   10	
   B	
   900.10	
   7.0537	
   67.796	
   0.70187	
  
Table 2: Objective validation experiments results 
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1	
   64	
   21	
   7	
   41	
   1	
   61	
   1	
   81	
   1	
  
2	
   50	
   22	
   4	
   42	
   2	
   62	
   1	
   82	
   2	
  
3	
   27	
   23	
   8	
   43	
   3	
   63	
   0	
   83	
   1	
  
4	
   12	
   24	
   4	
   44	
   3	
   64	
   2	
   84	
   1	
  
5	
   14	
   25	
   1	
   45	
   0	
   65	
   2	
   85	
   0	
  
6	
   11	
   26	
   3	
   46	
   4	
   66	
   0	
   86	
   1	
  
7	
   5	
   27	
   2	
   47	
   0	
   67	
   0	
   87	
   0	
  
8	
   6	
   28	
   1	
   48	
   5	
   68	
   2	
   88	
   0	
  
9	
   4	
   29	
   1	
   49	
   0	
   69	
   2	
   89	
   1	
  
10	
   10	
   30	
   3	
   50	
   2	
   70	
   1	
   90	
   0	
  
11	
   10	
   31	
   3	
   51	
   1	
   71	
   0	
   91	
   0	
  
12	
   1	
   32	
   1	
   52	
   2	
   72	
   1	
   92	
   0	
  
13	
   4	
   33	
   2	
   53	
   2	
   73	
   1	
   93	
   0	
  
14	
   9	
   34	
   2	
   54	
   1	
   74	
   1	
   94	
   1	
  
15	
   5	
   35	
   3	
   55	
   0	
   75	
   2	
   95	
   0	
  
16	
   11	
   36	
   1	
   56	
   0	
   76	
   2	
   96	
   1	
  
17	
   4	
   37	
   0	
   57	
   0	
   77	
   0	
   97	
   0	
  
18	
   1	
   38	
   2	
   58	
   1	
   78	
   0	
   98	
   1	
  
19	
   7	
   39	
   2	
   59	
   1	
   79	
   2	
   99	
   0	
  
20	
   6	
   40	
   2	
   60	
   0	
   80	
   3	
   100	
   1	
  

Table 3. Pareto distribution of 100 different references in a 10x10x5 rack with 75% 
load 
 

Experiment configuration Storage method Retrieval method 

#1 Random Random 

#2 Random Algorithm 

#3 Algorithm Random 

#4 Algorithm Algorithm 

Table 4. Experiment configurations 
 

Experiment Slope of linear 
regression 

Standard 
deviation of the 

slope 

Correlation 
coefficient 

#1 8.0x10-­‐7	
   5.2x10-­‐5	
   7.5x10-­‐6	
  

#2 -5.2x10-­‐6	
   4.5x10-­‐5	
   1.2x10-­‐5	
  



#3 1.4x10-­‐5	
   5.0x10-­‐5	
   7.5x10-­‐6	
  

#4 -­‐3.4x10-­‐5	
   4.7x10-­‐5	
   3.6x10-­‐5	
  

Table 5. Linear regressions of retrieval delays 
 

Experiment Average Retrieval 
Delay 

Standard 
deviation 

#1 768.4	
   1.4	
  
#2 300.4	
   2.2	
  
#3 762.8	
   5.5	
  
#4 259.5	
   5.1	
  

Table 6. Average retrieval delays 
 

Experiment 
Average Si 

initial 
value 

Horizontal 
asymptote 

Rt(5%) Rt(20%) 

Mean Standard 
deviation Mean Standard 

deviation 
#1 650	
   651	
   #N/A	
   #N/A	
   #N/A	
   #N/A	
  

#2 650	
   667	
   #N/A	
   #N/A	
   #N/A	
   #N/A	
  

#3 633	
   31.75	
   6239	
   1623	
   4547	
   892	
  

#4 643	
   43.39	
   41059	
   8431	
   28092	
   6750	
  

Table 7. Storage indicator 
 

Statistic distribution P(X1) 
Retrieval delay 

Average Standard 
deviation 

Uniform 0.03%	
   542.4	
   16.1	
  

Pa
re

to
 

k=0.01 8.98%	
   293.0	
   4.2	
  
k=0.05 10.33%	
   275.9	
   3.8	
  
k=0.1 12.15%	
   257.0	
   2.9	
  
k=0.2 16.21%	
   227.5	
   2.9	
  
k=0.5 29.83%	
   190.5	
   2.2	
  
k=1 50.02%	
   171.8	
   4.2	
  

Table 8. Item statistic distribution study results 
 

 



Figure 1. Example of (Hausman et al., 1976) rack 3-class layout 
 

 
 

Figure 2. Configuration of the studied flow rack AS/RS 
 

 

Figure 3. Priority rule 
 



 

Figure 4. Storage algorithm main framework 
 



 

Figure 5. Storage algorithm for class A items 
 



 

Figure 6. Storage algorithm for class B items 
 



 

Figure 7. Retrieval algorithm for class A items 
 



 

Figure 8. Retrieval algorithm for class B items 
 
 

 

Figure 9. 100 first retrievals of a random replication in configuration (#1) 
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Figure 10. Definition of Rt on a random replication of configuration #4 
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