
HAL Id: hal-00784317
https://hal.science/hal-00784317v1

Submitted on 5 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Agent Metamodel for virtual reality applications
Ronan Querrec, Cédric Buche, Frédéric Le Corre, Fabrice Harrouet

To cite this version:
Ronan Querrec, Cédric Buche, Frédéric Le Corre, Fabrice Harrouet. Agent Metamodel for virtual
reality applications. International Symposium on Methodologies for Intelligent Systems, Jun 2011,
Warsaw, Poland. pp.81-90. �hal-00784317�

https://hal.science/hal-00784317v1
https://hal.archives-ouvertes.fr


Agent Metamodel for virtual reality applications

Ronan Querrec, Cédric Buche, Frédéric Lecorre, and Fabrice Harrouet

UEB/ENIB/CERV,
25 rue Claude Chappe

F-29490 Plouzané France {Querrec,Buche,Lecorre,Harrouet}@enib.fr

Abstract. The various existing agent models do not cover all the pos-
sible uses we consider for virtual reality applications. In this paper, we
present an agent metamodel (Behave) based on an environment meta-
model (Veha). This metamodel allows defining agents and organizing
teams of agents in a virtual environment. The use of this metamodel is
illustrated by the Gaspar application which simulates activities on an
aircraft carrier.

Keywords: agent, metamodel, virtual reality

1 Introduction

In the context of virtual reality, many applications are based on multi-agent sys-
tems to simulate human activities or to simulate the environment reactions to
users actions. These applications use various agent models, multi-agent system
and platform as Jade [14], Jack1 or Gaia [16]. Several studies attempted to
generalize these models and propose agent or multi-agent system metamodels
[6, 2]. Multi-agent systems are used to simulate human activities, physical or bi-
ological systems; thus, it appears difficult to propose a metamodel to cover all of
these uses while keeping an effective language for the designer. Moreover, thoses
agents metamodels focuses on the agent model but not it’s environment. How-
ever in the case of virtual reality application the definition of the environment is
an important task that must interact with agents modelisation. We distinguish
two majors uses of multi-agent systems. First multi-agent systems to simulate
physical or biological phenomenon like in [3] and second multi-agent systems to
simulate human activities. In this article we focuses on the latter use.

Such applications still keep difficult and time consuming to develop. Classi-
cal uses of those type of applications are simulations, communication, training
and teaching which exhibits functionalities that can be developed independently
from the specific domain they apply to. Our goal is to provide an highter level
of abstraction in the conception of virtual reality applications. The conception
model of a specific application become then datas for our generic virtual reality
metamodel (in the context human activities simulation as seen before). As a
consequence we provide a langage wich permits to an domain expert to define

1 http://agent-software.com



the environment he adress as well as the activities that are executed in this en-
vironment. This description permits to automatically create the simulation in a
virtual reality application and is seen as a knowledge base to agents executing
the activities in the environment.

We propose Mascaret, a metamodel to describe virtual environments and
the agents evolving in this environment. This metamodel provide an unified mod-
eling langage to describe the structure of the environment (entities, positions...),
entitie’s and agent’s behavior. Mascaret is founded upon Uml2. Uml has al-
ready been used by agent’s metamodels to describe agent’s activities like [1], but
the major contribution of Mascaret is the strong link between environment
design and agents activities design.

In this article we focuses on the agent metamodel, but first (section 2), we
describe the principles, the workflow and the bases to create a Mascaret appli-
cation. In section 3, we present our proposition of agent’s metamodel for human
activities simulation in a virtual environment. As an example of Mascaret

use, the Gaspar application which simulates activities on an aircraft carrier is
presented section 4.

2 The Mascaret metamodel

The aim of Mascaret is to provide a metamodel to describe the virtual envi-
ronment (VE), not in terms of geometric space, but by providing the semantics
required for the artificial agents or humans to be able to construct for them-
selves a representation of the environment and to act together to reach their
goals. Mascaret metamodel is based on Uml and enables the construction of
domain patterns from virtual environments and from the corresponding concrete
virtual environments. However, Uml metamodel does not allow us to define the
specific concepts of virtual reality. In Mascaret, we propose to extend Uml in
order to represent these concepts.

Agents need to know which objects make up the virtual environment, how
to access them, their properties, their behavior and how to interact with them.
Three kinds of knowledge can be expressed using Mascaret:

– Domain concepts. This entails the semantic description of the concepts relat-
ing to the field of activity concerned. Knowledge of the domain is expressed
both at the model (concept) level (call M1), and at the level of the occur-
rences of these concepts, call M0 (tangible objects populating the environ-
ment). In Mascaret as in Uml, this knowledge is represented by classes
and instances. This provide the onthology of the EV in 2 abstraction levels
like Owl[13].

– The possibility of structuring and interacting with the environment. These
concepts looks like those suggested in smart objects [9] which reify those
properties required for interactions. The means available to the user or to
agents must be specified in order to modify the environment. Within the

2 http://www.omg.org



context of virtual environments, most of the tangible objects within those
environments have a geometric representation, and are situated within the
environment. These objects are entities and all have the properties of the
instances classes as well as geometric, topological properties and animations.

– Entities’ behavior. Within the framework of a VE, the environment’s reac-
tions to the user’s actions must be simulated. The Mascaret entities have
reactive behaviors which are triggered by events that can be caused either
by the user, by agents or by another of the virtual environment’s entities.
Those behaviors are defined by Uml StateMachines. Entities’ behavior and
its execution represents also an element of agent’s knowledge.

Fig. 1. Process to develop applications using Mascaret

All applications designed with Mascaret follows the process illustrated in
Figure 1. First, the domain expert defines the virtual environment’s model (M1
model) in the form of Uml–Mascaret diagrams exported into Xmi. He has to
describe the class models and behavioral models (state machines and activities)
and the human activities using UML collaboration and activities diagrams. This
step is completed using a Uml modeler which supports metamodels defined as
Uml profiles.

Second, 3D designers have to construct geometrical objects (in Vrml format).
This mean the construction of shapes and definition of geometries (informed
points, interaction surfaces and volumes) using classical 3D modeler. A Mas-

caret plugin is added to 3D modeler in order to refer the UML model (XMI
file) and then add semantics to geometrical objects which are then defined as



instances of the domain model (M0 model) Many virtual environments can thus
be constructed based on the same M1 model.

Third, computer scientist has to code the possible opaque behaviors for spe-
cific non-introspectable behaviors. At the end, the user has to launch the simu-
lation platform : loading (M1) domain models and specific environments (M0),
and activating the interaction and immersion devices.

3 The agent metamodel

In the previous section, we justified our choice to use Uml as a language to
describe the concepts of the specific fields and their relationships. These same
comments are applied for our metamodel of multi-agent system. In addition, we
use multi-agent systems to simulate human activities that are highly contextu-
alized by the environment. It is therefore necessary to use the same language to
describe activities and to describe the environment, as these operations manip-
ulate the virtual environment.

Several agent models or agent metamodels were proposed in the literature
using Uml. These models can be based on the Uml metamodel [1] or propose
a behavior agent model automatically interpreting knowledge expressed in Uml

[8, 15, 4]. However, the proposed models cover only parts of the kinds of behavior
that interest us, and especially do not incorporate environment modeling which
supports these behaviors.

Moreover, FIPA3 offers models that claim to be a standard for agent mod-
eling. Our model is inspired by this standard. Therefore, we do not propose a
completely innovative agent model, but an operationalization of concepts exist-
ing in other models for virtual reality applications. Concepts involved are: the
agent, its actions or behaviors (section 3.1), its means of communication (sec-
tion 3.2) and the organizations (section 3.3). Figure 2 present an overview of the
proposed agent metamodel.

3.1 Agent and behavior

The agent model we propose is inspired by the FIPA standard and its implemen-
tation in Jade. We implement the proposed concepts by extending Mascaret.
An agent performs behaviors and can communicate with other agents through
messages. Agents are hosted by a platform, it is not possible to obtain a reference
(in the computer sense) to an agent. An agent is identified by its name and the
platform on which it is hosted.

An agent is an instance and has a type in the same manner as entity and
class. The AgentClass class describes the different types of agent fields. Thus,
it is possible to describe the properties, statements and actions of agents.

This model suffices to address the different generic kinds of fields. This also
means that the model we propose is not intended to require inheritance from

3 http://www.fipa.org



Fig. 2. Overview of the agent metamodel.

Agent. The specificities that should be obtained by deriving Agent are actually
formulated in our model by properties, operations and specific behaviors (new
instances of AgentClass).

To describe the agents behavior we implement the model proposed in Jade.
The behavior calls the action() method while a condition is not met. To help
designing a behavior, Jade provides OneShotBehavior which is executed once
and CyclicBehavior looping forever. The agent then conducts a set of activities
which are arranged in sequence. The execution behavior (calling the action()

method) is managed by the scheduler proposed by Mascaret. The user then
provides new behaviors by deriving OneShotBehavior or CyclicBehavior in
order to overload the action() method. The execution behavior is managed
by the scheduler proposed by Mascaret and this execution is also an explicit
knowledge (start, and result...) that can be used by agents.

3.2 Communication

he agents use messages to communicate with each other. We then use the model
proposed by FIPA:ACL (Agent Communication Language4). A message is rep-
resented by a performative. The ACL model proposes 23 performatives. For
example, an agent uses the request performative to make a request to another
in order to obtain the value of a property or to make it execute an action. The
inform performative allows an agent to inform another of the value of a prop-
erty or to confirm the execution of an action in response to a request. The
messages are expressed in a language and cover an onthology. Several languages
exist for this purpose but we use the one proposed by FIPA : FIPA-SL. Each
agent has an automatic communication behavior. This communication behavior
is a CyclicBehavior which reacts to every new incoming message. The purpose

4 Specification FIPA SC00061



of this behavior is to automatically analyze the message content according to the
performatives. For now, we only consider request and inform. In the language
FIPA-SL we manage everything that relates to the achievement of an action.
Thus, it is possible for an agent to request the execution of an action to another
agent. For example, the following message is received by agent1 asking him to
perform the action openDoor.

ACLMessage : ((action (agent1 (openDoor (door right)))))

By default the communication behavior introspects the content of the class
of the receiver. If the requested action name is found, the agent executes this
operation. The execution of the operation may require parameters. They are
assigned to the parameters passed in the ACL message depending on their type.
If no operation is found, then the behavior looks for a procedure with that name
in the organizations in which the agent plays a role. If it exists, then the agent
triggers the execution of this procedure, using the necessary resources for this
procedure as parameters. If an action or a procedure shall be conducted on the
occurrence of this message, then the agent responds a agree performative to
the sender of the message. If no action and no procedure is found or is achievable
(depending on the state of the environment) then the agent responds with a not

understood performative. This way of responding is normalized by the FIPA

standard. Request and informations on the value of properties are also possibles.
All those functions are possible in the context of an automatic and generic agent
behavior thanks to the fact that all informations are explicit in the simulation.

3.3 Organisation

Because they deal with the simulation of human activity by collaborative multi-
agent systems, the notions of collaboration or organizational structure interac-
tions between participants are important. The organization can be an a priori
description or an a posteriori inference. It can be defined according to strict rules
of behavior or coming from agents. In the context of the simulation of human
activities in a virtual environment, the modeler explicitly describes the structure
of the organization.

Several organizational models exist [10, 12, 11, 5], but in each of them the
concept of group, organization or collaboration takes place in the concept of role.
In general, the organization aims at structuring the roles. A role may include
the description of the responsibility of the agent playing the role or a list of
actions performed by the agent. In [7] the role describes the rights and duties of
an agent.

As for the environment or for the agents, the organization can also be de-
scribed in terms of its structure and in terms of instances of this structure. The
organizational structure describes the roles that composes the organizational
entity as described when assigning roles to agents.

Finally, the description of these organizations by the modeler can not be
independant upon the environment and agents. Since they are described in Uml,



it appears necessary to describe these organizations in the same language. Our
approach is then to interpret the Uml collaboration diagrams to instantiate the
elements of the organizational model we propose.

An organizational structure (OrganisationalStructure) describes how con-
crete organizations are instantiated. This is the same approach as the principle
of Collaboration in Uml. In Mascaret, a role is a set of action. The prin-
ciple is to give constraints to ensure that the agent plays a role using skills. We
represent this principle with the concept of RoleClass. A RoleClass is a kind
of Interface (with the same meaning as in Uml). This allows us to describe
all the actions an agent has to know without describing how they are actu-
ally executed. As seen before, an AgentClass describes the agent structure, its
statements and its possible actions. It uses also an InterfaceRealization to
implements a RoleClass (inheriting from Interface). This is substantially the
same principle as in Uml. This helps provide a rich mechanism on how a service
interface is realized. For example an action of the interface can be achieved in an
AgentClass by a complex arrangement of actions. Organizations and roles may
have the responsibility for resources (Ressource). This allows linking with the
environment in which the organization operates. The concept of resource can
be described independently of the concrete object. A resource is defined by its
name and the entity class that can play the role of this resource.

An organizational entity (OrganisationEntity) is an instance of an organi-
zational structure. This is the same approach as the principle of Collabora-

tionUse in Uml. It assigns roles to agents (RoleAssigment) and resources to
entities (ResourceAssignement). There are several organizational units for the
same organizational structure. Roles and resources can be set a priori but could
also be dynamic. In Behave, a XML file type can instantiate the entities of the
environment, the agents and also the organizational entities. It is then able to
create an organizational entity, specifying the structure and its corresponding
complete assignment of roles and resources, to agents and entities. Of course
this can be done dynamically during simulation and also be changed. It could
also have been possible to define a CollaborationUse in the Uml modeler to
perform this instantiation; however, it seems reasonable to separate the model
description and its environment. Indeed the same model can be used to describe
several environments and an Uml modeler is not the ideal tool to place objects
or agents in a 3D space.

4 Virtual reality application

Gaspar is a virtual reality application developed to simulate human activities on
an aircraft carrier. In Gaspar, a typical scene, such as the one shown in figure 3,
is made up of around 1,000 entities, each with a 3D representation (VRML), i.e.
a total of 1 million polygons. In this scene, there are around 50 agents, divided
into 10 teams, each with an average of 5 roles. Each of these teams is responsible
for an average of 5 procedures. The most complex procedure activates 9 roles
and organizes 45 actions. In this scene, at each moment, around 50 behaviors



are activated. It is implemented using AReVi5 and runs in real-time (around 40
frames per second) on a desktop computer with 2GB of RAM, a 64 bit processor
running at 1.3 GHz, and a GeForce GPU with 1GB of video memory.

Fig. 3. The Gaspar application.

This application uses the generic models presented in the previous section, i.e.
the structure of the environment, objects, organizations and procedures present
in the application are described by a Uml model. Figure 4 represents the global
architecture of the model used in Gaspar.

In this figure, we can see that the model is divided into three packages: the
Organizations package, the Environment package and the Agent package.

– The Environment package describes all the kinds of objects (classes) that
compose the environment. Links between classes are also represented as we
can see on figure 4. This package is interpreted by Veha.

– The Agent package represents the different types of roles that an agent will
take. Those roles correspond to the those which are defined in the real pro-
cedures of catapult-launching or landing for example. A role is made up
with several methods which represent operations that the agents are able
to execute. An agent can be unable to execute some actions that another
agent is responsible for (notion of competence). That is why “Staff” class
is derived in several subclasses, representing specialities of different types of
staff members on the aircraft carrier for example.

– The Organizations package describes the different teams on the aircraft car-
rier, the roles that compose those teams, and the procedures that those
teams can execute. Roles that take part in those procedures correspond to
the types of agents defined in the Agent package. Figure 4 shows the activity
diagram representing the lift-off procedure of an helicopter from the aircraft
carrier. Two agents are involved in this procedure: the pilot of the helicopter
and an agent which is of type PEH, playing the role of ChefPEH.

The French navy (DCNS) provides scenarios, pre-calculed by a scheduling
and resources management tool. The Gaspar application makes possible to

5 http://svn.cerv.fr/trac/AReVi/



Fig. 4. UML model describing the Gaspar application

replay those scenarios in order to estimate the compatibility of the functional
requirements and the geometry of the ship.

5 Conclusion and futurs works

In this paper, we presented an agent metamodel (Behave) based on an environ-
ment metamodel (Mascaret). The metamodel allows the integration and the
management of complex teams of agents in an interactive virtual environment.
We saw the metamodel use in the Gaspar application which simulates activities
on an aircraft carrier.

The FIPA standard proposes to provide a knowledge base to the agent, but
without giving a formalism for the knowledge base. As a perspective of our work
we propose that the agent knowledge base could be a subset of the environment.
Thus it would be possible to drive communication to read or write in this knowl-
edge base according to the FIPA-SL messages received. A behavior specifically
developed for the application will then only manipulate this knowledge base.
Several problems remain, however. How to determine the information the agent
has at the beginning of simulation? Could all behaviors really be expressed in
these terms? How to synchronize the modified knowledge base and the reaction
behavior concerned?

References

1. B. Bauer, J. Muller, and J. Odell. Agent uml: A formalism for specifying multiagent
software systems. In Agent-Oriented Sofware Engineering, volume 1957 of Lecture
Notes in Computer Science, pages 109–120. Springer Berlin / Heidelberg, 2001.



2. G. Beydoun, G. Low, B. Henderson-Sellers, H. Mouratidis, J. Gomez-Sanz,
J. Pavon, and C. Gonzales-Perez. Faml : A generic metamodel for mas devel-
opment. IEEE Transactions on Software Engineering, 35(6):841–863, 2009.

3. G. Desmeulles, S. Bonneaud, P. Redou, V. Rodin, and J. Tisseau. In virtuo exper-
iments based on the multi-interaction system framework: the réiscop meta-model.
CMES, Computer Modeling in Engineering and Sciences, Oct. 2009.

4. L. Ehrler and S. Cranefield. Executing agent uml diagrams. In Autonomous Agent
and Multi-Agent System 2004, pages 906–913, New York, USA, july 2004.

5. J. Ferber and O. Gutknecht. Operational semantics of multi-agent organizations.
In N. Jennings and Y. Lespérance, editors, Intelligent Agents VI. Agent Theories
Architectures, and Languages, volume 1757 of Lecture Notes in Computer Science,
pages 205–217. Springer Berlin / Heidelberg, 2000.

6. C. Hahn, C. Madrigal-Mora, and K. Fisher. A plateform-independent metamodel
for multiagent systems. Autonomous Agent and Multi-Agent System, 18(2):239–
266, 2009.

7. J. Hubner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organisa-
tions with organisational artifacts and agents. Autonomous Agent and Multi-Agent
System, 20(3):369–400, 2010.

8. M.-P. Huget and J. Odell. Representing agent interaction protocols with agent
uml. In Autonomous Agent and Multi-Agent System 2004, pages 1244–1245, New
York, USA, july 2004.

9. M. Kallmann and D. Thalmann. Modeling objects for interaction tasks. In Pro-
ceedings of Computer Animation and Simulation’98, pages 73–86, 1998.

10. L. Montealegre Vazquez and F. Lopez y Lopez. An agent-based model for hier-
archical organizations. In P. Noriega, J. Vazquez-Salceda, G. Boella, O. Boissier,
V. Dignum, N. Fornara, and E. Matson, editors, Coordination, Organizations, In-
stitutions, and Norms in Agent Systems II, volume 4386 of Lecture Notes in Com-
puter Science, pages 194–211. Springer Berlin / Heidelberg, 2007.

11. A. Omicini and A. Ricci. Mas organization within a coordination infrastructure:
Experiments in tucson. In A. Omicini, P. Petta, and J. Pitt, editors, Engineering
Societies in the Agents World, volume 3071 of Lecture Notes in Computer Science,
pages 520–520. Springer Berlin / Heidelberg, 2004.

12. H. V. D. Parunak and J. Odell. Representing social structures in UML. In M. J.
Wooldridge, G. Weiss, and P. Ciancarini, editors, Agent Oriented Software Engi-
neering Workshop (AOSE 2001), International Conference on Autonomous Agents,
volume 2222 of Lecture Notes in Computer Science, pages 1–16. Springer–Verlag
(Berlin), 2002.

13. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. Owl web ontology language
semantics and abstract syntax. W3C Recommandation REC-owl-semantics-
20040210, W3C, 2004.

14. G. Rimassa. Runtime Support for Distributed Multi-Agent Systems. PhD thesis,
University of Parma, 2003.

15. V. Torres DaSilva, R. Choren, and C. J.P. De Lucena. A uml based approach
for modeling and implementing multi-agent systems. In Autonomous Agent and
Multi-Agent System 2004, pages 914–921, New York, USA, july 2004.

16. M. Wooldridge, N. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Autonomous Agent and Multi-Agent System,
3(3):285–312, 2000.


