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Abstract 

 

According to the seminal Cost Recovery Theorem the revenues from congestion tolls pay for the 

capacity costs of an optimal-sized facility if capacity is perfectly divisible, and if user costs and 

capacity costs have constant scale economies. This paper extends the Theorem to long-run 

uncertainty about investment costs, user costs, and demand. It proves that if constant scale 

economies hold at all times and in all states, and if the toll can be varied freely over time and by 

state, then expected discounted toll revenues cover expected discounted investment costs over a 

facility's lifetime. If the marginal cost of investment is constant and investment is reversible, then 

expected cost recovery is also achieved for each investment. Cost recovery is quite sensitive to 

estimated initial demand, and moderately sensitive to the estimated growth rate of demand. 

Natural variability in demand can result in substantial surpluses or deficits over a facility's 

lifetime. 
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1 INTRODUCTION 

Herbert Mohring made a number of landmark contributions to transportation economics over his 

long career. One of his greatest achievements is the self-financing or cost recovery
1
 theorem 

(Mohring and Harwitz, 1962). The theorem states that the revenues from optimal congestion tolls 

pay for the capacity costs of an optimal-sized facility if capacity is perfectly divisible, and if user 

costs and capacity costs both have constant scale economies. The theorem is of interest for at 

least two reasons. First, it establishes that pricing a facility at marginal social cost to support 

efficient usage may be compatible with pricing the facility at average cost to finance it.
2
 Second, 

the theorem is appealing from a normative standpoint because it shows that efficient pricing is 

consistent with the user-pay principle: there is no need to subsidize users, and users do not have 

to pay more than costs for the services they consume. The lack of need for a subsidy is especially 

attractive given the chronic shortage of funds for investment in, and operations of, public 

facilities.  

Mohring and Harwitz derived their theorem for a deterministic environment. Yet uncertainty 

is practically important for many transportation and other facilities. In the case of roads, demand 

and capacity fluctuate unpredictably from day to day due to weather, accidents, unplanned road 

maintenance, and so on. Lindsey (2009) shows that the theorem continues to hold in the face of 

short-run uncertainty if two additional assumptions are imposed: individuals learn supply and 

demand conditions before deciding whether to use a facility, and the congestion toll is varied 

responsively to maintain efficient usage levels. 

This paper is concerned with uncertainty about investment costs, user costs, and demand over 

a facility's lifetime rather than with short-run capacity and demand fluctuations. The theoretical 

treatment is general, but the focus is on roads. The costs and time required to build, expand and 

rehabilitate a road are uncertain. Costs can rise because of changes in technical specifications, 

new construction methods, demands from municipalities for better network connections and so 

                                                 

1
 The terms "self-financing" and "cost recovery" will be used interchangeably in this paper. 

2
 Some prominent economists at the time, including Beckmann et al. (1956) and Nelson (1962), had 

expressed doubts that the goals of efficient usage and cost recovery could be reconciled. Indeed, the 

tension between the two goals dates back to Jules Dupuit and Arthur Pigou. For a historical review see 

Lindsey (2006). 
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on (Nijkamp and Ubbels, 1999; Berechman, 2009). Major cost overruns and delays are common 

for toll roads. In a large international survey, Flyvbjerg et al. (2003) found an average cost 

escalation of 20.4% for road projects, and 33.8% for bridges and tunnels.
3
 

Road operations and maintenance costs are also unpredictable. Input costs (e.g. labour, fuel, 

and material) can vary significantly over time. Natural disasters such as earthquakes and 

hurricanes cause extensive damage. Climate change affects the frequency and severity of 

extreme weather, flooding, frost heave, and so on. Traffic volumes are also a major source of 

uncertainty. In another large international survey, Flyvbjerg et al. (2006) found that, for half of 

road projects, actual traffic deviated from forecasted traffic by more than ±20%.
4
 Traffic 

volumes are affected by a host of unpredictable factors: project completion time, economic 

growth rates, fuel prices, land-use developments, construction of competing or complementary 

roads, environmental concerns that curb automobile usage, changing preferences with respect to 

housing and mode choice, and so on.
5
 

Despite improvements in data collection and econometric methods, forecasts have not 

become more accurate over time (Flyvbjerg et al., 2006; Transportation Research Board, 2006). 

Optimistic demand projections tend to be the norm for toll road projects. Bain (2009) identifies 

several reasons: lower-than-expected travel time savings; over-estimation of drivers’ values of 

time
6
 and corresponding willingness to pay tolls; and errors in designing complex tolling 

schemes in which tolls vary by vehicle type, section of  road, and time of day. 

Technology is a third factor that can affect cost recovery over a road's lifetime. Traffic 

management system techniques such as ramp metering help to regulate demand. Incident 

Management Systems reduce the duration of traffic incidents. Advanced Traveler Information 

Systems notify motorists about traffic conditions. Road vehicles are becoming smaller, smarter, 

and safer. Vehicle collision avoidance systems, lane-departure warning systems, driver fatigue 

monitoring systems, heads-up displays, and improved braking systems are reducing the 

                                                 

3
 Other studies of cost overruns include Odeck (2004) and Berechman and Chen (2011). 

4
 Other studies of bad forecasts include Prozzi et al. (2009) and Williams-Derry (2011). 

5
 Lindsey (2012) discusses the future evolution of road travel demand. 

6
 See Hensher and Goodwin (2004). 
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probability of accidents that contribute to congestion. By increasing effective road capacity, and 

managing demand, these technologies help to improve the utilization of roadways.
7
  

A final influence on capacity and cost recovery is flexible road capacity design. The capacity 

of existing roads can be increased or decreased by re-striping lanes, allowing vehicles to use 

shoulders during peak periods, changing speed limits, introducing or eliminating features to 

accommodate public transit and/or bicycles, and so on (Ng and Small, 2012). The appropriate 

date at which to make these adjustments depends on traffic volumes, ITS technology and vehicle 

designs, and is therefore unpredictable. 

This paper addresses two major questions about cost recovery. First and foremost, does the 

Mohring-Harwitz cost recovery theorem extend to long-run uncertainty in some well-defined 

sense? Second, how likely are large surpluses or deficits due either to errors and biases in 

investment decisions or to natural variability in demand and other factors over a facility's 

lifetime? Section 2 reviews the theoretical literature. Section 3 sets out the model. Section 4 

present two versions of a cost recovery theorem with long-run uncertainty. Section 5 examines 

the prevalence of surpluses and deficits, and Section 6 concludes. Most of the algebraic analysis 

is relegated to the Appendix. 

2 THEORETICAL BACKGROUND 

The seminal result on cost recovery is due to Mohring and Harwitz (1962). Stated formally: 

 

Mohring-Harwitz Cost Recovery Theorem
8
 Assume: (a) the user cost function is 

homogeneous of degree zero in usage and capacity
9
; (b) capacity is perfectly divisible and (c) 

capacity is supplied at unit cost elasticity. Then toll revenues pay for the capacity costs of an 

optimal-sized facility.
10

 

                                                 

7
 As evidence, capacity values in the US Highway Capacity Manual have increased over time 

(Elefteriadou, 2004). 

8
 Mohring and Harwitz (1962, pp. 84-86).  

9
 With homogeneity of degree zero, the cost of usage does not change if usage and capacity are scaled 

proportionally. 

10
 The conditions for self-financing are actually less restrictive than stated because capacity can be 

defined in such a way that condition (c) is always satisfied. A more general version of the theorem states 

that the ratio of toll revenues to capacity costs equals the local elasticity of the capacity cost function. 
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The Mohring-Harwitz Cost Recovery Theorem (henceforth CRT) has been extended in various 

directions and is relatively robust.
11

 The main requirements are that assumptions (a), (b) and (c) 

continue to hold, and tolls be flexible enough to price usage at marginal cost. 

A few studies have addressed aspects of optimal investment and congestion pricing under 

uncertainty without considering cost recovery per se. DeVany and Saving (1980) analyze 

capacity and toll decisions for competing, profit-maximizing highways when demand fluctuates 

randomly over time. In the steady-state equilibrium of their model (which is allocatively 

efficient) firms earn zero expected profits so that their expected toll revenues cover their capital 

costs. However, this result is due to competition and does not depend on the properties of the 

user cost and capacity cost functions.
12

  

Kraus (1982) assesses the effect of demand uncertainty on optimal highway capacity. He 

assumes that demand remains constant over time, but its level is unknown when capacity is built. 

More specifically, the planner is uncertain about a parameter of the representative individual’s 

utility function, where utility depends on travel and a composite good. The planner maximizes 

the representative individual’s utility subject to covering capacity costs with expected revenues 

from congestion tolls and a head tax. Uncertainty induces the planner to increase capacity. 

Depending on parameter values, the congestion toll can be higher or lower with uncertainty 

although reductions seem more likely. With higher capacity and lower tolls cost recovery falls, 

although Kraus does not explore this implication. 

Two more recent papers form the basis of our model and analysis: one by Lindsey (2009) on 

cost recovery with short-run uncertainty, and one by Arnott and Kraus (1998) on long-run cost 

recovery with no uncertainty. Lindsey (2009) assumes that demand and capacity fluctuate 

randomly according to a stationary probability distribution. His main result is reproduced here 

with assumptions additional to those of the Mohring-Harwitz CRT italicized for ease of 

reference: 

 

                                                 

11
 See de Palma and Lindsey (2007) for a review. 

12
 Indeed, to obtain a limit on firm size DeVany and Saving (1980) assume that firms experience 

decreasing returns to scale. 
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Cost recovery with short-run uncertainty.
13

 Assume: (a) the user cost function is 

homogeneous of degree zero in usage and capacity; (b) design capacity is perfectly divisible; 

(c) design capacity is supplied at unit cost elasticity; (d) in any state realized capacity is 

proportional to design capacity and (e) prospective users know the state and the toll is fully 

flexible. Then expected toll revenues pay for the capacity costs of an optimal-sized facility. 

 

The CRT with short-run uncertainty differs from the Mohring-Harwitz CRT in three respects. 

First, design capacity must be distinguished from realized capacity because realized capacity is 

random. Second, users must know the state so that they can make informed decisions on whether 

to use the facility. Third, the toll must be fully flexible so that first-best (i.e., marginal cost) 

pricing can be implemented in all states. As Lindsey (2009) remarks, if demand and capacity 

shocks are statistically independent then the Law of Large Numbers applies, and congestion toll 

revenues converge toward capacity costs so that cost recovery is achieved in practice as well as 

in expectation. 

Arnott and Kraus (1998) undertake a comprehensive analysis of long-run cost recovery under 

non-stationary demand conditions when the facility manager has perfect foresight. They work 

through one series of models in which capacity is added continuously in time, and another series 

of models in which capacity is added intermittently. They show that, given assumptions that 

parallel those of the Mohring-Harwitz CRT, self-financing usually holds in present-value terms 

if prices are flexible over time.
14

 Anticipating the main results of this paper they also conjecture 

that with uncertainty self-financing holds in expected PDV terms if prices are not only flexible 

over time, but also can be conditioned on the state. 

In this paper we adopt Arnott and Kraus's most general formulation of capacity investment 

technology.
15

 The facility is built from scratch and expanded intermittently as demand grows. 

Their result (which they do not formally state) is summarized here as: 

 

  

                                                 

13
 Lindsey (2009, Proposition 1). 

14
 The one exception is when the size of investments is constrained. 

15
 Arnott and Kraus (1998, Section 4.4). 
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Cost recovery in the long run.
16

 Assume: (a) the user cost function is homogeneous of 

degree zero in usage and capacity; (b) capacity is perfectly divisible and (c) capacity 

investment functions are homogeneous of degree one in investment and capacity. Then 

discounted toll revenues pay for the capacity costs of an optimal-sized facility over its 

lifetime. 

 

The Arnott-Kraus CRT differs from the Mohring-Harwitz CRT in two respects. First, a 

distinction is made between capacity and investment since capacity is not all built at once. The 

assumption of homogeneity degree one of capacity costs is replaced by the more general 

condition that the cost of investment is homogeneous of degree one in investment and capacity. 

Second, cost recovery is achieved in PDV terms over the facility's lifetime rather than "all at 

once" as in the static Mohring-Harwitz CRT. Toll revenues do not, in general, pay for investment 

costs over each investment cycle. 

We now turn to our model which extends the Arnott-Kraus model to uncertainty, and also 

allows for irreversibility of investment.
17

 

3 THE MODEL 

The model is adapted from Arnott and Kraus (1998, Section 4.4). There is a single, isolated 

facility which agents decide whether to use. Agents are identical except for their willingness to 

pay for usage. Demand and supply conditions depend on time (t) and the state (w). The 

probability distribution of states can vary autonomously over time, and the distribution of states 

perceived by the facility manager changes as uncertainty is resolved over time. Aggregate 

demand at time t in state w, twN , is a function of the full price or generalized cost of usage, twp : 

 tw twN p . The full price is the sum of the user cost and the toll. The user cost at time t in state w 

is a function  ,tw tw twC N s  of usage ( twN ) and capacity ( tws ). Given a toll tw  at time t in state w, 

the full price is 

                                                 

16
 Arnott and Kraus (1998, pp. 176-178). 

17
 Arnott and Kraus (1998) include irreversibility in one of their models with continuous capacity 

investment (Section 3.3), but not in the intermittent investment model we use. 
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   ,tw tw tw tw twp C N s   .                                                                                                          (1) 

Initial design capacity, 
0ŝ , is zero. Investments in capacity are made at fixed times 

,  1,2,...,iT i M , with 
1 0.T   The number of investments (M) may be finite or infinite. The 

facility manager chooses the amount of investment, 
iI , at time iT , for all i. Depending on the 

nature of capacity, investment may be reversible (
iI  free ) or irreversible ( 0iI  ). Capacity does 

not depreciate so that design capacity at time iT , ˆ ,is  is the sum of investments up to and 

including investment i: 
1

ˆ
i

i jj
s I


 . Design capacity is interpreted to be the maximum capacity 

available under ideal conditions. Since the capacity available at time t in state w, tws , may be less 

than design capacity, ˆ
tw is s  for  1,i it T T  . The cost of investment is specified by a function 

 ˆ,i i iA I s  which is increasing with respect to iI , and increasing or decreasing with respect to îs . 

Investment costs can evolve from investment cycle to cycle (hence the subscript i on A) due to 

technology change or other factors.
18

 To allow for cost overruns it is assumed that the  iA  are 

stochastic, and the uncertainty is not resolved until after the investments are made. 

The facility manager is assumed to be risk neutral and maximizes welfare as measured by 

expected PDV social surplus when the first investment is made at 
1 0.T   Social surplus equals 

consumers' surplus plus toll revenue minus investment costs. At time t in state w, consumers' 

surplus is  
tw

tw
p

N p dp , and toll revenue is  tw tw twN p . To allow for a time-varying discount 

rate, the discount factor at time t is written te


 where  
0

t

t
u

r u du


   .  Let iE  denote the 

expectations operator at time iT , and let  i

tf w  denote the probability density perceived at time 

iT  of states at time t.
19

 Welfare can then be written:  

                                                 

18
 Arnott and Kraus (1998) allow the investment function to depend on the time elapsed since the previous 

investment, 1i iT T  . This possibility is ignored here since the timing of investments is exogenous, and 

any such dependence would not affect results of interest. 

19
 Density  i

tf w depends on random events from 0 to iT , and hence is a random variable from the 

perspective of  iT  if it T . 



 

 8 

     

   

11

1

1

1
ˆ   , .

i
t

i

tw

Ti

TM i

tw tw tw tw ti t T
w p

M i

i i ii

W E e N p dp N p f w dwdt

E e E A I s


 

 





   
    

   



   



                                        (2) 

The capacity accumulation constraints are 

  i1
ˆ  , 1...            

i

i jj
s I i M 


  ,                                                                                          (3) 

where the i  are multipliers. To allow for the possibility that investment is irreversible, 

nonnegativity constraints on investment are also imposed: 

  i0, 1...                      iI i M   ,                                                                                          (4) 

where the i  are multipliers. If investment is reversible, the multipliers i  are zero by default. 

Given eqns. (2)-(4), the Lagrangian is
20

 

 

     

       
  

11

1

1 1

1 1 1

1

1

ˆ ˆ,

.

i
t

i

tw

T Ti i

Ti

TM i

tw tw tw tw ti t T
w p

M M ii i

i i i i i ii i j

M i

i ii

E e N p dp N p f w dwdt

E e E A I s E e E I s

E e E I







 

 

 

  





   
     

   

  



   

  



                                        (5) 

The Lagrangian in eqn. (5) is maximized by choosing tolls  tw  and investments  iI . 

4 THE COST RECOVERY THEOREM 

Because the toll is assumed to be freely variable, the optimal toll at each time and in each state is 

given by the classical formula: 

 ,    ,tw
tw tw

tw

C
N t w

N



 


.                                                                                                            (6) 

Toll revenue at time t in state w is therefore   2

tw tw tw tw tw twR N C N N    , and expected PDV 

toll revenues over the full time horizon are 

                                                 

20
 The multipliers i  and i  are discounted in eqn. (5) to facilitate interpretation and manipulation of 

first-order conditions. 
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   
11 1 2

1
.

i
t

i

TM itw
tw ti t T w

tw

C
E R E e N f w dwdt

N

 

 

 
  

 
                                                                  (7) 

The optimal investment rules are derived in the appendix. If the user cost functions  ,tw tw twC N s  

are homogeneous of degree zero, the optimality conditions yield  

  
11 2 1

1 1
ˆ ,

ˆ

i Tt i

i

TM Mi i i itw i i
tw tw t i ii it T

tw i iw

C A A
E e N f w dwdt E e E s E I

N s I


 

 

          
                    

           (8) 

where   ˆ ˆi

tw tw i i tws s s s     is the elasticity of realized capacity at time t in state w with 

respect to design capacity during the time interval  1,i it T T  . The left-hand side of (8) matches 

expected PDV toll revenues in eqn. (7) if 1i

tw  , , ,t w i . If the investment cost functions  iA  

are homogeneous of degree one in iI  and îs , the right-hand side of (8) reduces to 

   1

1
ˆ,Ti

M i

i i ii
E e E A I s



  which is expected PDV investment costs. Expected PDV toll 

revenues then match expected PDV investment costs, and cost recovery is achieved. This result 

is formalized in: 

 

Theorem 1 (Cost recovery with long-run uncertainty-1). Assume: (a) at any date and in 

any state the user cost function is homogeneous of degree zero in usage and capacity; (b) 

capacity is perfectly divisible; (c) capacity investment functions are homogeneous of degree 

one in investment and capacity; (d) at any date and in any state realized capacity is 

proportional to design capacity and (e) prospective users know the state and the toll is fully 

flexible. Then expected discounted toll revenues pay for expected discounted investment 

costs of an optimal-sized facility over its lifetime. 

 

Theorem 1 generalizes the Arnott-Kraus CRT with perfect foresight as well as the CRT with 

short-run uncertainty in Lindsey (2009). The intuition for Theorem 1 is similar to the intuition in 

Lindsey (2009): random fluctuations in construction costs, capacity availability, and demand are 

equivalent in expected terms to systematic fluctuations with the same frequency distribution. 

Expected revenues are then the same too. The three assumptions in Theorem 1 that are additional 

to the assumptions required for the Arnott-Kraus CRT are italicized for ease of reference. First, 

the user cost functions must be homogeneous of degree zero at all dates and in all states. Second, 
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proportionality of actual and realized capacity must hold at all times and in all states. Third, the 

toll must be flexible at all times and in all states. 

Two features of Theorem 1 deserve emphasis. First, unlike with the Arnott-Kraus CRT, costs 

are recovered only in expected terms. Because construction costs, capacity, and demand are 

random, a surplus or deficit may be realized in practice. Second, expected cost recovery is 

achieved only over the facility's lifetime. Expected toll revenues do not necessarily cover 

investment costs over each investment cycle. Surpluses may be anticipated over some cycles, 

and deficits over others. To assure expected cost recovery over each investment cycle, two 

additional assumptions are required: (1) the marginal cost of investment must be constant and 

independent of design capacity and (2) investment must be reversible. Given these additional 

assumptions, a stronger variant of Theorem 1 obtains: 

 

Theorem 2 (Cost recovery with long-run uncertainty-2): Let assumptions (a)-(e) of 

Theorem 1 hold. Further assume: (f) the marginal cost of investment is constant and does not 

depend on design capacity and (g) investment is reversible. Then expected discounted toll 

revenues pay for expected discounted investment costs of an optimal-sized facility over each 

investment cycle. 

 

Theorem 2 is proved in the appendix. Although the assumptions required for Theorems 1 and 2 

are more stringent than for the other cost recovery theorems, they still admit a wide range of 

possibilities. Construction costs can rise or fall, and construction technology can change as long 

as the investment cost function retains constant scale economies. Demand can increase or 

decrease, the discount rate can change, and the probability distribution of states can evolve over 

time. Travel costs can change due to advances in ITS technology, vehicle design, and road 

design. Theorems 1 and 2 also admit cost-recovery with short-run uncertainty if the toll is 

responsive to short-run capacity and demand shocks such as traffic accidents. If no such short-

run shocks ever occur, toll flexibility is only required with respect to slower-evolving conditions 

such as seasonal or business-cycle-related demand fluctuations. 

Empirical evidence on the validity of the assumptions underlying the Mohring-Harwitz CRT 

is limited and mixed.
21

 An additional consideration relevant for Theorems 1 and 2 is whether the 

                                                 

21
 See Small and Verhoef (2007, Section 5.1) and de Palma and Lindsey (2007, Section 4). 
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frequency and severity of cost overruns varies with project scale. As Jahren and Asha (1990) 

point out, one might expect cost overruns to be more prevalent for large projects since they are 

generally more complex. However, because the stakes are also higher with large projects, more 

care may be exercised in the bidding and planning process, and better managers may be assigned 

to the projects. In their large international survey, Flyvbjerg et al. (2003) found no statistically 

significant effect of estimated project cost on cost escalation. By contrast, Odeck (2004) found 

for a sample of Norwegian road construction projects that cost overruns were more prevalent for 

smaller projects. Given the limited and inconclusive evidence on cost overruns, we take 

assumption (c) in Theorems 1 and 2 to be a reasonable working hypothesis. 

5 DEVIATIONS FROM COST RECOVERY 

Theorems 1 and 2 establish that, under plausible assumptions, expected PDV toll revenues cover 

expected PDV construction costs. Yet the theorems are silent about the degree to which costs 

will actually be recovered once uncertainty has been resolved. Both surpluses and deficits are 

possible, and experience with roads and other transportation infrastructure projects shows that 

large departures from cost recovery do occur. Deficits are particularly damaging for toll road 

projects that are financed through non-recourse loans since they may lead to bankruptcy (Welde 

and Odeck, 2011). Surpluses are also problematic if they result from decisions to build roads that 

are too small and fail to provide adequate congestion relief.
22

 

In this section we examine deviations from cost recovery. We begin by considering cost 

overruns and errors in capacity choice decisions. We then consider deviations from cost recovery 

due to the inherent unpredictability of demand. Finally, we explore the effects of investment 

irreversibility. Expected cost recovery over individual investment cycles is guaranteed when 

investment is reversible (cf Theorem 2) but not when it is irreversible (cf Theorem 1). 

                                                 

22
 According to Flyvbjerg et al. (2006), this has been the case for a number of road projects in the UK. 
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5.1 Investment mistakes 

5.1.1 Construction cost overruns 

The implications for cost recovery of cost overruns are fairly obvious and warrant only brief 

discussion. In their survey, Flyvbjerg et al. (2003) found that actual costs exceeded forecast costs 

by an average of 20.4% for roads and 33.8% for bridges and tunnels. These figures might 

suggest that on average a fraction 1/1.204= 0.831 of costs will be recovered for roads, and a 

fraction 1/1.338 =0.747 of costs will be recovered for bridges and tunnels. However, this 

disregards the possibility that costs were deliberately underestimated, possibly by contractors or 

political supporters of the projects, in the hope of getting them approved. It also neglects that 

operations, maintenance, and rehabilitation contribute to lifetime project costs. Thus, 

construction cost overruns alone are unlikely to drive average cost recovery below about 75%. 

5.1.2 Errors in capacity choice 

A number of parameters besides construction costs affect cost recovery through their effect 

on the choice of design capacity. The effects of these parameters are explored in the next 

subsection using a parametric version of the general model in Section 4. But it is instructive first 

to consider the effects of design capacity errors directly using a simple, static approach. Let 

 p N  be the inverse demand curve and assume that the unit cost of investment is a constant, k. 

Write the user cost function as  ,C N s  and assume that capacity is always fully available so that 

ˆs s . The cost recovery ratio is then    ˆ/ /R ks R ks   , and the elasticity of cost recovery 

with respect to capacity is   s d ds s   . This elasticity can be written 

  1 1R

s s dR ds s R     , where R

s  is the elasticity of toll revenue with respect to 

capacity. As shown in the Appendix, 

 

 

2

2

N Ns N NN sR

s

N s N NN s

p C N C C N C

p C C C N C


 


  
.                                                                                         (9) 

The elasticity of toll revenue depends on the slope of the inverse demand curve and the first and 

second derivatives of the user cost function. 
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With perfectly elastic demand ( 0Np  ), eqn. (9) simplifies to 1R

s  . Demand then varies 

proportionally with capacity and the toll does not change. Consequently, toll revenue varies 

proportionally with capacity, ˆ 0s

  , and cost recovery is unaffected by mistakes in choosing 

design capacity. 

In the opposite limiting case of perfectly inelastic demand  Np   , eqn. (9) reduces to  

0R Ns N
s

s N

C N C s

C s C



   


.                                                                                                 (10) 

An increase in capacity causes revenues to fall because congestion is reduced, the toll drops, and 

usage does not change. According to most empirical traffic speed-volume curves, travel speeds 

are quite sensitive to volume-capacity ratios when congestion is severe. Under these conditions, 

the elasticity   N NC s s C   in eqn. (10) is large in magnitude. The elasticity R

s  is then 

negative and large in magnitude, and 
ŝ

  is smaller yet. Errors in choosing capacity will therefore 

affect cost recovery severely. 

5.1.3 Errors in parameter estimates 

To assess the effects of errors in estimating parameter values we now consider a specific 

instance of the general model. For simplicity and clarity, attention is focused on the first 

investment cycle over the time interval  1 2,T T = 0,T . The cost of investment is 1
ˆkI ks  where 

k is a constant.
23

 The interest rate, r, is assumed to be constant over time. 

Demand at time t in state w is given by a constant-price-elasticity function 
tw tw twN n p   

where twn  is demand "intensity" and 0   is the price elasticity. Demand intensity evolves 

according to Geometric Brownian Motion following the stochastic differential equation 

t t t tdn gn dt n dW  , where g is the mean growth rate or drift parameter,   is the standard 

                                                 

23
 To account for the fact that initial capacity may remain useful after time T, the unit cost of capacity can 

be deflated. If the cost of capacity is the same for the second investment, the effective cost of capacity for 

the first investment is  1 rTk e . 
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deviation, and 
tW  is a Wiener process.

24
 Demand intensity when the road is built, 

0n , is assumed 

to be known. 

User cost is given by the conventional Bureau of Public Roads formula  ,tw twC N s 

 t tw twd N s


.
25

 The coefficient 
td  can change over time for several reasons. It will rise if the 

value of travel time increases. It will fall as advances in ITS technology, vehicle design, and road 

design smooth traffic flow and permit higher speeds to be safely maintained. To capture these 

and other influences, 
td  is assumed to decline slowly along an exponential path 

0

t

td d e   

where parameter   describes the rate of technological progress net of any increase in value of 

time.
26

  

Capacity is assumed to be fully available at all times in all states so that uncertainty arises 

only on the demand side. Given these assumptions, optimal design capacity works out to (see the 

appendix) 

     
1

1 1

1

0 0
ˆ 1 1 /hTs n d e h

k


   




  

   
 

,                                                                            (11) 

where    1 / 1      and     21 / 2h g r          . Design capacity is 

proportional to initial demand intensity. This follows from the assumption that capacity can be 

built at a constant unit cost, and a property of Geometric Brownian Motion that demand at all 

future dates is proportional to initial demand. 

Expected cumulative usage,  E U , is 

                                                 

24
 Geometric Brownian Motion is frequently assumed in the options and option value literature (Dixit and 

Pindyck, 1994) as well as in transportation studies (e.g., Rose, 1998; Nagae and Akamatsu, 2006; 

Saphores and Boarnet, 2006; Doan and Patel, 2010; Pimentel et al., 2010). Marathe and Ryan (2005) find 

empirical support for Geometric Brownian Motion in the case of usage of two established services 

(electric power consumption and airline passenger enplanements), but not for two emergent services 

(cellphones and the Internet). 

25
 The constant term in the BPR formula is omitted to permit analytical solutions. The user cost function 

therefore specifies the variable or congestion-dependent component of travel cost while omitting the free-

flow component. 

26
 Parameter   is included in the exponent of the formula for td  so that td  can be interpreted as a 

multiplicative capacity expansion factor. In principle, td  could be treated like tn  as a random variable. 
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        
1

1 1
0 0

0
ˆ1 1 /

T
mT

tw
t

E U E N dt n d s e m


 


 


    ,                                             (12) 

where       22/ 1 / 2 1m g         .  E U  has an elasticity with respect to 

design capacity of    ˆ / 1 0,1U

s     . Building a larger road results in greater usage 

because congestion is reduced. However, as in the static model, usage increases proportionally 

less than capacity except in the limiting case where demand is perfectly elastic (i.e.,   ). 

Expected PDV toll revenues work out to 

      
   

1
11

0 0
ˆ1 1 / .hTE R n d s e h


    


                                                                   (13) 

The elasticity of   E R  with respect to design capacity is    ˆ 1 / 1R

s       . Toll 

revenue increases or decreases depending on whether demand is elastic or inelastic (i.e., 1   or 

1  ). The elasticity of cost recovery,  , with respect to design capacity is 

   ˆ ˆ 1 1 / 1 0R

s s

          . Consistent with the static model, building a larger road 

reduces cost recovery except in the limiting case   . By substituting eqn. (11) for ŝ  into eqn. 

(13), it is straightforward to show that expected PDV revenues equal capacity costs:   ˆE R ks . 

To gain further insights we proceed numerically. We parameterize the model for a three-lane 

road with a design capacity of ˆ 6,000s   vehicles per hour. Daily peak-period usage in year 0 is 

assumed to be 
0 12,000N   so that the peak period lasts for two hours. In year 0 the generalized 

cost (net of free-flow cost) is 
0 $7.50p  , and the toll is 

0 $5.00  . Parameter values that support 

this equilibrium are 2  , 0.25  , 
0d =0.625, 

0n = 19,858, and k=131.93. The duration of the 

first investment cycle is set to 15T  , and the discount rate is set at 0.05r  . 

It is difficult to judge a reasonable value for parameter  . There is also little published 

information on which to base values of g and  . Suitable values will vary with rates of national 

and regional economic growth, rate of growth in automobile ownership, and other factors.
27

 For 

exploratory purposes we set the net rate of technological progress to 0.01  , the mean annual 

                                                 

27
 Prozzi et al. (2009) review forecast and realized traffic growth rates for selected toll roads in North 

America. 
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growth rate of demand to 0.02g  , and the standard deviation of the annual growth rate to 

0.05  . Alternative values of  , g, and  are considered in the sensitivity analysis below. 

With these base-case parameters, mean cumulative traffic volume over the 15-year time 

horizon is 74.5 million. Cumulative expected PDV toll revenues are $288.9 million, which match 

construction costs as per Theorem 1 and Theorem 2.
28

 

To assess how parameter estimates affect design capacity and expected cost recovery, we 

alter parameter values one at a time while assuming that the true parameter values remain equal 

to their base-case values. To do so we use eqn. (11) to compute design capacity with the 

modified parameter values, and then use eqns. (12) and (13) to compute expected cumulative 

usage and toll revenues with the true parameter values. Given 2   and 0.25  , the elasticity 

formulas given above yield ˆ

U

s =1/3 and ŝ

 = -2. Expected cumulative usage is a slowly 

increasing function of design capacity, and cost recovery is a sharply decreasing function. 

The results of the sensitivity analysis are reported in Table 1. Each quantity is stated as a 

percentage of the value that would obtain with correctly specified parameters. The first panel of 

Table 1 shows the effects of misestimating unit construction costs. Estimated parameter values 

are marked with a ~ (tilde) to distinguish them from the true values. Thus,  5/ 6k k  indicates 

that the unit cost is underestimated by one sixth. In this case, the road is overbuilt by 9.5%. 

Expected usage increases, but only by a little over 3%.
29

 The largest effect is on cost recovery 

which changes in proportion to parameter k. Overestimating construction costs by 1/5 has a 

similar but opposite effect on capacity, cumulative usage, and cost recovery. 

Panel 2 of Table 1 shows that errors in estimating initial demand intensity have a pronounced 

effect on expected cost recovery. If demand intensity is underestimated by 1/3 (which is not 

uncommon in practice) the road is built to 2/3 of its optimal capacity. Construction costs are 

reduced commensurately. The toll, meanwhile, rises considerably because of the nonlinear 

dependence of congestion delay on capacity. The end result is that over the 15-year period the 

road generates an expected revenue surplus equal to 125% of its cost. By contrast, if demand is 

                                                 

28
 Total construction costs are 365 ˆks =365*131.93*6,000=$288.9 million. 

29
 The relative magnitude of these changes is consistent with the point elasticity ˆ

U

s =1/3. 
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overestimated by 1/2 (also not unrealistic), expected toll revenues cover less than half 

construction costs. 

Panel 3 assesses the effects of the mean growth rate in demand. As expected, underestimation 

of growth results in a smaller road capacity, lower cumulative usage, and higher expected cost 

recovery. If growth is disregarded, tolls recover on average nearly one third more than costs. By 

contrast, if growth is overestimated by 2 percentage points, expected cost recovery falls 26% 

below costs. 

Panel 4 shows that misestimating variability in the growth of demand has little effect on 

design capacity, cumulative usage, or cost recovery. Similarly, panel 5 shows that varying the 

demand elasticity up or down by a factor of two has only small effects. The rate of technological 

progress does not have a major influence either (cf. panel 6). Misestimating the rate of progress 

by ± 1 percentage point has about the same effect as misestimating the mean growth rate of 

demand by about ±0.5 percentage points in the opposite direction. 

5.2 Probability distribution of revenues and cost recovery 

The previous subsection examined deviations from expected cost recovery due to errors in 

estimating parameters that affect construction costs, demand, or congestion. We now turn to the 

question of how much revenues and cost recovery for an optimally designed road can differ from 

their expected values due to the inherent variability of demand. 

One simple way to address this question is to consider the probability distribution of 

revenues at a given date. Doing so gives only a partial view of how much cumulative revenue is 

generated over a road's full lifetime. However, it has the advantage that closed-form analytical 

solutions exist. Table 2 presents summary statistics using the base-case parameter values for 

aggregates of interest in year 10 (i.e., two thirds of the way through the 15-year time horizon). 

Uncertainty in the model is driven by stochastic growth in demand intensity.  By year 10, 

expected intensity has increased to 
0

gtn e = (19,858)  0.02 10
e =  24,255. The coefficient of variation 

(CV) of demand intensity at t=10 is about 0.16. The CV for traffic volume is smaller because 

congestion has a dampening effect on usage. The CV for the toll is larger because traffic volume 

has a nonlinear effect on congestion delay, and traffic volume and delay vary in tandem. 

Revenue has the largest CV of all because it is the product of traffic volume and the toll which 

also vary in tandem. Expected daily revenues in year 10 are $83,005. This is some 38% higher 
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than the daily revenues of $60,000 generated just after the road is built. Nevertheless, because of 

the large variability in demand there is a 0.19 probability that actual revenues in year 10 are 

below their starting level. 

To derive the probability distribution of cumulative PDV revenues over the full time horizon 

it is necessary to use numerical methods. This was done by solving the stochastic differential 

equation for tn  using small (monthly) time increments over the 15-year horizon, and taking a 

random draw for the Wiener increment, 
tdW , at each monthly step. The process was repeated 

5,000 times
30

 to generate the frequency distribution shown in Figure 1. The distribution does not 

follow a lognormal or other standard distribution. It has a coefficient of variation of 0.225, a 

coefficient of skewness of 0.869, and a coefficient of kurtosis of 4.41. The distribution is 

therefore positively skewed. Various calculations can be done with the distribution. For example, 

revenues at the first quartile of the distribution are 84.1% of mean revenues which implies that 

they would cover 84.1% of PDV costs. With probability 0.112, cumulative PDV revenues are 

less than 3/4 of PDV costs. Similarly, with probability 0.073, cumulative PDV revenues exceed 

4/3 of PDV costs. Such statistics provide a sense of how far revenues may deviate from 

achieving exact cost recovery.  

5.3 Irreversible investment 

According to Theorem 2, if the marginal cost of investment is constant and does not depend 

on design capacity, and if investment is also reversible, then expected cost recovery holds over 

each investment cycle. But if investment is irreversible, expected cost recovery is achieved only 

over the facility's full lifetime, and an expected surplus or deficit can accrue over individual 

investment cycles. The pattern of expected surpluses and deficits from cycle to cycle will depend 

on various factors: changes in construction costs and technology, the evolution of 

macroeconomic conditions, changes in travel behaviour and land usage patterns, and so on. 

A comprehensive analysis of surpluses and deficits with irreversible investment would be 

tedious, and general results are likely to be elusive. However, a clear pattern can be identified in 

the case of two investments (i.e., M=2). Initial capacity is built at time 1 0T  . Capacity can be 

                                                 

30
 The simulation took nearly 4 hours using Maple version 8 on a laptop with an Intel 2.53 GHz processor 

and 6 GB of RAM. Very similar results were obtained with 2,500 iterations. 
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added at time 
2T , but capacity built at 

1T  cannot be liquidated. The facility ends operation at time 

3T , which may be finite or infinite. 

In this setting there is an incentive to restrain initial investment. If demand does not grow as 

quickly as anticipated over the first cycle, capacity may exceed the optimal level for the second 

cycle and the unwanted capacity cannot be profitably liquidated. By contrast, if demand grows 

quickly over the first cycle, the shortage can be rectified at time 
2T  by investing in lots of 

additional capacity.
 31

 Since investment is held back at 
1T , an expected surplus accrues in the first 

cycle, and since any shortage of investment at 
1T  is made up at 

2T , an expected deficit is incurred 

in the second cycle. As per Theorem 1, the expected deficit in the second cycle is equal in 

magnitude to the expected surplus for the first cycle. 

The size of the expected surplus and deficit can be explored numerically with a two-period 

version of the specific model used in subsections 5.1.3 and 5.2.
32

 We assume 
1 0T  , 

2 15,T   and 

3 30T  , and use the same base-case parameter values as before. Capacity is assumed to be fully 

salvaged at 
3T  so that the effective cost of the initial investment is  31

rT
k e


 . With the base-

case parameter values, optimal investment at 
1T  is 6,000. On average, a further 1,514 units are 

invested at 
2T . 

The results are presented in Table 3. With the base-case parameter values, no investment occurs 

at 
2T  with probability 0.137. Nevertheless, period 1 investment is held back by a mere half 

percent relative to the optimum with reversible investment. On average, a surplus of about 2% is 

earned over the first investment cycle. Similar results are obtained with other parameter values. 

Irreversibility has a slightly larger effect on cost recovery with a lower mean growth rate in 

demand (lower g) and a higher variability in the growth rate (higher  ). Varying parameters  , 

 ,  , and r has little effect. Overall, the example suggests that irreversibility has a rather modest 

effect on cost recovery. Further analysis using empirically calibrated examples are needed to 

assess the robustness of this finding. 

                                                 

31
 The incentive to hold back investment in period 1 is analogous to the incentive to postpone investment 

in the option value literature. 

32
 The analytical solution, which is rather tedious, is outlined in the appendix. 
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6 CONCLUSIONS 

The Mohring and Harwitz (1962) cost recovery theorem is a seminal contribution to 

transportation economics as well as microeconomic theory. It establishes that if capacity is 

perfectly divisible, and if user costs and capacity costs both have constant scale economies, then 

the revenues from optimal congestion charges pay for the capacity costs of an optimal-sized 

facility. 

This paper investigates whether the cost recovery theorem extends to long-run uncertainty 

about investment costs, user costs, and demand over the lifetime of a facility. The main 

conclusion (Theorem 1) is that if constant scale economies continue to hold in expectation at all 

times and in all states, and if the toll can be varied freely over time and by state, then expected 

PDV toll revenues cover expected PDV investment costs over a facility's lifetime. Furthermore, 

if the marginal cost of investment is constant, and investment is reversible, then expected cost 

recovery is achieved over each investment cycle (Theorem 2). The two theorems generalize 

results derived for long-run cost recovery with perfect foresight by Arnott and Kraus (1998), and 

for cost recovery with short-run uncertainty by Lindsey (2009). 

The paper also investigates the size of surpluses or deficits that can arise either from errors in 

estimating key parameters or from natural variability of demand. Using a parametric model it is 

shown that cost recovery is quite sensitive to estimated initial demand, and moderately sensitive 

to the growth rate of demand. Even with no investment mistakes, natural variability in demand 

can result in substantial surpluses or deficits over a facility's lifetime.  

Several caveats are in order. First, further research is clearly warranted using more detailed 

and accurate information on the causes and magnitudes of the various uncertainties that affect 

cost recovery. Second, the analysis of deviations from cost recovery was conducted mainly with 

a specific parametric model. The sensitivity analysis was also limited to variation of parameters 

one at a time. In practice, demand and revenue forecasts often make inaccurate assumptions 

about multiple parameters at once (Transportation Research Board, 2006). Monte Carlo analysis 

can be used in an attempt to deal with multiple sources of uncertainty, although it can be difficult 

to determine the degree of correlation between the variables. 

Third, the demand curve has been treated as exogenous in the sense that it does not depend 

on the size of investments. In practice, usage of a new facility often builds gradually to a steady-

state level or steady growth rate (Transportation Research Board, 2006). The so-called "ramp-



 

 21 

up" period for toll roads can last for several years. Demand grows gradually because drivers 

learn about the new facility with a delay, or are reluctant to try it. The speed at which demand 

grows depends on experience. Experience is a function of usage, usage is a function of 

(expected) costs, and costs depend on capacity. It may be possible to accelerate growth in 

demand by building a larger facility. Setting low, introductory tolls is another common method 

of gaining market share for a new product. However, such strategies depart from the pure 

welfare-maximizing objective that underlies the cost recovery theorem. 

Fourth, we have ignored uncertainty about delays in project completion which arise due to 

difficulties in securing a right of way, interest group objections, funding problems, unforeseen 

engineering and construction difficulties, and so on (Berechman, 2009). The time required to 

complete a project affects both PDV construction costs and PDV benefits. PDV costs may be 

reduced if construction is extended over a longer time period, but benefits will also be reduced 

since usage of the infrastructure will be delayed. 

Fifth, we have ignored external costs such as air pollution and noise caused during 

construction. Measures that are taken to reduce these costs will increase total construction costs, 

but they do not affect cost recovery unless they affect scale economies in construction costs. 

Finally, we have assumed that users are infinitesimal in the sense that they have no market 

power. This is generally a realistic assumption for roads, but not for airports where individual 

airlines sometimes account for a substantial fraction of overall traffic. When users have market 

power the cost recovery theorem usually breaks down (see Zhang and Czerny (2012) for a 

literature review) although it can be restored if it is recognized that large users have an incentive 

to contribute to capacity (Verhoef, 2012). 
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9 NOTATIONAL GLOSSARY 

 iA  investment cost function 

 twC  user cost function at time t in state w 

iE  expectations operator at time iT  

 i

tf w  probability density perceived at time iT  of state w at time t. 

h composite parameter  (specific dynamic model) 

iI    capacity investment at time iT  

k unit cost of investment  (specific dynamic model) 

m composite parameter  (specific dynamic model) 

M number of investments (possibly infinite) 

 twN  demand function at time t in state w 

twp   full price or generalized cost of usage at time t in state w 

 p N  inverse demand function (static model) 

 r t  instantaneous discount rate at time t 

t time 

R toll revenue 

îs  design capacity at time iT  

tws  capacity realized at time t in state w 

iT  time of investment i 

W welfare 

 

Greek characters 

t  Cumulative discount rate at time t 

i

tw    elasticity of realized capacity tws  with respect to design capacity îs  for  1,i it T T   

R

s    elasticity of toll revenue with respect to design capacity 

s

    elasticity of cost recovery ratio with respect to design capacity 
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   demand elasticity  (specific dynamic model) 

   composite parameter  (specific dynamic model) 

i   multiplier for capacity accumulation constraint at time iT  

ξ rate of technological progress  (specific dynamic model) 

  fraction of capacity cost recovered by toll revenue 

tw  toll at time t in state w 

i   multiplier for nonnegative investment constraint at time iT  

w state 

  Lagrangian 

 

10 APPENDIX 

10.1 Optimal investment rules for M    

Given the Lagrangian in eqn. (5), the first-order condition for iI  is 
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and the first-order condition for îs  is 

 

   
1

ˆ

0,         1... 1.
ˆ

i
t

i

Ti

T
itw tw tw

tw tw tw t
t T w

tw tw i

i i
i

i

N p s
e N p f w dwdt

p s s

A
e E i M

s





 





    
        

 
     

 

 
                                                   (A2) 

From eqn. (1) in the text, tw tw tw tw tw

tw tw tw tw tw

p C N p C

s N p s s

    
 

    
 which resolves to 

 
  1

tw tw tw

tw tw tw tw tw

p C s

s C N N p

  


     
.                                                                                     (A3) 

Substituting eqns. (6) and (A3) into (A2) gives 
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 
  

 
1

ˆ1

0.
ˆ

i
t

i

Ti

T
itw tw tw tw

tw tw tw t
t T w

tw tw tw tw tw i

i i
i

i

N C s s
e N p f w dwdt

p C N N p s

A
e E

s





 





     
            

 
   

 

 
              (A4) 

If  ,tw tw twC N s  is homogeneous of degree zero,    tw tw tw tw tw twC s s C N N      . Introducing 

the elasticities   ˆ ˆi

tw tw i i tws s s s    , , ,t w i , one has 

 
ˆ ˆ ˆ

i itw tw tw tw tw tw
tw tw

tw i tw i tw i

C s C s C N

s s s s N s
 

   
  

   
.                                                                               (A5) 

Using eqns. (6) and (A5), and multiplying through by îs , eqn. (A4) simplifies to 

  
1 2 ˆ 0.

ˆ

i Tt i

i

T
i i itw i

tw tw t i i
t T w

tw i

C A
e N f w dwdt e E s

N s
 

 



  
   

  
                                                    (A6) 

Next, subtract equation (A1) for investment i+1 from equation (A1) for investment i to get: 

 
 1

1

1 11

1
1

1 0,     1 1... 1

TT T T ji i i

T Ti i

Mi i i ii i
i jj i

i i

i i

A A
e E e E e E E e

I I

e e M

 

 





   

 


 



 
    

 

    


,                                       (A7) 

  or 

 
 1

1

1 11

1
1

1 0,     1... 1.

TT T T ji i i

T Ti i

Mi i i ii i
i jj i

i i

i i

A A
E e E e E E e

I I

e i M

 

 





   

 


 



 
   

 

    


                                             (A8) 

Substitute (A8) into (A6) to get 

 

 

 

1

1

1

2

1 11

1
1

1

ˆ ˆ .

i
t

i

TT T T ji i i

Ti

T Ti i

T
i itw

tw tw t
t T w

tw

Mi i i i ii i i
jj i

i i i i

i

i

C
e N f w dwdt

N

A A A
E E e E e E E e

s I Ie s

e E

















   

  


  





   
        

   

 


                        (A9) 

Sum (A9) over all i, and take expectations at 1T  to get 



 

 26 

 

 

  

 

1

1

1

1 2

1

1 11

1 11
1

1

ˆ ˆ ˆ
ˆ .

ˆ

i
t

i

TT T ji i

T Ti i

TM i itw
tw tw ti t T w

tw

M Mi i i i ii i i
i i j ii j i

i i i

i i i

C
E e N f w dwdt

N

A A A
e E E s e E s E E e s

s I IE

e e s





 









 

   

  


 



 
 

 

     
             

 
   

  

 
  (A10) 

The right-hand-side of (A10) can be rewritten  

 
 

     1

1 1

1 2

1 1 1

11 1 1

ˆ ˆ
ˆ

ˆ ˆ

T Ti i

T T Tj i i

M Mi i ii i i
i i ii i

i i i

M M Mi i

j i i i ii j i i

A A A
E e E E s E e E s I

s I I

E E E e s E e e s  

 

 

  

   

       
      

       

   

 

  

  

 

     

1

1

1 1 11
11 2

1

1 1 1

11 1 1

ˆ ˆ
ˆ

ˆ ˆ

T TTi i

T T Tj i i

M Mi ii i
i ii i

i i

M M Mi i

j i i i ii j i i

A AA
E e E s e E s E e E I

s I I

E E E e s E e e s  

 

 

  

   

    
     

     

   

 

  

 

 
  

  1

1 1 1

1 1 1

1

11

ˆ ˆ
ˆ

ˆ .

TT ji

T Ti i

M M Mi i i ii i
i i j ii i j i

i i

M

i i ii

A A
E e E s E I E E E e s

s I

E e e s



 

 

   

 



    
     

    

 

  



                     (A11) 

By the law of iterated expectations, the second term in (A11) is zero. The third term can be 

written     1
11

1 1 1 02 1
ˆ ˆ ˆ 0T T Ti i

M M

i i i i ii i
E e s e s I e s  

   

  
      , where the first equality 

follows from the complementary slackness 0i iI  , i , and the second equality follows from 

0
ˆ 0s  . Equation (A10) therefore simplifies to  

  
11 2 1

1 1
ˆ ,

ˆ

i Tt i

i

TM Mi i i itw i i
tw tw t i ii it T w

tw i i

C A A
E e N f w dwdt E e E s E I

N s I


 

 

       
     

       
             (A12) 

which is recorded as eqn. (8) in the text. 

10.2 Optimal investment rules for M   

If M  , eqn. (A8) cannot be derived from eqn. (A1) for the last investment at MT . However, 

eqn. (A1) can be solved directly to give 

 M M
M M

M

A
E

I
 


 


.                                                                                                           (A13) 
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Substituting (A13) into (A6), gives 

  
1 2 ˆ .

ˆ

M
Tt M

M

T
M M M Mtw M M

tw tw t M M
t T w

tw M M

C A A
e N f w dwdt e E E s

N s I
 

 



   
   

   
                           (A14) 

Equation (A9) still applies for investments i=1…M-1. Summing (A9) for i=1…M-1, adding 

(A14), and taking expectations at 1T  gives a counterpart to (A10): 

 

 

  

 

1

1

1

1 2

1

1 1 11

1 1
11

1

ˆ ˆ ˆ
ˆ

ˆ
ˆ

i
t

i

T T Ti i M

T T Ti i M

TM i itw
tw tw ti t T w

tw

M Mi i i i ii i i
i i j ii j i

i i i

M MM M
i i i M

M M

C
E e N f w dwdt

N

A A A
e E E s e E s E E e s

s I I
E

A A
e e s e E E

s I





  









 

    

  


  



 
 

 

    
     

    


 
    

 

  

 
.

ˆ
Ms

 
 
 
 

  
  
  

 

Following the same steps as for M   yields eqn. (A12) again. 

10.3 Proof of Theorem 2  

If  iA  is independent of 
îs , ˆ 0i iA s    for all i. The marginal cost of investment for cycle i is 

i i iA I k    for some constant 
ik . If investment is reversible, all multipliers i  are zero. With 

these simplifications, eqn. (A9) reduces to 

    1
12

1
ˆ

i T Tt i i

i

T
i itw

tw tw t i i i
t T w

tw

C
e N f w dwdt e k e k s

N





 





 

  .                                                    (A15) 

The right-hand side of (A15) is the PDV cost of capital over investment cycle i. With 1i

tw  , 

, ,t w i , the left-hand side of (A15) is expected PDV toll revenue for investment cycle i. Toll 

revenues and investment costs are therefore equal in expected present discounted value.  

If M  , eqn. (A14) for the last investment simplifies, with 1M

tw  , to 

  
1 2 ˆ .

M
Tt M

M

T
Mtw

tw t M M
t T w

tw

C
e N f w dwdt e k s

N

 






                                                                      (A16) 

The left-hand side of eqn. (A16) is expected PDV toll revenue for investment cycle M, and the 

right-hand side is the PDV cost of the last investment. 

10.4 Analytics of the cost recovery ratio in the static model 

Toll revenue is 2

NR N C N  , hence 
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 2 2Ns N NN

dR dN
C N C C N N

ds ds
   .                                                                                 (A17) 

From the formula for generalized cost,  Np C C C N    ,  one obtains 

 2

s NS

N N NN

C C NdN

ds p C C N




 
.                                                                                                (A18) 

Substituting (A18) into (A17) gives 

 

 

2 2

2

N Ns N NN s

N N NN

p C N C C N C NdR

ds p C C N

 


 
,  and 

 

 

2

2

N Ns N NN sR

s

N N NN N

p C N C C N CdR s s

ds R p C C N C N


 
 

 
.                                                              (A19) 

From homogeneity degree zero of the user cost function, N sC N C s  , and (A19) can be written 

 

 

2

2

N Ns N NN sR

s

N s N NN s

p C N C C N C

p C C C N C


 


  
.                                                                                    (A20) 

With perfectly inelastic demand, eqn. (A20) reduces to 

R Ns Ns N
s

s N N

C N C s C s

C C s C



   


, 

where the second equality follows by using the relation N sC N C s   again. 

10.5 Example with single investment cycle 

Capacity is deterministic in the example so that 1̂tws s . To simplify notation, 1̂s  is written ŝ . 

Since demand intensity, tn , is the only random variable, the subscript w will be suppressed; 
tN , 

t  and 
tp  are understood to be random variables that depend on tn . 

Optimal capacity 

Optimal capacity can be solved using eqn. (A14) by setting 1M  , 1 0T  , 2T T , 1 1tw  , 

 1 1 1 1
ˆ ˆ,A I s kI ks  , 1 0  ,    ˆ,t t t t tC N s d N s


 , and 

t t tN n p  . Equation (A14) becomes 

  1

0
ˆ ˆ

t

T
rt

t t t t t
t n

e d N s f n dn dt ks   


  .                                                                                (A21) 

Using 
0

t

td d e  , (A21) can be rearranged as a formula for optimal capacity: 
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    
1

1
10

0
ˆ

t

T r t

t t t t
t n

d
s e N f n dn dt

k


  

  



 
  
 

  .                                                                   (A22) 

The optimal toll is  

ˆ
t t

t t t

t

C N
N d

N s



 
  

   
  

, 

and the generalized cost of a trip is  

   , 1
ˆ

t
t t t t t t

N
p C N s d

s



  
 

     
 

. 

Hence 

 1 t
t t t t t

N
N n p n d

s


  


   

    
 

, 

which yields 

  
1

1 1
0
ˆ1 t

t tN n d s e


  


    .                                                                                     (A23) 

The inner integral in eqn. (A22) is therefore: 

    
   

 

  
   

 

11 1

1 1 11
0

1 11

1 11
0

ˆ1

ˆ1 .

t t

t

t

t t t t t t t t
n n

t

t t t t
n

N f n dn n d s e f n dn

d s e n f n dn

   

  

   

  





  

  

  

  

 

 

 



                                    (A24) 

Demand intensity evolves according to Geometric Brownian Motion and has the pdf 

 

 

2
2

0

2

ln /
21

exp
22

t

n n g t

f n
tn t



 

   
     
   

  
 
 
 

.                                                        (A25) 

Using the composite variable    1 / 1     , the integral in (A24) works out to 

   
2

0 exp 1 .
2t

t t t t
n

n f n dn n g t  
 
   

    
   

                                                                    (A26) 

Substitution of (A26) into (A24), and (A24) into (A22) yields eqn. (11) in the text: 

    
1

1 1

1

0 0
ˆ 1 1 /hTs n d e h

k


   




  

   
 

,                                                                          (A27) 



 

 30 

where     21 / 2h g r          . 

Expected toll revenues 

Expected toll revenues are given by the left-hand side of eqn. (A21). Equation (13) in the text is 

obtained by using eqns. (A24), (A26), and (A27): 

     
   

1
11

0 0
ˆ1 1 / .hTE R n d s e h


    


                                                                 (A28) 

Expected cumulative usage 

Usage at time t is given by eqn. (A23). Expected usage at time t is  
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Expected cumulative usage is eqn. (12) in the text: 
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where       22/ 1 / 2 1m g         .  

10.6 Two-period investment with irreversibility 

Optimal investment at 2T  depends on the demand intensity realized at 2T , 
2Tn , or 2n  for brevity. 

If 2n  exceeds a threshold level, 2 0I   and 2 0  . If 2n  is below the threshold, 2 0I   and 

2 0  . The threshold is an increasing function of 1̂s , and accordingly will be written  2 1̂n s . If 

2 0I  , the optimal 2ŝ  is given by eqn. (A27) with 2n  in place of 0n , 2

0

T
d e

 in place of 0d , and 

3 2T T T  : 
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 .                                       (A29) 

(The threshold value  2 1̂n s  is solved by replacing 2ŝ  in (A29) with 1̂s , and solving for 2n .) 

Optimal investment at 1T  for the general model is given by eqn. (A9) with i=1. Using the specific 
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investment cost functions  1 1 1 1
ˆ,A I s kI  and  2 2 2 2

ˆ,A I s kI , and retaining the general notation 

for the moment, eqn. (A9) simplifies to 

 
 2 1 1 2

2
1

1 2 1

2 1

22 1 1

1
2 1

2 1

ˆ .

T T T Ti

Tt

T T

T
tw

tw tw t
t T w

tw

k e k e E E eC
e N f w dwdt e s

N e E E




 

   



  

   
 
    

                 (A30) 

Since 1 0I  , 1 0  . From eqn. (A13) with 2M  , 2 2k   . Using these formulas, (A30) 

simplifies to 
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 Substituting M=2 into eqn. (A14) yields  
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Substituting (A32) into (A31) gives 
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The second term in brackets in (A33) is random from the perspective of 1T  when 1̂s  is chosen. If 

 2 2 1̂n n s , 2 1
ˆ ˆs s , and if  2 2 1̂n n s , 2ŝ  is given by eqn. (A29). The probability density of 2n  

is given by (A25) with 2t T  and n replaced by 2n : 
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. 

Let  2|tf n n  denote the pdf of n for 2t T  given 2n n  at time 2T . Substituting in the 

functional forms of the specific model, eqn. (A33) can be written 
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Making the remaining substitutions of the specific model, (A34) becomes 
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where  
2 2TF n  is the cumulative distribution corresponding to  

2 2Tf n . 1̂s  appears three times in 

eqn. (A35) and has to be solved numerically. 

 

  



 

 33 

11 REFERENCES 

Arnott, R., Kraus, M., 1998. Self-financing of congestible facilities in a growing economy. In: 

Pines, D., Sadka, E., Zilcha, I. (Eds.), Topics in Public Economics: Theoretical and Applied 

Analysis, Cambridge: Cambridge University Press, pp. 161-184. 

 

Bain, R., 2009. Error and optimism bias in toll road traffic forecasts. Transportation 36(5), 469-

482. 

 

Beckmann, M., McGuire, C.B., Winsten, C.B., 1956. Studies in the Economics of 

Transportation. New Haven, CT: Yale University Press.  

 

Berechman, J., 2009. The Evaluation of Transportation Investment Projects. Routledge, New 

York. 

 

Berechman, J., Chen, L., 2011. Incorporating risk of cost overruns into transportation capital 

projects decision-making. Journal of Transport Economics and Policy 45(1), 83-103. 

 

de Palma, A., Lindsey, R., 2007. Transport user charges and cost recovery. In: de Palma, A., 

Lindsey, R., Proost, S. (Eds.), Investment and the Use of Tax and Toll Revenues in the Transport 

Sector, Research in Transportation Economics, Vol. 19, Elsevier, Amsterdam, pp. 29-58. 

 

de Palma, A., Lindsey, R., 2011. Cost recovery from road tolls with long-run uncertainty. 

Proceedings of the 46th Annual Conference of the Canadian Transportation Research Forum: 

Transportation and Logistics Trends and Policies: Successes and Failures, Gatineau, May 29 – 

June 1, 513-527. 

 

De Vany, A., Saving, T.R., 1980. Competition and highway pricing for stochastic traffic. Journal 

of Business 53(1), 45-60. 

 

Dixit, A., Pindyck, R.S., 1994. Investment Under Uncertainty. Princeton University Press, New 

Jersey. 

 

Doan, P., Patel, K., 2010. Toll road investment under uncertainty. March (<http://www.chaire-

eppp.org/files_chaire/Toll_road_investment_under_uncertainty_-

_Phuong_Doan_Paris_Sorbonne_2010.pdf> [February 2, 2012]) 

 

Elefteriadou, L., 2004. Highway capacity. In: Kutz, M. (Ed.), Handbook of Transportation 

Engineering. McGraw-Hill, New York (Chapter 8). 

 

Flyvbjerg, B., Skamris Holm, M.K., Buhl, S.L., 2003. How common and how large are cost 

overruns in transport infrastructure projects? Transport Reviews 23(1), 71–88. 

 

Flyvbjerg, B., Skamris Holm, M.K., Buhl S.L., 2006. Inaccuracy in traffic forecasts. Transport 

Reviews 26(1), 1-24. 

 



 

 34 

Hensher, D.A., Goodwin, P., 2004. Using values of travel time savings for toll roads: avoiding 

some common errors. Transport Policy 11(2), 171-181. 

 

Jahren, C.T., Asha, A.M., 1990. Predictors of cost-overrun rates. Journal of Construction 

Engineering and Management 116(3), 548-552. 

 

Kraus, M., 1982. Highway pricing and capacity choice under uncertain demand. Journal of 

Urban Economics 12, 122-128. 

 

Lindsey, R., 2006. Do economists reach a conclusion on highway pricing?: The intellectual 

history of an idea. Econ Journal Watch (http://www.econjournalwatch.org) 3(2), 292-379. 

 

Lindsey, R., 2009. Cost recovery from congestion tolls with random capacity and demand. 

Journal of Urban Economics 66, 16–24. 

 

Lindsey, R., 2012. Road pricing and investment. Economics of Transportation 1(1-2), 49–63. 

 

Marathe, R., Ryan, S., 2005. On the validity of the Geometric Brownian Motion assumption, The 

Engineering Economist 50(2), 159-192. 

 

Mohring, H., Harwitz, M., 1962. Highway Benefits: An Analytical Framework. Northwestern 

University Press, Evanston, Illinois. 

 

Nagae, T., Akamatsu, T., 2006. Dynamic revenue management of a toll road project under 

transportation demand uncertainty. Networks and Spatial Economics 6, 345–357.  

 

Nelson, J. C., 1962. The pricing of highway, waterway, and airway facilities. American 

Economic Review (Papers and Proceedings) 52(2), 426-432.  

 

Ng, C-F., Small, K.A., 2012. Tradeoffs among free-flow speed, capacity, cost, and 

environmental footprint in highway design. Transportation. DOI: 10.1007/s11116-012-9395-8.   

 

Nijkamp, P., Ubbels, B., 1999. How reliable are estimates of Infrastructure Cost? A comparative 

analysis. International Journal of Transport Economics 26(1), 23-53. 

 

Odeck, J., 2004. Cost overruns in road construction — What are their sizes and determinants. 

Transport Policy 11, 43-53. 

 

Pimentel, P.M., Azevedo Pereira, J., Couto, G., 2012. High-speed rail transport valuation. The 

European Journal of Finance 18(2), 167-183. 

 

Prozzi, J., Flanagan, K., Loftus-Otway, L., Porterfield, B., Persad, K., Prozzi, J.A., Walton, 

C.M., 2009. Actual vs. forecasted toll usage: a case study review. July 2008; revised August 

2009, Center for Transportation Research, The University of Texas at Austin 

(<http://www.utexas.edu/research/ctr/pdf_reports/0_6044_1.pdf > [February 11, 2011]). 

 



 

 35 

Rose, S., 1998. Valuation of interacting real options in a tollroad infrastructure project. The 

Quarterly Review of Economics and Finance 38(4), 711-723. 

 

Saphores, J.-D., Boarnet, M.G., 2006. Uncertainty and the timing of an urban congestion relief 

investment - The no-land case. Journal of Urban Economics 59(2), 189-208. 

 

Small, K.A., Verhoef, E.T., 2007. The Economics of Urban Transportation. Routledge, London. 

 

Transportation Research Board, 2006. National Cooperative Highway Research Program 

(NCHRP) Synthesis 364: Estimating Toll Road Demand and Revenue 

(<(http://www.trb.org/news/blurb_detail.asp?id=7570> [January 27, 2013]). 

 

Verhoef, E.T., 2012. Cost recovery of congested infrastructure under market power. Tinbergen 

Institute Discussion Paper TI 2012-064/3 (<http://ssrn.com/abstract=2101680> [July 19, 2012]) 

 

Welde, M., Odeck, J.. 2011. Do planners get it right? The accuracy of travel demand forecasting 

in Norway. EJTIR 11(1), 80-95. 

 

Williams-Derry, C., 2011. Toll avoidance and transportation funding: official estimates 

frequently overestimate traffic and revenue for toll roads 

(<http://www.sightline.org/research/sprawl/toll-avoidance-and-transportation-funding> [January 

31, 2013]) 

 

Zhang, A., and Czerny, A.I., 2012. Airports and airlines economics and policy: an interpretive 

review of recent research. Economics of Transportation 1(1-2), 15–34. 

 

 

  



 

 36 

Table 1 : Sensitivity to parameter errors 

 

Misspecified 

parameter 

Design 

Capacity [%] 

Expected 

cumulative usage [%] 

Expected cost 

recovery rate [%] 

(1) Unit construction cost 

 5/ 6k k  109.5 103.1 83.3 

 6 / 5k k  91.3 97.0 120.0 

(2) Initial demand 

 0 02 / 3n n  66.7 87.4 225 

 0 03/ 2n n  150.0 114.5 44.4 

(3) Mean growth rate in demand  (base case 0.02g  ) 

0g   87.3 95.6 131.3 

0.01g   93.3 97.7 115.0 

0.03g   107.6 102.5 86.3 

0.04g   116.3 105.2 73.9 

(4) Standard deviation of demand growth  (base case 0.05  ) 

0   99.1 99.7 101.8 

0.1   102.7 100.9 94.7 

(5) Demand elasticity  (base case 0.25  ) 

0.125   101.7 100.6 96.6 

0.5   96.9 99.0 106.4 

(6) Rate of technological progress  (base case 0.01  ) 

0   103.7 101.2 93.0 

0.02   96.5 98.8 107.3 

 

Source: Authors' calculation 
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Table 2: Variability in daily traffic, toll and toll revenue in year 10 

 

Variable Mean 
Standard 

deviation 

Coefficient 

of variation 

Demand intensity 24,255 3,859 0.159 

Traffic volume 14,129 1,489 0.105 

Toll level 
$5.75 $1.23 0.213 

Toll revenue $83,005 $26,841 0.323 

 

 

Source: Authors' calculation 
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Table 3 :  Two-period investment example with irreversible investment in period 1 

 

Parameter 

Variation 

Investment in period 

1 relative to 

reversible case [%] 

Prob. of no 

period 2 

investment 

Expected cost 

recovery rate in 

period 1 [%] 

(1) Base case 99.46 0.137 101.09 

(2) Mean growth rate in demand  (base case 0.02g  ) 

0.01g   98.27 0.352 103.56 

0.03g   99.90 0.033 100.21 

(3) Standard deviation of demand growth  (base case 0.05  ) 

0.1   97.40 0.325 105.40 

(4) Demand elasticity  (base case 0.25  ) 

0.125   99.41 0.151 101.42 

0.5   99.56 0.112 100.66 

(5) Rate of technological progress  (base case 0.01  ) 

0   99.75 0.071 100.50 

0.02   98.98 0.232 102.08 

(6) Curvature of user cost function  (base case 2  )  

1   99.54 0.118 100.75 

4   99.40 0.154 101.50 

(7) Discount rate  (base case 0.05r  ) 

0.03r   99.29 0.135 101.44 

0.07r   99.60 0.139 100.81 

 

Source: Authors' calculation 
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Figure 1: Probability density for cumulative present value revenues (base-case parameter 

values, 5,000 simulations) 

 

 

 

 

Source: Author's construction 
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