
LEARNING A REPRESENTATION OF A BELIEVABLE VIRTUAL

CHARACTER’S ENVIRONMENT WITH AN IMITATION ALGORITHM

Fabien Tencé∗,∗∗, Cédric Buche∗, Pierre De Loor∗ and Oliver Marc∗∗
∗ UEB – ENIB – LISyC

∗∗ Virtualys
Brest – France

{tence,buche,deloor}@enib.fr, olivier.marc@virtualys.com

ABSTRACT

Improving the believability of the characters populat-
ing a virtual environment is one way to make users of
feel in the simulation. The model developed in (Le Hy
et al. 2004) seems to be a good base to generate be-
lievable behaviours: it is close to what gives quite good
results in the industry but also uses probabilities and
a learning algorithm which could make the illusion of
believability last longer. This article first describes how
this model works. As it uses a manually-defined repre-
sentation of the character’s environment, improvements
can be done to that representation to enhance its auton-
omy and believability. We propose to use an other model
named growing neural gas to learn by imitation the rep-
resentation of the environment. The way this model was
implemented and the evaluation of the quality of the
learned representations are then detailed. Ideas about
improvements for the growing neural gas to give more
information to Le Hy’s model are given in the conclu-
sion.

KEYWORDS

Autonomy, believability, behaviours, imitation learning,
topology.

INTRODUCTION

Simulation in virtual environment make the user feel
like being in the environment and allows him to act in
it. To be complete, entities in these environments must
have a believable behaviour (Bates 1994). To generate
those behaviours, techniques from classic artificial intel-
ligence are mainly based on behaviour rules defined a

priori by designers. For the models to perceive the en-
vironment, designers have to create a representation of
the environment which is also often defined a priori.

This manual work cannot be done for every new char-
acter and environment. We propose that our entities
will be able to learn, for them to be autonomous and
have believable behaviours. This learning will be unsu-
pervised and online: the entity will learn while it acts.

This will both remove the burden of parametrizing the
models controlling the characters and increase believ-
ability by having real-time evolution of the behaviour.

To be able to achieve the best believability, we want
the agents to do like human-controlled virtual char-
acters. Indeed, there are no better example of what
a believable behaviour is than a human behaviour it-
self. It is this kind of learning, by example (Del Bimbo
A., Vicario E. 1995) or by imitation (Gorman and
Humphrys 2007; Bauckhage et al. 2007) we want to use
to model believable and autonomous characters.

The way the characters act and learn depends heav-
ily on the kind of virtual environment they are in. We
share issues with the video games industry because the
game designers want the players to be immersed in the
simulation too. They are trying to be as close as possi-
ble from reality, making rich and complex environments.
Researchers can avoid some technical difficulties (ren-
dering, physics, networking, etc.) by using such games.
They can then focus on the making of the entities they
want to study (Cavazza et al. 2003; Mac Namee 2004).
Furthermore, video games being made for human be-
ings, they offer a real challenge for the entities to be be-
lievable. An other advantage is that they offer experts of
these environments, human players, which can give per-
tinent criticism on the entities’ behaviours (Silverman
et al. 2006).

This article first presents a Bayesian model developed
in (Le Hy et al. 2004) which can be a good base for con-
trolling a believable character. The representation of
the environment must fit into the model and must be
learned by imitation for both autonomy and believabil-
ity purposes. A graph model named growing neural gas
is then introduced to learn by imitation such represen-
tation. After that, the characteristics and qualities of
the learned representations is assessed by different mea-
sures. To conclude, some enhancements are proposed
for the growing neural gas to give more information to
the agent’s model.

A PROBABILISTIC MODEL FOR BELIEV-

ABLE AUTONOMOUS CHARACTERS

Models which use probabilities have two advantages.
First they add some unpredictability to the behaviour
which can improve the believability. Second, when us-
ing imitation learning, probabilities can express uncer-
tainty about what the demonstrator really intended to
do, making the learning more robust.

A Bayesian model (Le Hy et al. 2004) has been devel-
oped for characters in video games. The advantage of
this model is that it is quite easy to modify so that the
character act as wanted. It is also possible to learn the
parameters of the model by imitation. The believabil-
ity of the behaviours has not been carefully evaluated
but some preliminary tests show that it is comparable
to models from industry.

We believe that choosing a model, more complex than
what is used in industry but less complex than what is
usually developed in research is a good idea to gener-
ate believable behaviours. With that approach, we can
try to have more complex behaviours than what is done
in video games but still being able to understand and
modify the internal parameters to achieve the best be-
lievability.

In Le Hy’s model, the agent has sensors named
S0, .., Sn = S which give information on internal and
environment’s state like for example the character’s in-
ventory and the position of another character. To act,
the agent has motor commands named M0, ...,Mp = M
which can be rotation, jump commands, etc.. To direct
the character’s behaviour, the notion of task has been
introduced, the variable is named T which can have dif-
ferent values like searching for an object or fleeing.

The value of T is chosen knowing the value of the
sensors, following the probability P (T |S), and knowing
the previous task, following the probability P (T t|T t−1).
Thus the value of T is chosen following the probabil-
ity P (T t|ST t−1), the task model, computed using the
two previous probabilities. As S is the conjunction of
n variables, to reduce the complexity Le Hy introduce
the notion of inverse programming : P (T |S) is computed
using P (Si|T) (and not P (T |Si)!) as they are supposed
to be independent, which is a strong hypothesis.

Once the value of T is chosen randomly following
the probability P (T t|ST t−1), the model must decide
which motor command should be activated. The value
of each motor command is chosen following the proba-
bility P (Mi|ST), the motor model. It is equivalent to
having P (Mi|S) for each value of T . Again, to reduce
the complexity, Le Hy introduce the notion of fusion by

enhanced coherence. Each command is computed sepa-
rately then they are combined using using the formula
P (Mi|S) = 1

Z

∏

j P (Mi|SjC) (1/Z is a normalization
factor). C is how the P (Mi|Sj) command should be
taken into account. If the command must be followed,
the order is prescriptive. If the command must not be
followed, the order is proscriptive. If the command have
not to be followed, the order is not taken into account.
For this 3 commands, only the probability P (Mi|SjC)
is needed because we have the following equality:

P (Mi|SjC) =

P (Mi|Sj) if prescriptive order
1− P (Mi|Sj) if proscriptive order
Constant if order not taken into account

Thus the model is composed of three types of param-
eters whose relation is summarized in figure 1:

• P (T t|T t−1)
• P (Si|T)
• P (Mi|SjT)

Figure 1: Summary of the influences between model’s
variables (Le Hy et al. 2004).

Those parameters can be specified manually or
learned by imitation. Results seems to be better in term
of believability and performance with learned parame-
ters (Le Hy et al. 2004). The imitation is done by ob-
servation of the virtual representation of the player, his
avatar. By monitoring at each time step the value for
S and M it is possible to update the value of the pa-
rameters. The learning algorithm developed by Le Hy is
based on (Florez-Larrahondo 2005) but only updates the
task model, the parameters P (T t|T t−1) and P (Si|T).

This algorithm, a modified version of the incremental
Baum-Welch, updates at each time step n the parame-
ters with the following formula:

Pn(T t|T t−1) =
1

Z

(

Pn−1(T
t|T t−1) + ∆Pn−1(T

n|Tn−1)
)

Pn(S|T t) =
1

Z

(

Pn−1(S|T
t) + ∆Pn−1(S

n|Tn)
)

1/Z is a normalization factor. The ∆ are computed us-
ing the motor model, P (Mi|Sj), the actual values of the
task model Pn−1(T

t|T t−1), Pn−1(S|T
t) and the values

of S and M at n.

In this model, the values which can be taken by S, T
and M are specified manually. M is very close to the
commands a human player can use: running forward
and backward, sidestep right and left, jump, etc. Us-
ing the same actions as humans can do in the virtual
environment should give good results in term of believ-
ability. T is the model’s internal state so it cannot be
learned by imitation because we do not know if humans
have such internal states and if it is the case, we can-
not know their value. S is composed of both visible
points of interest in the environment and information
on the avatar the model is controlling (life points, num-
ber of enemies, etc.). Those points of interest are vis-
ible avatars, items and navigation points. Navigation
points are nodes placed by designers to represent where
the agent’s avatar can walk to explore the environment.
This representation often breaks the illusion of believ-
ability because agents do not use the environment like
humans. These navigation points could be learnt by
imitation to increase both autonomy and believability.

LEARNING A REPRESENTATION OF THE

ENVIRONMENT

Models which control virtual humanoids use differ-
ent types of representation to find paths to go from one
point to another. Classic approach use a graph to rep-
resent accessible places with nodes and paths between
each place by edges. Actual solutions tend to use a
mesh, with different degrees of complexity, to represent
the zones where the humanoid can go. The problem
with the latter solution is that it require an algorithm
to find the optimal path between two points. The rep-
resentation must be used directly by Le Hy’s model, the
graph solution is then more adapted: each node of the
graph can be use by the model to attract or push back
the humanoid.

To achieve the best believability, we want those nodes
to be learned by imitation of a human player instead of
being placed a priori by a designer. This work as been
done in (Thurau et al. 2004) where nodes and a potential
field are learned from humans playing a video game. The
agent is then using this representation to move in the
game environment, following the field defined at each
node. To learn the position of the nodes, Thurau use an
algorithm called Growing Neural Gas (GNG).

The GNG (Fritzke 1995) is a graph model which is ca-
pable of incremental learning. Each node has position
(x,y,z) in the environment and has a cumulated error
which measures how well the node represents its sur-
roundings. Each edge links two nodes and has an age
which gives the time it was last activated. This algo-
rithm needs to be omniscient, because the position of
the imitated player, the demonstrator, is to be known
at any time.

The principle of the GNG is to modify its graph,
adding or removing nodes and edges and changing the
nodes’ position for each input of the demonstrator’s po-
sition. For each input the closest and the second clos-
est nodes are picked. An edge is created between those
nodes and the closest node’s error is increased. Then the
closest nodes and its neighbours are attracted toward
the input. All the closest node’s edges’ age is increased
by 1 and too old edges are deleted. Each λ input a node
is inserted between the node with the maximum error
and its neighbours having the maximum error. At the
end of an iteration, each node’s error is decreased by a
small amount.

The version we use is a bit modified to give better
results for our needs as shown by figure 2. Instead
of inserting a new node each λ input, a node is in-
serted when a node’s error is superior to a parameter
MAX ERROR. As each node’s error is reduced by
a small amount ERROR DECAY for each input, the
modified GNG algorithm does not need a stopping cri-
terion. Indeed, if there are many nodes which represent
well the environment, the error added for the input will
be small and for a set of inputs, the total added error
will be distributed among several nodes. The decreasing
of error will avoid new nodes to be added to the GNG
resulting in a stable state. However if the player which
serves as a example, the demonstrator, goes to a place
in the environment he has never gone before, the added
error will be enough to counter the decay of the error,
resulting in new nodes to be created.

This algorithm has 5 parameters which influence the
density of nodes, the quality of the representation, the
adaptivity and the time to converge:

• The attraction applied to first toward (x, y, z)
• The attraction applied to first’s neighbours toward

(x, y, z)
• The nodes’ error decay, ERROR DECAY
• The nodes’ maximum error, MAX ERROR
• The edges’ maximum age, MAX AGE

The nodes learned by this model can be used directly
by Le Hy’s model. However, the information given by
the edges cannot be used as it denotes only proximity

nodes ← {}
edges ← {}
while demonstrator plays do

(x,y,z) ← demonstrator’s position
if |nodes| = 0 or 1 then

nodes ← nodes ∪ {(x,y,z,error=0)}
end if

if |nodes| = 2 then

edges ← {(nodes,age=0)}
end if

first ← closest((x,y,z),nodes)
second ← secondClosest((x,y,z),nodes)
edge ← edges ∪ {{first,second},age=0)}

first.error+=||(x,y,z)-first||
Attract first toward (x,y,z)
∀ edge ∈ first’s edges, edge.age++
Delete edges older than MAX AGE
Attract neighbours(first) toward (x,y,z)
∀ node ∈ nodes, node.error-=ERROR DECAY

if first.error > MAX ERROR then

maxErrNei ← maxErrorNeighbour(first)
newNode ← between(first,maxErrNei)
first.error/=2, maxErrNei.error/=2
newError ← first.error+maxErrNei.error
nodes ← nodes ∪ {(newNode,newError)}

end if

end while

Figure 2: Algorithm used to learn the topology of the
environment represented by a growing neural gas.

and not a path between them: nodes can be close but
there may be a obstacle between them. To evaluate the
quality of the representation, find good parameters, we
implemented the GNG.

EVALUATION

We used the game Unreal Tournament 2004 because
it features quite complex environments and because hu-
man players can control avatars in the game so the GNG
can learn for them. We have to choose the parameters
in a empirical way because we cannot find them ana-
lytically nor use a optimization algorithm. Indeed, our
goal is believability and it can be only measured with
human judge. This kind of evaluation is not suitable for
optimization. The best parameters we found are:

• Attraction force applied to first is 0.03 times the
vector (x, y, z)− first

• Attraction force applied to first’s neighbours is
0.0006 times the vector (x, y, z)− second

• Nodes’ error decay is 10

• Nodes’ maximum error is 20000
• Edges’ maximum age is 75

To compare with other environments, the position in
Unreal Tournament is given in Unreal units (1 meter is
roughly equal to 50 Unreal units) and all the parameters
are based on a demonstrator’s position in Unreal units.

With those parameters we trained 2 GNG on 2 differ-
ent maps. The first one is a simple map, called Training
Day, it is small and flat which is interesting to visualize
the data in 2 dimensions. The second one, called Mixer,
is much bigger and complex with stairs, elevators and
slopes which is interesting to see if the GNG behave well
in 3 dimensions. The results is given in figure 3 for the
simple map and in figure 4 for the complex map.

-2500

-2000

-1500

-1000

-500

0

500

1000 1500 2000 2500 3000

p
o
s
it
io

n
 (

y
)

GNG nodes
GNG edges

����������	A

Figure 3: Result of a growing neural gas learned from a
player for a simple map, top view.

0

1000

2000

3000

4000 -1000
0

1000
2000

3000

-600
-400
-200

0
200

GNG edges

x

y

GNG nodes

z

Figure 4: Result of a growing neural gas learned from a
player for a complex map.

To study the quality of the learned topology, we first
chose to compare the GNG’s nodes with the navigation
point placed manually by the map creators. Of course,
we do not want the GNG to fit exactly those points but
it gives a first evaluation of the learned representation.
In our case we have those navigation points but our goal
is that they are not longer necessary for a character to
move in a new environment. Figure 5 shows both the
navigation points and the GNG’s nodes. As we can see,
the two representations look alike which indicates that
the model is very effective in learning the shape of the
map. However, there are zones where the GNG’s nodes
are more concentrated than the navigation points and
other where they are less concentrated. We cannot tell
now if it is a good behaviour or not as we should evaluate
an agent using this representation to see if it navigate
well. Even in the less concentrated zones, the nodes are
always close enough to be seen from one to another, so
it should not be a problem.

-2500

-2000

-1500

-1000

-500

0

500

1000 1500 2000 2500 3000

GNG Nodes
Navigation points

�
�
�
��
��
�
��
	
A

����������BA

Figure 5: Comparison of nodes learned by the growing
neural gas with the navigation points placed manually
by the game developers.

As the attraction applied to the nodes for each input
is constant, the GNG is not converging to a stable state.
This is a wanted behaviour, allowing the GNG to adapt
to a variation in the use of the map: if the professor
suddenly uses a part of the map which he/she has not
explored yet, the GNG will be able to learn this new
part even if the GNG has been learning for a long time.
We do want, however, the GNG to learn quickly the
topology and to keep a good representation of the world
over the time.

To study the time evolution of the GNG’s character-
istics, we introduce a distance measure: the sum of the
distance between each navigation point and its closest
node. We also study the evolution of the number of
nodes because we do not want the GNG to grow indefi-
nitely. Figure 6 shows this two measures for the simple
and the complex maps. For the simple map, the GNG
reached its maximum number of node and minimum er-
ror in approximatively 5 minutes of real-time simulation.
For the complex map, it takes more time, about 25 min-
utes, but results at 12 minutes are quite good. Those
results show that it is possible to have an agent learn
during the play.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

C
u

m
u

la
te

d
 d

is
ta

n
c
e

 t
o

 n
a

v
ig

a
ti
o

n
 p

o
in

ts

time (s)

N
u

m
b

e
r

o
f

n
o

d
e

s

Distance to navigation points (simple map)
Number of nodes (simple map)

Distance to navigation points (complex map)
Number of nodes (complex map)

Figure 6: Time evolution of the cumulated distance
to navigation points defined manually and the growing
neural gas’ nodes and the growing neural gas’ number
of nodes.

The GNG can handle inputs from multiple professor.
Figure 7 shows the distance and number of node for
a GNG trained on 1 professor and for a GNG trained
on 4 professors. The learning with 4 professors is, as
expected, faster: about 3 minutes for the distance to
stabilize instead of 5 minutes for 1 professor. It is inter-
esting to note that the learning is not 4 times faster but
the gain is still important. Learning with multiple pro-
fessors seems to give a GNG with less variation during
the learning. The gain have however a small drawback:
the number of nodes is a little superior for multiple pro-
fessors. It may be due to the fact that professors are
scattered in the environment instead of a unique profes-
sor following a path.

It is interesting to compare two learned GNG on the
same demonstrator in the same environment and con-
ditions but for 2 different simulations. The goal is to
see if the two representations fit. Figure 8 shows that
the resulting GNG are a bit different. The first GNG

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000
0

5

10

15

20

25

C
u
m
u
la
te
d
 d
is
ta
n
c
e
 t
o
 n
a
v
ig
a
ti
o
n
 p
o
in
ts Distance to navigation points (1 professor)

Number of nodes (1 professor)
Distance to navigation points (4 professors)

Number of nodes (4 professors)

N
u
m
b
e
r
o
f
n
o
d
e
s

time (s)

Figure 7: Time evolution of the cumulated distance
to navigation points defined manually and the growing
neural gas’ nodes and the growing neural gas’ number
of nodes.

has 24 nodes and has a cumulated distance to naviga-
tion points of approximatively 3300 Unreal units. The
second GNG has 25 nodes and has a cumulated distance
of approximatively 3150 Unreal units. This proves that
the GNG does not converge toward a unique solution
but those solutions are quite similar in shape, number
of nodes and distance to navigation points.

-2500

-2000

-1500

-1000

-500

0

500

1000 1500 2000 2500 3000

p
o

s
it
io

n
 (

y
)

position (x)

Second learning
First learning

Figure 8: Comparison of two growing neural gas which
learned on the same environment, after a very long train-
ing time (more than 10 hours).

The last evaluation assesses the impact of the fre-
quency at which the demonstrator’s position is given to
the GNG. For the previous experiments, the frequency
was set at 10Hz. Figure 9 shows the differences for 1,
10 and 100 Hz. Results indicates that 1Hz give compa-
rable results to 10Hz but it takes much longer to give a
good representation. At 100Hz, the GNG reaches a sta-
ble state as fast as at 10Hz but the resulting GNG has
much more nodes resulting in a lower error. Using a high
frequency is therefore not useful because the number of
nodes can be increased changing the MAX ERROR
and ERROR DECAY parameters without using com-
puting power.

Frequency Time Number of nodes Error
1Hz 1h30 22 3800 UU
10Hz 5min 24 3300 UU
100Hz 5min 39 2300 UU

Figure 9: Comparison of growing neural gas’ character-
istics learned at different frequencies on a simple map
(Training Day). Time, number or nodes and error are
given when the growing neural gas reach a stable state.
UU stands for Unreal units.

The growing neural gas proves to be very efficient at
learning the topology of an environment by imitation.
The learning is quite fast, up to 25 minutes, and is done
during the demonstration of the professor. The model
does not converge to a unique and stable solution but
gives similar solutions for different runs. It can adapt
quickly to changes in the use of the environment, the
agent being capable of evolving while playing. However
the information extracted from the GNG is only based
on the position of the nodes. It should be possible to
learn much more.

IMPROVEMENTS

The biggest difference between the GNG we imple-
mented and navigation graphs coded manually is that
graphs give also information on the accessibility of a
node from another. Edges in a GNG gives only an infor-
mation on proximity but there can be a obstacle between
two nodes joined by an edge. However in the experimen-
tations the edges seldom crossed a wall so they could be
used for paths. An idea could be to store the previously
activated node and create an edge to the current acti-
vated node. Like the GNG edges we should make the
edge age and disappear if they are too old. Whether
those edges should replace the GNG edges could be an
interesting experiment to set up.

To share more information with the behaviour model,
we can introduce the table P (M |TN), giving the best
actions to do, knowing the task T when the character

is near node N . The agent could then retrieve those
probabilities and mix them with P (M |ST). This pro-
cess is quite similar to the process of tagging: designers
often annotate navigation points with information such
as “jump spot” or “covering”. The learning of those
P (M |T) probabilities should be done during the Baum-
Welch algorithm to have an approximation of the P (T)
probabilities.

Another interesting information to learn is the area
covered by each node. If the professor pass exactly at
the position of the node or if there is a big variation in
the distance to the node is an important information.
The nodes’ error give a bit of information about this
distance, however with the error decay, this information
is lost over time. This information is quite difficult to
learn because each winner node moves so it does not rep-
resent the same area. It could be possible to update the
influence radius of winner and its neighbours according
to their current radius and the distance to the example.
The exact formula is yet to be found.

CONCLUSION

Virtual environments, like for example video games,
need believable characters for users to feel in the envi-
ronment. Le Hy’s model seems to be a good base to
control those characters, focusing on believability and
trying to produce quite complex behaviours. To im-
prove the agent’s behaviour, we decided to use a grow-
ing neural gas to learn by imitation the topology of the
environment. We believe that it will make the agent use
the environment in a more human-like fashion. It also
removes the burden from the maps designers of placing
manually the navigation graph.

Our first evaluations tend to show that the growing
neural gas give a good representation of the environ-
ment. The learning is fast, with one professor it takes
up to 25 minutes to learn a representation of the whole
environment. As it is possible to learn with several pro-
fessors, learning can be done very quickly. Although
different runs gives different results, the representations
are very similar.

With this ability to learn the environment, the agent
can be placed in any simulation without a priori knowl-
edge and still be able to move by imitating human users.
As the learning is quite fast, users could perceive the
evolution in the way the agent acts and thus believing
it can be human. The growing neural gas gives auton-
omy and believability to the model.

The next step is to put more information in the grow-
ing neural gas, learning which node is accessible from
each node and mixing motor probabilities with the one

computed by Le Hy’s model. To see if this work really
gives results we will have to test the difference in the
behaviour between an agent using the navigation points
and and agent using the growing neural gas.

REFERENCES

Bates J 1994 The Role of Emotion in Believable Agents
Communications of the ACM 37(7), 122–125.

Bauckhage C, Gorman B, Thurau C and Humphrys
M 2007 Learning Human Behavior from Analyzing
Activities in Virtual Environments MMI-Interaktiv

12, 3–17.

Cavazza M, Charles F and Mead S 2003 Interactive
storytelling: from AI experiment to new media in

‘ICEC ’03: Proceedings of the second international
conference on Entertainment computing’ Carnegie
Mellon University Pittsburgh, PA, USA pp. 1–8.

Del Bimbo A., Vicario E. 1995 Specification by-Example

of Virtual Agents Behavior IEEE Transactions on
Visualization and Computer Graphics, Vol. 1, n. 4.

Florez-Larrahondo G 2005 Incremental learning of dis-
crete hidden Markov models PhD thesis Mississippi
State University.

Fritzke B 1995 A growing neural gas network learns
topologies in ‘Advances in Neural Information Pro-
cessing Systems 7’ MIT Press pp. 625–632.

Gorman B and Humphrys M 2007 Imitative learning of
combat behaviours in first-person computer games
in ‘Proceedings of CGAMES 2007, the 11th Inter-
national Conference on Computer Games: AI, An-
imation, Mobile, Educational & Serious Games’.

Le Hy R, Arrigoni A, Bessière P and Lebeltel O 2004
Teaching bayesian behaviours to video game char-
acters Robotics and Autonomous Systems 47(2-
3), 177–185.

Mac Namee B 2004 Proactive Persistent Agents: Using
Situational Intelligence to Create Support charac-
ters in Character-Centric Computer Games PhD
thesis Trinity College Dublin.

Silverman B G, Bharathy G, O’Brien K and Cornwell
J 2006 Human behavior models for agents in sim-
ulators and games: part ii: gamebot engineering
with pmfserv Presence: Teleoper. Virtual Environ.

15(2), 163–185.

Thurau C, Bauckhage C and Sagerer G 2004 Learn-
ing human-like movement behavior for computer
games in ‘Proceedings of the 8th International Con-
ference on the Simulation of Adaptive Behavior
(SAB’04)’.

	INTRODUCTION
	A PROBABILISTIC MODEL FOR BELIEVABLE AUTONOMOUS CHARACTERS
	LEARNING A REPRESENTATION OF THE ENVIRONMENT
	EVALUATION
	IMPROVEMENTS
	CONCLUSION

