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ABOUT BREZIS-MERLE PROBLEM WITH HOLDERIAN CONDITION: THE CASE OF ONE OR TWO BLOW-UP POINTS

We consider the following problem on open set Ω of R 2 :

We give a quantization analysis of the previous problem under the conditions:

and

On the other hand, if we assume that

or, V i s-holderian with 1/2 < s ≤ 1, and,

then we have a compactness result, namely:

sup

where A is the holderian constant of V i .

INTRODUCTION AND MAIN RESULTS

We set ∆ = ∂ 11 + ∂ 22 on open set Ω of R 2 with a smooth boundary. We consider the following problem on Ω ⊂ R 2 :

(P ) -∆u i = V i e ui in Ω ⊂ R 2 , u i = 0 in ∂Ω.
We assume that, Ω e ui dy ≤ C, and,

0 ≤ V i ≤ b < +∞
The above equation is called, the Prescribed Scalar Curvature equation, in relation with conformal change of metrics. The function V i is the prescribed curvature.

Here, we try to find some a priori estimates for sequences of the previous problem. Equations of this type were studied by many authors, see . One can see in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF] different results for the solutions of those type of equations with or without boundaries conditions and, with minimal conditions on V , for example we suppose V i ≥ 0 and V i ∈ L p (Ω) or V i e ui ∈ L p (Ω) with p ∈ [1, +∞].

Among other results, we can see in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF], the following important Theorem, Theorem A(Brezis-Merle [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF]).If (u i ) i and (V i ) i are two sequences of functions relatively to the previous problem (P ) with, 0 < a ≤ V i ≤ b < +∞, then, for all compact set K of Ω, sup K u i ≤ c = c(a, b, K, Ω).

We can find in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF] an interior estimate if we assume a = 0, but we need an assumption on the integral of e ui . We have in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF]:

Theorem B (Brezis-Merle [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF]).If (u i ) i and (V i ) i are two sequences of functions relatively to the previous problem (P ) with, 0 ≤ V i ≤ b < +∞, and, Ω e ui dy ≤ C, then, for all compact set K of Ω, sup

K u i ≤ c = c(b, C, K, Ω).
If, we assume V with more regularity, we can have another type of estimates, sup + inf. It was proved, by Shafrir, see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], that, if (u i ) i , (V i ) i are two sequences of functions solutions of the previous equation without assumption on the boundary and, 0 < a ≤ V i ≤ b < +∞, then we have the following interior estimate:

C a b sup K u i + inf Ω u i ≤ c = c(a, b, K, Ω).
One can see in [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF], an explicit value of C a b = a b . In his proof, Shafrir has used a blowup function, the Stokes formula and an isoperimetric inequality, see [START_REF] Bandle | Isoperimetric inequalities and Applications[END_REF]. For Chen-Lin, they have used the blow-up analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose (V i ) i uniformly Lipschitzian with A the Lipschitz constant, then, C(a/b) = 1 and c = c(a, b, A, K, Ω), see Brezis-Li-Shafrir [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF]. This result was extended for Hölderian sequences (V i ) i by Chen-Lin, see [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF]. Also, we have in [START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF] an extension of the Brezis-Li-Shafrir result to compact Riemann surface without boundary. We have in [START_REF] Yy | Blow-up Analysis for Solutions of -∆u = V e u in Dimension Two[END_REF] explicit form, (8πm, m ∈ N * exactly), for the numbers in front of the Dirac masses, when the solutions blowup. Here, the notion of isolated blow-up point is used. Also, we have in [START_REF] Chen | Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces[END_REF] and [START_REF] Zhang | Blowup solutions of some nonlinear elliptic equations involving exponential nonlinearities[END_REF] refined estimates near the isolated blow-up points and the bubbling behavior of the blow-up sequences.

In [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF], Brezis and Merle proposed the following Problem:

Problem (Brezis-Merle [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF]).If (u i ) i and (V i ) i are two sequences of functions relatively to the previous problem (P ) with,

0 ≤ V i → V in C 0 ( Ω). Ω e ui dy ≤ C,

Is it possible to prove that:

sup

Ω u i ≤ c = c(C, V, Ω) ?
Here, we assume more regularity on V i , we suppose that

V i ≥ 0 is C s (s-holderian) 1/2 < s ≤ 1) .
We give the answer where bC < 24π.

On other hand, in our work we give a complete caracterization of the blow-up analysis on the boundary.

In the similar way, we have in dimension n ≥ 3, with different methods, some a priori estimates of the type sup × inf for equation of the type:

-∆u + n -2 4(n -1) R g (x)u = V (x)u (n+2)/(n-2) on M.
where R g is the scalar curvature of a riemannian manifold M , and V is a function. The operator ∆ = ∇ i (∇ i ) is the Laplace-Beltrami operator on M . When V ≡ 1 and M compact, the previous equation is the Yamabe equation. T. Aubin and R. Scheon solved the Yamabe problem, see for example [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF]. Also, we can have an idea on the Yamabe Problem in [START_REF] Lee | The Yamabe problem[END_REF]. If V is not a constant function, the previous equation is called a prescribing curvature equation, we have many existence results see also [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF]. Now, if we look at the problem of a priori bound for the previous equation, we can see in [START_REF] Bahoura | Majorations du type sup u × inf u ≤ c pour l'équation de la courbure scalaire sur un ouvert de R n , n ≥ 3[END_REF][START_REF] Bahoura | Harnack inequalities for Yamabe type equations[END_REF][START_REF] Bahoura | Lower bounds for sup+inf and sup × inf and an extension of Chen-Lin result in dimension 3[END_REF][START_REF] Bahoura | Estimations uniformes pour l'quation de Yamabe en dimensions 5 et 6[END_REF][START_REF] Chen | Estimates of the conformal scalar curvature equation via the method of moving planes[END_REF][START_REF] Yy | Prescribing scalar curvature on Sn and related Problems[END_REF][START_REF] Yy | Yamabe Type Equations On Three Dimensional Riemannian Manifolds[END_REF] some results concerning the sup × inf type of inequalities when the manifold M is the sphere or more generality a locally conformally flat manifold. For these results, the moving-plane was used, we refer to [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF][START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF][START_REF] Yy | A Harnack type inequality for the Yamabe equation in low dimensions[END_REF] to have an idea on this method and some applications of this method.

Also, there are similar problems defined on complex manifolds for the Complex Monge-Ampere equation, see [START_REF] Siu | The existence of Kahler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group[END_REF][START_REF] Tian | A Harnack type inequality for certain complex Monge-Ampre equations[END_REF], with various inequalitites of type sup + inf.

Our main results are: Theorem 1.1. Assume Ω = B 1 (0), and,

u i (x i ) = sup B1(0) u i → +∞.
There is a finite number of sequences (x k i ) i , (δ k i ), 0 ≤ k ≤ m, such that:

(x 0 i ) i ≡ (x i ) i , δ 0 i = δ i = d(x i , ∂B 1 (0)) → 0, and each δ k i is of order d(x k i , ∂B 1 (0)). and, u i (x k i ) = sup B1(0)-∪ k-1 j=0 B(x j i ,δ j i ǫ) u i → +∞, u i (x k i ) + 2 log δ k i → +∞, ∀ ǫ > 0, sup B1(0)-∪ m j=0 B(x j i ,δ j i ǫ) u i ≤ C ǫ ∀ ǫ > 0, lim sup i→+∞ B(x k i ,δ k i ǫ)
V i e ui dy ≥ 4π > 0.

If we assume:

V i → V in C 0 ( B1 (0)), then, ∀ ǫ > 0, lim sup i→+∞ B(x k i ,δ k i ǫ) V i e ui dy = 8πm k , m k ∈ N * .
And, thus, we have the following convergence in the sense of distributions:

B1(0) V i e ui dy → B1(0) V e u dy + m k=0 8πm ′ k δ x k 0 , m ′ k ∈ N * , x k 0 ∈ ∂B 1 (0).
Theorem 1.2. Assume that:

B1(0)
V i e ui dy ≤ 4π, Then,

u i (x i ) = sup B1(0) u i ≤ c = c(b, C), Theorem 1.3. Assume that, V i is uniformly s-holderian with 1/2 < s ≤ 1, and, B1 (0) 
V i e ui dy ≤ 24π -ǫ, ǫ > 0, then we have:

sup

Ω u i ≤ c = c(b, C, A, s, ǫ, Ω).
where A is the holderian constant of V i .

Question 1: (a Bartolucci type result; one holderian singularity): with the same technique, assume that:

V i (x) = (1 + x s 1 )W i (x)
for example and 0 ∈ ∂Ω with W i uniformly lipschitzian and , 0 < s ≤ 1, can one conclude with the Pohozaev identity that the sequence is compact ? here we extend the case 0 < s ≤ 1/2. Question 2: (the limit case s = 1/2) assume that V i is uniformly 1/2holderian with A i the holderian constant and suppose that A i → 0, can one conclude with the blow-up technique that the sequence of the solutions u i is compact ?

PROOFS OF THE RESULTS

Proofs of the theorems: Without loss of generality, we can assume that Ω = B 1 (0) the unit ball centered on the origin. We assume that:

u i ∈ W 1,1 0 (Ω).
According to the work of Brezis-Merle, e kui ∈ L 1 for all k > 2 and the elliptic estimates and the Sobolev embedding gives:

u i ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω).
Here, G is the Green function of the Laplacian with Dirichlet condition on B 1 (0). We have (in complex notation):

G(x, y) = 1 2π log |1 -xy| |x -y| ,
we can write:

v i (x) = B1 (0) 
G(x, y)V i (y)e ui(y) dy,

Remark that, we can write:

F (x) = B1(0) - 1 2π log |x -y|V i (y)e ui(y) dy,
By a result in Gilbarg-Trudinger (cahpter 4, Newtonnian potential), we have F ∈ C 1 ( Ω) Also, we have:

G(x) = B1(0) - 1 2π log |1 -xy|V i (y)e ui(y) dy,
For x near 0, G is smooth by the usuual differentability theorem. For x = 0, we can write: K(x) = F (1/x) which is C 1 by a result of Gilbarg-Trudinger. Combining the two last results, we have v i is C 1 and by the maximum principle we have v i ≡ u i . We use the fact that G is real to write

∂ x G = ∂x Ḡ = ∂x G to have the dirivative of u i . G(x, y) = 1 2π log |1 -xy| |x -y| ,
we can write:

u i (x) = B1(0)
G(x, y)V i (y)e ui(y) dy,

We can compute (in complex notation) ∂ x G and ∂ x u i :

∂ x G(x, y) = 1 -|y| 2 (x -y)(xȳ -1) , ∂ x u i (x) = B1(0) ∂ x G(x, y)V i (y)e ui(y) dy = B1(0) 1 -|y| 2 (x -y)(xȳ -1)
V i (y)e ui(y) dy we write,

u i (x i ) = Ω G(x i , y)V i (y)e ui(y) dx = Ω-B(xi,δi/2) G(x i , y)V i e ui(y) dy+ B(xi,δi/2)
G(x i , y)V i e ui(y) dy

According to the maximum principle, the harmonic function G(x i , .) on Ω -B(x i , δ i /2) take its maximum on the boundary of B(x i , δ i /2), we can compute this maximum:

G(x i , y i ) = 1 2π log |1 -xi y i | |x i -y i | = 1 2π log |1 -xi (x i + δ i θ i )| |δ i /2| = 1 2π log 2(|(1+|x i |)+x i θ i |) < +∞ with |θ i | = 1/2.
Thus,

u i (x i ) ≤ C + B(xi,δi/2) G(x i , y)V i e ui(y) dy ≤ C + e ui(xi) B(xi,δi/2) G(x i , y)dy
Now, we compute B(xi,δi/2) G(x i , y)dy we set in polar coordinates,

y = x i + δ i tθ
we find:

B(xi,δi/2) G(x i , y)dy = B(xi,δi/2) 1 2π log |1 -xi y| |x i -y| = 1 2π 2π 0 1/2 0 δ 2 i log |1 -xi (x i + δ i θ)| (δ i t)/2 tdtdθ = = 1 2π 2π 0 1/2 0 δ 2 i (log 2(|1 + |x i | + tx i θ|) -log t)tdtdθ ≤ Cδ 2 i .
Thus, xi) , We can conclude that:

u i (x i ) ≤ C + Cδ 2 i e ui(xi) , which we can write, because u i (x i ) → +∞, u i (x i ) ≤ C ′ δ 2 i e ui(
u i (x i ) + 2 log δ i → +∞.
Now, consider the following function :

v i (y) = u i (x i + δ i y) + 2 log δ i , y ∈ B(0, 1/2)
The function satisfies all conditions of the Brezis-Merle hypothesis, we can conclude that, on each compact set:

v i → -∞
we can assume, without loss of generality that for 1/2 > ǫ > 0, we have:

v i → -∞, y ∈ B(0, 2ǫ) -B(0, ǫ), Lemma 2.1. For all 1/4 > ǫ > 0, we have: sup B(xi,(3/2)δiǫ)-B(xi,δiǫ) u i ≤ C ǫ .
Proof of the lemma Let t ′ i and t i the points of B(x i , 2δ i ǫ) -B(x i , (1/2)δ i ǫ) and B(x i , (3/2)δ i ǫ) -B(x i , δ i ǫ) respectively where u i takes its maximum.

According to the Brezis-Merle work, we have:

u i (t ′ i ) + 2 log δ i → -∞ We write, u i (t i ) = Ω G(t i , y)V i (y)e ui(y) dx = Ω-B(xi,2δiǫ) G(t i , y)V i e ui(y) dy+ + B(xi,2δiǫ)-B(xi,(1/2)δiǫ) G(t i , y)V i e ui(y) dy+ + B(xi,(1/2)δiǫ) G(t i , y)V i e ui(y) dy
But, in the first and the third integrale, the point t i is far from the singularity x i and we know that the Green function is bounded. For the second integrale, after a change of variable, we can see that this integale is bounded by (we take the supremum in the annulus and use Brezis-Merle theorem)

δ 2 i e ui(t ′ i ) × I j
where I j is a Jensen integrale (of the form

1 0 2π 0 (log(|1 + |x i | + tθ|) -log |θ i -tθ|)tdtdθ which is bounded ).
we conclude the lemma.

From the lemma, we see that far from the singularity the sequence is bounded, thus if we take the supremum on the set B 1 (0) -B(x i , δ i ǫ) we can see that this supremum is bounded and thus the sequence of functions is uniformly bounded or tends to infinity and we use the same arguments as for x i to conclude that around this point and far from the singularity, the seqence is bounded.

The process will be finished , because, according to Brezis-Merle estimate, around each supremum constructed and tending to infinity, we have:

∀ ǫ > 0, lim sup i→+∞ B(xi,δiǫ) V i e ui dy ≥ 4π > 0.
Finaly, with this construction, we have a finite number of "exterior "blow-up points and outside the singularities the sequence is bounded uniformly, for example, in the case of one "exterior" blow-up point, we have:

u i (x i ) → +∞ ∀ ǫ > 0, sup B1(0)-B(xi,δiǫ) u i ≤ C ǫ ∀ ǫ > 0, lim sup i→+∞ B(xi,δiǫ)
V i e ui dy ≥ 4π > 0.

x i → x 0 ∈ ∂B 1 (0).

We have the following lemma:

Lemma 2.2. Each δ k i is of order d(x k i , ∂B 1 (0))
. Namely: there is a positive constant C > 0 such that for ǫ > 0 small enough:

δ k i ≤ d(x k i , ∂B 1 (0)) ≤ (2 + C ǫ )δ k i .
Proof of the lemma Now, if we suppose that there is another "exterior" blow-up (t i ) i , we have, because (u i ) i is uniformly bounded in a neighborhood of ∂B(x i , δ i ǫ), we have :

d(t i , ∂B(x i , δ i ǫ)) ≥ δ i ǫ If we set, δ ′ i = d(t i , ∂(B 1 (0) -B(x i , δ i ǫ))) = inf{d(t i , ∂B(x i , δ i ǫ)), d(t i , ∂(B 1 (0)))} then, δ ′ i is of order d(t i , ∂B 1 (0)).
To see this, we write:

d(t i , ∂B 1 (0)) ≤ d(t i , ∂B(x i , δ i ǫ)) + d(∂B(x i , δ i ǫ), x i ) + d(x i , ∂B 1 (0)),
Thus,

d(t i , ∂B 1 (0)) d(t i , ∂B(x i , δ i ǫ)) ≤ 2 + 1 ǫ ,
Thus,

δ ′ i ≤ d(t i , ∂B 1 (0)) ≤ δ ′ i (2 + 1 ǫ ).
Now, the general case follow by induction. We use the same argument for three, four,..., n blow-up points.

We have, by induction and, here we use the fact that u i is uniformly bounded outside a small ball centered at x j i , j = 0, . . . , k -1:

δ j i ≤ d(x j i , ∂B 1 (0)) ≤ C 1 δ j i , j = 0, . . . , k -1, . d(x k i , ∂B(x j i , δ j i ǫ/2)) ≥ ǫδ j i , ǫ > 0, j = 0, . . . , k -1, .
and let's consider x k i such that:

u i (x k i ) = sup B1(0)-∪ k-1 j=0 B(x j i ,δ j i ǫ) u i → +∞,
take,

δ k i = inf{d(x k i , ∂B 1 (0)), d(x k i , ∂(B 1 (0) -∪ k-1 j=0 B(x j i , δ j i ǫ/2))}, if, we have, δ k i = d(x k i , ∂B(x j i , δ j i ǫ/2)), j ∈ {0, . . . , k -1}. Then, δ k i ≤ d(x k i , ∂B 1 (0)) ≤ ≤ d(x k i , ∂B(x j i , δ j i ǫ/2)) + d(∂B(x j i , δ j i ǫ/2), x j i ) + d(x j i , ∂B 1 (0)) ≤ (2 + C 1 ǫ )δ k i .
To apply lemma 2.1 for m blow-up points, we use an induction: We do directly the same approch for t i as x i by using directly the Green function of the unit ball.

If we look to the blow-up points, we can see, with this work that, after finite steps, the sequence will be bounded outside a finite number of balls , because of Brezis-Merle estimate (corollary 4 of Brezis-Merle's paper):

∀ ǫ > 0, lim sup i→+∞ B(x k i ,δ k i ǫ)
V i e ui dy ≥ 4π > 0.

Here, we can take the functions:

u k i (y) = u i (x k i + δ k i y) + 2 log δ k i , (By corollary 4 of Brezis-Merle's paper if lim sup i→+∞ B(x k i ,δ k i ǫ) V i e ui dy ≤ 4π -ǫ 0 < 4π, then (u k i )
+ is locally uniformly bounded, which in contradiction with u k i (0) → +∞). Finaly, we can say that, there is a finite number of sequences (x k i ) i , (δ k i ), 0 ≤ k ≤ m, such that:

(x 0 i ) i ≡ (x i ) i , δ 0 i = δ i = d(x i , ∂B 1 (0)), (x 1 i ) i ≡ (t i ) i , δ 1 i = δ ′ i = d(t i , ∂(B 1 (0) -B(x i , δ i ǫ)
), and each δ k i is of order d(x k i , ∂B 1 (0)). and,

u i (x k i ) = sup B1(0)-∪ k-1 j=0 B(x j i ,δ j i ǫ) u i → +∞, u i (x k i ) + 2 log δ k i → +∞, ∀ ǫ > 0, sup B1(0)-∪ m j=0 B(x j i ,δ j i ǫ) u i ≤ C ǫ ∀ ǫ > 0, lim sup i→+∞ B(x k i ,δ k i ǫ)
V i e ui dy ≥ 4π > 0.

The work of YY.Li-I.Shafrir With the previous method, we have a finite number of "exterior" blow-up points (perhaps the same) and the sequences tend to the boundary. With the aid of proposition 1 of the paper of Li-Shafrir, we see that around each exterior blow-up, we have a finite number of "interior" blow-ups. Around, each exterior blow-up, we have after rescaling with δ k i , the same situation as around a fixed ball with positive radius. If we assume:

V i → V in C 0 ( B1 (0)), then, ∀ ǫ > 0, lim sup i→+∞ B(x k i ,δ k i ǫ) V i e ui dy = 8πm k , m k ∈ N * .
And, thus, we have the following convergence in the sense of distributions:

B1(0)
V i e ui dy →

B1(0) V e u dy + m k=0 8πm ′ k δ x k 0 , m ′ k ∈ N * , x k 0 ∈ ∂B 1 (0).
Consequence 1: Proof of theorem 2 Assume that:

B1(0)
V i e ui dy ≤ 4π, Then, if the sequence blow-up, there is one and only one blow-up point and we have:

u i (x i ) = sup B1(0) u i → +∞, u i (x i ) + 2 log δ i → +∞, ∀ ǫ > 0, sup B1(0)-B(xi,δiǫ) u i ≤ C ǫ
We set,

r i = e -ui(xi)/2 ,
The blow-up function is locally bounded thus, r 2 i e ui ≤ C on B(x i , 2r i ). We write:

u i (x i ) = Ω-B(xi,δiǫ) G(x i , y)V i e ui(y) dy+ B(xi,δiǫ) G(x i , y)V i e ui(y) dy ≤ C ǫ + B(xi,δiǫ)
G(x i , y)V i e ui(y) dy we have:

B(xi,δiǫ) G(x i , y)V i e ui(y) dy = B(xi,δiǫ)-B(xi,2ri) G(x i , y)V i e ui(y) dy+ B(xi,2ri) G(x i , y)V i e ui(y) dy
We use the maximum principle on B(x i , δ i ǫ) -B(x i , 2r i ) and the explicit formula of G to prove that:

G(x i , y) ≤ C + 1 2π log δ i r i = C + 1 4π (u i (x i ) + 2 log δ i ).
On B(x i , 2r i ) we use the fact that:

r 2 i e ui ≤ C and the explicit formula for G to have:

B(xi,2ri) G(x i , y)V i e ui(y) dy ≤ C + 1 2π log δ i r i B(xi,2ri)
V i e ui(y) dy.

We conclude that:

u i (x i ) ≤ C + 1 2π log δ i r i B(xi,δiǫ)
V i e ui(y) dy.

which we can write as:

u i (x i ) ≤ C + 1 4π (u i (x i ) + 2 log δ i ) B(xi,δiǫ)
V i e ui(y) dy.

Our hypothesis on the integrale of V i e ui imply that:

log δ i ≥ -C,
in other words, we have uniformly,

d(x i , ∂B 1 (0)) = δ i ≥ e -C > 0.
this contredicts the fact that (x i ) tends to the boundary. The sequence (u i ) is bounded in this case.

We can see that the case:

B1(0)
V i e ui dy ≤ 4π, is optimal, because Brezis-Merle have proved that, there is a counterexample of blow-up sequence with:

B1(0)
V i e ui dy = 4πA > 4π.

Consequence 2: using a Pohozaev-type identity, proof of theorem 3 By a conformal transformation, we can assume that our domain Ω = B + is a half ball centered at the origin, B + = {x, |x| ≤ 1, x 1 ≥ 0}. In this case the normal at the boundary is ν = (-1, 0) and u i (0, x 2 ) ≡ 0. Also, we set x i the blow-up point and x 2 i = (0, x 2 i ) and x 1 i = (x 1 i , 0) respectevely the second and the first part of x i . Let ∂B + the part of the boundary for which u i and its derivatives are uniformly bounded and thus converge to the corresponding function.

The case of one blow-up point:

Theorem 2.3. If V i is s-Holderian with 1/2 < s ≤ 1 and, Ω V i e ui dy ≤ 16π -ǫ, ǫ > 0,
we have :

V i (x i ) Ω e ui dy -V (0) Ω e u dy = o(1)
which means that there is no blow-up points.

Proof of the theorem

The Pohozaev identity gives us the following formula:

Ω < (x -x i 2 )|∇u i > (-∆u i )dy = Ω < (x -x i 2 )|∇u i > V i e ui dy = A i A i = ∂B + < (x -x i 2 )|∇u i >< ν|∇u i > dσ + ∂B + < (x -x i 2 )|ν > |∇u i | 2 dσ
We can write it as:

Ω < (x -x i 2 )|∇u i > (V i -V i (x i ))e ui dy = A i + V i (x i ) Ω < (x -x i 2 )|∇u i > e ui dy = = A i + V i (x i ) Ω < (x -x i 2 )|∇(e ui ) > dy
And, if we integrate by part the second term, we have (because x 1 = 0 on the boundary and ν 2 = 0):

Ω < (x -x i 2 )|∇u i > (V i -V i (x i ))e ui dy = -2V i (x i ) Ω e ui dy + B i
where B i is,

B i = V i (x i ) ∂B + < (x -x i 2 )
|ν > e ui dy applying the same procedure to u, we can write:

-2V i (x i ) Ω e ui dy+2V (0) Ω e u dy = Ω < (x-x i 2 )|∇u i > (V i -V i (x i ))e ui dy- Ω < (x-x i 2 )|∇u > (V -V (0))e u dy+ +(A i -A) + (B i -B),
where A and B are,

A = ∂B + < (x -x i 2 )|∇u >< ν|∇u > dσ + ∂B + < (x -x i 2 )|ν > |∇u| 2 dσ B = V (0) ∂B + < (x -x i 2 )|ν > e u dy
and, because of the uniform convergence of u i and its derivatives on ∂B + , we have:

A i -A = o(1) and B i -B = o(1)
which we can write as:

V i (x i ) Ω e ui dy -V (0) Ω e u dy = Ω < (x -x i 2 )|∇(u i -u) > (V i -V i (x i ))e ui dy+ + Ω < (x -x i 2 )|∇u > (V i -V i (x i ))(e ui -e u )dy+ + Ω < (x -x i 2 )|∇u > (V i -V i (x i ) -(V -V (0)))e u dy + o(1)
We can write the second term as:

Ω < (x-x i 2 )|∇u > (V i -V i (x i ))(e ui -e u )dy = Ω-B(0,ǫ) < (x-x i 2 )|∇u > (V i -V i (x i ))(e ui -e u )dy+ + B(0,ǫ) < (x -x i 2 )|∇u > (V i -V i (x i ))(e ui -e u )dy = o(1),
because of the uniform convergence of u i to u outside a region which contain the blow-up and the uniform convergence of V i . For the third integral we have the same result:

Ω < (x -x i 2 )|∇u > (V i -V i (x i ) -(V -V (0)))e u dy = o(1),
because of the uniform convergence of V i to V . Now, we look to the first integral:

Ω < (x -x i 2 )|∇(u i -u) > (V i -V i (x i ))e ui dy,
we can write it as:

Ω < (x-x i 2 )|∇(u i -u) > (V i -V i (x i ))e ui dy = Ω < (x-x i )|∇(u i -u) > (V i -V i (x i ))e ui dy+ + Ω < x i 1 |∇(u i -u) > (V i -V i (x i
))e ui dy, Thus, we have proved by using the Pohozaev identity the following equality, in the case of one blow-up (the term o(1)):

Ω < (x -x i )|∇(u i -u) > (V i -V i (x i ))e ui dy+ + Ω < x i 1 |∇(u i -u) > (V i -V i (x i ))e ui dy = = 2V i (x i ) Ω e ui dy -2V (0) Ω e u dy + o(1)
We can see, because of the uniform boundedness of u i outside B(x i , δ i ǫ) and the fact that :

||∇(u i -u)|| 1 = o(1),
it is sufficient to look to the integral on B(x i , δ i ǫ).

Assume that we are in the case of one blow-up, it must be (x i ) and isolated, we can write the following inequality as a consequence of YY.Li-I.Shafrir result:

u i (x) + 2 log |x -x i | ≤ C,
We use this fact and the fact that V i is s-holderian to have that, on B(x i , δ i ǫ),

|(x -x i )(V i -V i (x i ))e ui | ≤ C |x -x i | 1-s ∈ L (2-ǫ ′ )/(1-s) , ∀ ǫ ′ > 0,
and, we use the fact that:

||∇(u i -u)|| q = o(1), ∀ 1 ≤ q < 2
to conclude by the Holder inequality that for 0 < s ≤ 1 :

B(xi,δiǫ) < (x -x i )|∇(u i -u) > (V i -V i (x i ))e ui dy = o(1),
For the other integral, namely:

B(xi,δiǫ) < x i 1 |∇(u i -u) > (V i -V i (x i ))e ui dy,
We use the fact that, because our domain is a half ball, and the sup + inf inequality to have:

x i 1 = δ i , u i (x) + 4 log δ i ≤ C
and,

e (s/2)ui(x) ≤ |x -x i | -s , |V i -V i (x i )| ≤ |x -x i | s ,
Finaly, we have:

| B(xi,δiǫ) < x i 1 |∇(u i -u) > (V i -V i (x i ))e ui dy| ≤ C B(xi,δiǫ) |∇(u i -u)|e ((3/4)-(s/2))ui ,
But in the second member, for 1/2 < s ≤ 1, we have q s = 1/(3/4 -s/2) > 2 and thus q ′ s < 2 and,

e ((3/4)-(s/2))ui ∈ L qs ||∇(u i -u)|| q ′ s = o(1), ∀ 1 ≤ q ′ s < 2, one conclude that: B(xi,δiǫ) < x i 1 |∇(u i -u) > (V i -V i (x i ))e ui dy = o(1)
Finaly, with this method, we conclude that, in the case of one blow-up point and V i is s-Holderian with 1/2 < s ≤ 1 :

V i (x i ) Ω e ui dy -V (0) Ω e u dy = o(1)
which means that there is no blow-up, which is a contradiction. Finaly, for one blow-up point and V i is s-Holderian with 1/2 < s ≤ 1, the sequence (u i ) is uniformly bounded on Ω.

The case of two blow-up points:

Theorem 2.4. If V i is s-Holderian with 1/2 < s ≤ 1 and, Ω V i e ui dy ≤ 24π -ǫ, ǫ > 0,
we have :

V i (x i ) Ω e ui dy -V (0) Ω e u dy = o(1)
which means that there is no blow-up points.

Proof of the Theorem

The case of two "interior" blow-up points: As in the previous case, we assume that Ω = B + is the half ball. We have two "interior" blow-up points x i and y i :

|y i -x i | ≤ δ i ǫ,
We use a Pohozaev type identity:

Ω < (x -x i 2 )|∇u i > (-∆u i )dy = Ω < (x -x i 2 )|∇u i > V i e ui dy = A i
with A i the regular part of the identity (on which the uniform convergence holds).

A i = ∂B + < (x -x i 2 )|∇u i >< ν|∇u i > dσ + ∂B + < (x -x i 2 )|ν > |∇u i | 2 dσ
We divide our domain in two domain Ω i 1 and Ω i 2 such that:

Ω i 1 = {x, |x -x i | ≤ |x -y i |}, Ω i 2 = {x, |x -x i | ≥ |x -y i |}. We set, D i = {x, |x -x i | = |x -y i |}.
We write:

A i = Ω i 1 < (x-x i 2 )|∇u i > (V i -V i (x i ))e ui dy + Ω i 2 < (x-x i 2 )|∇u i > (V i -V i (y i ))e ui dy+ +V i (x i ) Ω i 1 < (x -x i 2 )|∇u i > e ui dy + V i (y i ) Ω i 2 < (x -x i 2 )|∇u i > e ui dy.
As for the case of one blow-up point, it is sufficient to consider terms which contain the difference ∇(u i -u).

We can write the last addition as (after using ∇(u i -u)) :

V i (x i ) Ω < (x -x i 2 )|∇u i > e ui dy - Ω < (x -x i 2 )|∇u > e u dy + +(V i (y i ) -V i (x i )) Ω i 2 < (x -x i 2 )|∇(u i -u) > e ui dy.
First of all, we consider the term (which equal, after integration by part to ):

V i (x i ) Ω < (x -x i 2 )|∇u i > e ui dy - Ω < (x -x i 2 )|∇u > e u dy = = -2V i (x i ) Ω e ui dy + 2V (0) Ω e u dy + (B i -B)
with the same notation for B i and B as for the previous case.

Case 1: suppose that, |x -

y i | ≥ |x i -y i |, thus |V i (x i ) -V i (y i )| ≤ |x i -y i | s ≤ |x -y i | s Thus, |(V i (y i )-V i (x i )) Ω i 2 ∩{x,|x-xi|≥|x-yi|}. < (x-x i 2 )|∇(u i -u) > e ui dy| ≤ Ω i 2 |x-y i | 1+s |∇(u i -u)|e ui dy+ +|y i 2 -x i 2 | Ω i 2 |x -y i | s |∇(u i -u)|e ui dy + |y i 1 | Ω i 2 |x -y i | s |∇(u i -u)|e ui dy But, |y i -x i | ≤ δ i ǫ,
x i 1 = δ i we use the same method (with the sup + inf inequality) to prove that for 1 ≥ s > 1/2 the two integrals converges to 0.

Case 2: suppose that, |x -

y i | ≤ |x i -y i |,
We do integration by parts, we have one part on D i and the other one on the circle with center y i . In fact, we have intersection of convex 2-dimensional domains, which is convex (Lipschitz domain or a domain with finite nimber of singularity) and thus one can apply the Stokes or Green-Riemann formulas.

(V i (y i ) -V i (x i )) Ω i 2 ∩{x,|x-yi|≤|xi-yi|}. < (x -x i 2 )|∇(e ui ) > dy = = (V i (y i ) -V i (x i )) Di∩{x,|x-yi|≤|xi-yi|}. < (x -x i 2 )|ν > e ui dy+ +(V i (y i ) -V i (x i )) {x,|x-yi|=|xi-yi|}∩{x,|x-yi|≤|x-xi|} < (x -x i 2 )|ν > e ui dy+ +2(V i (y i ) -V i (x i )) {x,|x-yi|≤|xi-yi|} e ui dy
We set:

I 1 = (V i (y i ) -V i (x i )) Di∩{x,|x-yi|≤|xi-yi|}. < (x -x i 2 )
|ν > e ui dy,

I 2 = (V i (y i ) -V i (x i )) {x,|x-xi|=|xi-yi|}∩{x,|x-yi|≤|x-xi|} < (x -x i 2 )
|ν > e ui dy Lemma 2.5. We have:

I 1 = o(1),
and,

I 2 = o(1).

Proof of the lemma

For I 1 , we have:

|V i (x i ) -V i (y i )| ≤ 2C|x -y i | s , |I 1 | ≤ C Di∩{x,|x-yi|≤|xi-yi|}. | < (x -y i )|ν > ||x -y i | s e ui + +|x i 2 -y i 2 | Di∩{x,|x-yi|≤|xi-yi|}. |x -y i | s e ui dy+ +|y i 1 | Di∩{x,|x-yi|≤|xi-yi|}.
|x -y i | s e ui dy But,

x i 1 = δ i , |y i -x i | ≤ δ i ǫ, u i (x) + 4 log δ i ≤ C
and, e (3/4)ui(x) ≤ |x -y i | -3/2 , Thus,

|I 1 | ≤ Di∩{x,|x-yi|≤|xi-yi|}. |x -y i | s-1 + +C Di∩{x,|x-yi|≤|xi-yi|}.
|x -y i | (-3/2)+s dy,

If we set t 0 = (x i + y i )/2, we have on one part of D i :

|x -t 0 | ≤ |x -y i | = |x -x i | ≤ |x i -y i |,
by a change of variable u = x -t 0 on the line D i , we can compute the two last integrals directly, to have, for 1 ≥ s > 1/2:

|I 1 | ≤ C(|x i -y i | s + |x i -y i | s-(1/2) ) = o(1),
For I 2 we have:

I 2 = (V i (y i ) -V i (x i )) {x,|x-yi|=|xi-yi|}∩{x,|x-xi|≤|xi-yi|} < (x -x i 2 )
|ν > e ui dy and,

|V i (x i ) -V i (y i )| ≤ 2C|x -y i | s , |I 2 | ≤ C {x,|x-yi|=|xi-yi|}∩{x,|x-yi|≤|x-xi|}. | < (x -y i )|ν > ||x -y i | s e ui + +|x i 2 -y i 2 | {x,|x-yi|=|xi-yi|}∩{x,|x-yi|≤|x-xi|}. |x -y i | s e ui dy+ +|y i 1 | {x,|x-yi|=|xi-yi|}∩{x,|x-xi|≤|x-xi|}.
|x -y i | s e ui dy with the same method as for I 1 we have:

|I 2 | ≤ C {x,|x-yi|=|xi-yi|}∩{x,|x-yi|≤|x-xi|}. |x -y i | s-1 + + {x,|x-yi|=|xi-yi|}∩{x,|x-yi|≤|x-xi|}.
|x -y i | -(3/2)+s dy, Finaly, we have:

|I 2 | ≤ C(|x i -y i | s + |x i -y i | s-(1/2) ) = o(1),
The case of two "exterior" blow-up points:

Let (x i ) i and (t i ) i two sequences of "exterior" blow-up points. If d(x i , t i ) = O(δ i ) or d(x i , t i ) = O(δ ′
i ) then we use the same technique as for two interior blow-up with the Pohozaev identity. In this case the sup + inf inequality holds, because d(x i , t i ) is of order δ i or δ ′ i . Assume that:

d(x i , t i ) δ i → +∞ and d(x i , t i ) δ ′ i → +∞
In this case, we assume that, we are on the half ball.(In fact one consider the intersection of disks and half plane which is convex, and we take its image by the conformal map. In this case we have a domain on which we can apply the Stokes formula). By a conformal transformation, f , we can assume that our two sequences are on the unit ball. First of all, we use the Pohozaev identity on the half ball as for the previous cases, but our domain change, we have one part is vertical, the second part is a part of the boundary of the unit ball, in which the sequences (u i ) and (∂u i ) i are uniformly bounded and converge to the corresponding function, and the third part of boundary, is a regular curve D ′ i such that its image by f is the mediatrice D i of the segment (x i , t i ). In the Pohozaev identity, we have a terms of type:

D ′ i < (x -x i 2 )|∇u i >< ν|∇u i > dσ + D ′ i < (x -x i 2 )|ν > |∇u i | 2 dσ
But if we integrate on the rest of the domain and if we use the Pohozeav identity on this second domain and we replace x i 2 by t i 2 , the integral on D ′ i is :

-

D ′ i < (x -t i 2 )|∇u i >< ν|∇u i > dσ - D ′ i < (x -t i 2 )|ν > |∇u i | 2 dσ
If, we add the two integral, we find:

D ′ i < (x i 2 -t i 2 )|∇u i >< ν|∇u i > dσ + D ′ i < (x i 2 -t i 2 )|ν > |∇u i | 2 dσ
We have the same techniques as for the previous cases ("interior" blow-up), except the fact that here, we use the Pohozaev identity on two differents domains which the union is our half ball.( In fact the image by a conformal map of a convex domain, intersection of two disks and a half plane. (Intersection of the unit disk and D(x 0 , ǫ) and the mediatrice of [x i , t i ], here, x 0 is the "blow-up" point, and we apply the conformal map f )). And apply the Green-Riemann theorem for smooth domains with finite number of singular points on the boundary. Or directly the Stokes theorem with the fact that we have a Lipschitz domain because it is the image of a Lipschitz domain by a conformal map (Hofmann-Mitrea-Taylor).

Remark that, here, because we have the two conditions on d(x i , t i ) and δ i , δ ′ i , the mediatrice of [x i , t i ] is close to a fixed segment [0, x 0 ]. (use angles for this fact).

To conclude, we must show that this last integral is close to 0 as i tends to +∞. By a conformal map, it is sufficient to prove that the corresponding integral on the unit ball on D i tends to 0. Without loss of generality, we can assume here that we work on the unit ball (for this integral).

On the unit ball, with the Dirichlet condition, the Green function is (in complex notation) :

G(x, y) = 1 2π log |1 -xy| |x -y| ,
we can write:

u i (x) = B1 (0) 
G(x, y)V i (y)e ui(y) dy,

We can compute (in complex notation) ∂ x G and ∂ x u i :

∂ x G(x, y) = 1 -|y| 2 (x -y)(xȳ -1) , ∂ x u i (x) = B1(0) ∂ x G(x, y)V i (y)e ui(y) dy = B1(0) 1 -|y| 2 (x -y)(xȳ -1) V i (y)e ui(y) dy Let t i 0 = (x i + t i )/2. We assume that |x -t i 0 | ≤ 1 -ǫ and |t i 0 | ≥ 1 -(ǫ/2). Proposition 2.6. 1) For ((1/2) + ǫ)|x i -t i | ≤ |x -t i 0 | ≤ 1 -ǫ we have, |∂ x u i (x)| ≤ C ′ + C δ i |x i -t i | 1 |x -t i 0 | = C ′ + o(1) |x -t i 0 | . 2) For |x -t i 0 | ≤ ((1/2) -ǫ)|x i -t i | we have, |∂ x u i (x)| ≤ C ′ + C δ i |x i -t i | 1 |x i -t i 0 | = C ′ + o(1) |x i -t i 0 | . with o(1) → 0 as i → +∞ . 3) For ((1/2) -ǫ)|x i -t i | ≤ |x -t i 0 | ≤ ((1/2) + ǫ)|x i -t i | we have, |x i -t i ||∇u i | L ∞ (Di∩{((1/2)-ǫ)|xi-ti|≤|x-t i 0 |≤((1/2)+ǫ)|xi-ti|} ≤ C.

Proof of the proposition:

To estimate ∂ x u i on D i , we divide the last integral in three parts: V i (y)e ui(y) dy+

∂ x u i (x) =
+ B(ti,δ ′ i ǫ)
1 -|y| 2 (x -y)(xȳ -1)

V i (y)e ui(y) dy Let us set:

I 1 = B1(0)-(B(xi,δiǫ)∪B(ti,δ ′ i ǫ))
1 -|y| 2 (x -y)(xȳ -1)

V i (y)e ui(y) dy

I 2 = B(xi,δiǫ)
1 -|y| 2 (x -y)(xȳ -1)

V i (y)e ui(y) dy,

I 3 = B(ti,δ ′ i ǫ)
1 -|y| 2 (x -y)(xȳ -1)

V i (y)e ui(y) dy

For the first integral, because u i ≤ C on B 1 (0) -(B(x i , δ i ǫ) ∪ B(t i , δ ′ i ǫ)), we have: V i (y)e ui(y) dy Case 1:

|I 1 | ≤ C B1(0) 1 -|y| 2 |x -y||xȳ -1| dy, But, 1 ≥ |x| = |x -t i 0 + t i 0 | ≥ |t i 0 | -|x -t i 0 | ≥ 1 -(ǫ/2) -(1 -ǫ) = ǫ/
((1/2) + ǫ)|x i -t i | ≤ |x -t i 0 | ≤ 1 -ǫ:
In this case we have: and, thus,

1 -|y| 2 = 1 -|x i + δ i z| 2 = δ i (2 + o( 1 
D ′ i < (x i 2 -t i 2 )|∇u i >< ν|∇u i > dσ + D ′ i < (x i 2 -t i 2 )|ν > |∇u i | 2 dσ = o(1)
here, we used the previous estimates with i → +∞ and ǫ → 0 (for the previous case 3).

B1( 0

 0 )-(B(xi,δiǫ)∪B(ti,δ ′ i ǫ)) 1 -|y| 2 (x -y)(xȳ -1)V i (y)e ui(y) dy++ B(xi,δiǫ) 1 -|y| 2 (x -y)(xȳ -1)

2 ,

 2 thus, we can write:|I 1 | ≤ C B1(0) 1 -|y| 2 |x -y||x||ȳ -1/x| dy,and, we use the fact that:|ȳ -1/x| ≥ ||ȳ| -1/|x|| ≥ |1/|x| -|y|| ≥ (1 -|y|), To have: |∂ x u i (x)| ≤ |I 2 | + |I 3 | + C B1(0) 1 + |y| |x -y| dy = |I 2 | + |I 3 | + C ′ ,Now, we look to the second and third integrals, it is sufficient to consider the first one :I 2 = B(xi,δiǫ) 1 -|y| 2 (x -y)(xȳ -1)

  )), and, |x -y| = |x -t i 0 + t i 0 -y i -δ i z| ≥ (ǫ/2)|x i -t i |, and,|xȳ -1| = |((x -t i 0 + t i 0 -x i ) + x i )(x i + δ i z) -1| ≥ (ǫ/2)|x -t i 0 |, Thus, |∂ x u i (x)| ≤ C ′ + C δ i |x i -t i | → 0 as i → +∞ . Case 2: |x -t i 0 | ≤ ((1/2) -ǫ)|x i -t i |:In this case, we have:1 -|y| 2 = 1 -|x i + δ i z| 2 = δ i (2 + o(1)),and,|x -y| = |x -t i 0 + t i 0 -y i -δ i z| ≥ (ǫ/2)|x i -t i |, and, |xȳ -1| = |((x -t i 0 + t i 0 -x i ) + x i )(x i + δ i z) -1| ≥ (ǫ/2)|x i -t i 0 |, Thus, |∂ x u i (x)| ≤ C ′ + C δ i |x i -t i | → 0 as i → +∞ . Case 3: ((1/2) -ǫ)|x i -t i | ≤ |x -t i 0 | ≤ ((1/2) + ǫ)|x i -t i |: Let ti 0 the point of D i such that | ti 0 -t i 0 | = 1/2(|x i -t i |).We use the fact that the function:v i (t) = u i ( ti 0 + (|x i -t i 0 |/4)t), is uniformly bounded for |t| ≤ 1 and is a solution of PDE which is uniformly bounded on |t| ≤ 1. By the elliptic estimates we have:|x i -t i ||∇u i | L ∞ (Di∩{((1/2)-ǫ)|xi-ti|≤|x-t i 0 |≤((1/2)+ǫ)|xi-ti|} ≤ C. Thus, we use the previous cases to compute the following integral:

	with, o(1) 1 |x i -t i 0 |	= C ′ +	o(1) |x i -t i 0 |	.
	with, o(1)			
	1 |x -t i 0 |	= C ′ +	o(1) |x -t i 0 |	.

Di < (x i 2 -t i 2 )|∇u i >< ν|∇u i > dσ + Di < (x i 2 -t i 2 )|ν > |∇u i | 2 dσ = o(1)