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Abstract —In this paper, we present an analytic approach to 

evaluate the reactivity of client-server networked automation 
systems (NAS). Both deterministic and probabilistic analyses are 
provided while modeling the NAS using Timed Event Graphs 
(TEG). Since many results with regard to the deterministic 
approach have already been published, we recall only its main 
steps that prove useful while exposing the probabilistic method. 
Thereby, we provide the density of probability distribution of the 
response time (or reactivity) using the probability densities of the 
local delays, experienced at the different stages of the NAS. 
Furthermore, a case study is presented to compare the results of 
the study to measures taken from a real platform. 
 

Note to Practitioners—As a matter of fact, client-server 
networked automation systems are largely used in industry and 
therefore the efforts to deal with their performances evaluation 
are necessary. In the current work, we propose an analytic 
approach to evaluate their reactivity. Analytic formulae are 
provided to calculate directly and deterministically the bounds of 
response time along with others to assess its probability density 
distribution. Moreover, the results of these formulae turn out to 
be complying with a lot of experimental measurements carried 
out under different circumstances. 
 

Index Terms—Client-Server Networked Automation System, 
Response Time, Probabilistic Analysis, Max-Plus Algebra, Timed 
Event Graph. 

I. INTRODUCTION 
HE huge breakthroughs carried out in the field of 
communication technologies by increasing the 

performances of the devices and decreasing their prices, were 
compelling incentives towards replacing the traditional 
directly wired systems by networks in industry [1]. However, 
a networked system means that messages from different 
stations share the same resources and therefore undergo delays 
while waiting for their availability. In networked automation 
systems (NAS), these delays have a tremendous effect on the 
reactivity of control. The reactivity of NAS or the response 
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time is the delay between the date of generation of an event by 
a sensor and the date of arrival of its consequence, issued by a 
controller, to an actuator. A number of investigations have 
been undertaken to assess delays caused by networks but they 
are in their majority limited to the delays experienced while 
crossing the communication network and ignore the field 
devices effects [2], [3], [4], [5], [6], [7]. Among the 
investigations that consider the whole NAS, we find methods 
based on models simulation [8], [9], [10], others based on 
model checking [11], [12] and obviously experimental 
methods [13]. Depending on the NAS, either the bounds of 
the response time or its distribution need to be assessed. 
Indeed, in some systems (e.g. critical systems) it is mandatory 
that the response time be always under a critical value 
whereas in others (e.g. only quality aspects are in concern), it 
is accepted that the response time go past a limit value but the 
probability of such an event must remain under an acceptable 
value. Among the cited works, only model-checking provides 
both guaranteed bounds [11] and distribution [12] but 
unfortunately suffers from the state explosion problem. In 
[14], we presented an analytic approach in an effort to avoid 
such a problem but our investigation was limited to NAS with 
only one controller (we considered several remote I/O 
modules nevertheless). Thus, the current study is a 
generalization that displays two main new contributions (i) the 
NAS may involve multiple controllers (ii) analytic 
probabilistic formulae are provided to calculate the density of 
probability of the response using the local delays probability 
densities (in [14], we calculated the distribution using 
simulation, not analytic formulae as the case now).  

The remainder of our study has been organized as follows. 
In Section II.A, an overview of an explanatory example of a 
client-server NAS is provided. Then in Section II.B, some 
fundamentals about timed event graphs (TEG) and their linear 
(max,+) representation are recalled. Hence, these tools are 
used to model a generic client-server NAS, involving M 
clients (controllers) and N servers (remote I/O). Next, Section 
III is dedicated to a deterministic evaluation of the response 
time, especially its maximal and minimal bound whereas 
Section I.V to a probabilistic one. A formula for direct 
calculus of the probability density of response time is 
provided. Afterwards, Section V is devoted to a case study to 
compare the results of the exposed methods to experimental 
measures. Finally, some considerations for future work are 
discussed in Section VI as a conclusion to this paper. 
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II. CLIENT-SERVER NAS FUNCTIONING AND MODELING 

A) Client-server NAS functioning 
As aforementioned, we consider NAS working according to 

client-server paradigm. The PLCs (programmable logic 
controller), that play the role of clients, poll periodically the 
RIOMs (remote I/O module), which are the servers, to request 
information to sensors or provide orders to actuators. An 
explanatory example of automation loop of such a system is 
depicted in Fig. 1. This example is used only for explanation 
purpose and the results of the study are valid in the general 
case. It consists of filling bottles automatically as follows:  
PLC1 sends periodically requests to RIOM R4 to ask for 
information: has the detection level Xd been reached? and 
requests to RIOM R5 to give order: either close the valve or 
open the valve, depending on the information collected during 
the previous scanning cycle from the sensor. The aim of this 
NAS loop is to close the valve after detection level Xd is 
reached. The response time Dr of this NAS (thick arrow in 
Fig. 1), can be defined as the delay between the date of 
reaching level Xd by the liquid and the date of closing the 
valve. Actually, when position Xd is reached, this information 
is sent to PLC1 only after the arrival of a request. Once this is 
done, the response carrying this info crosses the 
communication network and gets to the input buffer of the 
network board (NETb) of the PLC (an interface card that 
enables communication with the network) before being 
written in the CPU (Central Processing Unit) cache memory. 
The CPU also works periodically and therefore takes this new 
info into account only at the beginning of a new cycle and 
performs the corresponding order. This order is written in the 
cache shared with the NETb and sent to its destination (R5) at 
the beginning of the next scanning cycle. This order crosses 
the network and gets to R5 and causes the closure of the valve 
to stop filling a bottle (Fig. 2). 
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Fig. 1.  Client-server NAS: automated bottles-filling system. 

Since the response time is never null and even always 
greater than a minimum delay, the bottle filling continues after 
position Xd is reached and the final liquid level Xf is 
somewhere above Xd (see Fig. 1). A problem rises therefore 

since the NAS has to satisfy two conditions at the same time: 
on one hand, we have to satisfy the customer’s requirement 
Xf>XMIN and on the other hand Xf <XMAX. Indeed, a too full 
bottle is discarded since putting a cork on it is impossible. So, 
to be economically viable, the probability to discard a bottle 
must be smaller than a predefined threshold. So, the 
probability that the response time be above the delay 
corresponding to limit XMAX must be under this threshold 
either. Hence, a probabilistic study is necessary to get the 
density distribution of the response time. The problem can 
also be formulated in a stricter way (e.g. safety considerations) 
by forbidding overflows (e.g. dangerous liquid) and therefore 
the response time must be under a maximum bound whatever 
the conditions are.  So, either a deterministic (bounds 
evaluation) or probabilistic (distribution evaluation) of the 
NAS reactivity is needed.  

As it can be seen in Fig. 2, the response time is the sum of 
many local delays that an event/reaction message experiences 
at the different stages of the NAS, from the date of generating 
the event at the sensor to the date of arrival of the reaction to 
the actuator. Note by the way that these delays are not 
constant if it is not mentioned otherwise. The following 
notations designate these timing features (see Fig. 2): 
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Fig. 2.  Response time decomposition. 

- TSCN : the scanning period of the NETb 
- TCPU : the functioning period of the CPU 
- TExc : the time to execute the user program in the CPU 

and perform the control signal (orders to RIOMs) 
- TQ0 : the time spent by a request in the output buffer of 

the NETb before being sent to the network 
- TReq : the necessary time, to a request, to cross the 

network and get to its destination RIOM  
- TQ1 : the time spent by a request in the input buffer of 

the destination RIOM before being taken into account 
by the RIOM and being processed to return a reply 

- TProc :  the necessary time to process a request in a 
RIOM and return the corresponding response (index S 
or D is added to refer to source or destination)  

- Tfilt : the time to filter the data issued by the sensor 
- TQ2 : the time spent by a response in the output buffer 

of a RIOM before quitting it and entering the network 
- TResp : the necessary time, to a response, to cross the 

network and get to the input buffer of the NETb 
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- TQ3 : the time spent by a response in the input buffer of 
the NETb before being taken into account by the NETb 
and copied into the cache memory of the CPU 

 
- Hypotheses about NAS functioning: 
i) The CPU and NETb can be set to function either cyclically 
or periodically. They are periodic in our study, without clock 
drift. So, their periods noted respectively TSCN and TCPU are 
constant. Also, they can be considered as integers since they 
are set by the user as multipliers of a basis unit. For instance, 
in our experimental platform, the period TSCN can be set to 
10ms, 15ms, 20ms, etc. Besides that, we suppose in this paper 
that ratio /SCN CPUT T  is integer too. Indeed, by performing the 
transformation exposed in the next section, we get to the same 
model used in [14] and therefore can consider the general 
case, which is already studied in [14], in a similar way. 
ii) Neither frame loss nor components failure is considered. In 
the context of this study indeed, we observed the system of 
Fig. 1 during more than 5 million cycles and no loss or failure 
has been noticed.  
iii) A server does only answer a received request and never 
send messages autonomously (no asynchronous transmission). 
iv) The time to write/read the useful data (without 
communication layers headers) in cache memory is neglected. 
v) All the requested answers are received from the scanned 
RIOMs before the scanning period elapses (the network due 
delays are indeed often by far smaller than the scanning 
period) 
vi) According to practical observations, ProcT  and Tfilt can be 
considered constant (less than 0.08% jitter [14]). 

B) Timed Event Graphs and their (Max,+) representation 
An event Graph is an ordinary Petri net whose places have 

at most one upstream transition and one downstream transition 
[15]. To study the dynamic behavior of a Timed Event Graph 
(TEG), many mathematical tools can be used, depending on 
the objective of the study: (Max,+) Algebra with daters [16], 
(min,+) Algebra with counters [17], a combination of different 
operators with place-marking and transition-state [18], ... 
Since daters are more relevant to our work, we consider the 
first one. So, we associate to each transition ti its firing date 
(dater) for the kth time noted ( )i kθ . So, the TEG evolution at 
maximal speed (maximal speed means that a transition fires as 
soon as the tokens of the upstream places are available) can be 
represented using linear (Max,+) equations. Notice that we do 
consider only P-timed graphs in this study i.e. delays are 
ascribed only to places. A delay in a place means that a token 
entering this place is available to fire a downstream transition 
only after this delay. We explain step by step all these notions 
using the following simple explanatory example. 

Example II.A.1: TEG in Fig. 3 represents a manufacturing 
system with a machine, represented by place 1p ,  an upstream 
stock (place up ) and two pallets carrying parts. A token in 
place 1p  means that a part is being processed by the machine. 
A part entering the stock, by firing transition ut , becomes 

available to the machine one time unit later. The process lasts 
3 time units before the finished part exits the machine. The 
machine can then start processing another part 2 time units 
later i.e. after the comeback of the pallet.  

 

ut 1t  2t  

1 3 

up 1p  

3p  2 2p  3t  0  

 
Fig. 3.  Example of Timed Event Graph. 

The behavior of this system depends obviously on the 
initial marking of the places and the source transition tu  firing 
dates. By using the marking of Fig. 3 and supposing that the 
tokens are initially available, the dates of firing transitions t1, 
t2 and t3 for the kth time (at maximum speed) are expressed as: 

1 3

2 1

3 2

( ) max[0 ( 1), 1 ( )]
( ) 3 ( )
( ) 2 ( 1)

k k u k
k k
k k

θ θ
θ θ
θ θ

= + − +⎧
⎪ = +⎨
⎪ = + −⎩

        (1) 

These equations are actually linear in (Max,+) algebra 
whose operators are the classical addition noted  ⊗  with 
identity element 0 noted e  and the classical maximum noted 
⊕  with identity element −∞  noted ε . These equations can 
be written using these operators as: 

1 3

2 1 3

3 2

( ) ( 1) 1 ( )
( ) 3 ( ) 3 ( 1) 4 ( )
( ) 2 ( 1)

k e k u k
k k k u k
k k

θ θ
θ θ θ
θ θ

= ⊗ − ⊕ ⊗⎧
⎪ = ⊗ = ⊗ − ⊕ ⊗⎨
⎪ = ⊗ −⎩

                      (2) 

Moreover, they can be rewritten in a standard state 
representation as follows: 

( ) ( 1) ( )k A k B u kΘ = ⊗ Θ − ⊕ ⊗                                             (3) 

where: 3 ,
2

e
A

ε ε
ε ε
ε ε

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

  
1
4B
ε

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 and 
1

2

3

( )
( ) ( )

( )

k
k k

k

θ
θ
θ

⎛ ⎞
⎜ ⎟Θ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

This state representation is very similar to the standard 
representation of the classical linear systems. It is very useful 
and used alike for many problems resolution like performance 
evaluation or control synthesis. For more details about 
(Max,+) algebra and its applications, we invite the reader to 
see references  [16], [17].   

C) NAS Modeling using TEG and (Max,+) Algebra 
The TEG of Fig. 4 represents a generic model of Client-

Server NAS, independently from the automated plant, with M 
clients (PLCs) polling N remote servers (RIOMs). It depicts 
thoroughly the communication between client PLCi and server 
RIOMj. Note that indices {1,..., }i M∈  and {1,..., }j N∈  
should be added to the different delays of the model but they 
are omitted purposely for convenience reasons. Since only one 
automation loop is under consideration at a time (one client 
and two servers, the source and the destination), we simply 
omit the index of the PLC, add index S to the delays 
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experienced by the request sent to RIOMS (event source) and 
add index D when the request is sent to RIOMD (event 
destination). For instance, TReqD is the necessary time to cross 
the network by the request sent to RIOMD. Note again that the 
different delays are not constant and may vary from a cycle to 
another. So, for instance, the previous delay TReqD experienced 
at the lth cycle may be noted TReqD (l) but index l is also 
omitted for the same reasons. 

In the model, we added two delays TW1 and TW2 to represent 
two constraints with regard to the NETb functioning; TW1 
represents the fact that the NETb cannot take into account any 
received response before getting all the requests sent (the 
requests are of higher priority) whereas delay TW2 means that 
the NETb has to wait until the reception of all the responses 
from all the scanned servers before starting another scanning 
cycle (from hypothesis v).   

In [14], we used a model constituted exclusively of TEG to 
get the advantage of the resulting (Max,+) linear equations 
and perform an analytic study. The model of Fig. 4 however 
does not verify this condition (it is not a TEG). Indeed, the 
part representing RIOMj contains two places (Q1 and Q2) 
with more than one input/output transition. These places 
represent respectively the input and the output buffers (or 
queues) of RIOMj. So, when the request from PLCi arrives to 
the input buffer of RIOMj, it must wait until all the waiting 
requests are processed to be finally taken into account. In 
terms of Petri nets, the tokens entering place Q1 contribute to 
the firing of transition t6 in a FIFO manner without 
overtaking. So, the token from client PLCi has to wait in place 
Q1 during a time noted TQ1. Since our model supports time-
varying delays, a linearization is possible. Indeed, instead of 
considering this non-TEG model, we can remove the 
transitions from the other clients and simply assign this 
variable delay TQ1 to place Q1. Hence, the model becomes a 

TEG while its delays TQ1 and TQ2 are variable. The second step 
of transformation of this model is to fuse delays TReq and TQ1.  
So, one can equivalently consider that TQ1 is null while delay 
TReq is the total delay experienced by a request from the date 
of its generation by PLCi to the date of beginning of its 
processing by RIOMj (network delay + waiting delay in the 
queue).  A similar fusion can be applied with respect to delays 
TResp and TQ2. Finally, the model becomes exactly the same as 
the one used with a mono-PLC NAS. So, one can always get a 
TEG-based model of every NAS whatever is the number of its 
PLCs and the number of its RIOMs. Hence, we can apply 
exactly the same principle as done in [14], to get to the 
analytic formulas of response time. So, we are going to recall 
only the main steps, needed later in the probabilistic study, to 
obtain theses formulae.  

So, the model of Fig. 4 can be represented by: 
1 1 2

2 1

( ) ( ( 1) ) ( ( 1) 0)
( ) ( )

CPU

Exc

k k T k
k k T

θ θ θ
θ θ

= − ⊗ ⊕ − ⊗⎧
⎨ = ⊗⎩

 (4) 

3 3 11

4 3

5 4

6 5 7

7 7

8 7

9 8
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11 10 2

( ) ( ( 1) ) ( 1) 0
( ) ( )

( ) ( )
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( ) ( )
( ) ( )

( ) ( )

( ) ( ( ) ) ( ( ) )

( ) ( )

SCN

Q0
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Proc
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W

l l T l
l l T

l l T
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l l T
l l T

l l T

l l T l T

l l T

θ θ θ
θ θ

θ θ

θ θ θ

θ θ
θ θ

θ θ

θ θ θ

θ θ

= − ⊗ ⊕ − ⊗⎧
⎪ = ⊗⎪
⎪ = ⊗
⎪
⎪ = ⊗ ⊕ − ⊗
⎪⎪ = ⊗⎨
⎪ = ⊗⎪
⎪ = ⊗

= ⊗ ⊕ ⊗

= ⊗⎩

⎪
⎪
⎪
⎪

 (5) 

Equations systems (4) and (5) are time-variant linear 
equations in (Max,+) algebra. 

Remark II.C.1: in a Client-server NAS, a PLC may work as 
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Fig. 4.  Generic model of Client-server Networked Automation Systems with M PLCs and N RIOMs 
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a client (as explained previously) but also as a server of 
another client (e.g. a supervisor). In such a case, we can also 
consider the input/output buffers of the PLC, represented on 
Fig. 4 by places Q3 and Q0. We firstly ascribe these places 
variable delays TQ0 and TQ3 which we subsequently fuse with 
delays TReq and TResp, exactly as explained previously with the 
RIOM to get finally to the mono-PLC model. 

III. DETERMINISTIC EVALUATION OF RESPONSE TIME BOUNDS 
As a first step, the systems of equations (4) and (5) have to 

be solved in order to determine the transition firing dates as 
functions of indices k and l. The following solutions are 
obtained under the hypotheses of Section II.A (especially the 
periodicity, without clocks drift, of the CPU and the NETb): 

1

2

( ) ( 1)
( ) (( 1) )

CPU

CPU Exc

k k T
k k T T

θ
θ

= − ⋅⎧
⎨ = − ⋅ ⊗⎩

 (6) 
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5 4

6 5

7 7

8 7

9 8
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11 10 2
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( ) ( )

( ) ( )

( ) ( )

( ) ( )
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( ) ( )
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SCN

Q0

Req

Q1
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Q2
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W1 Q3

W

l l T
l l T

l l T

l l T

l l T
l l T

l l T

l l T l T

l l T

θ
θ θ

θ θ

θ θ

θ θ
θ θ

θ θ

θ θ θ

θ θ

= − ⋅⎧
⎪ = ⊗⎪
⎪ = ⊗
⎪
⎪ = ⊗
⎪⎪ = ⊗⎨
⎪ = ⊗⎪
⎪ = ⊗
⎪

= ⊗ ⊕ ⊗⎪
⎪

= ⊗⎪⎩

 (7) 

The next step consists of fusing solutions (6) and (7) so as 
to express the link between the CPU and the NETb. Among 
these solutions, only the equations representing the following 
events are then of interest (at this step): 
- Beginning reading inputs by the CPU ( 1θ ) 
- End of program execution by CPU and output update ( 2θ ) 
- Beginning of scanning cycle and transmitting a request ( 3θ ) 
- Reception of a response in the cache memory ( 10θ ). 

These are indeed the events that represent the 
communication between the CPU and the NETb. When a 
response arrives into the cache of the CPU ( 10θ ), it is taken 
into account at the next CPU cycle beginning ( 1θ ) and then 
read and used in the CPU execution program. Once 
processing has been completed, the result is written in the 
NETb cache memory ( 2θ ) before being transmitted to the 
RIOM at the next scanning cycle beginning ( 3θ ). 

Let us set RTTT  as the round-trip time i.e. the wait time 
between the beginning of transmitting requests and receiving 
the response from RIOMS (the event source): 

RTT Q0S ReqS ProcS RespST T T T T= + + +                                      (8) 

The following equations are then derived: 

1

2

( ) ( 1)
( ) ( 1)

CPU

CPU Exc

k k T
k k T T

θ
θ

= − ⋅⎧
⎨ = − ⋅ ⊕⎩

                                               (9) 

3

10

( ) ( 1)
( ) ( 1) ( )

SCN

S SCN RTT Q0S W1

l l T
l l T T T T

θ
θ

= − ⋅⎧⎪
⎨ = − ⋅ ⊗ ⊕ ⊗⎪⎩

                    (10) 

Let us set: SCN CPUT r T= ⋅ , with r ∈  (hypothesis i) 
and: ( ) ,R RTT Q0 W1 CPUT T T T Tα γ= ⊕ ⊗ = + ⋅  CLC CPUT Tβ= ⋅ , 

where 1β < , α  is the integer part of /R CPUT T  and γ  its 
fractional part. 
At the lth scanning cycle, the response from RIOMS is received 
at date 10 ( )S lθ . To be taken into account by the CPU, it must 

however wait for the th
lm  CPU cycle beginning that is 

immediately subsequent to 10 ( )lθ . In other words, lm  is the 
smallest integer k  so that: 1 10( ) ( )Sk lθ θ> . By taking: 

1 ( 1) 1k l r α− = − ⋅ + + , we have: 

1 10( ) ( ) (1 )S CPUk l Tθ θ γ= + − ⋅                                               (11) 

1 10( 1) ( )S CPUk l Tθ θ γ− = − ⋅                    (12) 
Since 0 1 1γ< − < , then (11) implies that 1 10( ) ( )Sk lθ θ>  and 
since (12) shows 1 10( 1) ( )Sk lθ θ− < , then the sought number 
k  is ( 1) 2lm l r α= − ⋅ + + . So, the received response is taken 
into account by firing transition t1 at date 1( )lmθ . It follows 
that the corresponding consequence is processed in the CPU at 
date: 

[ ]2 1( ) ( ) 1 ( 1)l l Exc CPUm m T l r Tθ θ α β= + = + + + − ⋅ ⋅  (13) 
Once again, this processed consequence is taken into account 
by the NETb, to be sent to its destination RIOMD, only at the 
beginning of the immediate next scanning cycle i.e. next firing 
of transition t3. So, we have to look for another number, let us 
note it lq , so that lq  be the minimal number verifying 

3 2( ) ( )l ll q mθ θ+ >  (obviously 1lq ≥ ).  
The equations in (7) provide: 

3 ( ) ( 1)l l CPUl q l q r Tθ + = + − ⋅ ⋅                                             (14) 
So, by combining (13) and (14), number lq  must verify: 
( 1) 1 ( 1)ll q r l rα β+ − ⋅ > + + + − ⋅  
One can check easily that this inequality is equivalent to: 

(1 ) /lq rα β> + +                                                                (15) 
Thus, lq  being the minimal integer that verifies this condition, 
the consequence is sent to its destination at date 3 ( )ll qθ +  and 
therefore gets to it at date 7 ( )D ll qθ + . Finally, with an event 
generated in the plant at date 6 ( 1)S filtl Tθ τ− + −  (the event is 

generated with delay filtTτ −  after the arrival of the previous 

request), the response time with regard to the lth  cycle is: 
7 6( ) ( ) ( ( 1) )r D l S filtD l l q l Tθ θ τ= + − − + −                           (16) 

Also, from (7) we can obtain: 
7 ( ) ( 1 )D l l SCN Q0D ReqD ProcDl q l q T T T Tθ + = − + ⋅ + + +  

6 ( 1) ( 2)S SCN Q0S ReqSl l T T Tθ − = − ⋅ + +  
Finally, by replacing these expressions in (16), we get to: 

( ) ( 1)r l SCN Q0D Q0S ProcD filtD l q T T T T T= + ⋅ + − + + + Δ        (17) 
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where ReqD ReqST T τΔ = − − .  
The response time in (17) is minimal provided that the data 
originating from the detector are used for request processing 
in RIOMS immediately after being generated, i.e. at date 

6 ( ) ( 0 )S filtl Tθ +− + . The minimum delay relative to the lth 

scanning cycle therefore equals: 
( )MIN l SCN Q0D Q0S ProcD filt ReqD ReqSD l q T T T T T T T= ⋅ + − + + + −   (18) 

On the other hand, the response time is maximal if the data are 
generated a long time before the arrival of the request. The 
worst case is when the data are generated a bit after the arrival 
of the previous request (of the (l-1)th cycle) i.e. at date 

6 ( 1) ( 0 )S filtl Tθ +− − − . So, the maximal bound is: 

7 6( ) ( ) ( 1)MAX D l S filtD l l q l Tθ θ= + − − +                             (19) 

This leads finally to: 
( ) ( 1)MAX l SCN Q0D Q0S ProcD filt ReqD ReqSD l q T T T T T T T= + ⋅ + − + + + −   (20) 

Actually, (18) and (20) give only local bounds of the response 
time i.e. relative to the lth cycle. The absolute bounds are 
calculated as:  

max max( 1)MAX SCN Q0D Q0S ProcD filtD q T T T T T= + ⋅ + − + + + Δ     (21) 

min min( 1)MIN SCN Q0D Q0S ProcD filtD q T T T T T= + ⋅ + − + + + Δ      (22) 

where max max{ }ll
q q

∈
=  , min min{ }ll

q q
∈

= , 

max max{ }ReqD ReqSl
T T

∈
Δ = −  and min min{ }ReqD ReqSl

T T
∈

Δ = − . 

Remark III.1: since delays ReqDT  and ReqST  in maxΔ  are 

experienced by requests sent during different cycles, they are 
independent from each other (consequence of hypothesis v). 
So, maxΔ  can be calculated as the difference between the 
maximal value of  ReqDT  and the minimal value of ReqST . The 

probability of such a coincidence may be negligible but we 
have to consider it to guarantee the maximal bound 
overestimation. The case study of Section V will illustrate this 
consideration. 

IV. PROBABILISTIC EVALUATION OF RESPONSE TIME 
In the previous section, we exposed a method to analyze the 

reactivity of the NAS and we provided formulae of the bounds 
of response time. As aforementioned in Section II.A with NAS 
example of Fig. 1, the distribution of the response time may 
also be needed to check if a non-desired event occurs with an 
enough low probability. So, a probabilistic evaluation is 
required and this is the objective of this section.  

The analysis of Section III is based on a time-variant 
system. So, the probabilistic study of the current section will 
be based on the previously obtained results.  

Formula (17) expresses the response time relative to the lth 
cycle as: 

( ) ( 1)r l SCN Q0D Q0S ProcD filtD l q T T T T T= + ⋅ + − + + + Δ        (23) 

where ReqD ReqST T τΔ = − − .  
Since ProcDT  and filtT  are constant (hypothesis vi) and so is 

TQ0 (the PLC is only a client), the only significant random 

variables in (23) are lq  and Δ . So, they are the key variables 
to consider when looking for lim( )rP D D≥  i.e. the probability 
that rD  is over a given limit limD . Obviously, limD  must be 
in the neighborhood of MAXD  to make sense. Otherwise, we 
know beforehand that the probability lim( )rP D D≥  is enough 
high to not fulfill the requirements of the NAS. So, we 
suppose that limD  is close to MAXD  by setting: 

lim max lim( 1) SCN Q0D Q0S ProcD filtD q T T T T T= + ⋅ + − + + + Δ  (24) 

where maxq  is same as in (21) and obviously limΔ is by far 
smaller than SCNT  (consequence of hypothesis v). 
 

Lemma: 
lim max lim( ) ( )r lD D q q AND≥ ⇔ = Δ ≥ Δ  

 
Proof:  
1) The proof of: max lim lim( ) ( )l rq q AND D D= Δ ≥ Δ ⇒ ≥  
is straightforward. We will prove the opposite implication. 
2) limrD D≥  implies that:  

max lim

( 1)

( 1)
l SCN Q0D Q0S ProcD filt

SCN Q0D Q0S ProcD filt

q T T T T T

q T T T T T

+ ⋅ + − + + + Δ ≥

+ ⋅ + − + + + Δ
            (25) 

It follows that:  
max lim( 1) ( 1)l SCN SCNq T q T+ ⋅ ≥ + ⋅ + Δ − Δ .                         (26) 

Since SCNTΔ , then: SCNT−Δ −  and finally: 

lim SCNTΔ − Δ − .  
By combining this with (26), we get to: 

max( 1) ( 1)l SCN SCN SCNq T q T T+ ⋅ > + ⋅ −  
This leads to: max( 1)lq q+ > .  
Since we know by definition that maxlq q≤ , then we have 
necessarily maxlq q= . 
By replacing lq  with maxq  in (26), we get finally to: 
 limΔ ≥ Δ .                                                                                ■ 
 

Corollary:  
lim max lim( ) ( ) ( )r lP D D P q q P≥ = = ⋅ Δ ≥ Δ  

 
Proof: The proof of this corollary is straightforward using the 
previous lemma and by taking into account the fact that the 
events max( )lq q=  and lim( )Δ ≥ Δ  are independent for almost 
the same reasons explained in Remark III.1 (the delays 
involved in these two parameters are experienced during 
different scanning cycles). 
At this step, we can calculate lim( )rP D D≥  provided that we 
get max( )lP q q=  and lim( )P Δ ≥ Δ . Let us calculate them 
using solely the known probability densities. 

1) max( )lP q q= ? 
We know from (15) that: max max( 1) (1 ) /q r qα β− ≤ + + < , 
which is rewritten as: max max( 1) 1 ( ) 1q r q rα β− ⋅ − ≤ + < ⋅ − . 
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Since 1β <  and , rα ∈ , then: max( 1) 1q rα = − ⋅ − . Recall 
that α  is the integer part of /R CPUT T .  
So, max( 1) 1q rα = − ⋅ −  is equivalent to: 

max max( 1) 1 / ( 1)R CPUq r T T q r− ⋅ − ≤ < − ⋅                            (27) 
This can also be rewritten as: 

max max(( 1) 1 ) ( 1)CPU R CPUq r T T q r T− ⋅ − ⋅ ≤ < − ⋅ ⋅                (28)      
Let us set: max(( 1) 1) CPUa q r T= − ⋅ − ⋅ , max( 1) CPUb q r T= − ⋅ ⋅ . 
So, (28) is written as: Ra T b≤ <  
Since RT  is originally expressed as:  ( )R RTT Q0S W1T T T T= ⊕ ⊗ , 

we can equivalently write: 
 ( )RTT Q0S W1a T T T b≤ ⊕ ⊗ <                                                (29) 

We can check easily that this is equivalent to: 
( )

( )
RTT Q0S W1

RTT Q0S W1

a T b if T T a

T b if a T T b

≤ < ⊗ ≤⎧⎪
⎨ < < ⊗ <⎪⎩

 

Let ( )RTTf t  be the density of probability of variable RTTT . 
Finally, we can express the sought probability as: 

max

0

( ) ( )
( )

( ) ( )

b

RTT Q0S W1
a

l b

RTT Q0S W1

f t dt if T T a
P q q

f t dt if a T T b

⎧
⋅ ⊗ ≤∫⎪⎪= = ⎨

⎪ ⋅ < ⊗ <∫⎪⎩

    (30) 

where Q0S W1T T⊗  is constant and well known (it is  simply 

the necessary time to send all the requests from the NETb). 
Hence, the only we need to calculate (30) is the probability 

density ( )RTTf t  of the round trip time. It is either given (the 
round trip time is a key measure in Client-server protocol) or 
calculated using sum (7) and the convolution (explained 
below in subsection 2) of the probability densities of the 
elementary delays that compose it.   

 
Remark IV.1: Result (30) is used only if we have max 2q ≥ . 

In case max 1q = , we have always 1lq =  (since we have also 
1lq ≥ ) and therefore: max( ) 1lP q q= = . So,  

lim lim( ) ( )rP D D P≥ = Δ ≥ Δ . In such a case, we also get 

rD Constant= + Δ  and therefore the density of probability 
distribution of the response time rD  is the same as the density 
of probability of Δ  but shifted with a constant: 

( ) ( )Drf t f t ConstantΔ= −                                                    (31) 
with: max( 1) SCN Q0D Q0S ProcD filtConstant q T T T T T= + ⋅ + − + + . 

 
2) lim( )P Δ ≥ Δ ?  

The calculus of probability lim( )P Δ ≥ Δ  is much easier. We 
know that the density of probability of a sum z x y= +  of two 
independent random variables ,x y  whose densities are 
respectively ,x yf f , is the convolution given by: 

( ) ( )( ) ( ) ( )z x y x yf t f f t f t w f w dw
+∞

−∞
= ∗ = − ⋅ ⋅∫                      (32) 

From (23), we have: ReqD ReqST T τΔ = − − . 

The delays  ReqDT  and ReqST  are independent (Remark III .1) 
and the lag τ  is solely dependent on the controlled plant. 
Indeed, the date of occurrence of an event in the plant is 
definitely independent from the NAS. The NAS does only 
react to events from sensors. So, the three delays composing 
Δ  are independent from each other. 
By setting: ReqDx T= , ReqSy T= −  and  z τ= − , we then get to: 

( ) ( )( ) ( ) ( ) ( )du dwx y z z x yf t f f f t f t w f w u f u
+∞ +∞

Δ
−∞ −∞

= ∗ ∗ = − ⋅ − ⋅∫ ∫   (33)  

The sought probability lim( )P Δ ≥ Δ  is therefore given by: 

lim

lim( ) ( )P f t dt
+∞

Δ
Δ

Δ ≥ Δ = ∫                                                   (34) 

Finally, the probability lim( )rP D D≥  is calculated simply 
using the previous corollary and results (30) and (34). 

V. CASE STUDY 
To check the validity of the different results exposed 

previously, we consider the automation architecture described 
in Section II.A (Fig. 1). Three approaches are considered to 
perform evaluation of the response time distribution whereas 
formulae (22), (21) are used to assess respectively the minimal 
and maximal bound: 
    i) Experimental (Fig. 4(a)): about 10,200 measures have 
been taken from a dedicated platform (such a platform is 
described in detail in [13]). The two main parameters we can 
tune are the periods SCNT  and CPUT . We carried out a lot of 
measurements by varying them. For length limitation reasons, 
we will expose only one case with  30SCNT ms=  and 

5CPUT ms= . 
   ii) Simulations (Fig. 4(b)): in addition to the constant 
parameters 30SCNT ms= , 5CPUT ms= , 3ExcT ms≈ , 

0.7ProcT ms= , 0.06filtT ms= , we first generated 10,200-

length random vectors (according to a given distribution 
nevertheless, given below while explaining the analytic 
approach) to represent the different local variable delays of 
the model on Fig. 4. Then, we simulated the behaviour of the 
model using equations (6) and (7). Finally, we deduced the 
delay corresponding to each cycle using (17). At the end of 
simulation, we represented the obtained response times in the 
form of histograms (distribution shape of Fig. 4(b)). 
   iii) Analytic (Fig. 4(c)):  this method corresponds simply to 
the analysis exposed in Section IV. We use (30) and (33) to 
calculate analytically the distribution of the response time. For 
this purpose, we consider the following hypotheses: 
- The lag τ  is uniformly distributed over domain [0, ]SCNT : 

1/ [0, ]
( )

0
SCN SCNT if t T

f t
otherwiseτ

∈⎧
= ⎨

⎩
 

This type of distribution is motivated by the fact that the 
experimentation was carried out with an event generator using 
this uniform pattern. Obviously, another density may be used 
and it all depends on the expertise and the knowledge one has 
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about the occurrence of the events from the automated plant. 
- Delays ReqDT , ReqST  and RespT  are supposed Gaussian with 

distributions ( 1, 1)f μ σ , ( 2, 2)f μ σ  and ( 3, 3)f μ σ  respectively 

(according to experimental observations) given as: 
2 2

( , ) ( ) 1/( 2 ) exp[ ( ) /(2 )]f t tμ σ σ π μ σ= ⋅ − −  

where μ  is the mean of the delay and σ  its standard 
deviation.  
It can be shown (see Appendix A) using (34) and these 
distributions that the final expression of ( )f tΔ  is given by: 

 ( , )( ) 1/ ( )SCNt T
SCN tf t T f w dwμ σ

+
Δ = ⋅ ⋅∫                                  (35) 

where: 1 2μ μ μ= −  and 2 2 21 2σ σ σ= + .  
Also, (35) can be rewritten as: 

( ) 1/(2 ) [ ]
2 2

SCN
SCN

t T tf t T erf erf
μ μ

σ σΔ
+ − −⎛ ⎞ ⎛ ⎞

= ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

        (36) 

where 2
0( ) 2 / exp( )terf t w dwπ= ⋅ − ⋅∫  is the so called Gauss 

error function. This transformation is motivated by the fact 
that function ( )f tΔ  is not analytic since ( , ) ( )f wμ σ  cannot be 

integrated analytically. So, it is calculated only numerically 
using ( )erf t  function which is implemented in most 
mathematics software. The result of calculation of (36) using 
Matlab gives the curve drawn on Fig. 4(c). It is noted ( )f t  
and represents the density of probability of the response time 
calculated under conditions of Remark IV. 1.  
- We also used formulae (21) and (22) to calculate the bounds 
and obtained: 62.51MAXD ms=  and 29.31MIND ms=  with 

1.5Max Min msΔ = −Δ ≈  being calculated as explained in 
Remark III.1.  The minimum and maximum values of the 
network delays are determined using a (Max,+) algebra based 
method [19], suitable for modeling and analysis of systems 
involving shared resources as is the case in our NAS. 
Discussion of results:  

The maximal bound 62.51MAXD ms=  obtained using 
formula (21) is higher than all the values obtained using the 
three considered methods. The probability to reach such a 
value is negligible but the best satisfaction is that the 
experimental bound of 61.80 ms  be overestimated with only 
about 1%.  The same remarks can be made with regard to the 
minimal bound of response time.  

We can point out in this example the risk of using 
simulation to calculate the bounds. Indeed, we can notice that 
a rare event can be swept (the case of the minimal bound 
29.90 ms ) even if its probability is very low but this is not 
guaranteed at all. This is what can be noticed with regard to 
the simulated maximal bound 61.79 ms  which smaller than 
the experimental maximal bound. So, the real maximal bound 
is not swept by simulation. Nevertheless, the simulated 
distribution of the response time is satisfactory. 

To remedy to simulation drawbacks, we can use the results 

related to the density of probability calculus. The curve of Fig. 
4(c) shows (visually) indeed that the maximal bound is around 
62.00 ms  and the minimal bound is around 30.00 ms . We 
can also point out other advantages; the formula to obtain the 
curve is easily used (without thousands of simulations) and 
the shape of the curve complies with the experimental results.  

 

 

 
 

Fig. 4.  Results of evaluation: (a) experimental, (b) simulation, (c) analytic. 

VI. CONCLUSION 
In this paper, we have presented a generalization of our 

former work regarding evaluation of response time in Client-
server networked automation systems. Moreover, we 
presented a deterministic and probabilistic analysis, depending 
on whether strict bounds or only a distribution is needed. In 
both cases, we provided formulae to calculate directly and 
easily the bounds and the density of probability distribution of 
the response time. 

For future work, it would be worthwhile to consider more 
general automation architectures, with other protocols like 
Producer-consumer and compare the results to the 
observations provided for instance in [20]. 

APPENDIX A 
Let us prove expressions (35) and (36). We have: 

2 2
( 1, 1)( ) ( ) 1/( 1 2 ) exp[ ( 1) /(2 1 )]xf t f t tμ σ σ π μ σ= = ⋅ − −  

2 2
( 2, 2)( ) ( ) 1/( 2 2 ) exp[ ( 2) /(2 2 )]yf t f t tμ σ σ π μ σ−= = ⋅ − +  
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1/ [ ,0]
( ) ( )

0
SCN SCN

z
T if t T

f t f t
otherwiseτ−

∈ −⎧
= = ⎨

⎩
 

From (33) we have: ( ) ( )( )x y zf t f f f tΔ = ∗ ∗ . We know that 

the convolution of two Gaussians is also a Gaussian: 
( 1, 1) ( 2, 2) ( , )( ) ( )f f t f tμ σ μ σ μ σ−∗ =  with: 1 2μ μ μ= −  and 
2 2 21 2σ σ σ= + . Hence, we get:  

( , ) ( , )( ) ( )( ) ( ) ( )z zf t f f t f t w f w dwμ σ μ σ

+∞

Δ
−∞

= ∗ = − ⋅ ⋅∫          (1) 

The term ( )zf t w−  is non zero only if 0SCNT t w− ≤ − ≤  or 
equivalently: SCNt w t T≤ ≤ + . If this condition is respected, 
then ( ) 1/z SCNf t w T− =  and consequently, (1) becomes: 

( , )( ) 1/ ( )
SCNt T

SCN
t

f t T f w dwμ σ

+

Δ = ⋅ ⋅∫                                         ■ 

This can also be written as:  

( , ) ( , )
0 0

( ) 1/ [ ( ) ( ) ]
SCNt T t

SCNf t T f w dw f w dwμ σ μ σ

+

Δ = ⋅ ⋅ ⋅ − ⋅ ⋅∫ ∫         (2) 

We also know that: 1
( , ) 2 20

( ) [1 ( )]
t tf w dw erf μ

μ σ σ
−⋅ ⋅ = +∫  

It follows that (1) is written as: 

( ) ( )1
2 2 2

( ) [ ]SCN

SCN

t T t
Tf t erf erfμ μ

σ σ
+ − −

Δ = ⋅ − .                              ■ 
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