
HAL Id: hal-00784214
https://hal.science/hal-00784214v1

Submitted on 4 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Client-Server Networked Automation Systems
Reactivity: Deterministic and Probabilistic Analysis

Boussad Addad, Saïd Amari, Jean-Jacques Lesage

To cite this version:
Boussad Addad, Saïd Amari, Jean-Jacques Lesage. Client-Server Networked Automation Systems
Reactivity: Deterministic and Probabilistic Analysis. IEEE Transactions on Automation Science and
Engineering, 2011, 8 (3), pp. 540-548. �hal-00784214�

https://hal.science/hal-00784214v1
https://hal.archives-ouvertes.fr

1

Abstract —In this paper, we present an analytic approach to

evaluate the reactivity of client-server networked automation
systems (NAS). Both deterministic and probabilistic analyses are
provided while modeling the NAS using Timed Event Graphs
(TEG). Since many results with regard to the deterministic
approach have already been published, we recall only its main
steps that prove useful while exposing the probabilistic method.
Thereby, we provide the density of probability distribution of the
response time (or reactivity) using the probability densities of the
local delays, experienced at the different stages of the NAS.
Furthermore, a case study is presented to compare the results of
the study to measures taken from a real platform.

Note to Practitioners—As a matter of fact, client-server
networked automation systems are largely used in industry and
therefore the efforts to deal with their performances evaluation
are necessary. In the current work, we propose an analytic
approach to evaluate their reactivity. Analytic formulae are
provided to calculate directly and deterministically the bounds of
response time along with others to assess its probability density
distribution. Moreover, the results of these formulae turn out to
be complying with a lot of experimental measurements carried
out under different circumstances.

Index Terms—Client-Server Networked Automation System,
Response Time, Probabilistic Analysis, Max-Plus Algebra, Timed
Event Graph.

I. INTRODUCTION
HE huge breakthroughs carried out in the field of
communication technologies by increasing the

performances of the devices and decreasing their prices, were
compelling incentives towards replacing the traditional
directly wired systems by networks in industry [1]. However,
a networked system means that messages from different
stations share the same resources and therefore undergo delays
while waiting for their availability. In networked automation
systems (NAS), these delays have a tremendous effect on the
reactivity of control. The reactivity of NAS or the response

B. Addad and J. J. Lesage are with Automated Production Research

Laboratory LURPA, ENS-Cachan, 61 av. du Président Wilson, 94235 Cachan
Cedex, France (phone: +33-147402762; e-mail: boussad.addad@lurpa.ens-
cachan.fr).

S. Amari is with Automated Production Research Laboratory and with
Univérsité-ParisXIII, 61 av. du Président Wilson, 94235 Cachan Cedex,
France (e-mail: said.amari@lurpa.ens-cachan.fr)

time is the delay between the date of generation of an event by
a sensor and the date of arrival of its consequence, issued by a
controller, to an actuator. A number of investigations have
been undertaken to assess delays caused by networks but they
are in their majority limited to the delays experienced while
crossing the communication network and ignore the field
devices effects [2], [3], [4], [5], [6], [7]. Among the
investigations that consider the whole NAS, we find methods
based on models simulation [8], [9], [10], others based on
model checking [11], [12] and obviously experimental
methods [13]. Depending on the NAS, either the bounds of
the response time or its distribution need to be assessed.
Indeed, in some systems (e.g. critical systems) it is mandatory
that the response time be always under a critical value
whereas in others (e.g. only quality aspects are in concern), it
is accepted that the response time go past a limit value but the
probability of such an event must remain under an acceptable
value. Among the cited works, only model-checking provides
both guaranteed bounds [11] and distribution [12] but
unfortunately suffers from the state explosion problem. In
[14], we presented an analytic approach in an effort to avoid
such a problem but our investigation was limited to NAS with
only one controller (we considered several remote I/O
modules nevertheless). Thus, the current study is a
generalization that displays two main new contributions (i) the
NAS may involve multiple controllers (ii) analytic
probabilistic formulae are provided to calculate the density of
probability of the response using the local delays probability
densities (in [14], we calculated the distribution using
simulation, not analytic formulae as the case now).

The remainder of our study has been organized as follows.
In Section II.A, an overview of an explanatory example of a
client-server NAS is provided. Then in Section II.B, some
fundamentals about timed event graphs (TEG) and their linear
(max,+) representation are recalled. Hence, these tools are
used to model a generic client-server NAS, involving M
clients (controllers) and N servers (remote I/O). Next, Section
III is dedicated to a deterministic evaluation of the response
time, especially its maximal and minimal bound whereas
Section I.V to a probabilistic one. A formula for direct
calculus of the probability density of response time is
provided. Afterwards, Section V is devoted to a case study to
compare the results of the exposed methods to experimental
measures. Finally, some considerations for future work are
discussed in Section VI as a conclusion to this paper.

Boussad Addad, Said Amari and Jean-Jacques. Lesage, Member, IEEE

Client-Server Networked Automation Systems
Reactivity: Deterministic and Probabilistic

Analysis

T T

2

II. CLIENT-SERVER NAS FUNCTIONING AND MODELING

A) Client-server NAS functioning
As aforementioned, we consider NAS working according to

client-server paradigm. The PLCs (programmable logic
controller), that play the role of clients, poll periodically the
RIOMs (remote I/O module), which are the servers, to request
information to sensors or provide orders to actuators. An
explanatory example of automation loop of such a system is
depicted in Fig. 1. This example is used only for explanation
purpose and the results of the study are valid in the general
case. It consists of filling bottles automatically as follows:
PLC1 sends periodically requests to RIOM R4 to ask for
information: has the detection level Xd been reached? and
requests to RIOM R5 to give order: either close the valve or
open the valve, depending on the information collected during
the previous scanning cycle from the sensor. The aim of this
NAS loop is to close the valve after detection level Xd is
reached. The response time Dr of this NAS (thick arrow in
Fig. 1), can be defined as the delay between the date of
reaching level Xd by the liquid and the date of closing the
valve. Actually, when position Xd is reached, this information
is sent to PLC1 only after the arrival of a request. Once this is
done, the response carrying this info crosses the
communication network and gets to the input buffer of the
network board (NETb) of the PLC (an interface card that
enables communication with the network) before being
written in the CPU (Central Processing Unit) cache memory.
The CPU also works periodically and therefore takes this new
info into account only at the beginning of a new cycle and
performs the corresponding order. This order is written in the
cache shared with the NETb and sent to its destination (R5) at
the beginning of the next scanning cycle. This order crosses
the network and gets to R5 and causes the closure of the valve
to stop filling a bottle (Fig. 2).

PLC2

detector

PLC1

R9
R8

R7

R6

R5

R4

R3

R2
R1

Controllers Network RIOMs Plant

Xd

XMIN

valve

Inputs

Outputs

Execution

CPU

N
et-board

write

read

requests

responses

XMAX

123

Xf

PLC2

detector

PLC1

R9R9
R8R8

R7R7

R6R6

R5R5

R4R4

R3R3

R2R2
R1R1

Controllers Network RIOMs Plant

Xd

XMIN

valve

Inputs

Outputs

Execution

CPU

Inputs

Outputs

Execution
Execution

CPU

N
et-board

N
et-board

write

read

requests

responses

XMAX

112233

Xf

Fig. 1. Client-server NAS: automated bottles-filling system.

Since the response time is never null and even always
greater than a minimum delay, the bottle filling continues after
position Xd is reached and the final liquid level Xf is
somewhere above Xd (see Fig. 1). A problem rises therefore

since the NAS has to satisfy two conditions at the same time:
on one hand, we have to satisfy the customer’s requirement
Xf>XMIN and on the other hand Xf <XMAX. Indeed, a too full
bottle is discarded since putting a cork on it is impossible. So,
to be economically viable, the probability to discard a bottle
must be smaller than a predefined threshold. So, the
probability that the response time be above the delay
corresponding to limit XMAX must be under this threshold
either. Hence, a probabilistic study is necessary to get the
density distribution of the response time. The problem can
also be formulated in a stricter way (e.g. safety considerations)
by forbidding overflows (e.g. dangerous liquid) and therefore
the response time must be under a maximum bound whatever
the conditions are. So, either a deterministic (bounds
evaluation) or probabilistic (distribution evaluation) of the
NAS reactivity is needed.

As it can be seen in Fig. 2, the response time is the sum of
many local delays that an event/reaction message experiences
at the different stages of the NAS, from the date of generating
the event at the sensor to the date of arrival of the reaction to
the actuator. Note by the way that these delays are not
constant if it is not mentioned otherwise. The following
notations designate these timing features (see Fig. 2):

ProcDT
Plant

NETb

CPU

RIOMs

Network

4/sensor R

ProcST

ExcT

RespT

CPUT

cycle l

5/actuator R

SCNT

ReqT

1l +

rD

Fig. 2. Response time decomposition.

- TSCN : the scanning period of the NETb
- TCPU : the functioning period of the CPU
- TExc : the time to execute the user program in the CPU

and perform the control signal (orders to RIOMs)
- TQ0 : the time spent by a request in the output buffer of

the NETb before being sent to the network
- TReq : the necessary time, to a request, to cross the

network and get to its destination RIOM
- TQ1 : the time spent by a request in the input buffer of

the destination RIOM before being taken into account
by the RIOM and being processed to return a reply

- TProc : the necessary time to process a request in a
RIOM and return the corresponding response (index S
or D is added to refer to source or destination)

- Tfilt : the time to filter the data issued by the sensor
- TQ2 : the time spent by a response in the output buffer

of a RIOM before quitting it and entering the network
- TResp : the necessary time, to a response, to cross the

network and get to the input buffer of the NETb

3

- TQ3 : the time spent by a response in the input buffer of
the NETb before being taken into account by the NETb
and copied into the cache memory of the CPU

- Hypotheses about NAS functioning:
i) The CPU and NETb can be set to function either cyclically
or periodically. They are periodic in our study, without clock
drift. So, their periods noted respectively TSCN and TCPU are
constant. Also, they can be considered as integers since they
are set by the user as multipliers of a basis unit. For instance,
in our experimental platform, the period TSCN can be set to
10ms, 15ms, 20ms, etc. Besides that, we suppose in this paper
that ratio /SCN CPUT T is integer too. Indeed, by performing the
transformation exposed in the next section, we get to the same
model used in [14] and therefore can consider the general
case, which is already studied in [14], in a similar way.
ii) Neither frame loss nor components failure is considered. In
the context of this study indeed, we observed the system of
Fig. 1 during more than 5 million cycles and no loss or failure
has been noticed.
iii) A server does only answer a received request and never
send messages autonomously (no asynchronous transmission).
iv) The time to write/read the useful data (without
communication layers headers) in cache memory is neglected.
v) All the requested answers are received from the scanned
RIOMs before the scanning period elapses (the network due
delays are indeed often by far smaller than the scanning
period)
vi) According to practical observations, ProcT and Tfilt can be
considered constant (less than 0.08% jitter [14]).

B) Timed Event Graphs and their (Max,+) representation
An event Graph is an ordinary Petri net whose places have

at most one upstream transition and one downstream transition
[15]. To study the dynamic behavior of a Timed Event Graph
(TEG), many mathematical tools can be used, depending on
the objective of the study: (Max,+) Algebra with daters [16],
(min,+) Algebra with counters [17], a combination of different
operators with place-marking and transition-state [18], ...
Since daters are more relevant to our work, we consider the
first one. So, we associate to each transition ti its firing date
(dater) for the kth time noted ()i kθ . So, the TEG evolution at
maximal speed (maximal speed means that a transition fires as
soon as the tokens of the upstream places are available) can be
represented using linear (Max,+) equations. Notice that we do
consider only P-timed graphs in this study i.e. delays are
ascribed only to places. A delay in a place means that a token
entering this place is available to fire a downstream transition
only after this delay. We explain step by step all these notions
using the following simple explanatory example.

Example II.A.1: TEG in Fig. 3 represents a manufacturing
system with a machine, represented by place 1p , an upstream
stock (place up) and two pallets carrying parts. A token in
place 1p means that a part is being processed by the machine.
A part entering the stock, by firing transition ut , becomes

available to the machine one time unit later. The process lasts
3 time units before the finished part exits the machine. The
machine can then start processing another part 2 time units
later i.e. after the comeback of the pallet.

ut 1t 2t

1 3

up 1p

3p 2 2p 3t 0

Fig. 3. Example of Timed Event Graph.

The behavior of this system depends obviously on the
initial marking of the places and the source transition tu firing
dates. By using the marking of Fig. 3 and supposing that the
tokens are initially available, the dates of firing transitions t1,
t2 and t3 for the kth time (at maximum speed) are expressed as:

1 3

2 1

3 2

() max[0 (1), 1 ()]
() 3 ()
() 2 (1)

k k u k
k k
k k

θ θ
θ θ
θ θ

= + − +⎧
⎪ = +⎨
⎪ = + −⎩

 (1)

These equations are actually linear in (Max,+) algebra
whose operators are the classical addition noted ⊗ with
identity element 0 noted e and the classical maximum noted
⊕ with identity element −∞ noted ε . These equations can
be written using these operators as:

1 3

2 1 3

3 2

() (1) 1 ()
() 3 () 3 (1) 4 ()
() 2 (1)

k e k u k
k k k u k
k k

θ θ
θ θ θ
θ θ

= ⊗ − ⊕ ⊗⎧
⎪ = ⊗ = ⊗ − ⊕ ⊗⎨
⎪ = ⊗ −⎩

 (2)

Moreover, they can be rewritten in a standard state
representation as follows:

() (1) ()k A k B u kΘ = ⊗ Θ − ⊕ ⊗ (3)

where: 3 ,
2

e
A

ε ε
ε ε
ε ε

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

1
4B
ε

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 and
1

2

3

()
() ()

()

k
k k

k

θ
θ
θ

⎛ ⎞
⎜ ⎟Θ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

This state representation is very similar to the standard
representation of the classical linear systems. It is very useful
and used alike for many problems resolution like performance
evaluation or control synthesis. For more details about
(Max,+) algebra and its applications, we invite the reader to
see references [16], [17].

C) NAS Modeling using TEG and (Max,+) Algebra
The TEG of Fig. 4 represents a generic model of Client-

Server NAS, independently from the automated plant, with M
clients (PLCs) polling N remote servers (RIOMs). It depicts
thoroughly the communication between client PLCi and server
RIOMj. Note that indices {1,..., }i M∈ and {1,..., }j N∈
should be added to the different delays of the model but they
are omitted purposely for convenience reasons. Since only one
automation loop is under consideration at a time (one client
and two servers, the source and the destination), we simply
omit the index of the PLC, add index S to the delays

4

experienced by the request sent to RIOMS (event source) and
add index D when the request is sent to RIOMD (event
destination). For instance, TReqD is the necessary time to cross
the network by the request sent to RIOMD. Note again that the
different delays are not constant and may vary from a cycle to
another. So, for instance, the previous delay TReqD experienced
at the lth cycle may be noted TReqD (l) but index l is also
omitted for the same reasons.

In the model, we added two delays TW1 and TW2 to represent
two constraints with regard to the NETb functioning; TW1
represents the fact that the NETb cannot take into account any
received response before getting all the requests sent (the
requests are of higher priority) whereas delay TW2 means that
the NETb has to wait until the reception of all the responses
from all the scanned servers before starting another scanning
cycle (from hypothesis v).

In [14], we used a model constituted exclusively of TEG to
get the advantage of the resulting (Max,+) linear equations
and perform an analytic study. The model of Fig. 4 however
does not verify this condition (it is not a TEG). Indeed, the
part representing RIOMj contains two places (Q1 and Q2)
with more than one input/output transition. These places
represent respectively the input and the output buffers (or
queues) of RIOMj. So, when the request from PLCi arrives to
the input buffer of RIOMj, it must wait until all the waiting
requests are processed to be finally taken into account. In
terms of Petri nets, the tokens entering place Q1 contribute to
the firing of transition t6 in a FIFO manner without
overtaking. So, the token from client PLCi has to wait in place
Q1 during a time noted TQ1. Since our model supports time-
varying delays, a linearization is possible. Indeed, instead of
considering this non-TEG model, we can remove the
transitions from the other clients and simply assign this
variable delay TQ1 to place Q1. Hence, the model becomes a

TEG while its delays TQ1 and TQ2 are variable. The second step
of transformation of this model is to fuse delays TReq and TQ1.
So, one can equivalently consider that TQ1 is null while delay
TReq is the total delay experienced by a request from the date
of its generation by PLCi to the date of beginning of its
processing by RIOMj (network delay + waiting delay in the
queue). A similar fusion can be applied with respect to delays
TResp and TQ2. Finally, the model becomes exactly the same as
the one used with a mono-PLC NAS. So, one can always get a
TEG-based model of every NAS whatever is the number of its
PLCs and the number of its RIOMs. Hence, we can apply
exactly the same principle as done in [14], to get to the
analytic formulas of response time. So, we are going to recall
only the main steps, needed later in the probabilistic study, to
obtain theses formulae.

So, the model of Fig. 4 can be represented by:
1 1 2

2 1

() ((1)) ((1) 0)
() ()

CPU

Exc

k k T k
k k T

θ θ θ
θ θ

= − ⊗ ⊕ − ⊗⎧
⎨ = ⊗⎩

 (4)

3 3 11

4 3

5 4

6 5 7

7 7

8 7

9 8

10 4 9

11 10 2

() ((1)) (1) 0
() ()

() ()

() (()) ((1) 0)

() ()
() ()

() ()

() (()) (())

() ()

SCN

Q0

Req

Q1

Proc

Q2

Resp

W1 Q3

W

l l T l
l l T

l l T

l l T l

l l T
l l T

l l T

l l T l T

l l T

θ θ θ
θ θ

θ θ

θ θ θ

θ θ
θ θ

θ θ

θ θ θ

θ θ

= − ⊗ ⊕ − ⊗⎧
⎪ = ⊗⎪
⎪ = ⊗
⎪
⎪ = ⊗ ⊕ − ⊗
⎪⎪ = ⊗⎨
⎪ = ⊗⎪
⎪ = ⊗

= ⊗ ⊕ ⊗

= ⊗⎩

⎪
⎪
⎪
⎪

 (5)

Equations systems (4) and (5) are time-variant linear
equations in (Max,+) algebra.

Remark II.C.1: in a Client-server NAS, a PLC may work as

TSCN

TCPU TQ0

TQ3

TQ1

TQ2

Q1

Q2Q3

TW1

TW2

TProc

TReq

TRespTExc

RIOMjNETNETbPLCi

t1

t2

t10

t11

t4

t3 t5

t8

t6

t7t9

0

0 0

Requests from
other PLCs

Responses to
other PLCs

Q0

CPU

M PLCs
N RIOMsNetwork

TSCN

TCPU TQ0

TQ3

TQ1

TQ2

Q1

Q2Q3

TW1

TW2

TProc

TReq

TRespTExc

RIOMjNETNETbPLCi

t1

t2

t10

t11

t4

t3 t5

t8

t6

t7t9

0

0 0

Requests from
other PLCs

Responses to
other PLCs

Q0

CPU

M PLCs
N RIOMsNetwork

Fig. 4. Generic model of Client-server Networked Automation Systems with M PLCs and N RIOMs

5

a client (as explained previously) but also as a server of
another client (e.g. a supervisor). In such a case, we can also
consider the input/output buffers of the PLC, represented on
Fig. 4 by places Q3 and Q0. We firstly ascribe these places
variable delays TQ0 and TQ3 which we subsequently fuse with
delays TReq and TResp, exactly as explained previously with the
RIOM to get finally to the mono-PLC model.

III. DETERMINISTIC EVALUATION OF RESPONSE TIME BOUNDS
As a first step, the systems of equations (4) and (5) have to

be solved in order to determine the transition firing dates as
functions of indices k and l. The following solutions are
obtained under the hypotheses of Section II.A (especially the
periodicity, without clocks drift, of the CPU and the NETb):

1

2

() (1)
() ((1))

CPU

CPU Exc

k k T
k k T T

θ
θ

= − ⋅⎧
⎨ = − ⋅ ⊗⎩

 (6)

3

4 3

5 4

6 5

7 7

8 7

9 8

10 4 9

11 10 2

() ((1))
() ()

() ()

() ()

() ()
() ()

() ()

() (()) (())

() ()

SCN

Q0

Req

Q1

Proc

Q2

Resp

W1 Q3

W

l l T
l l T

l l T

l l T

l l T
l l T

l l T

l l T l T

l l T

θ
θ θ

θ θ

θ θ

θ θ
θ θ

θ θ

θ θ θ

θ θ

= − ⋅⎧
⎪ = ⊗⎪
⎪ = ⊗
⎪
⎪ = ⊗
⎪⎪ = ⊗⎨
⎪ = ⊗⎪
⎪ = ⊗
⎪

= ⊗ ⊕ ⊗⎪
⎪

= ⊗⎪⎩

 (7)

The next step consists of fusing solutions (6) and (7) so as
to express the link between the CPU and the NETb. Among
these solutions, only the equations representing the following
events are then of interest (at this step):
- Beginning reading inputs by the CPU (1θ)
- End of program execution by CPU and output update (2θ)
- Beginning of scanning cycle and transmitting a request (3θ)
- Reception of a response in the cache memory (10θ).

These are indeed the events that represent the
communication between the CPU and the NETb. When a
response arrives into the cache of the CPU (10θ), it is taken
into account at the next CPU cycle beginning (1θ) and then
read and used in the CPU execution program. Once
processing has been completed, the result is written in the
NETb cache memory (2θ) before being transmitted to the
RIOM at the next scanning cycle beginning (3θ).

Let us set RTTT as the round-trip time i.e. the wait time
between the beginning of transmitting requests and receiving
the response from RIOMS (the event source):

RTT Q0S ReqS ProcS RespST T T T T= + + + (8)

The following equations are then derived:

1

2

() (1)
() (1)

CPU

CPU Exc

k k T
k k T T

θ
θ

= − ⋅⎧
⎨ = − ⋅ ⊕⎩

 (9)

3

10

() (1)
() (1) ()

SCN

S SCN RTT Q0S W1

l l T
l l T T T T

θ
θ

= − ⋅⎧⎪
⎨ = − ⋅ ⊗ ⊕ ⊗⎪⎩

 (10)

Let us set: SCN CPUT r T= ⋅ , with r ∈ (hypothesis i)
and: () ,R RTT Q0 W1 CPUT T T T Tα γ= ⊕ ⊗ = + ⋅ CLC CPUT Tβ= ⋅ ,

where 1β < , α is the integer part of /R CPUT T and γ its
fractional part.
At the lth scanning cycle, the response from RIOMS is received
at date 10 ()S lθ . To be taken into account by the CPU, it must

however wait for the th
lm CPU cycle beginning that is

immediately subsequent to 10 ()lθ . In other words, lm is the
smallest integer k so that: 1 10() ()Sk lθ θ> . By taking:

1 (1) 1k l r α− = − ⋅ + + , we have:

1 10() () (1)S CPUk l Tθ θ γ= + − ⋅ (11)

1 10(1) ()S CPUk l Tθ θ γ− = − ⋅ (12)
Since 0 1 1γ< − < , then (11) implies that 1 10() ()Sk lθ θ> and
since (12) shows 1 10(1) ()Sk lθ θ− < , then the sought number
k is (1) 2lm l r α= − ⋅ + + . So, the received response is taken
into account by firing transition t1 at date 1()lmθ . It follows
that the corresponding consequence is processed in the CPU at
date:

[]2 1() () 1 (1)l l Exc CPUm m T l r Tθ θ α β= + = + + + − ⋅ ⋅ (13)
Once again, this processed consequence is taken into account
by the NETb, to be sent to its destination RIOMD, only at the
beginning of the immediate next scanning cycle i.e. next firing
of transition t3. So, we have to look for another number, let us
note it lq , so that lq be the minimal number verifying

3 2() ()l ll q mθ θ+ > (obviously 1lq ≥).
The equations in (7) provide:

3 () (1)l l CPUl q l q r Tθ + = + − ⋅ ⋅ (14)
So, by combining (13) and (14), number lq must verify:
(1) 1 (1)ll q r l rα β+ − ⋅ > + + + − ⋅
One can check easily that this inequality is equivalent to:

(1) /lq rα β> + + (15)
Thus, lq being the minimal integer that verifies this condition,
the consequence is sent to its destination at date 3 ()ll qθ + and
therefore gets to it at date 7 ()D ll qθ + . Finally, with an event
generated in the plant at date 6 (1)S filtl Tθ τ− + − (the event is

generated with delay filtTτ − after the arrival of the previous

request), the response time with regard to the lth cycle is:
7 6() () ((1))r D l S filtD l l q l Tθ θ τ= + − − + − (16)

Also, from (7) we can obtain:
7 () (1)D l l SCN Q0D ReqD ProcDl q l q T T T Tθ + = − + ⋅ + + +

6 (1) (2)S SCN Q0S ReqSl l T T Tθ − = − ⋅ + +
Finally, by replacing these expressions in (16), we get to:

() (1)r l SCN Q0D Q0S ProcD filtD l q T T T T T= + ⋅ + − + + + Δ (17)

6

where ReqD ReqST T τΔ = − − .
The response time in (17) is minimal provided that the data
originating from the detector are used for request processing
in RIOMS immediately after being generated, i.e. at date

6 () (0)S filtl Tθ +− + . The minimum delay relative to the lth

scanning cycle therefore equals:
()MIN l SCN Q0D Q0S ProcD filt ReqD ReqSD l q T T T T T T T= ⋅ + − + + + − (18)

On the other hand, the response time is maximal if the data are
generated a long time before the arrival of the request. The
worst case is when the data are generated a bit after the arrival
of the previous request (of the (l-1)th cycle) i.e. at date

6 (1) (0)S filtl Tθ +− − − . So, the maximal bound is:

7 6() () (1)MAX D l S filtD l l q l Tθ θ= + − − + (19)

This leads finally to:
() (1)MAX l SCN Q0D Q0S ProcD filt ReqD ReqSD l q T T T T T T T= + ⋅ + − + + + − (20)

Actually, (18) and (20) give only local bounds of the response
time i.e. relative to the lth cycle. The absolute bounds are
calculated as:

max max(1)MAX SCN Q0D Q0S ProcD filtD q T T T T T= + ⋅ + − + + + Δ (21)

min min(1)MIN SCN Q0D Q0S ProcD filtD q T T T T T= + ⋅ + − + + + Δ (22)

where max max{ }ll
q q

∈
= , min min{ }ll

q q
∈

= ,

max max{ }ReqD ReqSl
T T

∈
Δ = − and min min{ }ReqD ReqSl

T T
∈

Δ = − .

Remark III.1: since delays ReqDT and ReqST in maxΔ are

experienced by requests sent during different cycles, they are
independent from each other (consequence of hypothesis v).
So, maxΔ can be calculated as the difference between the
maximal value of ReqDT and the minimal value of ReqST . The

probability of such a coincidence may be negligible but we
have to consider it to guarantee the maximal bound
overestimation. The case study of Section V will illustrate this
consideration.

IV. PROBABILISTIC EVALUATION OF RESPONSE TIME
In the previous section, we exposed a method to analyze the

reactivity of the NAS and we provided formulae of the bounds
of response time. As aforementioned in Section II.A with NAS
example of Fig. 1, the distribution of the response time may
also be needed to check if a non-desired event occurs with an
enough low probability. So, a probabilistic evaluation is
required and this is the objective of this section.

The analysis of Section III is based on a time-variant
system. So, the probabilistic study of the current section will
be based on the previously obtained results.

Formula (17) expresses the response time relative to the lth
cycle as:

() (1)r l SCN Q0D Q0S ProcD filtD l q T T T T T= + ⋅ + − + + + Δ (23)

where ReqD ReqST T τΔ = − − .
Since ProcDT and filtT are constant (hypothesis vi) and so is

TQ0 (the PLC is only a client), the only significant random

variables in (23) are lq and Δ . So, they are the key variables
to consider when looking for lim()rP D D≥ i.e. the probability
that rD is over a given limit limD . Obviously, limD must be
in the neighborhood of MAXD to make sense. Otherwise, we
know beforehand that the probability lim()rP D D≥ is enough
high to not fulfill the requirements of the NAS. So, we
suppose that limD is close to MAXD by setting:

lim max lim(1) SCN Q0D Q0S ProcD filtD q T T T T T= + ⋅ + − + + + Δ (24)

where maxq is same as in (21) and obviously limΔ is by far
smaller than SCNT (consequence of hypothesis v).

Lemma:
lim max lim() ()r lD D q q AND≥ ⇔ = Δ ≥ Δ

Proof:
1) The proof of: max lim lim() ()l rq q AND D D= Δ ≥ Δ ⇒ ≥
is straightforward. We will prove the opposite implication.
2) limrD D≥ implies that:

max lim

(1)

(1)
l SCN Q0D Q0S ProcD filt

SCN Q0D Q0S ProcD filt

q T T T T T

q T T T T T

+ ⋅ + − + + + Δ ≥

+ ⋅ + − + + + Δ
 (25)

It follows that:
max lim(1) (1)l SCN SCNq T q T+ ⋅ ≥ + ⋅ + Δ − Δ . (26)

Since SCNTΔ , then: SCNT−Δ − and finally:

lim SCNTΔ − Δ − .
By combining this with (26), we get to:

max(1) (1)l SCN SCN SCNq T q T T+ ⋅ > + ⋅ −
This leads to: max(1)lq q+ > .
Since we know by definition that maxlq q≤ , then we have
necessarily maxlq q= .
By replacing lq with maxq in (26), we get finally to:
 limΔ ≥ Δ . ■

Corollary:
lim max lim() () ()r lP D D P q q P≥ = = ⋅ Δ ≥ Δ

Proof: The proof of this corollary is straightforward using the
previous lemma and by taking into account the fact that the
events max()lq q= and lim()Δ ≥ Δ are independent for almost
the same reasons explained in Remark III.1 (the delays
involved in these two parameters are experienced during
different scanning cycles).
At this step, we can calculate lim()rP D D≥ provided that we
get max()lP q q= and lim()P Δ ≥ Δ . Let us calculate them
using solely the known probability densities.

1) max()lP q q= ?
We know from (15) that: max max(1) (1) /q r qα β− ≤ + + < ,
which is rewritten as: max max(1) 1 () 1q r q rα β− ⋅ − ≤ + < ⋅ − .

7

Since 1β < and , rα ∈ , then: max(1) 1q rα = − ⋅ − . Recall
that α is the integer part of /R CPUT T .
So, max(1) 1q rα = − ⋅ − is equivalent to:

max max(1) 1 / (1)R CPUq r T T q r− ⋅ − ≤ < − ⋅ (27)
This can also be rewritten as:

max max((1) 1) (1)CPU R CPUq r T T q r T− ⋅ − ⋅ ≤ < − ⋅ ⋅ (28)
Let us set: max((1) 1) CPUa q r T= − ⋅ − ⋅ , max(1) CPUb q r T= − ⋅ ⋅ .
So, (28) is written as: Ra T b≤ <
Since RT is originally expressed as: ()R RTT Q0S W1T T T T= ⊕ ⊗ ,

we can equivalently write:
 ()RTT Q0S W1a T T T b≤ ⊕ ⊗ < (29)

We can check easily that this is equivalent to:
()

()
RTT Q0S W1

RTT Q0S W1

a T b if T T a

T b if a T T b

≤ < ⊗ ≤⎧⎪
⎨ < < ⊗ <⎪⎩

Let ()RTTf t be the density of probability of variable RTTT .
Finally, we can express the sought probability as:

max

0

() ()
()

() ()

b

RTT Q0S W1
a

l b

RTT Q0S W1

f t dt if T T a
P q q

f t dt if a T T b

⎧
⋅ ⊗ ≤∫⎪⎪= = ⎨

⎪ ⋅ < ⊗ <∫⎪⎩

 (30)

where Q0S W1T T⊗ is constant and well known (it is simply

the necessary time to send all the requests from the NETb).
Hence, the only we need to calculate (30) is the probability

density ()RTTf t of the round trip time. It is either given (the
round trip time is a key measure in Client-server protocol) or
calculated using sum (7) and the convolution (explained
below in subsection 2) of the probability densities of the
elementary delays that compose it.

Remark IV.1: Result (30) is used only if we have max 2q ≥ .

In case max 1q = , we have always 1lq = (since we have also
1lq ≥) and therefore: max() 1lP q q= = . So,

lim lim() ()rP D D P≥ = Δ ≥ Δ . In such a case, we also get

rD Constant= + Δ and therefore the density of probability
distribution of the response time rD is the same as the density
of probability of Δ but shifted with a constant:

() ()Drf t f t ConstantΔ= − (31)
with: max(1) SCN Q0D Q0S ProcD filtConstant q T T T T T= + ⋅ + − + + .

2) lim()P Δ ≥ Δ ?

The calculus of probability lim()P Δ ≥ Δ is much easier. We
know that the density of probability of a sum z x y= + of two
independent random variables ,x y whose densities are
respectively ,x yf f , is the convolution given by:

() ()() () ()z x y x yf t f f t f t w f w dw
+∞

−∞
= ∗ = − ⋅ ⋅∫ (32)

From (23), we have: ReqD ReqST T τΔ = − − .

The delays ReqDT and ReqST are independent (Remark III .1)
and the lag τ is solely dependent on the controlled plant.
Indeed, the date of occurrence of an event in the plant is
definitely independent from the NAS. The NAS does only
react to events from sensors. So, the three delays composing
Δ are independent from each other.
By setting: ReqDx T= , ReqSy T= − and z τ= − , we then get to:

() ()() () () ()du dwx y z z x yf t f f f t f t w f w u f u
+∞ +∞

Δ
−∞ −∞

= ∗ ∗ = − ⋅ − ⋅∫ ∫ (33)

The sought probability lim()P Δ ≥ Δ is therefore given by:

lim

lim() ()P f t dt
+∞

Δ
Δ

Δ ≥ Δ = ∫ (34)

Finally, the probability lim()rP D D≥ is calculated simply
using the previous corollary and results (30) and (34).

V. CASE STUDY
To check the validity of the different results exposed

previously, we consider the automation architecture described
in Section II.A (Fig. 1). Three approaches are considered to
perform evaluation of the response time distribution whereas
formulae (22), (21) are used to assess respectively the minimal
and maximal bound:
 i) Experimental (Fig. 4(a)): about 10,200 measures have
been taken from a dedicated platform (such a platform is
described in detail in [13]). The two main parameters we can
tune are the periods SCNT and CPUT . We carried out a lot of
measurements by varying them. For length limitation reasons,
we will expose only one case with 30SCNT ms= and

5CPUT ms= .
 ii) Simulations (Fig. 4(b)): in addition to the constant
parameters 30SCNT ms= , 5CPUT ms= , 3ExcT ms≈ ,

0.7ProcT ms= , 0.06filtT ms= , we first generated 10,200-

length random vectors (according to a given distribution
nevertheless, given below while explaining the analytic
approach) to represent the different local variable delays of
the model on Fig. 4. Then, we simulated the behaviour of the
model using equations (6) and (7). Finally, we deduced the
delay corresponding to each cycle using (17). At the end of
simulation, we represented the obtained response times in the
form of histograms (distribution shape of Fig. 4(b)).
 iii) Analytic (Fig. 4(c)): this method corresponds simply to
the analysis exposed in Section IV. We use (30) and (33) to
calculate analytically the distribution of the response time. For
this purpose, we consider the following hypotheses:
- The lag τ is uniformly distributed over domain [0,]SCNT :

1/ [0,]
()

0
SCN SCNT if t T

f t
otherwiseτ

∈⎧
= ⎨

⎩

This type of distribution is motivated by the fact that the
experimentation was carried out with an event generator using
this uniform pattern. Obviously, another density may be used
and it all depends on the expertise and the knowledge one has

8

about the occurrence of the events from the automated plant.
- Delays ReqDT , ReqST and RespT are supposed Gaussian with

distributions (1, 1)f μ σ , (2, 2)f μ σ and (3, 3)f μ σ respectively

(according to experimental observations) given as:
2 2

(,) () 1/(2) exp[() /(2)]f t tμ σ σ π μ σ= ⋅ − −

where μ is the mean of the delay and σ its standard
deviation.
It can be shown (see Appendix A) using (34) and these
distributions that the final expression of ()f tΔ is given by:

 (,)() 1/ ()SCNt T
SCN tf t T f w dwμ σ

+
Δ = ⋅ ⋅∫ (35)

where: 1 2μ μ μ= − and 2 2 21 2σ σ σ= + .
Also, (35) can be rewritten as:

() 1/(2) []
2 2

SCN
SCN

t T tf t T erf erf
μ μ

σ σΔ
+ − −⎛ ⎞ ⎛ ⎞

= ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (36)

where 2
0() 2 / exp()terf t w dwπ= ⋅ − ⋅∫ is the so called Gauss

error function. This transformation is motivated by the fact
that function ()f tΔ is not analytic since (,) ()f wμ σ cannot be

integrated analytically. So, it is calculated only numerically
using ()erf t function which is implemented in most
mathematics software. The result of calculation of (36) using
Matlab gives the curve drawn on Fig. 4(c). It is noted ()f t
and represents the density of probability of the response time
calculated under conditions of Remark IV. 1.
- We also used formulae (21) and (22) to calculate the bounds
and obtained: 62.51MAXD ms= and 29.31MIND ms= with

1.5Max Min msΔ = −Δ ≈ being calculated as explained in
Remark III.1. The minimum and maximum values of the
network delays are determined using a (Max,+) algebra based
method [19], suitable for modeling and analysis of systems
involving shared resources as is the case in our NAS.
Discussion of results:

The maximal bound 62.51MAXD ms= obtained using
formula (21) is higher than all the values obtained using the
three considered methods. The probability to reach such a
value is negligible but the best satisfaction is that the
experimental bound of 61.80 ms be overestimated with only
about 1%. The same remarks can be made with regard to the
minimal bound of response time.

We can point out in this example the risk of using
simulation to calculate the bounds. Indeed, we can notice that
a rare event can be swept (the case of the minimal bound
29.90 ms) even if its probability is very low but this is not
guaranteed at all. This is what can be noticed with regard to
the simulated maximal bound 61.79 ms which smaller than
the experimental maximal bound. So, the real maximal bound
is not swept by simulation. Nevertheless, the simulated
distribution of the response time is satisfactory.

To remedy to simulation drawbacks, we can use the results

related to the density of probability calculus. The curve of Fig.
4(c) shows (visually) indeed that the maximal bound is around
62.00 ms and the minimal bound is around 30.00 ms . We
can also point out other advantages; the formula to obtain the
curve is easily used (without thousands of simulations) and
the shape of the curve complies with the experimental results.

Fig. 4. Results of evaluation: (a) experimental, (b) simulation, (c) analytic.

VI. CONCLUSION
In this paper, we have presented a generalization of our

former work regarding evaluation of response time in Client-
server networked automation systems. Moreover, we
presented a deterministic and probabilistic analysis, depending
on whether strict bounds or only a distribution is needed. In
both cases, we provided formulae to calculate directly and
easily the bounds and the density of probability distribution of
the response time.

For future work, it would be worthwhile to consider more
general automation architectures, with other protocols like
Producer-consumer and compare the results to the
observations provided for instance in [20].

APPENDIX A
Let us prove expressions (35) and (36). We have:

2 2
(1, 1)() () 1/(1 2) exp[(1) /(2 1)]xf t f t tμ σ σ π μ σ= = ⋅ − −

2 2
(2, 2)() () 1/(2 2) exp[(2) /(2 2)]yf t f t tμ σ σ π μ σ−= = ⋅ − +

9

1/ [,0]
() ()

0
SCN SCN

z
T if t T

f t f t
otherwiseτ−

∈ −⎧
= = ⎨

⎩

From (33) we have: () ()()x y zf t f f f tΔ = ∗ ∗ . We know that

the convolution of two Gaussians is also a Gaussian:
(1, 1) (2, 2) (,)() ()f f t f tμ σ μ σ μ σ−∗ = with: 1 2μ μ μ= − and
2 2 21 2σ σ σ= + . Hence, we get:

(,) (,)() ()() () ()z zf t f f t f t w f w dwμ σ μ σ

+∞

Δ
−∞

= ∗ = − ⋅ ⋅∫ (1)

The term ()zf t w− is non zero only if 0SCNT t w− ≤ − ≤ or
equivalently: SCNt w t T≤ ≤ + . If this condition is respected,
then () 1/z SCNf t w T− = and consequently, (1) becomes:

(,)() 1/ ()
SCNt T

SCN
t

f t T f w dwμ σ

+

Δ = ⋅ ⋅∫ ■

This can also be written as:

(,) (,)
0 0

() 1/ [() ()]
SCNt T t

SCNf t T f w dw f w dwμ σ μ σ

+

Δ = ⋅ ⋅ ⋅ − ⋅ ⋅∫ ∫ (2)

We also know that: 1
(,) 2 20

() [1 ()]
t tf w dw erf μ

μ σ σ
−⋅ ⋅ = +∫

It follows that (1) is written as:

() ()1
2 2 2

() []SCN

SCN

t T t
Tf t erf erfμ μ

σ σ
+ − −

Δ = ⋅ − . ■

REFERENCES
[1] P. Neumann, ”Communication in industrial automation - what is going

on?”, Control Engineering Practice, 15(11), pp. 1332-1347, 2007.
[2] R. L. Cruz, “A calculus for network delay, Part I: network in isolation”,

IEEE Trans. Information Theory. 37(1), pp. 114-131, 1991.
[3] J. Y. Le Boudec and P. Thiran, “Network calculus: a theory of

deterministic queuing systems for internet”, Springer Verlag, 2004.
[4] J. P. Georges, E. Rondeau, and T. Divoux, “Confronting the

performances of switched Ethernet network with industrial constraints
by using Network Calculus”, Communication Systems, 18(9), pp. 877-
903, 2005.

[5] X. Fan, M. Jonsson and J. Jonsson, “Guaranteed real-time
communication in packet switched networks with FCFS queuing”,
Computer and networks, 53(3), pp. 400-417, 2008.

[6] K. C. Lee and S. Lee, “Performance evaluation of switched Ethernet for
real-time industrial communications”, Computer standards & interfaces,
Vol. 24(5) ,pp. 411–423, 2002.

[7] J. Jasperneite and P. Neumann: Switched Ethernet for Factory
Communication. Proc. of 8th IEEE Int. Conf. Emerging Technologies
and Factory Automation, ETFA , Antibes, France, pp. 205 – 212, 2001.

[8] D.A. Zaitsev, “Switched LAN simulation by colored Petri nets”,
Mathematics and Computers in Simulation, 65(3), pp. 245–249, 2004.

[9] G. Marsal, B. Denis, J. M. Faure, G. Frey, “Evaluation of Response
Time in Ethernet-based Automation Systems, 11th IEEE International
Conference on Emerging Technologies and Factory Automation,
ETFA06, Prague, Czech Republic, pp. 380-387, 2006.

[10] D. Witsch, B. Vogel-Heuser, J.-M Faure, and G. Poulard-Marsal,
“Performance analysis of industrial Ethernet networks by means of
timed model-checking,” In Proc. of 12th IFAC Symposium on
Information Control Problems in Manufacturing, pp. 101–106, 2006.

[11] J. Greifeneder, G. Frey, “Optimizing Quality of Control in Networked
Automation Systems using Probabilistic Models”, In Proc. of 11th IEEE
Int. Conf. on ETFA, Prague, Czech Republic, pp. 372-379, 2006.

[12] J. Greifeneder and G. Frey: Probabilistic Timed Automata for Modeling
Networked Automation Systems. Preprints of the 1st IFAC Workshop on
Dependable Control of Discrete Systems DCDS, pp. 143-148, Cachan,
France, June 2007.

[13] B. Denis, S. Ruel, J. M. Faure, and G. Marsal, “Measuring the impact of
vertical integration on response times in Ethernet fieldbuses”, In Proc. of
12th IEEE Int. Conf. on Emerging Technologies and Factory
Automation, Patras, Greece, pp. 332-339, 2007.

[14] B. Addad, S. Amari and J. J. Lesage, “Analytic calculus of response time
in networked automation systems”, IEEE Trans. Automation Science
and Engineering, 7(4), pp. 858-869, 2010.

[15] T. Murata, “Petri nets Properties analysis and applications”, Proceedings
of the IEEE, 77(4), pp. 541 – 580, 1989.

[16] F. Baccelli, G. Cohen and B. Gaujal, “Recursive equations and basic
properties of timed Petri nets”, Discrete Event Dynamic Systems: Theory
and Applications, l(4), 1992.

[17] F. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat, Synchronization
and Linearity: An algebra for Discrete Event Systems, Wiley, 1992.

[18] D. A. Zaitsev, A. I. Sleptsov, “State equations and equivalent
transformations of timed Petri nets”, Cybernetics and Systems Analysis,
33(5), pp. 659-672, 1997.

[19] B. Addad, S. Amari and J. J. Lesage, “Linear Time-Varying (Max,+)
Representation of Conflicting Timed Event Graphs”, 10th Int. Workshop
on Discrete Event Systems, Berlin, Germany, pp.310-315, 2010.

[20] J. Greifeneder and G. Frey, “Reactivity Analysis of different Networked
Automation System Architectures”, Proc. 13th IEEE Int. Conf.
Emerging Technologies and Factory Automation (ETFA), Hamburg,
Germany, pp. 1031-1038, 2008.

Boussad Addad received the Engineer degree in
control systems from the National Polytechnic School
of Algiers, Algiers, Algeria, in 2007, and the M.S
degree in automated systems engineering from the
Ecole Normale Supérieure de Cachan, Cachan,
France, in 2008. He is currently working towards the
Ph.D. degree at the Ecole Normale Supérieure de
Cachan, Cachan.
His research interests include modeling and analysis
of discrete event systems along with time

performance evaluation of networked automation systems.

Saïd Amari received the Ph.D. degree from the
Institute of Research in Communications and
Cybernetic of Nantes, Nantes, France, in 2005.
He is currently an Associate Professor at the
University of Paris XIII. He carries out research at
the Automated Production Research Laboratory from
the École Normale Supérieure de Cachan. His main
research interests are performance evaluation and
control of Discrete Event Systems with Petri nets and
Dioid algebra.

Jean-Jacques Lesage (M’07) received the Ph.D.
degree in 1989, and the “Habilitation à Diriger des
Recherches” in 1994 from the Université Nancy 1
Henri Poincaré, Nancy, France, in 1989.
He is currently a Professor of Automatic Control at
the École Normale Supérieure de Cachan, Cachan,
France. His research topics are formal methods and
models of Discrete Event Systems (DES), both for
modeling synthesis and analysis. The common
objective of his works is to increase the
dependability of the DES control.

